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Abstract

A major challenge in modelling and simulation is the need to combine expertise in both software technologies and a given
scientific domain. When High-Performance Computing (HPC) is required to solve a scientific problem, software development
becomes a problematic issue. Considering the complexity of the software for HPC, it is useful to identify programming languages
that can be used to alleviate this issue.

Because the existing literature on the topic of HPC is very dispersed, we performed a Systematic Mapping Study (SMS) in the
context of the European COST Action cHiPSet. This literature study maps characteristics of various programming languages for
data-intensive HPC applications, including category, typical user profiles, effectiveness, and type of articles.

We organised the SMS in two phases. In the first phase, relevant articles are identified employing an automated keyword-based
search in eight digital libraries. This lead to an initial sample of 420 papers, which was then narrowed down in a second phase by
human inspection of article abstracts, titles and keywords to 152 relevant articles published in the period 2006–2018. The analysis
of these articles enabled us to identify 26 programming languages referred to in 33 of relevant articles. We compared the outcome
of the mapping study with results of our questionnaire-based survey that involved 57 HPC experts.

The mapping study and the survey revealed that the desired features of programming languages for data-intensive HPC appli-
cations are portability, performance and usability. Furthermore, we observed that the majority of the programming languages used
in the context of data-intensive HPC applications are text-based general-purpose programming languages. Typically these have a
steep learning curve, which makes them difficult to adopt. We believe that the outcome of this study will inspire future research and
development in programming languages for data-intensive HPC applications.
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1. Introduction

Although being sometimes controversial to some practition-
ers because of not having a clear definition, Big Data is a term
with increasing interest and widely used by both the industry
and academia. Beyer and Laney [9] describe the Big Data us-
ing properties Volume, Velocity, and Variety (also known as the
”3Vs”) as follows:

“Big data is high-Volume, high-Velocity and/or high-Variety
information assets that demand cost-effective, innovative forms
of information processing that enable enhanced insight, deci-
sion making, and process automation.”

The ”3Vs” description of Big Data has been further ex-
tended to ”5Vs” [30], by adding a further ”V” for Veracity that
indicates that the quality and accuracy of the data may vary, and
a ”V” for data Value.

One of the major challenges of scientific computing in the
context of Big Data is the need to combine software devel-
opment technology for High Performance Computing (HPC)
with the management and analysis of Big Data [11, 59, 50].
For instance, the Square Kilometre Array (SKA) [63] project is
building a radio telescope with one square kilometre of collect-
ing surface. SKA computing requirements are more than 100
petaflops, and the data traffic of SKA will exceed the data traffic
of the whole Internet. Efficient processing of large amounts of
data demands computational, communication and memory re-
sources of large-scale HPC systems [1]. Modern HPC systems
comprise a large amount of interconnected computing nodes,
each having one or more multi-core or many-core processors.
For instance, the Summit [64] supercomputer (Ranked 1st in
the current TOP500 list [65]) has 4608 nodes, and each node
comprises two IBM Power9 22-core processors and six Nvidia
Volta GPUs.

While large-scale heterogeneous HPC systems provide high
performance, there is a consensus that programming hetero-
geneous systems is not straightforward [32, 60]. Paralleliza-
tion of sequential legacy code as well as writing parallel pro-
grams from scratch is not easy and the difficulty of program-
ming multi-core systems is also known as programmability wall
[57]. The multi-core shift in computer architecture has acceler-
ated the research efforts in developing new programming frame-
works for parallel computing, which should assist domain sci-
entists, for instance, by generating and optimising low-level
parallel code for coordination of computations across multiple
cores and multiple computers [8, 58].

This study presents the results of a systematic mapping study
carried out as part of the European COST Action cHiPSet [16]
that addresses High-Performance Modelling and Simulation for
Big Data Applications. The mapping study focuses on the main
paradigms and properties of programming languages used in
High Performance Computing for Big Data processing. Our
initial literature search resulted in 420 articles, of which 152 ar-
ticles were retained for final review after the evaluation of ini-
tial search results by domain experts. Results of our mapping
study indicate, for instance, that the majority of the used HPC
languages in the context of Big Data are text-based general-
purpose programming languages and target the end-user com-

munity. To evaluate the outcome of the mapping study, we de-
veloped a questionnaire and collected the opinions of 57 HPC
experts. A comparison of the mapping study outcome with
opinions of HPC experts reveals that the key features of HPC
programming languages for Big Data are portability, perfor-
mance and usability. As key issues that need more attention
in future research we identified the language learning curve and
interoperability (for instance, interoperability of parallel run-
time libraries). We consider that the outcome of this study may
help in understanding the current limitations in HPC program-
ming languages for Big Data, and it may also help the reader in
the identification of issues that need to be addressed in future
research.

The rest of the paper is organised as follows. We intro-
duce the concepts of Systematic Mapping Studies and System-
atic Literature Reviews and briefly discuss the related work, in
Section 2. Section 3 describes the methodology of the System-
atic Mapping Study (SMS). We present the obtained results in
Section 4. Section 5 evaluates the SMS results via a survey
involving HPC experts. Section 6 highlights our major obser-
vations and lists challenges and future research directions. The
paper is concluded in Section 7 with a summary of the work.

2. Background and Related Work

In this section we describe the concepts of Systematic Map-
ping Studies and Systematic Literature Reviews and briefly dis-
cuss the related work with respect to parallel programming mod-
els and languages for data-intensive HPC applications.

Systematic Mapping Studies (SMS) [35, 55] take a broad
and shallow approach to literature review and are typically used
for structuring a research area. They are built on general ques-
tions to discover research trends. In this context, the quality
assessment of primary studies is optional; for instance, primary
studies without empirical evidence can be included.

On the contrary, Systematic Literature Reviews (SLR) take
a narrow and deep approach to literature review. They are used
for gathering and synthesising evidence on a well-defined area.
They are built on focused questions to aggregate evidence on
a very specific goal. Here, the quality assessment of primary
studies is crucial; for instance, primary studies without empiri-
cal evidence should not be included.

Related work was so far mainly focused on comparisons of
few parallel programming languages [49], but there is a lack
of comprehensive literature studies that address HPC program-
ming languages in the context of Big Data. There are also some
primary studies regarding tools, such as libraries [2, 24, 27, 29,
40, 62, 69], integrated in known languages used in this type of
computation, or APIs and programming models [7, 20, 61, 68,
70, 72]. For instance, there are several well known mainstream
libraries, such as the widespread and durable MPI. We discard
those from our study as they mostly offer APIS for Program-
ming at the transport layer embedded in General Purpose Lan-
guages (like C, C++, Python or others). The main reason is that,
to program in those terms, it is an awkward way of thinking
for numerical application developers or expert domain users.
Thus, if the point is to make HPC more accessible and widely
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adopted, we can consider those libraries to be at a wrong level
of abstraction, as to increase productivity, it should be hidden
the complexity of the communication from the domain scien-
tist.

Diaz et al. [22] give a survey of parallel and distributed
programming models for multi- and many-core computing, in-
cluding PGAS, heterogeneous and hybrid programming mod-
els, though not covering the Big Data aspect yet. Dobre and
Xhafa [23] review programming models for Big Data process-
ing. Aldinucci et al. [3, 52] compared Big Data frameworks
mapping their functional and parallelism aspects on a common
lower-level programming model, i.e. the data-flow model. Dif-
ferent general-purpose parallel programming models for single-
node multi-/many-core computing were compared quantitatively
in terms of programmability and performance in a number of
studies, such as, by Ali et al. [4] and by Memeti et al. [49].

3. The Review Process

The methodology used in this Systematic Mapping Study
(SMS) follows the methodology proposed by Kitchenham and
Charters [34, 35]. The review process has three main phases:
planning, conducting and reporting. In the next subsections we
outline how the first two phases are carried out for this SMS,
followed by an explanation of procedure for data extraction and
synthesis of information (input to the current publication, part
of the reporting). Finally, we explain general quality concerns
that had to take into account during the whole process.

3.1. Planning the SMS

Kitchenham and Charters propose 5 stages within planning:
(i) identification of the need for a review, (ii) commissioning,
(iii) specifying the research questions, (iv) developing a review
protocol and (v) evaluating it.

3.1.1. Identification of the need for a review
The need for this study was identified within the scope of

the cHiPSet COST Action [16]. There is a body of knowledge
scattered in many publications, which makes it difficult for new-
comers to HPC to have an entry point to this domain.

3.1.2. Commissioning the review
A working group focused on parallel programming models

was assigned with the mission to conduct this systematic map-
ping study.

3.1.3. The Research Questions
We followed a systematic approach for the definition of our

research questions, by adopting a subset of the PICOC criteria
[56]: Population, Intervention, Comparison, Outcomes, Con-
text. In particular, the Comparison criterion is not applicable
to our study, as this criterion refers to the software engineering
methodology, tool, technology, or procedure to which a given
intervention is being compared [35]:

• Population is composed of the primary studies on Lan-
guages for High-Performance Computing (HPC);

• Intervention is the specification or adoption of languages
for HPC;

• Comparison is not applicable in this framework;

• Outcomes is the overview of the language landscape for
HPC;

• Context is a set of research papers produced by leading
experts in HPC, as well as other stakeholders, such as
domain scientists, who use HPC in their domains.

The goal of this SMS is to answer five research questions,
further articulated in 22 sub-questions, which are presented in
Table 1. The research questions have been discussed for over
one year within the parallel programming models Working Group
and in the plenary meetings of the CHiPSet COST Action.

3.1.4. Definition of the review protocol
A small task force within the working group developed an

initial proposal for the review protocol. The protocol included
the selection of information sources, the creation of a search
string, the definition of explicit inclusion and exclusion criteria
for the primary papers, and the development of a template to
support data collection. All these articles were made available
to the remaining members of the working group.

3.1.5. Evaluation of the review protocol
The members of the CHiPset working group in charge of

this mapping study reviewed and proposed improvements to the
initial proposal, leading to the protocol followed in this review,
as described in the next section.

3.2. Conducting the SMS

The conduction of an SMS involves the following steps: (i)
identification of research, (ii) selection of primary studies, (iii)
data extraction and monitoring, and (iv) data synthesis. This
process is outlined in Figure 1. Also, the process should also
include quality assessment.

Figure 1: Primary studies selection and filtering

3.2.1. Identification of research
The main goal of an SMS is to identify a large number of

primary studies related to the proposed research questions.
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Table 1: Research Questions that were formulated

ID Research Questions

RQ1 What are the categories of languages in use?
RQ1.1 What are the current research trends in languages for HPC?

RQ2 What is the nature of the languages for HPC?
RQ2.1 What kind of language is it?
RQ2.2 What is the execution model that is being used?
RQ2.3 What are the key advantages of the language?
RQ2.4 What are the application domains of the language?
RQ2.5 What are the paradigms underlying the languages?
RQ2.6 Which are the execution stack requirements (?-aaS) to support

the artifacts created with those languages?
RQ2.7 What is the existing tool support for the language?
RQ2.8 What are the technologies used to create the language tool

suite?
RQ2.9 Does the language target specific hardware?
RQ2.10 What is the purpose of the language?
RQ2.11 What is the preferred language representation type?

RQ3 What are the typical user profiles for the languages?
RQ3.1 What are the roles of the users of this language?
RQ3.2 What kind of technical knowledge is required?

ID Research Questions

RQ4 How effective are the languages?
RQ4.1 Is the success of the languages evaluated in the articles?
RQ4.2 – What are the productivity gains brought by the languages re-

ported and what kind of measurement was used?
– What are the products’ performance gains brought by the lan-
guages reported and what kind of measurement was used?

RQ4.3 Is there an explicit comparison with competing approaches?
– Is the comparison quantitative, qualitative or both?
– What are the comparison methodology and metrics used?

RQ5 What type of articles are published in the area of program-
ming models for HPC?

RQ5.1 What is the name of the conference or journal?
RQ5.2 Who is sponsoring the research?
RQ5.3 What kind of research is being reported?

3.2.2. Selection of primary studies
Search for candidate primary studies. We used the keywords
in our research questions as a basis for designing our search
query. We connected those terms with the AND operator:

‘‘Big data’’ AND ‘‘Programming Model’’ AND

‘‘Programming Language’’ AND

‘‘High performance computing’’

In order to increase the coverage of our study, we included
closely related terms, selected by cHiPSet experts (herafter re-
ferred to as experts), for our index terms. These synonyms are
included in our search string with the OR operator, leading to
the final search query:

(‘‘Big Data’’ OR ‘‘Data Intensive’’ OR

‘‘Stream Data’’) AND

(‘‘Programming Model’’ OR ‘‘Language Model’’ OR

(‘‘Modelling Language’’) AND

(‘‘Domain Specific Language’’ OR

‘‘General Purpose Language’’ OR

‘‘Programming Language’’ OR

‘‘Programming Framework’’) AND

(‘‘HPC’’ OR ‘‘High Performance Computing’’ OR

‘‘Grid Computing’’ OR ‘‘Supercomputing’’ OR

‘‘Parallel’’ OR ‘‘Concurrent’’)

We selected 8 digital libraries for performing this SMS.
These libraries were chosen to ensure coverage of the main
venues where we expected to find candidate primary studies.
We asked experts to identify those venues (Table 2). This short-
list of venues was used as a “gold standard” for our automated
search.

All searches were based on the title, abstract and keywords
of publications from January 2006 to March 2018, a period of
time that was considered by the experts as adequate for this
SMS. After removing duplicates, we obtained a total of 420
candidate primary studies (Table 3).

First selection of primary studies. We defined a set of inclu-
sion and exclusion criteria (Table 4) to filter out candidate pri-
mary studies that would not contribute to answering our re-
search questions. These criteria were set before the conduction
of the automated search, while planning this SMS. They were
applied by analysing the title, abstract and keywords of each
of the 420 candidate primary studies. We took a conservative
approach at this stage: when in doubt, we kept the candidate
primary studies. It worth mentioning that all language appli-
cation publications were excluded, as the focus of our study is
on the design and development of languages and not about ex-
amples of their use. At the end of this step, we excluded 268
candidate studies, according to those criteria. This resulted in
152 candidate studies selected for the next steps.

Final selection of primary studies. We refined the selection
from the previous step by reading the full papers, rather than
just the title, abstract, and keywords in order to reapply the in-
clusion and exclusion criteria, now to the full contents of the
candidate primary studies. The goal was to filter out papers that,
in practice, were beyond the scope of our research questions,
even if their title and abstract suggested otherwise. Specifically,
studies reporting libraries (rather than languages) were sieved
out. In addition, in line with the guidelines [35] and common
practice in performing the selection of primary studies [34], we
also included a set of relevant papers that were jointly identi-
fied by experts. These were primary studies directly known by
those experts that fell within the scope of this SMS. In this step
9 papers were added to the batch. These additions were mainly
due to the usage of slightly different terminology, not captured
by our automatic search query. The selection of the key terms
in the automated search query has to balance coverage with the
minimisation of false positives, to ensure the feasibility of the
study in terms of scale (e.g. adding an extra key term can easily
lead to hundreds of extra papers to analyse). Manually adding
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Table 2: Conferences and journals considered in the study

Conferences (11) Journals (8)

GTC / GPGPU conference ACM Transactions on Parallel Computing
IEEE Intl. Parallel and Distributed Processing Symposium Concurrency and Computation Practice and Experience
Intl. Conference on Parallel Processing Future Generation Computer Systems
Intl. Conference on Supercomputing IEEE Computing in Science and Engineering
Intl. European Conference on Parallel and Distributed Computing Journal of Parallel and Distributed Computing
Intl. Supercomputing Conference Journal of Supercomputing
Parallel Computing Conference Parallel Computing
Principles and Practice of Parallel Programming Scientific Programming
SIAM Conference on Parallel Processing for
Scientific Computing
Supercomputing Conference

Table 3: Candidate primary studies per digital library

Source Name Number of Studies

academia.edu 1
ACM Digital Library 16
Compendex 6
Elsevier Science Direct 289
Google Scholar 32
IEEE Xplore 3
ResearchGate 3
Springer Link 70

Total of articles found: 420

known papers to the batch is a pragmatic way of mitigating the
risk of missing important references, while keeping the sample
size manageable. Overall, 33 primary studies were selected for
data extraction (please consult the companion site [5] for the
complete list of resulting selected papers).

3.3. Data extraction and Synthesis
Data Extraction Process. To enhance data consistency, the data
extraction process was guided by a template implemented as a
shared spreadsheet. A team of 19 experts (the authors of this
paper) participated in data extraction directly reading the pri-
mary studies selected during the previous stage and answering
to the research questions listed in Table 1. Each study has been
randomly assigned to one expert. We identified a total of 26
languages, including 8 Domain-Specific Languages, 14 general
purpose languages, and 4 domain-specific languages embedded
in general purpose languages.

Synthesis of the Information. During this stage, the previously
extracted information was cross-reviewed by all experts with
the aim of identifying possible clerical errors during previous
steps and taking into account the research questions formulated
(the studies that referred to the languages used for HPC). After
this task, a shared document was created for entering answers
to the research questions and referring to the found languages.

3.4. SMS Quality concerns
When conducting an SMS we need to address the following

quality concerns:

• Are the inclusion and exclusion criteria described and
appropriate? This aspect has been directly addressed
during the Selection of the Primary Study stage (Sec. 3.2.2):
all the criteria were explicitly defined (see Table 4) and
the set of 152 studies at this step was filtered against in-
clusion and exclusion criteria.

• Does the literature search cover all relevant studies? We
addressed this during the Search of Primary Study stage
(Sec. 3.2.2) by selecting appropriate keywords with the
help of the cHiPSet experts and then complementing the
set of papers resulting from our automatic search and
subsequent expert opinion-based filtering with a set of
papers known by experts, to capture papers that were
missed by the automatic search.

• Was the information from the primary studies correctly
extracted? Each primary study was inspected by at least
one of the authors of this SMS. Although there is no ab-
solute guarantee that important information was not lost,
as a safeguard mechanism, a sample of papers were in-
spected by a second expert. No information loss was de-
tected.

4. Discussion of the Results

4.1. Programming languages for HPC

Throughout this section, the programming languages for
data-intensive HPC applications are firstly categorised by Re-
search Question 1 (RQ1), then analysed through their main fea-
tures with respect to Research Questions 2 – 5 (RQ2 – RQ5).

In addition to the information gathered on the existing lan-
guages, several studies have been found regarding libraries and
Application Programming Interfaces (API), which were not con-
sidered because they are integrated in the languages mentioned
throughout this section. Respecting these conditions, at the end
of this process, we identified 33 articles, to which corresponded
26 languages.

In [5] (data set companion) it is presented a list of the iden-
tified languages and their characteristics. Due to the similarity
of the answers given to the research questions, some languages
were grouped, for instance, C and C++, or Python and R.
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Table 4: Inclusion and Exclusion criteria of the articles

Inclusion Criteria Exclusion Criteria

Study must have addressed HPC research Irrelevant study that lay outside the core HPC research field

Peer reviewed study that had been published in journal,
conference and workshop

– Non-peer reviewed study (abstract, tutorial, editorial, slides, talk, tool demonstra-
tion, poster, panel, keynote, technical report)
– Peer-reviewed but not published in journal, conference, workshop (e.g., PhD the-
sis, book, patent)

Study must be written in English Study not in English

Study must be accessible electronically Electronically non-accessible study

Study is related with Computer science literature & Systems area Article published before 2006

RQ1: Which are the categories of languages in use?. We have
categorised the encountered programming languages in four classes:

1. Domain Specific Language (DSL), which is a language
adapted to a specific application domain that offers ap-
propriate annotations and abstractions [37, 38, 67];

2. General Purpose Language (GPL), which is a program-
ming language designed to be used in writing software in
a wide variety of application domains [38];

3. DSL embedded in another DSL;
4. DSL embedded in a GPL.

As shown in Figure 2, 54% of the languages have been clas-
sified as being GPL (14 languages). Please note that 31% of
these languages (8 languages) are DSL. The remaining 4 lan-
guages were considered DSL embedded in an GPL. Though the
study considered that a DSL embedded in another DSL could
be found, our analysis did not find any in the domain of data-
intensive HPC applications.

Category of the Language

General Purpose Language
54% DSL embedded in a GPL

15%

Domain Specific Languages
31%

Figure 2: RQ1 – Which are the categories of languages in use?

RQ2: What is the nature of the languages for HPC?. The ob-
jective of this research question was to characterise the nature
of the encountered languages for HPC. To accomplish this ob-
jective several sub research questions were identified and their
results are here discussed.

The encountered languages use Virtual Execution Environ-
ments such as Java Virtual Machine (JVM) and Distributed Mid-
dlewares like Hadoop Distributed File System (HDFS) and IBM
InfoSphere (RQ 2.2).

The key advantage of the encountered languages is the us-
ability of the language. The ease of configuration, portability,

orchestration and performance of the language are the other ad-
vantages that are perceived as important. Other advantages re-
ferred to were visualisation of user-initiated query results, ease
to express constraint problems and enabling high-level parallel
programming using skeletons, see Figure 3.

The application domain of the encountered languages is the
parallel analysis of Big Data (RQ 2.4).

The main paradigm underlying the encountered languages
is Object-Oriented, followed by Functional (see Figure 4).

The encountered languages generally support multiple OS.
Some of them require Message Passing Middleware such as
Message Passing Interface (MPI) and I/O architectures such as
HDFS. Some languages require libraries like Apache Hadoop
to support the artifacts created (RQ 2.6).

Concerning tools supporting the languages, compilers are
the most well represented support tool, followed by tool suite
and interpreters (see Figure 5). IDE’s, simulation and valida-
tion tools are comparatively more scarce.

There are some technologies used to create the languages
tool suite. These are compiler generators such as IBM Info-
sphere Streams, some XML based technologies (e.g. in Java,
they used a syntax to describe classes and methods), and some
frameworks such as Knowledge Discovery Toolbox (KDT) (RQ
2.8).

Most of the surveyed languages do not target specific hard-
ware (85%). About 40% of the encountered languages target
general-purpose multi-core architectures or GPUs (RQ 2.9).

The main purpose of the encountered languages is to Im-
plement the solution, followed by the Formalisation of the so-
lution, Formalisation of the requirements of the problem and
Data Interpretation (see Figure 6).

Results for the language representation type revealed that
there is a concrete syntax for all the encountered languages and
the preferred representation type of 76% of them is Textual (see
Figure 7).

RQ3: What are the typical user profiles for the languages?.
Figure 8 displays the distribution of the typical user profiles for
the languages. Most of the identified languages are used by
end-users, who utilise the language to solve problems. About
16,7% of the languages are used by developers, who utilise the
language to create tools/setups/solutions for other users.
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Figure 3: RQ2.3 – What are the key advantages of the language?

MainAreasOfWork

Main areas of workMain areas of work

Advantages

Control / Possible low-level 
tuning

4

Paradigms

Logic 1

Hybrid 3

Declarative 6

Functional 9

Object-Oriented 10

Logic

Hybrid

Declarative

Functional

Object-Oriented

0 2 4 6 8 10

�5

Figure 4: RQ2.5 – What are the paradigms underlying the languages?
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Figure 5: RQ2.7 – What is the existing tool support for the language?

The technical knowledge required to use these languages is
mainly based on the languages themselves or those where they
are embedded, some hardware knowledge, clusters and theoret-
ical background related to the application domains of the lan-
guage in question. As an example, to use FastFlow we should
be accustomed to C++ language, have some knowledge about
CPU and theoretical background about Streaming Applications
(RQ 3.2).

RQ4: How effective are the languages?. Effectiveness is artic-
ulated in three aspects, addressed by RQ4.1 (success), RQ4.2
(productivity gain), and RQ4.3 (advantage against competitive
approaches). Around 88% of the articles reviewed in this study
evaluated the corresponding languages for success.

Figure 9 depicts productivity gains brought by the languages
studied in this paper based on qualitative and quantitative anal-
ysis. Based on quantitative analysis, the most referred pro-
ductivity gain brought by the reported languages was the eas-
iness to use the language, followed by the learnability. With
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Figure 6: RQ2.10 – What is the purpose of the language?
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Figure 7: RQ2.11 – What is the preferred language representation type?

respect to qualitative analysis, the most referred productivity
gain brought by the reported languages was the easiness to use,
followed by the lower cognitive overload and the learnability.
We may observe that productivity gains brought by the reported
languages are mainly estimated using qualitative methods.

The chart in Figure 10 depicts the products’ performance
gains brought by the studied languages in this paper. Based on
quantitative analysis, the most referred products’ performance
gains brought by the reported languages were the computation
efficiency and the scalability. With respect to qualitative anal-
ysis, the most referred products’ performance gain brought by
the reported languages was evolvability / maintainability, fol-
lowed by scalability. Unlike the productivity gains, the prod-
ucts performance gains brought by the reported languages are
mainly estimated using quantitative methods.

According to the statistics, 64% of the articles included an
explicit comparison between the reported language and other
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Figure 8: RQ3.1 – What are the roles of the users of this language?
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Figure 9: RQ4.2 – What are the productivity gains brought by the languages
reported and what kind of measurement was used?

competing approaches. About half of the articles included an
explicit comparison of the proposed language with respect to
distinct settings/ context/ configurations (RQ 4.3).

All metrics were obtained using quantitative methods. The
most frequently used metric was the computational time, fol-
lowed by the lines of code and the satisfaction (see Figure 11).

RQ5: What types of articles are published in the area of pro-
gramming models for HPC?. The scientific journals that pub-
lished most of articles included in this study are ”Future Gen-
eration Computer Systems”, ”Parallel Computing”, and ”Jour-
nal of Parallel and Distributed Computing”, as depicted in Fig-
ure 12 (RQ 5.1).

Most of these articles were sponsored by public or both
public and private funds (RQ 5.2). Each of these articles can
be classified as a case study, as an experiment report, or a com-
parative assessment; we observed that there was a greater oc-
currence of experience reports; case studies and comparative
assessments were found in a similar number, as shown in Fig-
ure 13.

5. SMS Validation by HPC Experts

To validate the SMS results that are presented in Section
4, we conducted a survey (in November 2018) with 28 HPC
experts involved in the cHiPSet COST action using a question-
naire (see [5]) to which we added, in October 2019, 29 HPC
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Figure 10: RQ4.2 – What are the products’ performance gains brought by the
languages reported and what kind of measurement was used?
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Figure 11: RQ4.3 – Number of articles using each metric: What are the metrics
used?

Table 5: List of the encountered languages in the Systematic Mapping Study

Domain Specific Languages (DSL)

CineGrid Description Language + Network D Language [36]
Crucible [18]

e-Science Central WFMS [14]
Higher-order ”chemical programming” language [26]

Liszt [21]
Mendeleev [17]

MiniZinc [13]

General Purpose Languages (GPL)

Bobolang [25]
C/C++ [6, 10, 24, 39, 48, 54, 61]

Erlang [66]
FastFlow [2, 51]

Goal Language supported by RuGPlanner [31]
Java [6, 15, 45, 46, 48]

OpenCL [10, 33]
Python/R [6, 28, 42]

Scout [47]
Selective Embedded Just-In-Time Specialization [43]

SkIE-CL [19]
Swift [44, 71]

DSL embedded in GPL

Pipeline Composition (PiCo) [53]
Spark Streaming and Spark SQL [41]

Weaver [12]

experts which were not involved in that COST action. Partic-
ipants were recruited through convenience sampling, and con-
tacted directly by the authors of this paper. In total, we received
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Figure 12: Which conferences and journals publish articles about languages for HPC? - RQ5.1
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Figure 13: Number of articles reporting each type of research - RQ5.3

57 filled survey forms.
The majority of respondents have more than 10 years ex-

perience in HPC (see Figure 14), and rate their own techni-
cal knowledge in HPC languages and tools as good or excel-
lent (Figure 15). We have a fairly balanced sample of HPC
framework and tool developers and primary HPC users (see
Figure 16). Although most of the respondents work in com-
puter science (including AI), several of them also work in par-
ticular application domains, such as Bioinformatics, albeit with
a larger dispersion among those domains (see Fig. 17. 11 of the
survey answers came from coauthors of this systematic map-
ping study, 17 from other cHiPSet members not involved in the
SMS, and the remaining 29 from other respondents recruited
through convenience sampling by this paper’s co-authors. Hence,
the expert sample may be somewhat biased towards computer
science professors developing HPC programming frameworks.

Figure 14: Expert sample: Level of experience of working in HPC

Figure 15: Expert sample: Self-estimation of technical knowledge in HPC pro-
gramming languages/frameworks

Figure 16: Expert sample: HPC Tool Developers vs. Users

Figure 18 shows the list of HPC programming languages,
frameworks and tools that the respondents (a) use and (b) know.
In the survey the questions had explicitly distinguished between
”true” programming languages discussed in Section 4 and non-
language programming frameworks (such as, libraries) and other
programming tools. From the answers filled in on the survey
form, it also became clear that a significant number of respon-
dents do not see any particular difference between language and
non-language programming frameworks or at least do not con-
sider that as important in practice. For that reason, we show the
answers for both (a) and (b) in the same diagram, using differ-
ent colours. The three main blocks in Figure 18 coarsely struc-
ture more than 100 mentioned programming frameworks and
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Figure 17: Expert sample: Work areas

tools into general-purpose frameworks, domain-specific (esp.,
machine learning) frameworks and tools.

Figure 18 shows high numbers of answers for a few (se-
quential) base-level programming languages of central impor-
tance in data-intensive HPC, including both the traditional HPC
base languages C/C++ (highest score of all) and Fortran (less
frequent) as well as the base languages Python, Java, Scala
and (less frequently) R, which are the most common ones for
use with current Big Data and machine learning programming
frameworks. Among the truly parallel HPC programming frame-
works, MPI dominates as expected together with OpenMP and
(somewhat less frequent) pthreads, but also the GPU program-
ming models CUDA, OpenCL and OpenACC score quite high
numbers of answers. PGAS languages such as UPC, X10 and
Chapel are known to a number of experts in the sample, but
are hardly used by them. The most-used big data and machine
learning programming frameworks among the answering ex-
perts are Hadoop / MapReduce, Spark, Tensorflow and Keras,
though they receive less scores than the traditional parallel pro-
gramming models. A number of skeleton/ pattern based parallel
programming frameworks also occur in the list, with FastFlow
and SkePU scoring the largest number of answers. Figure 18
also reveals a “long tail” of many programming frameworks
and tools that were only named by one two persons.

Figure 19 charts the answers by the expert sample on the
question about perceived advantages of the programming frame-
works used. Most answers focused on performance/ efficiency,
followed by programmability (easy coding), portability and avail-
ability of features. We also asked for honest answers about
other factors that led to adoption of a certain programming frame-
work. Although only few answered this question, it revealed
factors such as popularity, mandatory use in a project or the use
in teaching parallel programming, see Figure 20.

Comparing Figure 18 with the list of programming frame-
works resulting from the systematic literature study in Table 5,
we can see a number of similarities; for example, the expert
sample confirms the high significance of C++ for the HPC do-
main. In contrast, apart from machine learning frameworks,

other domain-specific languages tend to be more used in spe-
cific niches, as suggested by the lower frequency with which
those languages are referred by our survey respondents. A pos-
sible explanation is that the expert sample answers focus on
tools being used, i.e., mature technology that has been devel-
oped years (sometimes decades) ago, while the literature sam-
ple feeding the SMS results contained quite a number of papers
about more exotic domain-specific programming frameworks
that represent the current front of research in the design and
development of programming frameworks rather than their use
for solving actual HPC and big data application problems.

6. Observations, research challenges and future directions

In this section we summarise our major observations, re-
search challenges and future directions in the domain of HPC
programming languages for Big Data processing.

Major observations based on the reviewed literature:

• General-purpose programming languages are used most
frequently (54% of observed cases);

• Majority (that is 76%) of the languages were text-based;

• Usability (Effectiveness, Efficiency, Satisfaction) is con-
sidered the key feature of the used language;

• Simulators, validators or IDEs are not often available;

• About 67% of the language users are end-users;

• 87% of the reviewed literature has provided a kind of lan-
guage evaluation, with majority of the cases using com-
putational time as metric;

• Majority of the reviewed literature reports experiments.

Major observations based on the opinions of HPC experts
that responded to our questionnaire:

• Key features of a HPC programming language for data-
intensive applications are performance / efficiency, pro-
grammability, and availability of tools / libraries;

• C/C++ and Python general-purpose programming lan-
guages are frequently used by HPC experts;

• Most frequently used parallel programming frameworks
by HPC experts are MPI and OpenMP;

• While significant research effort has been invested in PGAS
languages (such as, UPC, X10 and Chapel), they are not
often used in practice;

• Programming models / languages for heterogeneous com-
puting – CUDA, OpenCL and OpenACC – are popular
among HPC experts;

• Apart from machine learning frameworks, other domain-
specific languages tend to be more used in specific niches,
as suggested by the lower frequency with which those
languages are referred by our survey respondents;
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Figure 18: Expert sample: HPC programming languages, frameworks and tools used and known
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Figure 19: Expert sample: Mentioned advantages of HPC programming lan-
guages, frameworks and tools used

• Majority of the HPC experts that responded to our ques-
tionnaire develop support tools.

Major challenges and future research directions include:

• Learning curve of the HPC programming languages is a
major challenge that needs to be addressed in future;

• Development of IDEs and supporting tools, e.g. simu-
lators and validators, to fill in the current gap in HPC
languages.

7. Summary

We performed a systematic mapping study to examine the
main paradigms and properties of programming languages used
in High-Performance Computing for data-intensive applications.
We performed an automated search for articles in eight differ-
ent digital databases, to select papers published from January
2006 to March 2018. We used a two-step filtering process to
select the relevant primary studies. In addition, we also in-
cluded 9 extra papers that were known among the experts to
be relevant for our study. In the end, we conducted data ex-
traction on 33 papers. We identified 26 languages for HPC
for data-intensive applications. We provided a comprehensive
classification of the languages encountered and their usage and
evaluation by different criteria. The majority of the used HPC
languages in the context of data-intensive applications are text-
based general-purpose programming languages and target the
end-user community. Those users, from different application
domains, may lack a strong background in computing and HPC
technologies. This creates several challenges: the expressive-
ness of the most commonly used languages, in terms of domain
rules, is closer to the solution domain (programming technolo-
gies) than to the problem domain (the domain of application)

Figure 20: Expert sample: Additional reasons for using the HPC programming
languages, frameworks and tools used

- this mismatch introduces added accidental complexity; us-
ability aspects such as learnability, or programmability, may
benefit from the adoption of DSLs. As a complementary form
of evaluation, we also performed a survey for collecting opin-
ions from HPC experts on the languages they commonly use
for HPC for data-intensive applications. Based on the mapping
study outcomes and HPC experts opinions, we found that the
key features of HPC programming languages for data-intensive
applications are performance/efficiency, programmability, and
availability of tools/libraries. This suggests that there is an op-
portunity for bridging the gap between HPC and its target ap-
plication domains. One possible way of bridging this gap is
to support a wider DSL adoption. DSLs can be as efficient as
GPLs, and more accessible to domain experts (increased pro-
grammability), as long as robust tool/libraries support is made
available to domain experts. However, this requires a stronger
investment in developing languages that capture the target do-
main knowledge and established practices, while leveraging the
HPC approaches.

As highlighted by the HPC expert survey (in line with com-
mon sense), the durable Message Passing Interface (MPI) stan-
dard, with send/receive, broadcast, reduction operators and global
synchronisations (barriers), has remained the programming paradigm
of choice for over twenty years to construct parallel applica-
tions composed of tens to hundreds of thousands of commu-
nicating processes. The reason dêtre of HPC is, by definition,
high performance and a highly optimised MPI code exhibit un-
paralleled performances because each MPI application, despite
its complexity, is conceived as a single program designed on
developer-based precise knowledge of the whole code, the par-
titioning of data and the communication overheads. In the hi-
erarchy of abstractions, this is only slightly above toggling ab-
solute binary in the front panel of the machine. We believe that
this approach is unable to effectively scale to support the main-
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stream of software development where human productivity, to-
tal cost and time to a solution are equally, if not more, important
aspects. However, to date, attempts to develop high-level pro-
gramming abstractions, DSL and environments for HPC have
mostly remained in the research labs, and they failed to scale to
large scale scientific and industrial applications.
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