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1. Introduction 
 

Modern agriculture needs to front multiple challenges, including the 

growing needs of the increasing population, uncertainties due to climate 

change, shortage of water resources, rising energetic and environmental 

costs, and stringent environmental regulation, as well as global resources 

consumption, lower land availability and crop productivity growth. A 

sustainable intensification of crop production is needed to fulfil the future 

request while, at the same time, reducing the environmental impact of the 

agricultural sector (Foley et al., 2011) and increasing the efficiency of 

invested resources. Ecosystem-based approaches have to be followed to 

improve the overall sustainability of cropping systems. Indeed, a 

sustainable crop production system not only recognise the need for an 

adequate food supply, but also provides profits for the farmers, preserves 

and enhances the natural resource base, positively contributes to the 

quality of life of individuals and communities, and ensures the nutritional 

value and safety of food (Pisante et al., 2012). The need of improving 

sustainability is clearly highlighted in the 2030 Agenda for sustainable 

development, that includes 17 goals, with the aim of ending poverty, 

protecting the planet and improving the lives and prospects of everyone. 

Several goals are relevant for the agricultural sector, particularly goals 2 

and 12. Goal 2 aims at ending hunger, achieving food security and 

improved nutrition, as well as promoting sustainable agriculture. In 

addition, Goal 12 promotes sustainable consumption and production 

patterns. 

Nowadays, agriculture should be designed to increase the long-term 

efficiency, productivity, and profitability of the cropping systems, then 

minimising the negative externalities. 
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1.1 Precision agriculture as a tool for improving the 

agricultural system 

 

Many innovative tools and techniques are nowadays available for 

improving crop production by enhancing input use efficiency, thus 

achieving high profitability and limiting adverse environmental cost. 

Among them, precision agriculture (PA) allows to take into account crop 

variability within a field, through location-specific management (Basso et 

al., 2005). Then, PA is linked to the management of the variability, both in 

space and in time. The magnitude of this variability is a good indicator of 

the suitability of a variable management plan. There are many definitions 

of PA. According to the United States Department of Agriculture (USDA), 

PA is a management system that is information and technology based, is 

site specific and uses one or more of the following sources of data: soils, 

crops, nutrients, pests, moisture or yield, for optimum profitability, 

sustainability and protection of the environment (USDA, 2007). A simpler 

definition was proposed by Gebbers and Adamuck (2010), who assessed 

that PA is a way to apply the right treatment in the right place at the right 

time. In a modern concept, PA can be considered as the digital face of 

agriculture, that introduces computational and information technologies in 

farming systems. Site-specific crop management (SSCM) is a component 

of PA that can be defined as matching resource application and 

agronomic practices with soil and crop requirements as they vary in space 

and time within a field (Whelan and McBratney, 2000). This definition 

includes the idea that PA is an evolving management strategy, based on 

the integration of technologies that permit the collection of data on an 

appropriate time scale (Batte and Van Buren, 1999). 
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1.2 Research on PA and potential application of PA 

technologies  

 

Up to now, various researches on different PA technologies have been 

conducted all over the world, showing a continuous increase starting from 

the middle 1990s (Figure 1).  

 

 

Figure 1: Number of publications on PA technique, including precision agriculture, 

precision farming, and site-specific crop management in title, keywords, or 

abstract (Source: Scopus database accessed 12 June 2018). 

 

In Italy, the research interest on PA started some year later, rising 

especially from 2012. 

The penetration of advanced digital technologies within the agricultural 

systems is rapidly increased in the last years, especially in more advanced 

economies. While digital technologies allow the practical application of 

PA, on the other hand only the interpretation of variability makes it 

feasible. The introduction of PA technologies requires a scientific 

understanding of the variability that can be detected in the cultivated soils, 

due to both the natural variability in soil properties and the agrotechniques 

(Bocchi et al., 2000). Moreover, the correct management of spatial 
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variability requires suitable data analysis procedures. Geostatistics allow 

describing and better understanding the spatial distribution of each 

variable detected in a crop field. Geostatistical tools (e.g. variograms and 

kriging) have been developed for investigating the spatial distribution of 

the observations taking into account their spatial dependence, then 

assessing their spatial variability (Bocchi and Castrignanò, 2007). 

Multivariate geostatistical techniques can be used to quantitatively 

measure complex interactions, then suggesting an improved 

management of spatial and temporal variability linked to several aspects 

of crop production. 

Nevertheless, PA adoption is increasingly impacting also developing 

countries. However, several concerns associated with the diffusion into 

the agricultural system still exist. McBratney et al. (2005) proposed the 

use of both a spatial and environmental indices to determine the overall 

suitability of PA application in a specific area. The arable land (hectares 

per inhabitants) can be considered a useful spatial index, even if it does 

not consider the intrinsic variability within a given area. 
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Table 1: Spatial index of different areas (Source: FAO, 2018) 

Area Spatial index  
(ha of arable land per inhabitants) 

Australia 1.93 
North America 0.55 
Europe and Central Asia 0.37 
Central Europe and the Baltics 0.36 
Latin America and Caribbeans 0.28 
Sub-Saharian Africa 0.21 
European Union 0.21 
Middle East and North Africa 0.12 
South Asia 0.12 
East Asia and Pacific 0.11 

 

In general, the larger the arable land is, the greater the spatial potential 

for PA adoption (McBratney et al., 2005). Consequently, Australia and 

North America appear the most suitable for PA adoption (Table 1). 

Fertiliser consumption (kg per hectares of arable land) can be used as 

environmental index, indirectly evaluating the impact of agriculture on 

water quality and soil sustainability (Table 2). Those countries with high 

fertiliser consumption can better improve fertiliser management through 

the adoption of PA techniques, achieving more benefits in increasing 

fertiliser use efficiency (McBratney et al., 2005).  

Table 2: Fertiliser consumption in different areas (Source: FAO, 2018) 

Area Fertiliser consumption  
(kg of fertilisers for ha of arable land) 

East Asia and Pacific 327.9 
South Asia 164.5 
European Union 157.2 
North America 126.9 
Central Europe and the Baltics 125.4 
Latin America and Caribbeans 122.7 
Middle East and North Africa 105.7 
Europe and Central Asia 77.2 
Australia 53.6 
Sub-Saharian Africa 15.0 

 

Moreover, a key factor for PA adoption is represented by the degree of 

variability. Indeed, the higher variability detected in a field leads to an 

easier implementation of PA techniques (Tekin, 2010). 
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1.3 Public investments on precision agriculture in Europe 

All over the world, governments and public institutions encourage 

precision farming, to facilitate a digital evolution in the agro-industry. 

Farming systems are different, considering the wide range of climate, soil 

characteristics, cultivated crops, and management practices. Then, 

policy-makers need to define objectives and challenges, as well as needs 

and priorities to face specific political and social pressures, suggesting 

also instruments to profitably meet these specific goals. In Europe, the 

implementation of PA is stimulated through Common Agriculture Policy 

(CAP) instruments (European Union, 2014). Considering CAP 2014-2020, 

several goals are relevant for PA, among which enhancing farm income, 

improving agricultural competitiveness, fostering innovation, providing 

environmental public goods, and pursuing climate change mitigation and 

adaptation. In Italy, several Italian regions produced Rural Development 

Programs (RDP) to reach these objectives, helping farmers to become 

innovative through support and money funding. 
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Figure 2: Possibility of money funding through Rural Development Programs in 

Italy 

 

However, the widespread adoption of such improved technologies by 

farmer is still lacking, mainly because they require additional skills and 

knowledge, labour, or investments in new equipment and technologies 

(Van Evert et al., 2017). Despite the enormous increase in the technology 

available to farmers, the practical adoption of PA has been less than 

expected, partially because the quantification of benefits compared to the 

costs of investment is still missing. In 2017, the Italian Ministry of 

Agricultural, Food and Forestry Policies (MiPAAF - Ministero delle 

Politiche Agricole, Alimentari e Forestali) issued the document Linee 

guida per lo sviluppo dell’agricoltura di precisione in Italia. The purpose 

was to get a picture of the adoption of PA techniques in Italy, then 
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evaluating the tools to widespread their application. Nowadays, in Italy, 

PA techniques are adopted on approximately 1% of the Utilised 

Agricultural Area (UAA). The goal is to extend PA application on 10% of 

UAA by 2021.  

 

1.4 Technologies available for precision agriculture and 

main barrier for adoption 

Up to now, the advancement in research on PA, combined with the higher 

availability of innovative technologies, provides technical solutions that 

can support farmers in their decision-making process. To this end, these 

solutions have to be widely integrated in the farm management system, 

allowing their evaluation on commercial farms representing a wide range 

of different crops and geographic areas.  

The development of accurate positioning systems allows managing 

spatial variability through appropriate farming practices. In particular, in 

arable farming, controlled traffic and auto-guiding systems represent the 

most successful applications of PA techniques, as well as variable rate 

application of agricultural inputs (i. e. seeds, water, fertilisers, and 

agrochemicals). However, PA adoption not only allows improving the 

ecological impact of the agricultural sector, optimising at the same time 

farming cost, but also contributes to the collection of further data useful 

for validating the current technologies and to produce advancements in 

research and developments. 

However, currently, PA technologies are not used to their full potential by 

farmers, as a consequence of the trade-off between available 

technologies, agricultural industry, and farmers’ decision making (Ondoua 

and Walsh, 2017). The main reasons for the low adoption of PA 

technologies at farm level are the high investment costs and farmers’ 

perception of ease of use, as well as the lacking of technical support 
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offered by technology dealers. Indeed, a participatory approach is needed 

to foster PA development, leading to a widespread adoption.  

 

1.5 Precision Nitrogen management 

Among the various components of the agricultural system that have been 

evaluated considering their potential for site-specific management, soil 

fertility has a crucial role (Pierce and Nowak, 1999). Indeed, PA allows 

delivering customised inputs on the basis of georeferenced crop 

information, or partitioning the field in zones that require homogeneous 

agronomic management. 

Appropriate nitrogen (N) management is one of the main challenges of 

the agricultural systems worldwide. Nitrogen inputs are essential for 

stimulating crop growth, as they help maximising crop yields and 

contribute to crop quality. However, deficient or excessive N applications 

have a detrimental effect on economic and environmental aspects of crop 

production. Providing crop with deficient N supply results in lower crop 

yield, and then poor economic return. Conversely, excessive N amounts 

have been reported as a cause of environmental pollution (Tubaña et al., 

2011). Indeed, N is a very mobile and dynamic nutrient. Consequently, N 

is highly susceptible to losses through leaching, ammonia volatilisation, 

and N2O emission that reduce soil fertility and create adverse impact on 

the environment (Cameron et al., 2013). Ammonia volatilisation 

contributes to acid rains. N leaching contaminates water resources, 

increasing eutrophication and health risks. N2O emission leads to the 

depletion of the ozone layer and heavily contributes to climate change. In 

Europe, agriculture is responsible of 80-90% of NH3 emissions, 50-60% 

of N2O emissions, and 40-60% of N loadings of surface water (Oenema 

et al., 2007). 

Nowadays, N management strategies commonly adopted by farmers are 

characterised by a low Nitrogen Use Efficiency (NUE) (Shanahan et al., 
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2008). Ladha et al. (2005) reported that more than 50% of the applied N 

is not used by crops, then increasing the risk of environmental pollution. 

Farmers usually apply high uniform N rates to avoid yield losses, often 

exceeding crop needs. Since ecological challenges become more and 

more important, optimising N fertilisation is needed. Then, efficient N 

management strategies have to be adopted. Aiming at better defining crop 

needs, crop N requirements can be estimated by mean of a N balance, 

calculating the difference between N outputs and inputs at field scale 

(Grignani et al., 2003). Total N amount that has to be supplied with 

fertilisers can be estimated according to Equation 1: 

 

 𝐹 = 𝑌 ∗ 𝑏 + 𝑆𝑖 + 𝑍 − (𝐵𝑓𝑥 + 𝐴𝑑 + 𝑀𝑓 + 𝑀𝑐 + 𝑆𝑚 + 𝑅𝑖) (1) 

 

where F is N supplied with fertilisers, Y*b is crop N uptake determined as 

the product of expected yield and crop N concentration, Si refers to N 

immobilisation due to crop residues, Z represents N losses due to 

volatilisation, leaching, and runoff, Bfx is N fixation due to leguminous 

crops, Ad represents N input due to atmospheric deposition, Mf is residual 

N from previous organic fertilisation, Mc and Sm is N deriving from crop 

residues or soil organic matter mineralisation respectively, and Ri is 

mineral N available at the beginning of the growing season. 

However, uniform N application across the field discount the spatial 

variability in crop response to N fertilisation. Then, the careful 

management of the soil-plant system using newly developed technologies 

can increase the sustainability of the farming system, and reduce the 

impact of agriculture on the environment. Indeed, precision agriculture 

tools can be used to estimate site-specific crop N needs, considering 

spatial variation of N dynamics across the field (Shanahan et al., 2008). 

Crop N demand varies within a field, as a consequence of the different 

crop yield potential of different sub-regions. Then, the need of tuning site-
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specific N recommendations on the basis of the expected yield appears 

evident. 

Estimating crop yield potential prior to harvest is a pivotal element in 

precision fertilisation strategies (Moges et al., 2007). Indeed, crop yield 

variability is determined by biotic and abiotic factors, the latter associated 

with both soil and crop properties (Hornung et al., 2006, Bunselmeyer and 

Lauer, 2015). Consequently, in literature several approaches are 

suggested to drive N fertilisation, at the same time complying with field 

variability. They can be classified into two main categories: soil-based 

methods and crop-based methods. 

Soil-based information can be used to define sub-field regions with similar 

yield limiting factors, known as management zones (MZ) (Doerge, 1999). 

The delineation of MZ allows identifying areas with similar yield potential 

and input use efficiency.  

On the basis of the expert knowledge of their fields and their agronomic 

experience, farmers are able to identify specific areas of the field regularly 

providing low or high productivity. However, several tools are nowadays 

available for defining MZ with an objective approach. To this end, various 

crop and soil properties, used as single data or as combination of data 

layers can be used (Longchamps and Khosla, 2017). Topography, 

elevation, soil properties, bare-soil aerial imagery, soil apparent electrical 

conductivity, as well as canopy images and yield data can be used to 

delineate the boundaries of the MZ (Khosla et al., 2002; Schepers et al., 

2004). Nowadays, MZ delineation is more and more oriented towards a 

multivariate approach for three main reasons. First of all, new 

advancements in sensing technologies (e.g. electromagnetic induction 

sensors, spectroscopy, satellites, optical proximal sensors) together with 

global positioning system allow to reduce both labour and cost of 

monitoring the variability in soil and crop properties at fine scale (Diacono 

et al., 2013). The second reason is related to the improved knowledge in 

statistical and GIS software, that allows the use of complex geostatistical 
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analysis for accurately delineating MZ (Nawar et al., 2017). Last, crop 

monitoring and yield data represent all biotic and abiotic factors that affect 

crop production. Then, their integration with soil variables can profitably 

improve the explanation of field variability associated with both soil and 

crop properties (Hornung et al., 2006; Bunselmeyer and Lauer, 2015). 

However, crop yield varies temporally across the field as a consequence 

of climate differences across the growing seasons (Schepers et al., 2004). 

Then, several studies (e.g. Nawar et al., 2017; Maestrini and Basso, 2018) 

suggest to consider yield history, including at least three-year data to 

identify more stable MZ.  

On the other hand, remote and proximal sensors have been widely used 

to monitor crop N status during the growing season (Corti et al., 2018). 

Indeed, crop variables associated with N management are highly 

correlated with chlorophyll content (Samborski et al., 2009). Reflectance 

data measured at specific wavelengths can be used for the mathematical 

computation of several vegetation indices (VIs) (Bajwa et al., 2010). 

However, converting VIs values into practical N recommendation is 

fundamental to integrate crop monitoring into the agricultural practices 

adopted by farmers.  

Several studies evaluated different approaches to obtain prescription 

functions suggesting N amounts corresponding to VIs values.  

One of the simplest methods consisted in an a priori definition of VIs 

thresholds that can be considered as representative of a good nutritional 

status for the crop. Upward or downward adjustments of predefined N 

topdressing is needed when VIs values are below or above the threshold, 

respectively. Peng et al. (2010) reviewed several studies conducted in 

China where site-specific N management (SSNM) was compared to 

traditional N management for topdressing fertilisation in rice. The authors 

identified the application of 30 kg N ha-1 at mid-tillering and 40 kg N ha-1 

at panicle initiation stage as topdressing N rates conventionally adopted 

by farmers. These rates have been adjusted by ±10 kg N ha-1 on the basis 
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of SPAD values. The SPAD thresholds of 35-37 were used for indica 

varieties, and they were increased by two units for japonica varieties, as 

suggested by a previous study by Huang et al. (2008). Overall, Peng et 

al. (2010) pointed out that SSNM reduced N supply by 32% on average, 

while increasing grain yield by 5% with respect to traditional farmers’ 

managements.  

Several studies proposed to exploit optical properties of leaf pigments to 

provide a fast, cost-effective, and accurate estimate of crop biomass or 

grain yield prior to harvest, as well as crop N concentration and uptake 

(Corti et al., 2018). In the past years, the use of VIs for yield estimation 

has achieved growing importance. Raun et al. (2001) predicted the 

potential yield of winter wheat using NDVI. In-season estimated yield 

(INSEY) was calculated as the average NDVI acquired in two post-

dormancy dates, divided by the cumulative growing degree days (GDD) 

for the period between the two sensing days. This procedure allowed 

expressing wheat growth in terms of NDVI, integrating both early season 

growing conditions and growth rate in the computation of INSEY (Teal et 

al., 2006). Across a range of different agro-environments, the R2 between 

wheat grain yield and INSEY was 83% (Raun et al., 2001), then assessing 

their strong correlation. Moreover, GDD allowed taking into account a 

wide range of growing conditions (Raun et al., 2001). Lukina et al. (2001) 

developed an algorithm for determining topdressing N requirements on 

the basis of grain yield prediction. The INSEY was computed according to 

Raun et al. (2001), just substituting GDD with the number of days from 

planting to sensing as also proposed by Raun et al. (2002). Then, INSEY 

was used to estimate grain N uptake. At the end, topdressing N 

fertilisation was calculated as the difference between grain N uptake and 

early season N uptake, divided by Nitrogen Use Efficiency (NUE). 

Nitrogen Use Efficiency varies with fertiliser type and fertilisation strategy, 

as well as the agro-environments. Typically, NUE is assumed equal to 

0.7, but the value can range between 0.33 and 0.80 (Lukina et al., 2001). 
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However, prescription functions that allow quantifying topdressing N 

requirements are often site, crop, or variety-specific. Consequently, 

further extension to other agro-environments, crops, and varieties are 

needed to promote a widespread application of PA techniques. A 

research need is to exploit the available data to create mathematical and 

decision models for driving the practical management of N fertilisation. 

Then, on the whole, the Ph. D. activity aimed at evaluating the potential 

advantages derived from the application of PA techniques on rice and 

maize cropping system considering their effects on crop yields, Nitrogen 

Use Efficiency, and profitability for farmers. The Ph. D. activity was 

supervised by Professor Dario Sacco and co-supervised by Prof. Carlo 

Grignani and Dr. Louis Longchamps. The latter, collaborating with 

Professor Raj Khosla of Colorado State University (Fort Collins, USA), led 

the research period at Agriculture and Agri-Food Canada, in Saint Jean 

sûr Richelieu research centre (Quebec, Canada). 

 

1.6 Structure of the Ph. D. thesis 

This Ph. D. thesis summarises the research activities conducted at the 

Department of Agriculture, Forest, and Food Sciences (DISAFA) and at 

Saint Jean sûr Richelieu research centre of Agriculture and Agri-Food 

Canada, showing the main obtained results. It is divided in three chapters, 

each one corresponding to scientific papers published or submitted in 

different peer-reviewed journals. 

• Chapter 2: Cordero, E., Moretti, B., Miniotti, E. F., Tenni, D., 

Beltarre, G., Romani, M., Sacco, D. (2018). Fertilisation strategy 

and ground sensor measurements to optimise rice yield. European 

Journal of Agronomy 99: 177-185. 

• Chapter 3: Cordero E., Moretti B., Miniotti E. F., Tenni D., Beltarre 

G., Romani M., Grignani, C., Sacco D. Statistical model to 
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overcome rice variety effect in precision nitrogen fertilisation 

(submitted)  

• Chapter 4: Cordero, E., Longchamps, L., Khosla, R., Sacco, D. 

(2019). Spatial management strategies for nitrogen in maize 

production based on soil and crop data. Science of the Total 

Environment 697, 133854. 

 

Chapter 2 describes the study conducted on Centauro rice variety, that 

led to optimise N application in terms of both total N amount and splitting 

during the growing season, as well as to the determination of prescription 

functions driving topdressing N application at panicle initiation stage on 

the basis of VIs measured with crop proximal sensors just before N 

application. Then, the statistical procedure was extended also to other rice 

varieties, with the aim of evaluating quantitative and qualitative tools for 

obtaining prescription function, then overcoming rice variety effect in the 

determination of N supply. The results, just submitted, are presented in 

Chapter 3. Chapter 4 refers to the research activity conducted during the 

research period abroad. The study compared different N management 

strategies (both uniform and variable N rate) on maize production, through 

a multi-site-year experiment conducted in Colorado. Their effect on maize 

grain yield, NUE and farmers’ net return was evaluated, then suggesting 

a practical tool to choose the N fertilisation strategy that best applies in 

each agro-environments. 

Further insights of the research activity have been published on an Italian 

specialised journal for the agricultural sector, but it was not included in the 

Ph. D. thesis. Cordero et al. (2017) reported the preliminary results of the 

experiment conducted on rice, showing to technician and Italian farmers 

the main advancements on PA in Italian rice cropping systems. 

Moreover, during the Ph. D activity, preliminary results of the research 

activity have been shown in both italian and international conferences as 
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posters or oral presentations, and then published in the specific book of 

abstract as follows: 

• Cordero, E., Moretti, B., Miniotti, E., Tenni, D., Beltarre, G., 

Romani, M., Sacco, D. (2016). Optimizing topdressing fertilisation 

through ground sensing measurements in rice. Atti del XLV 

Convegno della Società Italiana di Agronomia La ricerca 

agronomica verso il 2030: gli obiettivi globali di sviluppo 

sostenibile, Sassari, 20-22 settembre 2016 (poster) 

• Cordero, E., Moretti, B., Miniotti, E. F., Tenni, D., Beltarre, G., 

Romani, M., Grignani, C., Sacco, D. (2018). Deriving fertiliser VRA 

calibration based on ground sensing data from specific field 

experiments. Proceedings of the 14th International Conference on 

Precision Agriculture (unpaginated, online) (oral presentation) 

• Cordero, E., Longchamps, L., Khosla, R., Sacco, D. (2018). 

Intergrating soil and crop-based methods for maize variable 

nitrogen fertilisation. Atti del XLVII Convegno della Società Italiana 

di Agronomia L’agronomia delle nuove agriculturae (biologica, 

conservativa, digitale e di precisione...), Marsala, 12-14 settembre 

2018. (oral presentation) 

• Damatirca, C., Cordero, E., Sacco, D. (2019). Analysing cover 

crop presence in Piedmont rice paddy area through satellite 

images. Atti del XLVIII Convegno della Società Italiana di 

Agronomia Evoluzione e adattamento dei sistemi colturali 

erbacei), Perugia, 18-20 settembre 2019. (oral presentation) 

Last, Cordero et al. (2020) is an article showing the research data 

elaborated during the research period at Agriculture and Agri-Food 

Canada, with the aim of describing the data collection process. 
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2. Paper I: Fertilisation strategy and ground 

sensor measurements to optimise rice yield 
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2.1 Abstract 

Nitrogen (N) fertilisation is the main agronomic practice that affects rice 

yield and quality; similarly, its mismanagement can affect both economic 

and environmental aspects of crop production. Therefore, it is highly 

important to direct N fertilisation during the critical growth stages of rice 

development using vegetation indices (VIs). To this end, a two-year 

experiment was conducted in 2014 and 2015 in Castello d’ Agogna (PV), 

northwest Italy. The study had three aims: i) establish the best N 

fertilisation management in temperate rice cropping systems, in terms of 

total N supply and splitting, to maximise crop yield and N apparent 

recovery (AR); ii) evaluate the capability of crop N status indicators 

(CNSIs) measured at panicle initiation stage (PI) to determine grain yield; 

iii) derive Nfertiliser_rate_at_PI = f(CNSI) from a field trial to attain specific 

yield goals. 

Results obtained for Centauro variety suggested that to maximise yield 

while avoiding AR reduction, a low dose of about 50 kg N ha-1 should be 

supplied during early growth, then increased at PI. In addition, the final 

topdressing fertilisation can compensate for any previous stage supply 

deficiency and can be determined from VI measurements. Findings also 

identified the normalised difference red edge (NDRE) index as the best VI 

to determine rice N status in specific agro-environmental conditions. 

SPAD and NDVI values measured with Rapid Scan can be used to 

determine N fertilisation at PI, although such measurements require 

correction through Sufficiency Indices (SIs) calculated as the ratio 

between VI measurements and VI values of a well-N fertilised plot. The 

trial also demonstrated that plots supplied with N amounts of 140 kg N ha-

1 (pre-sowing and tillering stages combined) can serve as reference plots 

for SI calculation that allows to consider the effect of weather and soil 

variability on VI measurements. A notable exception to this finding was 

NDVI measured with GreenSeeker, which showed limited ability to assess 
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rice N status under study environmental conditions. Indeed, both VI and 

the derived SI were influenced by seasonal and soil fertility conditions. 

Finally, a specific statistical method to derive calibration functions for 

variable rate application fertiliser spreaders from a suitable experiment 

was defined. These functions will establish the N amount to be supplied 

at PI related to the CNSI measure. For each CNSI, a specific slope of the 

calibration function is determined while the intercept is varied depending 

on the grain yield goal. The higher the acceptable reduction relative to the 

maximum obtainable yield, the lower the N supply required at PI.  

Keywords: Crop yield estimation; Crop N status; Site-specific N 

management; Vegetation Indices; Precision Agriculture; Variable rate 

fertilisation. 
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2.2 Introduction 

Rice (Oryza sativa L.) is one of the most important food crops in the world, 

being the staple food for three billion people (Barker et al., 2007). On a 

world scale, rice is grown on an area of 157 million hectares (PROSPERA, 

2012). In Italy, rice cultivation is mainly concentrated in the northwest, and 

it is cropped on about 227 000 ha (Ente Nazionale Risi, 2015). 

Nitrogen (N) fertilisation is the main agronomic practice that affects yield 

and quality of rice crop. Mismanagement of N fertiliser may affect both the 

economic and environmental aspects of crop production (Tubaña et al., 

2011a). Nitrogen deficiency results in smaller leaf area, lower chlorophyll 

content, and biomass production, which lead to stunted crop growth and 

yield (Lin et al., 2010). Excessive N input on the other hand, results in a 

dense canopy structure that facilitates pest and disease development, 

and leads to reduced plant resistance (Wu et al., 2015, Hue et al., 2016). 

Moreover, it can bring on lodging and extend growth periods and maturity 

achievement (Dong et al., 2015; Liu et al., 2015). Excessive N fertilisation 

has also been reported to pollute the environment through N leaching and 

both N2O and NH3 emission (Nguyen et al., 2008). 

Therefore, tools to calibrate the application of N fertilisers during critical 

growth stages are needed to improve both grain yield and nitrogen use 

efficiency (NUE) while avoiding N losses (Sathiya and Ramesh, 2009; 

Yoseftabar, 2013). In flooded systems, rice requires sufficient N input 

during the early and mid-tillering stages to maximise panicle number, and 

during the panicle initiation stage (PI) to optimise the number of spikelets 

per panicle and percentage of filled spikelets (Biloni and Bocchi, 2003, 

Bah et al., 2009, Xue et al., 2014). Nitrogen also increases sink size during 

late panicle formation (Manzoor et al., 2006; Lee et al., 2009; Tayefe et 

al., 2014), which raises grain yield. 

The rate of N fertilisation and the growth stages critical to optimising N 

application vary with rice cultivar (Bah et al., 2009). Several destructive 
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and non-destructive methods have been developed to establish optimum 

N fertilisation by monitoring crop N status (Tubaña et al., 2011a). An ideal 

method to monitor N status has the following characteristics: non-

destructive, fast, cost-effective, reliable, and obtains a value 

representative of the entire field (Xue et al., 2004; Bajwa et al., 2010). 

Optical properties of some leaf pigments, and in particular chlorophyll, 

have been shown to be reliable crop N status indicators that can be 

determined through vegetation indices (VIs) (Muñoz-Huerta et al., 2013). 

Different instruments are able to measure light transmission through leaf 

(chlorophyll meters, e.g. SPAD-502) or canopy reflectance (e.g. 

GreenSeeker and Rapid Scan). These optical measurements are 

normally affected by growth stage, cultivar, soil water availability, and non-

N nutrient deficiencies (Muñoz-Huerta et al., 2013), as well as by sun 

angle, soil roughness, and soil colour. 

Vegetation indices are calculated from sensor data, based on certain 

waveband combinations (Bajwa et al., 2010). The most frequently used 

are NDVI (Normalized Difference Vegetation Index) and NDRE 

(Normalized Difference Red Edge) indices (Rouse et al., 1974; Barnes et 

al., 2000). NDVI has been reported to have low sensitivity at high 

chlorophyll content or abundant aboveground biomass, that induce 

saturation (Li et al., 2010; Kanke et al., 2012; Shi et al., 2015). In rice, the 

index becomes saturated when aboveground biomass is about 4000 kg 

ha-1 and total N uptake reaches about 100kg ha-1 (Yao et al., 2014). 

Therefore, the anticipation of VI measurements must consider that, in 

flooded rice systems, reflectance is influenced by the presence of water, 

especially during the early growth stages when canopy cover is limited 

(Yao et al., 2014). Measurements taken at PI to guide the last topdressing 

N application fit with the optimal time for data acquisition. 

Under dense green biomass, NDRE is a more suitable N status measure, 

as it is less susceptible than NDVI to saturation (Barnes et al., 2000; 

Kanke et al., 2016). Red edge wavelength (730 nm), corresponding to the 
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inflection point of the crop reflectance curve; combined with the NIR band 

has shown to be the most effective measure for estimating rice plant N 

uptake before the heading stage (Yu et al., 2013). 

Previous studies have shown that these VIs can be used to estimate rice 

yield based on the relation between crop spectral measurements and N 

status that allows to quantify N requirements (Chang et al., 2005; Tubaña 

et al., 2011b). Needed now is a quantitative estimate of the VIs and grain 

yield relationship to develop a precise rice N fertilisation management that 

is part of today’s move to precision agriculture. Such a tool has the 

potential to improve crop N management and to mitigate negative 

environmental impacts of intensive rice production (Zhang et al., 2011).  

This study pursued the following goals:  

• establishment of the best N fertilisation management, in terms of 

total N supply and splitting, to maximise crop yield and N apparent 

recovery (AR); 

• evaluation of the capability of crop N status indicators (CNSIs) 

measured at PI to determine grain yield; 

• derivation of Nfertiliser_rate_at_PI = f(CNSI) from a field trial to 

attain specific yield goals. 

These tools will allow the development of a site-specific crop management 

strategy that can be adapted to different agro-environments reducing the 

effect of spatial variability, avoiding the negative impacts of N imbalances. 

 

2.3 Materials and methods 

2.3.1 Site description and soil properties 

An experiment was designed to test a wide range of crop N statuses 

through different fertilisation managements expected to correlate with 

crop yield. 
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The study was carried out during two growing seasons (2014 and 2015) 

in an experimental field of the Rice Research Centre of Ente Nazionale 

Risi, located in Castello d’Agogna (PV) in northwest Italy (8° 41’ 52’’ E; 

45° 14’ 48’’ N). 

Climate of the area is temperate, with hot summers and two main rainy 

periods in spring and autumn. In Figure 1, the mean temperature and 

rainfall recorded during the experimental periods of March-October in 

2014 and 2015 in Castello d’Agogna have been compared against 30-

year (1984 to 2013) values. Site soil properties are summarised in Table 

1.  

Table 1: Soil properties of the experimental site. 

Soil property Value 

  
Sand (%) 30.3 
Silt (%) 55.7 
Clay (%) 14.0 
pH 6.1 
Organic matter (%) 1.66 
Total N (%) 0.089 
C/N ratio 10.9 
CEC (meq/100g) 9.3 
Exchangeable K (ppm) 50 
Olsen P (ppm) 20 

 

The soil texture was silty loam. Other soil characteristics included low 

organic matter content, slight acidity, and low available N. The C/N ratio 

was well balanced with normal organic matter mineralisation. The Cation 

Exchange Capacity (CEC) was low as expected with low organic matter 

and clay contents. P Olsen content was high, while exchangeable K 

availability was very low. Further details of the soil at the site can be found 

in Miniotti et al., 2016. 
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2.3.2 Experiment design and agronomic management 

The experiment compared four rates of N supplied as the sum of N 

amount supplied at the pre-sowing and tillering stages (NPRE+TILL, 0-60-

100-140 kg N ha-1) combined with four N rates supplied at PI (NPI, 0-30-

60-100 kg N ha-1). A plot supplied with a total N amount of 300 kg ha-1 

(200 + 100 kg N ha-1) was added as an over-fertilised plot. In all plots, dry 

granular urea was used as fertiliser. Treatments were laid out using a split 

plot design with NPRE+TILL in the main plots and NPI in the subplots. Each 

main plot measured 4.5*26.4 m and was divided into subplots measuring 

4.5*6.6 m. Four replications for each treatment were established.  

Both in 2014 and 2015 cultivar Centauro was planted, a round grain 

variety. The trial was ploughed in spring with conventional tillage 

equipment, after which it was laser levelled, and then harrowed. 

Phosphorus (56 kg ha-1 of P2O5) and potassium (112 kg ha-1 of K2O) were 

uniformly applied in all plots before harrowing, using a 0-14-28 fertiliser. 

Water seeding was carried out on May 19, 2014 and May 18, 2015. Water 

was managed with continuous flooding for most of the growing season. 

The only exceptions were a “pin-point” period of 4-6 days to allow for root 

extension, and two other 4-6-day periods of drainage for mid-season 

fertiliser and herbicide application during the second half of June and July, 

as is the traditional management of the area. Final draining occurred on 

September 8, 2014 and August 29, 2015. Adequate measures to control 

diseases were taken throughout plant growth. Weed control was 

performed with oxadiazon, cyhalofop butyl, propanil, MCPA, and 

halosulfuron methyl. The crop was harvested between October, 21 and 

29 and between October 12 and 21 in 2014 and 2015, respectively. The 

date difference merely reflected when the crop matured, as determined 

by N supply. 
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2.3.3 Field measurements 

SPAD, NDVI, and NDRE were determined using suitable instruments to 

establish crop N status at PI (July 15, 2014 and July 13, 2015). The Soil-

Plant Analysis Development (SPAD) index was determined using SPAD-

502 (Konica Minolta, Japan). Readings were acquired from the fully 

expanded top leaf of plants, approximately one-third of the distance away 

from the tip, as described in Lin et al., 2010. To obtain a representative 

value for the entire plot, 20 readings for each plot were taken from 20 

leaves belonging to twenty different plants. For NDVI calculations, both 

GreenSeeker (Trimble©, Sunnyvale, California, USA) or Rapid Scan 

(Rapid Scan CS-45, Holland Scientific, USA) handheld active optical 

sensors were used. The first device detects canopy reflectance in the red 

(660 nm) and NIR spectral regions (770 nm), whereas the second 

incorporates three optical measurement channels (670, 730, and 780 

nm), of which the first and third were used for NDVI calculations. The 

wavebands used to determine NDVI are different for the two instruments, 

so the two VIs are indicated as GS NDVI and RS NDVI for GreenSeeker- 

and Rapid Scan-read measurements, respectively. Finally, NDRE was 

measured and calculated using only Rapid Scan, considering canopy 

reflectance at 730 and 780 nm wavebands. 

The measurements were collected by holding the instruments 

approximately 0.5 m above the rice canopy and walking at a constant 

speed along the entire length of the plot, as suggested in Xue et al., 2014. 

Due to the technical characteristics of the instruments, sensor 

measurements width is approximately 0.3 m. Two measurements were 

taken from each of the length-wise sides of the plot in each treatment. The 

two values were then averaged to determine the mean value for each plot.  

Biometric measures at PI are usually well correlated to final grain yield 

(Bajwa et al., 2010). To confirm this relationship, aboveground biomass, 

total N concentration, and total N uptake were also determined. 

Aboveground biomass was collected from three 0.25 m2 areas, oven-dried 
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at 40°C to a constant weight, and then analysed by the Dumas method to 

establish N concentration. Then, total N uptake at PI was also calculated 

by multiplying plant N concentration and the sampled biomass (Zavattaro 

et al., 2012). 

Grain (normalised to a moisture content of 14%) and straw yield were 

determined at harvest. In order to have three sub-samples, three 0.25 m2 

areas were harvested by hand in each plot. Only a bulk of the three sub-

samples of both grain and straw was analysed for N concentration using 

the above-mentioned method. Finally, N AR was determined according to 

Zavattaro et al. (2012): 

𝐴𝑅 =
𝑁 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 − 𝑁 𝑟𝑒𝑚𝑜𝑣𝑎𝑙0𝑁

𝑁 𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟
 (1) 

where N removal is the amount of N removed as yield, N removal0N 

represents the amount of N removed by the unfertilised plot, and N 

fertiliser is the total amount of N supplied with fertiliser application. 

 

2.3.4 Data analysis 

Statistical analysis was performed using R software, version 3.3.0 (R 

Development Core Team, 2016). 

General Linear Model (GLM) was used to explain yield and AR as a 

function of different N rates and splitting, year, block, and their interactions 

as follows: 

𝑥 = 𝛽1 ∗ 𝑁𝑃𝑅𝐸+𝑇𝐼𝐿𝐿 + 𝛽2 ∗ 𝑁𝑃𝑅𝐸+𝑇𝐼𝐿𝐿
2 + 𝛽3 ∗ 𝑁𝑃𝐼 + 𝛽4 ∗ 𝑁𝑃𝐼

2 

+𝛽5 ∗ 𝑁𝑃𝑅𝐸+𝑇𝐼𝐿𝐿 ∗ 𝑁𝑃𝐼 + 𝛽6 ∗ 𝑁𝑃𝑅𝐸+𝑇𝐼𝐿𝐿 ∗ 𝑌𝐸𝐴𝑅 + 𝛽7 ∗ 𝑁𝑃𝐼 ∗ 𝑌𝐸𝐴𝑅

+ 𝐵𝐿𝑂𝐶𝐾 + 𝑌𝐸𝐴𝑅 

(2) 

where x represents yield and AR, while β1 to β7 represent the slopes of 

the covariates. YEAR is the year effect related to the agro-climatic 

conditions and BLOCK is the block effect.  
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With an aim to determine the NPI that maximises grain yield and AR for 

each N rate supplied at pre-sowing and tillering stage, the first order partial 

derivative was calculated with respect to NPI and then set to zero.  

The resulting equation is: 

𝑁𝑃𝐼 =
−𝛽3 − 𝛽5 ∗ 𝑁𝑃𝑅𝐸+𝑇𝐼𝐿𝐿

2 ∗ 𝛽4
 (3) 

 

Equation 3 can be expressed as NPI = f(NPRE+TILL) only when NPI and 

NPRE+TILL show significant interaction. Otherwise, NPI and NPRE+TILL 

contribute both to increases in yield and AR. In such an instance, no 

compensative effect exists and the equation cannot be calculated.  

A correlation analysis was also applied to investigate the capability of 

different indicators to determine crop N status. The different indicators of 

crop N status (CNSI) here considered were both VIs (SPAD, GS NDVI, 

RS NDVI, NDRE), and biometric measures (aboveground biomass, its N 

concentration and total N uptake) detected at PI. 

Next, grain yield was determined through the same GLM as mentioned 

above, only CNSIs took the place of NPRE+TILL. The goal was to determine 

the relations between NPI and CNSIs, under the larger aim of describing 

an equation to establish the best NPI based on CNSIs. This statistical 

model was built as: 

𝑌𝑖𝑒𝑙𝑑 = 𝛾1 ∗ 𝑁𝑃𝐼 + 𝛾2 ∗ 𝑁𝑃𝐼
2 +  𝛾3 ∗ 𝐶𝑁𝑆𝐼 + 𝛾4 ∗ 𝐶𝑁𝑆𝐼2 + 

+𝛾5 ∗ 𝐶𝑁𝑆𝐼 ∗ 𝑁𝑃𝐼 + 𝛾6 ∗ 𝐶𝑁𝑆𝐼 ∗ 𝑌𝐸𝐴𝑅+ 

+𝛾7 ∗ 𝑌𝐸𝐴𝑅 ∗ 𝑁𝑃𝐼 + 𝐵𝐿𝑂𝐶𝐾 + 𝑌𝐸𝐴𝑅 

(4) 

 

where γ1 to γ7 represent the slopes of the covariates. 

To obtain good indicators of crop N status in a given season and location, 

Sufficiency Indices (SI) and Response Indices (RI) were also calculated 
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and used as CNSIs. Several studies on different cropping systems 

(Holland and Shepers, 2013; Muñoz-Huerta et al., 2013; Xue et al., 2014) 

suggested that a well-fertilised plot serve as a reference plot to calculate 

SIs, defined as the ratio of vegetation index obtained from a to-be-

evaluated crop to VI of a well-N fertilised plot, integrating the confounding 

effect provoked by factors other than crop N status (Hussain et al., 2000; 

Holland and Shepers, 2013). Hussain et al. (2000) state that reference 

plot establishment is suitable in irrigated rice conditions. Indeed, 

continuous flooding, common in temperate rice cropping systems, avoids 

water stress onset and consequent influence on rice spectral response. 

Moreover, Tremblay and Belec (2006) put forth that the reference plot 

might be considered as an internal standard against which measurements 

taken in other plots can be compared. Consequently, in order to 

standardise VIs measurements considering site-specific conditions, a 

reference plot has to be established in each location. RI is defined as the 

ratio of the vegetation index measured on the to-be-evaluated crop to the 

vegetation index measured in an unfertilised plot (Mullen et al., 2003). 

Last, an equation to optimise fertiliser application, as a function of a 

measured CNSI value was determined for CNSIs that have shown a 

negligible effect of year and soil variability, originally or after 

transformation in SI or RI.  

A statistical model was then built to determine yield from PI N supply and 

CNSI values as follow: 

𝑌𝑖𝑒𝑙𝑑 = 𝛾8 ∗ 𝑁𝑃𝐼 + 𝛾9 ∗ 𝑁𝑃𝐼
2 + 𝛾10 ∗ 𝐶𝑁𝑆𝐼 + 𝛾11 ∗ 𝐶𝑁𝑆𝐼2 + 

+𝛾12 ∗ 𝑁𝑃𝐼 ∗ 𝐶𝑁𝑆𝐼 
(5) 

where γ8 to γ12 represent the slopes of the covariates. 

Year, block, and their interactions were not included in the statistical 

model, as after the results analysis, these parameters were shown not to 

be significant in determining yield. 
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To derive the most appropriate N fertilisation as a function of measured 

CNSI, the Maximum Grain Yield Approach was followed. Therefore, a first 

order partial derivative with respect to NPI was calculated for Equation 5 

and then set to zero to determine the N amount that has to be supplied at 

PI to maximise rice grain yield. 

First order partial derivative with respect to NPI can be expressed as: 

𝑌𝑖𝑒𝑙𝑑′ = 𝛾8 + 2𝛾9 ∗ 𝑁𝑃𝐼 + 𝛾12 ∗ 𝐶𝑁𝑆𝐼 (6) 

 

After rearranging the equation and setting the partial derivative to zero, N 

supply at PI can be determined as: 

𝑁𝑃𝐼 =
−𝛾8−𝛾12 ∗ 𝐶𝑁𝑆𝐼

2𝛾9
 (7) 

 

Again, Equation 7 can be expressed as NPI = f(CNSI) only when NPI and 

CNSI show significant interaction. Otherwise, NPI and CNSI both 

contribute to increase yield and AR. In such an instance, no compensative 

effect exists and the equation cannot be calculated. 

Results analysis highlighted that a high N amount has to be supplied at PI 

to achieve the highest grain yield, as the function that describes maximum 

grain yield shows a smooth curvature close to the peak. Worthy of note is 

the considerable reduction in N rates that can be obtained with just a slight 

reduction in maximum grain yield. So, a method to determine NPI to 

achieve a reduced yield was studied, with the assumption that the reduced 

yield could be considered as a percentage of maximum grain yield 

(Equation 8). 

𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝑦𝑖𝑒𝑙𝑑 = 𝑅 ∗ 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑌𝑖𝑒𝑙𝑑 (8) 
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where R is the reduction coefficient, and assumed to be 0.90, 0.95, 0.99, 

0.995, and 0.999 to analyse different reductions in maximum grain yield 

and the consequent reductions in N fertiliser applied. Moreover, this 

approach allows identification of the CNSI threshold over which no further 

N fertiliser must be added, depending on the grain yield goals. 

2.4 Results 

2.4.1 Climate 

The two cropping seasons exhibited different climatic conditions. Rainfall 

was plentiful in the summer of 2014. Conversely, the 2015 summer saw 

reduced rainfall (704 mm) and higher temperature (13°C) compared to the 

30-year means (Figure 1).
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Figure 1: Average monthly temperature and rainfall over the 2014-2015 experimental period compared to the 30-year trend. 
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2.4.2 Response of rice yield to different N rates 

Rice grain yield showed a parabolic increase with rising total N supply 

(NPRE+TILL plus NPI) in both years (Figure 2). Maximum grain yield (11.1 Mg 

ha-1) was achieved in 2014 when a total of 200 kg N ha-1 was applied, 

while in 2015 the maximum grain yield (11.2 Mg ha-1) was reached with 

120 kg N ha-1. Additional N increases resulted in either a constant yield or 

yield reduction in both years.
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Figure 2: Grain yield response curve as average of four blocks at increasing levels of total N supply for year 2014 (left) and 2015 

(right).
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Total N uptake (grain + straw) behaved differently than did grain yield. The 

trend was almost linear across all explored N fertilisation levels in both 

years (Figure 3), despite different N uptake value ranges in each year 

(2014: 127 to 325 kg ha-1 and 2015: 129 to 223 kg ha-1). 
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Figure 3: Total N uptake (grain + straw) obtained in 2014 (left) and 2015 (right) as an average of four blocks at increasing total N 

supply levels.
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Consequently, AR values were different between the two growing 

seasons, even though N uptake in the unfertilised treatments was quite 

similar in both years (Figure 4). 
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Figure 4: Apparent recovery (AR) as an average of four blocks, obtained in 2014 (left) and 2015 (right).
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In both years AR decreased when N supplied increased, but with a slope 

more pronounced in 2014. In 2014, at lower N levels, mineral fertilisation 

promoted higher crop exploitation of soil N resources than observed in the 

unfertilised plot, and produced AR values above 1.0. On the contrary in 

2015, AR values were lower and remained almost constant with rising N 

amount.  

The GLM based on Equation 2 was applied. Results are reported in Table 

2.  

Table 2: P(F) of the effects of N supply, YEAR and BLOCK on the different 

parameters recorded at harvest. The last row reports R2 values. 

Effect, 
covariate, or 
R2 

Grain 
yield 

Total 
biomass 

Total N 
uptake 

Total N 
concentration 

Apparent 
recovery 

NPRE+TILL P<0.001 P<0.001 P<0.001 0.034 n. s.a 

NPRE+TILL
2 P<0.001 0.002 n. s. n. s. n. s. 

NPI P<0.001 0.001 P<0.001 0.001 n. s. 

NPI
2 0.011 n. s. n. s. n. s. n. s. 

NPRE+TILL*NPI P<0.001 0.028 n. s. n. s. n. s. 

NPRE+TILL*YEAR 0.001 P<0.001 P<0.001 n. s. 0.036 

NPI*YEAR n. s. n. s. 0.046 n. s. 0.004 

BLOCK n. s. n. s. n. s. n. s. n. s. 

YEAR 0.001 n. s. n. s. P<0.001 P<0.001 
      

R2 0.779 0.786 0.871 0.840 0.712 
an. s. = not significant; total biomass: sum of grain and straw; Total N uptake at 
harvest: sum of grain and straw N uptake; Total N concentration: weighted 
average N concentration of grain and straw. 
 

Grain yield and total biomass production were influenced by N applied at 

the pre-sowing plus tillering stages, N supplied at PI, and their interaction. 

Total N concentration and total N uptake were instead influenced by N 
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fertilisation at the sum of pre-sowing and tillering, and PI stages, but not 

by their interaction. Differences among years were significant for yield, 

total N concentration, and AR. Interaction between year and N supply at 

pre-sowing and tillering stages or at PI was significant for most of the 

variables considered. 

2.4.3 Crop yield maximisation and consequences on N apparent recovery 

The N amount that must be supplied at PI to maximise yield as a function 

of NPRE+TILL, can be calculated using Equation 3 (represented in Figure 5). 

 

Figure 5: N rate that must be supplied at PI to maximise grain yield for each N 

amount supplied at the pre-sowing and tillering stages. 
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Maximum grain yield (11.1 Mg ha-1) was achieved when about 42 kg N 

ha-1 was applied during pre-sowing and tillering; maximum AR (59.8%) 

was reached with a NPRE+TILL of about 53 kg N ha-1. When 42 kg N ha-1 

was applied at the pre-sowing and tillering stages, AR fell slightly (59.7%). 

As Figure 5 shows, 150 kg N ha-1 must be supplied at PI to maximise 

yield, while just 140 kg N ha-1 is enough to maximise AR. Nonetheless, 

some uncertainties are associated with these early stage and PI 

fertilisation values.  

2.4.4 Capability of different VIs to determine N status at PI stage 

The capability of different VIs to determine rice N status at PI was verified 

by correlation analysis. Results are reported in Table 3.
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Table 3: Pearson correlation coefficients between different VIs and crop N status at PI stage (N=124). 

 Biomass N concentration N uptake SPAD GS 
NDVI 

RS 
NDVI 

 
 

      

SPAD 0.728** 0.714** 0.739**    
GS NDVI 0.657** 0.556** 0.618** 0.809**   
RS NDVI 0.695** 0.614** 0.654** 0.843** 0.833**  
NDRE 0.842** 0.766** 0.820** 0.854** 0.826** 0.833** 

** = P(r)<0.010; aboveground biomass, its N concentration and N uptake were measured at PI. 
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Analysed VIs correlated highly with one another as their coefficients were 

above 0.8. They also correlated highly with biometric measures, with very 

high coefficients for NDRE and falling progressively for SPAD, RS NDVI, 

and GS NDVI. Moreover, VIs correlated better with crop aboveground 

biomass than with N uptake, except for SPAD. Alternatively, N 

concentration determination was the poorest. Differences recorded 

between GS and RS NDVI in the various correlations related to the 

differing wavelengths used by GreenSeeker and Rapid Scan. 

2.4.5 Capability of different CNSIs to determine grain yield 

The capability of different CNSIs, including both biometric measures and 

VIs measured at PI, to determine yield was investigated using GLM 

according to Equation 4. Results are shown in Table 4.  
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Table 4: P(F) of the different CNSIs in determining grain yield. Each column head title must be considered as a CNSI in the GLM. The 
last row reports R2 values. 

Effect, 
covariate, or 
R2 

CNSI 

Biomass N concentration N uptake SPAD 
GS 

NDVI 
RS 

NDVI 
NDRE 

NPI P<0.001 P<0.001 P<0.001 P<0.001 P<0.001 P<0.001 P<0.001 

NPI
2 0.004 0.014 0.003 0.010 P<0.001 0.003 0.001 

CNSI P<0.001 P<0.001 P<0.001 0.002 P<0.001 0.044 P<0.001 

CNSI2 0.002 P<0.001 P<0.001 0.021 0.009 n. s. P<0.001 

NPI*CNSI P<0.001 0.001 P<0.001 P<0.001 P<0.001 P<0.001 P<0.001 

YEAR*CNSI n. s.a n. s. n. s. n. s. P<0.001 n. s. n. s. 

YEAR*NPI n. s. n. s. n. s. n. s. n. s. n. s. n. s. 

BLOCK n. s. n. s. n. s. 0.039 n. s. 0.013 n. s. 

YEAR n. s. n. s. n. s. n. s. P<0.001 n. s. n. s. 

        

R2 0.717 0.618 0.701 0.639 0.680 0.692 0.769 
an. s. = not significant; aboveground biomass, its N concentration and N uptake and VIs were measured at PI.
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All CNSIs and most of their squares detected at PI were significant on 

determining crop yield. Interaction of the different CNSIs with N supply at 

PI was also found to be significant for all considered CNSIs.  

According to Table 4, the biometric measures evaluated at PI were good 

at determining grain yield as demonstrated by high R2 values; biomass 

was best, followed by N uptake, and N concentration alone led to a poorer 

estimate. All VIs performed better than N concentration. The NDRE R2 

was even better than that obtained by biomass. The two NDVIs were 

shown to be a little less able to determine grain yield; SPAD was the 

poorest. Moreover, VIs are essentially proxy measures of biometric 

variables as the correlation analysis demonstrated and can be extensively 

measured.  

Except for NDRE, year or block effect was significant for all VIs. This 

makes quantification of N fertiliser needs based on VI measurements 

difficult because of the wide variation in agro-climatic and soil conditions. 

Consequently, Sufficiency Indices (SIs) and Response Indices (RIs) were 

calculated. Plots that received 60, 100, 140, or 200 kg N ha-1 as NPRE+TILL, 

or 0 kg N ha-1 were considered reference plots to determine the SIs or 

RIs, respectively. Then, the Equation 4 was applied to determine rice grain 

yield at the best using SIs and RIs as CNSIs.  

SIs and RIs calculated for each VI were also found to determine yield 

significantly (Table 5). Interaction between SI or RI and N supplied at PI 

was always significant too. Maximum R2 values were obtained for all SIs 

except GS NDVI using as a reference plot those receiving 60 kg N ha-1 at 

pre-sowing and tillering. With these SIs, block effect was negligible, while 

year effect was significant for SIs calculated from SPAD and GS NDVI. If 

plots considered as reference received 140 kg N ha-1 at the pre-sowing 

and tillering stages, R2 values were slightly lower (except for GS NDVI), 

but year and its interaction effects were not significant (except again for 

GS NDVI). As previously shown, year and block effects were originally 

negligible only for NDRE. SI calculation considering reference plots as 
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those receiving NPRE+TILL = 140 kg N ha-1 allowed their effect to be 

eliminated from SPAD and RS NDVI measurements. Consequently, 

calibration functions were calculated for NDRE, SPAD SI, and RS NDVI 

SI only, as they were more suitable to assess rice N status in specific 

agro-environmental conditions.
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Table 5: P(F) of the capability of response indices (RIs) (reference plot fertilised at 0 kg N ha-1) and sufficiency indices (SIs) (reference 

plot fertilised at 60, 100, 140, 200 kg N ha-1) to determine yield. The last column reports R2 values. 

Nrefa SI/RI NPI NPI
2 SI SI2 NPI * SI 

YEAR * 
SI 

YEAR * 
PI 

BLOCK YEAR R2 

0 

SPAD P<0.001 0.013 0.008 0.050 P<0.001 n. s. b n. s. n. s. n. s. 0.615 

GS NDVI P<0.001 P<0.001 P<0.001 P<0.001 P<0.001 P<0.001 0.002 n. s. 0.001 0.733 

RS NDVI P<0.001 0.004 0.004 0.008 P<0.001 n. s. n. s. n. s. n. s. 0.664 

RS NDRE P<0.001 0.002 P<0.001 P<0.001 P<0.001 0.007 n. s. n. s. 0.001 0.738 

60 

SPAD P<0.001 0.007 P<0.001 0.001 P<0.001 n. s. n. s. n. s. 0.047 0.675 

GS NDVI P<0.001 P<0.001 P<0.001 0.022 P<0.001 P<0.001 0.040 n. s. P<0.001 0.736 

RS NDVI P<0.001 0.002 0.003 0.008 P<0.001 n. s. n. s. n. s. n. s. 0.729 

RS NDRE P<0.001 0.001 P<0.001 P<0.001 P<0.001 n. s. n. s. n. s. n. s. 0.784 

100 

SPAD P<0.001 0.013 0.028 n. s. P<0.001 n. s. n. s. 0.048 n. s. 0.602 

GS NDVI P<0.001 P<0.001 0.001 0.015 P<0.001 P<0.001 n. s. 0.005 P<0.001 0.724 

RS NDVI P<0.001 0.002 0.001 0.004 P<0.001 n. s. n. s. 0.013 n. s. 0.692 

RS NDRE P<0.001 0.002 P<0.001 0.001 P<0.001 n. s. n. s. 0.009 n. s. 0.726 

140 

SPAD P<0.001 0.008 P<0.001 0.005 P<0.001 n. s. n. s. n. s. n. s. 0.659 

GS NDVI P<0.001 P<0.001 P<0.001 0.007 P<0.001 P<0.001 n. s. n. s. P<0.001 0.751 

RS NDVI P<0.001 0.002 0.013 0.030 P<0.001 n. s. n. s. n. s. n. s. 0.712 
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RS NDRE P<0.001 0.001 P<0.001 P<0.001 P<0.001 n. s. n. s. n. s. n. s. 0.772 

200 

SPAD P<0.001 0.009 P<0.001 0.004 P<0.001 n. s. n. s. 0.024 n. s. 0.651 

GS NDVI P<0.001 P<0.001 P<0.001 0.006 P<0.001 P<0.001 n. s. 0.041 P<0.001 0.734 

RS NDVI P<0.001 0.002 0.046 n. s. P<0.001 n. s. n. s. 0.018 n. s. 0.699 

RS NDRE P<0.001 0.001 P<0.001 0.001 P<0.001 n. s. n. s. n. s. 0.031 0.765 
aNref = N applied to the reference plot (kg ha-1). 
bn. s. = not significant; RI = ratio between VI of considered plot and VI of unfertilised plot; SI = ratio between VI of the considered plot 
and VI of reference plot receiving the amount of fertiliser reported in the first column.
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2.4.6 Calibration functions aimed at reaching specific yield goals  

Figure 6 shows the calibration functions obtained when considering 

different grain yield goals. The solid black line represents the first 

estimation of the calibration function that has to be used to achieve the 

maximum grain yield for the three different CNSIs values. The dashed 

black lines represent the calibration functions obtained when a reduction 

coefficient (R) is used with respect to maximum grain yield. R was 

assumed equal to 0.999, 0.995, 0.99, 0.95, and 0.90 in the various 

scenarios, respectively. 

As expected, all calibration functions recommended lower N amounts 

when vigour increases. When NDRE, SPAD SI, and RS NDVI SI reached 

0.5, 124, and 110, respectively, no additional N supply at PI was required 

to maximise yield. For each CNSI, the slope of the function remains 

almost constant, while the intercept varies depending on the R value being 

proportional to it. Therefore, yield reduction limits the N amount that has 

to be supplied at PI.  
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Figure 6: Calibration functions for VRA fertiliser spreader obtained while 

establishing progressively decreasing grain yield goals. The solid black line 

represents the calibration function for maximising grain yield. The dashed black 

lines represent the calibration functions for obtaining 0.999, 0.995, 0.99, 0.95, 

and 0.90 of maximum grain yield. 
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2.5 Discussion 

2.5.1 Crop yield maximisation and consequences on N apparent recovery 

In each year of the experiment, a similar (about 11.2 Mg ha-1) maximum 

grain yield was reached, but it was accomplished with very different total 

N amounts associated with different crop densities in the two years. 

Maximum grain yield was reached with about 200 kg N ha-1 in 2014 and 

120 kg N ha-1 in 2015. Rice grain yield stayed constant or decreased with 

additional N fertiliser, showing a parabolic trend. The absent or negative 

effect of further N doses after the peak yield confirmed the results of 

previous studies, in which yield declines were linked to lodging or disease 

(Dong et al., 2015; Liu et al., 2015). 

Grain yield was affected by N fertilisation at the pre-sowing + tillering and 

at PI stages and by their interaction, which revealed the potential to 

compensate with an N topdressing fertilisation at PI for deficient N 

supplies during the initial stages. These results align with reports of 

previous studies by Manzoor et al. (2006) and Lee et al. (2009). Rice 

responded well to increased N supply at PI, especially when low N 

amounts had been applied during the early growth stages. 

In general, increases in N supply reduced apparent recovery (AR) (Xue 

and Yang, 2008; Yesuf and Balcha, 2014). Differences between the two 

cropping seasons were evident. Even though N uptake of the unfertilised 

plots was similar in both seasons, 2015 AR values were lower than 2014. 

In 2014, reaching maximum grain yield resulted in an AR of nearly 0.8 

versus the 2015 value of just below 0.5. The lower 2015 AR value is a 

consequence of reduced N uptake mainly from a lower N concentration in 

the aboveground biomass of rice at harvest (2.26 % and 0.95 % in 2014 

and 2015, respectively). Indeed, the 2014 crop was denser than in 2015. 

In 2015, rice compensated for a low panicle density with an increase in 

spikelets per panicle and in 1000-grain weight, which produced the same 

grain yield. Consequently, AR values were very different, despite similar 
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N uptake in the unfertilised treatment in both years. Equation 3 

established the N supply required at PI for each NPRE+TILL maximising grain 

yield or AR. The relationship between grain yield or AR and NPRE+TILL 

showed a clear parabolic trend. Maximum grain yield and maximum AR 

were obtained separately and they approximated the same total N amount 

(about 195 kg ha-1), with about 50 kg N ha-1 supplied at the first two 

applications and the remaining dose at PI. The amount of N at the pre-

sowing and tillering stages needed to maximise AR was slightly lower than 

that required to maximise grain yield.  

 

2.5.2 Capability of different CNSIs to determine grain yield 

Correlation analysis showed that VIs (SPAD, GS NDVI, RS NDVI, and 

NDRE) were highly correlated with biometric measures at PI. In particular, 

NDRE had the highest correlation coefficients. All VIs correlated most with 

total aboveground biomass, except as expected for SPAD, which 

correlated better with total N uptake. NDVI, measured with both 

GreenSeeker and Rapid Scan instruments at PI, correlated less well with 

crop N status than other Vis did. 

This result may arise from the presence of an abundant biomass at which 

saturation starts to reduce index sensitivity (Kanke et al., 2012; Muñoz-

Huerta et al., 2013; Novotna et al., 2013; Cao et al., 2016). 

In this study, NDVI saturated at a biomass production of about 7600 kg 

ha-1, or an N uptake of 180 kg ha-1. 

The correlation between NDRE and biometric measures at PI was also 

strong under dense biomass. Indeed, the red-edge wavelengths utilised 

by Rapid Scan are more sensitive at higher levels of chlorophyll content, 

as is illustrated by its strongest correlation with crop N concentration at PI, 

and consequently with rice N uptake. In this study, NDRE saturation 

effects were first noted at biomass production levels of about 8000 kg ha-

1 or 190 kg N ha-1 of total N uptake. 
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When CNSIs replaced NPRE+TILL in the statistical model (i.e., using 

Equation 4 instead of Equation 2), all CNSIs and most of their squares 

resulted significant on determining grain yield. Moreover, interaction with 

N rate supplied at PI was also significant on determining yield for all CNSIs 

considered. This confirms that topdressing N fertilisation at PI can 

compensate for low CNSI values, showing again that N supplied at PI can 

balance low NPRE+TILL amounts. All CNSIs demonstrated themselves to be 

good at determining grain yield, with R2 values near or above 0.60. NDRE 

was the best.  

Nonetheless, as year or block differences were detected for all VIs except 

NDRE, SIs were calculated from other corresponding VIs to overcome the 

influence of year and block on VIs values. Year and block can be assumed 

to represent the effect due to climate and soil variability in the direction of 

blocks. Sufficiency Indices calculated using reference plots that received 

140 kg N ha-1 supplied during pre-sowing and tillering combined removed 

agro-climatic and soil variability effects best. In addition, statistical models 

applied to SIs improved yield determination, as R2 reached values higher 

than 70%. Consequently, the results of this study not only confirmed the 

benefit of establishing a well-fertilised reference plot to obtain better 

indicators of in-season rice N status (Hussain et al., 2000), but also 

estimated that plots receiving 140 kg N ha-1 as the sum of the pre-sowing 

and tillering stage N supplies, can serve as a reference plot for Centauro 

variety. Of course, the reference plot must be relocated each year to avoid 

long term effects of differentiated N fertilisation (Holland and Shepers, 

2013). 

2.5.3 Calibration functions aimed at reaching specific yield goals 

Calibration functions are improved when obtained from CNSIs not 

influenced by agro-climatic conditions and soil variability. In this study, 

NDRE alone demonstrated these features. However, through SI 

calculations, block and year effects were also made negligible for SPAD 
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and RS NDVI, which made it possible to determine the calibration 

functions for these CNSIs in addition. It is recommended that NDRE be 

determined at PI, but SPAD and RS NDVI can work, so long as SIs 

referred to these VIs are calculated from a well-N fertilised reference plot. 

Obtained calibrations associate required N supplies at PI to field-

measured CNSIs, and the calibration Equation relates to a specified grain 

yield goal. The highest yield goal requires the highest supply of N at PI. 

Alternatively, a lower yield goal permits a reduced NPI amount, as the 

slope of the function remains almost constant while the intercept is 

proportional to the grain yield goal. 

One method to determine an acceptable maximum yield reduction is 

selection of a CNSI threshold over which N fertilisation at PI is ineffective. 

Suitability of the threshold should be based on the field and potential yield 

in specific situations.  

2.6 Conclusions 

Results reported in this study suggest that yield and apparent recovery 

maximisation are not conflicting goals. The statistical models developed 

here indicate that Centauro variety grain yield is optimised most effectively 

when N fertiliser supply is reduced in the early growth stages and 

concentrated at PI (about 70% of total N). Moreover, a topdressing N 

fertilisation amount can be determined from measured CNSI values to 

avoid N imbalances. This study confirmed that VIs measured at PI act as 

biometric proxy measures, and help avoiding time-consuming and 

destructive analyses. NDRE was demonstrated to be the best at 

determining grain yield variability specific agro-environmental situations. 

It can be used to determine Centauro variety calibration functions that 

improve N fertilisation. 

Sufficiency index (SI) calculations that consider as reference those plots 

receiving 140 kg N ha-1 N supply (sum of the pre-sowing and tillering 

stages) can correct SPAD and RS NDVI measurements, making possible 
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to calculate the calibration function for these CNSIs as well. NDVI 

measured with GreenSeeker was less suitable for making N fertilisation 

determinations at PI for Centauro variety in the environmental conditions 

presented in this study, as both the index and derived SI were influenced 

by ago-climatic conditions and soil variability. 

The determined calibration functions allow a site-specific rice N 

fertilisation management that accounts for year and spatial variability, and 

avoids consequent negative environmental impacts. It must be noted that 

the calibration functions were derived only for Centauro variety under the 

specific environmental conditions presented. Therefore, extension to 

other rice varieties and environments can be obtained following the same 

method presented in this work. 
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3.1 Abstract 

Nitrogen (N) fertilisation determines rice yield and quality. Rice grain yield 

can be estimated as the product of plant density, tillering capacity, 

spikelets number per panicle, grain weight, and reduced by sterility 

percentage. Different rice varieties have different response to N 

fertilisation, due to the different role of yield components in determining 

grain yield. Normalised Difference Red Edge (NDRE) can be used to 

quantitatively estimate rice grain yield from spectral measurements at 

panicle initiation stage (PI), then driving topdressing N application. 

Prescription functions converting NDRE values into N supply at PI have 

to be adapted to the different rice varieties. To this end, a multiple year 

experiment was conducted in Castello d’Agogna (PV), northwest Italy, 

between 2011 and 2018, involving four different rice varieties belonging 
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to three different grain types. Then, the study aimed at i) adapting the 

statistical procedure to obtain prescription functions for different rice 

varieties; ii) defining strategies to adapt prescription functions to new rice 

varieties through qualitative and quantitative tools. 

Results highlighted different growth patterns among the rice varieties, 

leading to different response to both N fertilisation and NDRE 

interpretation. Indeed, depending on both timing and amount of N 

application, N supply implies a different development of grain yield 

components. Consequently, the integration of Principle Component 

Analysis (PCA) and path analysis is a promising strategy for using a 

qualitative and quantitative tool for choosing the best prescription function 

for each rice variety, on the basis of their agronomical traits. 

 

Keywords: precision N fertilisation, optimal N splitting, grain yield 

components, PCA, path analysis, topdressing 

 

3.2 Introduction 

Rice (Oryza sativa L.) is the most important cereal crop for human 

consumption in the world, cultivated in different agro-ecosystems. 

Nowadays, Italy is the leading rice producer in the European Union, 

accounting for 41% of European rice production (FAOSTAT, 2008-2017 

average).  

Nitrogen (N) is a key element in rice production, involved in many 

biochemical and physiological activities (Djaman et al., 2016). Then, N is 

closely associated to both grain yield and quality (Zhu et al., 2016). 

Deficient soil N availability hampers growth and development of rice 

plants. Conversely, excessive N supply increases vegetative 

development, favouring the incidence diseases, e.g. blast, (Shaiful Islam 

et al., 2009) as well as rice quality decline and lodging of rice plants 

(Youseftabar et al., 2012). Moreover, unbalanced N fertilisation in paddy 
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fields heavily contributes to environmental pollution and water 

eutrophication, through ammonia volatilisation, nitrous oxide emission, N 

runoff, and N leaching (Yang et al., 2013). In flooded rice systems, 

leaching is the main loss pathway, followed by ammonia volatilisation 

(Linquist et al., 2013). Ladha et al. (2005) reported that fertiliser N 

recovery in rice is quite low, approximately 46%. Aiming at enhancing the 

overall sustainability of rice cropping system, it is important to synchronise 

N supply with crop requirements both in time and space. Splitting N 

application into pre-plant and topdressing during both early tillering and 

mid-season is suggested as an efficient method for rice cultivation, 

allowing for a more efficient N use during the growing season (Russo, 

1996; Fageria and Baligar, 1999; Ghaley, 2012). According to Zhang et 

al. (2013), rice grain yield can be defined as the product of yield sink 

capacity and filling efficiency. Consequently, it is closely related to the 

number of fertile spikelets per unit area, that is the product of panicle 

density and spikelets number per panicle (Yoshida et al., 2006). Then, 

rice grain yield can be estimated as the product of plant density, tillering 

capacity, spikelets number per panicle, grain weight, and reduced by 

sterility percentage. The N application strategy, considering both N rates 

and the number and timing of application, affects crop response to applied 

fertilisers (Hirzel et al., 2011). Hashim et al. (2015) reported that rice N 

uptake increases until reproductive stage, with maximum N uptake from 

tillering to flowering (Gebremariam and Baraki, 2016). Conversely, during 

the ripening stage, rice re-translocates N from the vegetative parts to the 

developing grains, then using N stored in plant tissues. Nitrogen 

application in different rice growth stages triggers a different crop 

response. Therefore, N supplied at pre-planting and early growth stages 

promotes rice growth and tillering, determining the number of panicles 

(Bah et al., 2009; Hirzel et al., 2011; Moe et al., 2014; Tayefe et al., 2014). 

During the mid-season, N application contributes to promote the number 

of differentiated spikelets, to reduce the degeneration of differentiated 
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spikelets, and to increase the percentage of filled grains, when N is 

supplied at panicle initiation stage (PI), at the beginning of spikelets 

differentiation and at heading time, respectively (Zhang et al., 2013). 

Several studies (Inamura et al., 2003; Bah et al., 2009; Lee et al., 2009; 

Sathya and Ramesh, 2009) suggest that, among topdressing 

applications, N supply at PI is the most effective for improving yield 

attributes. Moreover, Cordero et al. (2018) stated that larger N rates at PI 

can potentially compensate for deficient N supply at early growth stages. 

Generally, N is applied at a uniform rate across the entire field, based on 

grain yield goals (Teal et al., 2006), but not accounting for the spatial 

variability of grain yield potential across a field, that leads to different crop 

N requirements (Thompson et al., 2015) as well as soil N availability.  

In addition, different rice varieties have different response to N fertilisation 

especially for time of fertiliser application, depending on their agronomic 

traits (Bah et al., 2009). Consequently, grain yield estimation considering 

both spatial variability and different requirements between rice cultivars is 

fundamental in precision N fertilisation. 

Crop sensing is an effective tool for the identification of in-field variability, 

allowing for variable rate application (Tagarakis and Ketterings, 2017). 

Indeed, optical sensors that rely on canopy reflectance in the visible and 

NIR regions of the electromagnetic spectrum can be profitably used to 

estimate crop variables associated with N management, such as grain 

yield, as well as crop N concentration and uptake (Corti et al., 2018). A 

quantitative estimation of grain yield from mid-season spectral 

measurements is needed to drive topdressing variable rate N fertilisation 

using crop sensing (Tagarakis and Ketterings, 2017; Cordero et al., 2018). 

Cordero et al. (2018), after comparing different vegetation indices (VIs), 

concluded that NDRE was the most effective in determining rice grain 

yield at PI in the specific agro-environment. These results confirmed 

previous studies by Mutanga and Skidmore (2004) that indicated that, at 

high canopy density, crop biomass is better estimated by VIs based on 
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wavelengths located in the red edge region of the electromagnetic 

spectrum. 

In Italy, traditional N fertilisation management consists in a pre-sowing 

application, followed by two successive N supplies at tillering and PI 

(Biloni and Bocchi, 2003, Zavattaro et al., 2008). Variable rate N 

application based on rice proximal sensing can be profitably used to 

optimise topdressing fertilisation at PI, to avoid N imbalances. Cordero et 

al. (2018) developed a statistical procedure to obtain prescription 

functions converting VIs values into practical N recommendations for 

Centauro variety. However, the extension to other rice varieties is needed 

to promote a widespread application of precision fertilisation in rice. Then, 

the study has different aims: 

• the adaptation of the statistical procedure to obtain a prescription 

function linking NPI and NDRE measured at PI for different rice 

varieties; 

• the definition of strategies to adapt prescription functions to new 

rice varieties through qualitative or quantitative tools. 

 

3.3 Materials and methods 

A multiple year experiment took place at the Rice Research Centre of Ente 

Nazionale Risi in Castello d’Agogna (PV), north-west Italy (8° 41’ 52’’ E; 

45° 14’ 48’’ N), between 2011 and 2018. Climate of the area is temperate, 

characterised by cold winters and warm summers. Rainfalls occur mainly 

in spring and autumn, corresponding to the first stages of rice 

development and the harvesting period, respectively. According to 

Kӧppen-Geiger climate classification, it is defined as Cfa (Kӧppen, 1936). 

Miniotti et al. (2016) and Cordero et al. (2018) have previously described 

the soil of the experimental site. Relevant traits include silty-loam texture, 

low soil organic matter content, and well-balanced C/N ratio. 
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The main aim of the trial was to create vigour variability just before the last 

topdressing N application, in order to measure the effect of different 

amount of N supplied at PI. 

The field trial involved four different rice varieties (Gladio, Centauro, 

Carnaroli, and Ronaldo). These varieties belong to three grain types 

defined according to EU standards and based upon physical parameters 

as grain length, width, and length to width ratio: Gladio is classified as long 

B, Centauro is a round grain variety, while both Carnaroli and Ronaldo 

belong to long A grain type, all related to the Japonica genotype. Rice 

varieties have been chosen because of their widespread cultivation in the 

north-west area, as well as the genetic differences among them, which 

implies a different agronomic response to increasing N rates. The 

experiment was carried out during two growing seasons for each variety, 

with the only exception of Ronaldo. In particular, Gladio was grown in 

2011 and 2013, Centauro in 2014 and 2015, Carnaroli in 2016 and 2017, 

and Ronaldo in 2018. Since 2011, a specific experimental setup was 

studied to induce different crop vigour before the last topdressing 

fertilisation, by diversifying N supplied as sum of pre-sowing and tillering 

stage applications (NPRE+TILL), then evaluating the effect of increasing N 

rates supplied at PI (NPI). Treatments were arranged in a split plot design, 

with NPRE+TILL in the main plots (4.5*26.4 m) and NPI in the subplots 

(4.5*6.6 m). For each treatment, four replicates were established. 

Nitrogen levels have been varied across the years of the experiment, to 

adapt N fertilisation taking into account the specific N requirements of the 

different rice varieties. Treatments resulted from a factorial combination 

of N fertilisation levels at NPRE+TILL and NPI. Relevant details about N 

management are shown in Table 1.
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Table 2: Nitrogen levels used in factorial combination in each year of the experiment for each rice variety. 

Rice  
variety 

Grain  
type 

Year NPRE+TILL 

(kg ha-1) 
NP 

(kg ha-1) 

Gladio Long B 
2011 60-100-140-180 0-30-60-100 
2013 0-60-100-140 0-30-60-100 

Centauro Round 
2014 0-60-100-140-200 0-30-60-100 
2015 0-60-100-140-200 0-30-60-100 

Carnaroli Long A 
2016 0-30-60-90 0-30-60-90 
2017 0-30-60-75-90 0-30-60-90 

Ronaldo Long A 2018 0-60-100-140 0-30-60-100 
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N fertiliser was supplied as dry granular urea. 

The typical agronomic practices of the region were adopted. All plots were 

spring ploughed, laser-levelled and rotary harrowed to have an optimal 

seedbed preparation. Phosphorus (P) and potassium (K) were uniformly 

supplied before harrowing distributing 300 kg ha-1 of a 0-14-28 mineral 

fertiliser, to prevent the direct or indirect effect of P and K deficiency on 

rice response to N fertilisation. 

Rice was broadcasting water seeded. Then, water management involved 

pin-point flooded method (Hardke and Scott, 2013; Miniotti et al., 2016). 

Flooding conditions were gradually stopped during the seedling stage to 

allow for root extension. Then, flooding was re-established, maintaining a 

permanent ponding water depth of 5-10 cm until the final drainage that 

occurred approximately one month prior to harvest. The only exception 

were short drainage periods for the application of adequate post-

emergence herbicides and fungicide if needed, as well as topdressing N 

application at tillering and PI.  

Rice N status at PI was monitored using Rapid Scan (Rapid Scan CS-45, 

Holland Scientific, USA). The instrument has three spectral 

measurements channels: 670, 730, and 780 nm. Canopy reflectance 

detected at 730 and 780 nm was used for the arithmetical computation of 

NDRE. Measurements were collected walking at a constant speed along 

the whole length of the plot, by holding the instrument about 0.5 m above 

the rice canopy. This method was previously followed by Cordero et al. 

(2018) and suggested by the manufacturer’s instruction manual. 

Harvest was carried out at crop maturity, between the end of September 

and the end of October, depending on the climate, the different maturity 

duration of the rice varieties, as well as crop maturation due to N 

management. At the end of the growing season, crop yield was measured 

on a 3.3*5.4 m area with a combine harvester. After collection, rice grains 

were dried and rice yield was expressed at 14% moisture content. 

Moreover, three areas of 0.25 m2 were hand-harvested in each plot. Yield 
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components (i.e. plant density, tillering capacity, number of spikelets per 

panicle, 1000-grain weight, and sterility percentage) were determined. 

Plant density was calculated on three 0.25 m2 sampling areas within each 

plot, as well as panicle density at the end of the growing season. Tillering 

capacity was calculated as the ratio between panicle density and plant 

density. The number of spikelets per panicle and sterility percentage were 

detected on a sample of 20 panicles for each plot, while 1000-grain weight 

was determined on two replicates for plots. 

 

3.3.1. Data analysis 

Statistical analysis was performed using R software, version 3.5.1 (R 

Development Core Team, 2018). The statistical procedure described by 

Cordero et al. (2018) was applied to each rice variety, to determine the 

optimal fertilisation strategy accounting for their specific agronomic traits. 

Rice grain yield was considered as the sum of the contribution due to 

early-growth stage and topdressing N application, as well as their 

interaction. Then, looking at the average effect over the growing seasons, 

the statistical procedure previously proposed in Cordero et al. (2018) was 

applied to each rice variety, as shown by Equation 1.  

𝐺𝑟𝑎𝑖𝑛 𝑦𝑖𝑒𝑙𝑑 = 𝛽1 ∗ 𝑁𝑃𝑅𝐸+𝑇𝐼𝐿𝐿 + 𝛽2 ∗ 𝑁𝑃𝑅𝐸+𝑇𝐼𝐿𝐿
2 + 𝛽3 ∗ 𝑁𝑃𝐼 

+𝛽4 ∗ 𝑁𝑃𝐼
2 + 𝛽5 ∗ 𝑁𝑃𝑅𝐸+𝑇𝐼𝐿𝐿 ∗ 𝑁𝑃𝐼 

(1) 

 

where 1 to 5 are the slopes of the covariates.  

Then, NPI that maximise grain yield corresponding to each N rate supplied 

as sum of pre-sowing and tillering stage application was determined, 

through first order partial derivative calculation and setting to zero 

(Equation 2). 

𝑁𝑃𝐼 =
−𝛽3 − 𝛽5 ∗ 𝑁𝑃𝑅𝐸+𝑇𝐼𝐿𝐿

2 ∗ 𝛽4
 

 

(2) 
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After that, NPI determined through Equation 2 was substituted into 

Equation 1, obtaining the function that describes the grain yield potential 

corresponding to each NPRE+TILL and NPI amount. Again, first order partial 

derivative was calculated and set to zero, calculating NPRE+TILL that allows 

obtaining maximum grain yield potential for each rice variety. This value 

was then substituted in Equation 2, to determine NPI that maximise grain 

yield potential. Consequently, this procedure allowed determining the 

optimal N splitting during the growing season for each rice variety, that, 

substituted in Equation 1, determined the maximum grain yield potential 

for each rice variety. 

Following this data analysis, the same statistical procedure was applied 

with NDRE replacing NPRE+TILL in the GLM previously mentioned.  

Consequently, prescription functions that convert NDRE values in 

practical topdressing N recommendations for each rice variety were 

determined using Equation 3:  

𝑁𝑃𝐼 =
−𝛾3 − 𝛾5 ∗ 𝑁𝐷𝑅𝐸

2 ∗ 𝛾4

 (3) 

 

where n are the slopes of the covariates obtained from the fitting of the 

model explaining grain yield as function of NDRE and NPI. 

Results highlighted large differences among the rice varieties, clearly 

showing the influence of varietal traits on optimal N management. Hence, 

the present research studied a statistical procedure to define the best 

prescription curve, taking into account the peculiar characteristics of each 

rice variety. 

Rice grain yield (GY) is determined by grain yield components. Then, it 

can be estimated by the product of plant density, tillering capacity, 

spikelets number per panicle, 1000-grain weight, and percentage of filled 

spikelets, as reported in Equation 4. 
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𝐺𝑌 = 𝐷 ∗ 𝑇 ∗  𝑁𝑠 ∗ 𝑊 ∗ (1 − 𝑆) (4) 

 

where D is plant density, T is tillering capacity, Ns is spikelets number per 

panicle, W is 1000-grain weight, and S is sterility percentage.  

After that, with the aim of building an additive model that considers grain 

yield as the sum of the contribution of each component, natural logarithm 

was applied to both members of Equation 4, as follows: 

 

ln 𝐺𝑌 = ln 𝐷 + ln 𝑇 + ln 𝑁𝑠 + ln 𝑊 + ln(1 − 𝑆) (5) 

A Principal Component Analysis (PCA) were applied to the logarithmic 

values of grain yield components in order to reduce the number of 

explanatory variables, by converting strongly correlated variables into 

uncorrelated principal components (PCs) (Gómez-Limón and Riesgo, 

2009). The PCA was applied by means of the library FactoMineR (Le et 

al., 2008). The extracted PCs indicated the analytical parameters that 

mostly contributed to differentiate rice varieties. Before applying PCA, 

data were standardised by subtracting the average value, then dividing 

the difference by standard deviation. Communalities were calculated to 

determine the proportion of variable variance explained by PCs, then 

identifying the variables that better explained the variability among the rice 

varieties (Gaudino et al., 2014). 

Path analysis (Wright, 1921) was used to investigate the relationships 

among all response variable, partitioning the correlation between yield, 

yield components, and N fertilisation and NDRE into direct and indirect 

effects. Path analysis was conducted using R lavaan package (Rosseel, 

2012). Path analysis was performed on log-transformed grain yield 

components, to meet the general assumptions of linear, additive 

relationships among the variables of interest (Land, 1969). Moreover, 

variables were standardised, by subtracting the mean and dividing for the 

standard deviation. This procedure allows to express the relationships 
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among the variables as variations in standard deviation units 

(Youngerman et al., 2018). Two different path models were applied to 

each rice variety, as shown in Figure 1¸ representing path diagrams that 

graphically illustrate the cause-effect relationships (represented by 

arrows) among the variables (represented by rectangles).  

 

Figure 1. Path diagrams used to graphically illustrate the cause-effect 

relationships (arrows) among the variables (rectangles). Numbers are used in 

tables 8 and 10 to report the different coefficients. 
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The first path model (Figure 1a) was applied to each rice variety, to 

analyse the effect of grain yield components on grain yield, and to verify 

if the effect of N fertilisation on grain yield was mediated through yield 

components. Variables were arranged in the initial path model on the 

basis of general knowledge about rice response to N fertilisation. Indeed, 

several studies (Bah et al., 2009; Hirzel et al., 2011; Moe et al., 2014; 

Tayefe et al., 2014) suggested that early growth stage N application 

promotes tillering and rice growth, while topdressing N supply positively 

affects the number of differentiated spikelets and increases the 

percentage of filled grains (Inamura et al., 2003; Bah et al., 2009; Lee et 

al., 2009; Sathya and Ramesh, 2009; Zhang et al., 2013). 

In the second path model (Figure 1b) NDRE replaced NPRE+TILL, with the 

aim of evaluating if the different rice varieties have a different NDRE 

response, due to their different growth development, then requiring 

different NPI management. 

 

3.4 Results 

3.4.1 Description of the four rice varieties and consequences on the 

optimal N splitting 

The GLM in Equation 1 described grain yield as a function of different N 

rates and splitting during the growing season. Results of the statistical 

analysis are reported in Table 2. 
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Table 3: P values of NPRE+TILL and NPI rates on grain yield of the different rice 
varieties. The last row shows R2 values. 

Effects, covariates and 
R2 

Gladio Centauro Carnaroli Ronaldo 

NPRE+TILL P<0.001 P<0.001 n. s.* P<0.001 
NPRE+TILL

2 P<0.001 P<0.001 P<0.001 0.004 
NPI P<0.001 P<0.001 P<0.001 P<0.001 
NPI

2 P<0.001 0.004 0.032 P<0.001 
NPRE+TILL*NPI P<0.001 P<0.001 0.039 n. s. 
     
R2 0.798 0.779 0.473 0.959 

* not significant 

The GLM well described grain yield of the different rice varieties, as 

exhibited by the high R2 values, especially for Ronaldo, Gladio and 

Centauro. Excepting for Carnaroli, grain yield was affected by total N rate 

supply as sum of pre-sowing and tillering stage applications. Conversely, 

N supply at PI always affect grain yield, regardless of rice varieties. Also, 

the interaction between early growth stage and mid-season N application 

resulted significant, with the only exception represented by Ronaldo.  

Maximum obtainable grain yield, calculated according to Cordero et al. 

(2018), was the highest for Ronaldo, followed by Gladio and Centauro 

(Table 3). In Carnaroli, maximum grain yield was about 25% lower. 

  

Table 3: Optimal N splitting during the growing season for Gladio, Centauro, 
Carnaroli, and Ronaldo varieties. 

Rice 
variety 

Maximum 
obtainable 

yield  
(Mg ha-1) 

Total N  
supply 

(kg ha-1) 

NPRE+TILL 
(kg ha-1) 

NPI 
(kg ha-1) 

Replacement 
value* 

Gladio 11.1 199 103 96 0.313 
Centauro 11.1 192 40 152 0.687 
Carnaroli 8.3 120 42 80 0.332 
Ronaldo 11.2 280 185 95 0.090 

*It represents the amount of NPI to be supplied for any unit of N missed at pre-
sowing and tillering stage applications. 

 

Total N supply (NPRE+TILL + NPI) needed to maximise grain yield showed a 

similar trend. Ronaldo required the highest total N supply (280 kg ha-1) 



87 
 

during the whole growing season to reach the maximum obtainable yield. 

Gladio and Centauro achieved the maximum grain yield with 30% less 

total N. Moreover, Carnaroli, further reduced total N requirements by 

approximately 40% with respect to both Gladio and Centauro.  

The differences among the rice varieties appeared evident also 

considering the optimal N splitting strategy during the growing season. 

Aiming at grain yield maximisation, Gladio took advantage in equally 

splitting N supply between early growth stages and topdressing 

application. Both Centauro and Carnaroli needed less N supplied as sum 

of pre-sowing and tillering stage application (20% and 33% of total N 

supply, respectively), then increasing N application at PI (80% and 67% 

of the total N amount, respectively). Conversely, Ronaldo variety required 

66% of total N applied as NPRE+TILL, then supplying the remaining 34% at 

PI.  

Subsequently, the application of the GLM provided the coefficients that 

allowed determining the slope of the function linking NPI with NPRE+TILL, that 

corresponds to the replacement value of NPI to NPRE+TILL. In all rice 

varieties higher N supply at pre-sowing or tillering implied reduction at PI. 

The replacement value, that is the amount of N to be supplied at PI for 

any unit missed as sum of pre-sowing and tillering stage application, 

increased with the following order: Ronaldo, Gladio, Carnaroli and 

Centauro. 

Table 4 shows the results of the GLM, when NDRE took the place of 

NPRE+TILL.  
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Table 4: P values of NDRE and NPI on grain yield of the different rice varieties. 
The last row shows R2 values. 

Effects, covariates and 
R2 

Gladio Centauro Carnaroli Ronaldo 

NDRE P<0.001 P<0.001 0.005 P<0.001 
NDRE2 P<0.001 P<0.001 P<0.001 P<0.001 
NPI P<0.001 P<0.001 P<0.001 P<0.001 
NPI

2 P<0.001 P<0.001 0.025 P<0.001 
NDRE*NPI P<0.001 P<0.001 0.017 0.003 
     
R2 0.933 0.769 0.563 0.957 

 

Grain yield can be accurately predicted through NDRE determination at 

PI stage. Indeed, R2 values were quite high, especially for Ronaldo, 

Gladio and Centauro, that achieved R2 values higher than 0.75. In all rice 

varieties, NDRE, NPI, and their squares resulted significant on predicting 

grain yield. The interaction between NDRE and NPI resulted significant, 

too, showing models including NDRE more capable to drive NPI than 

models including NPRE+TILL. 

Prescription functions were determined according to Equation 3, that 

allowed adapting N supply based on NDRE readings to each rice variety, 

with the aim of obtaining maximum grain yield (Figure 2). 
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Figure 2: Prescription functions linking NDRE values to N supply at PI stage to 
achieve different grain yield goals for Gladio, Centauro, Carnaroli, and Ronaldo 
variety, respectively. Values are based on GLM application. 

 

Despite the differences among the rice varieties, all prescription functions 

had a negative slope, as expected. The negative slope suggests to reduce 

NPI for higher NDRE values, corresponding to higher crop vigour. 

Moreover, in the same variety, the slope remained constant when 

applying a reduction coefficient as a percentage of maximum grain yield, 

allowing the determination of NPI needed to obtain the reduced yield. 

As a consequence, the best topdressing N fertilisation management 

based on NDRE determination at PI stage varied among the rice varieties. 

Maximum obtainable grain yields estimated though the model based on 

NDRE (Table 5) pair very well with those obtained from the model based 

on NPRE+TILL (Table 3). 
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Table 5: NDRE values, N supply at PI stage that allow obtaining maximum grain 
yield, and replacement value for Gladio, Centauro, Carnaroli, and Ronaldo 
variety.  

Rice 
variety 

Maximum 
obtainable yield 

(Mg ha-1) 

NDRE N supply at 
PI stage 
(kg ha-1) 

Replacement 
value* 

Gladio 11.2 0.398 77 2.39 
Centauro 11.1 0.349 106 6.93 
Carnaroli 8.6 0.186 83 3.73 
Ronaldo 11.0 0.345 92 1.36 

*It represents the amount of NPI to be supplied for any reduction of a centesimal 
unit (0.01) of NDRE. 

 

However, such grain yield potential can be achieved corresponding to 

different NDRE values, that resulted higher in Gladio than in Centauro and 

Ronaldo. Carnaroli achieved maximum grain yield with to the lowest 

NDRE values. Topdressing N requirements at PI were different among 

the rice varieties, with the highest values recorded for Centauro, then 

decreasing progressively for Ronaldo, Carnaroli, and Gladio. Again, the 

replacement value indicates the marginal effect of NPI for any centesimal 

reduction of NDRE. 

The replacement value of NPI in relation to NDRE is directly connected to 

the share of NPI to total N estimated to achieve the maximum obtainable 

yield. 

 

3.4.2 Principal Component Analysis as a qualitative tool for determining 

prescription functions 

The application of PCA to log-transformed values of grain yield 

components allowed to obtain a set of uncorrelated PCs. According to 

Kaiser’s rule (Kaiser, 1960), the first two PCs were retained, as they 

recorded eigenvalues higher than 1. Overall, the extraction of the two 

main components explained 80,4% of the total variance. The PC1 

explained 46.9% of the total variability while the PC2 33.5% of the total 

variability. The PC1 had the largest positive correlation with both 1000-
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grain weight and sterility, contributing for 38.4% and 26.7%, respectively 

(Table 6).  

Table 6: Variable loadings and communalities determined on log-transformed 
data. Bold values highlighted in which PC the variable had the highest loading. 

Variable PC1 PC2 Communalities 

Plant density -0.450 -0.514 0.467 
Tillering capacity -0.333 0.564 0.429 
Spikelets number per panicle -0.189 0.639 0.444 
1000-grain weight 0.619 0.062 0.387 
Sterility 0.517 0.075 0.273 

 

On the other hand, PC2 resulted positively correlated with both spikelets 

number per panicle and tillering capacity, while negatively correlated with 

plant density, that contributed for 40.8%, 31.8%, and 26.4%, respectively. 

The highest communality was recorded by plant density, followed by 

spikelets number per panicle and tillering capacity. Conversely, the lowest 

value was recorded by sterility. 

The PCA biplot was used to graphically depict the relationship between 

the rice varieties and grain yield components (Figure 3). 

 

Figure 3: Biplot graph based on log-transformed data of grain yield components. 
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The graph clearly highlighted the presence of four distinct groups in the 

original dataset, that well fit the four different rice varieties considered in 

the present study, characterised by different agronomical traits. 

Gladio and Centauro, Ronaldo and finally Carnaroli were mainly 

separated on PC1, mostly depending on morphological characteristics 

mainly promoted by NPI, while Gladio, Ronaldo and Carnaroli and finally 

Centauro, were mostly separated on PC2, mostly depending on 

morphological characteristics mainly promoted by NPRE+TILL. 

However, PCA allowed only qualitatively evaluating the differences 

among the rice varieties.  

 

3.4.3 Path analysis as a quantitative tool for determining prescription 

functions 

Path analysis was used to quantify the different behaviour of the rice 

varieties. In the first proposed path model, N fertilisation showed a 

significant direct effect on grain yield components in Gladio, Centauro, 

and Ronaldo variety (Table 7).  

Table 7: P value of the path type for the different rice varieties. Results are 
referred to the first path model. 

Path type Gladio Centauro Carnaroli Ronaldo 

Direct 

(fertilisation→yield 
components) 

0.044 0.001 n. s. P<0.001 

Direct (yield 

components→yield) 

P<0.001 n. s. P<0.001 n. s. 

Total indirect effect P<0.001 P<0.001 0.009 P<0.001 
Total effect P<0.001 n. s. P<0.001 n. s. 

 

Yield components revealed a significant direct effect on rice grain yield 

only in Gladio and Carnaroli. Conversely, indirect effect, meaning the 

effect of N fertilisation on grain yield as mediated by yield components, 

was significant for all rice varieties. 
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Moreover, path analysis provided information about the development of 

grain yield components in the different rice varieties, as well as their 

influence in determining rice grain yield. Results are reported in Table 8.
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Table 8: Path coefficients expressing the effect of cause variable on effect variable. Results are referred to the first path model. Arrow 
numbers represents the arrows reported in Figure 1a. 

Arrow Cause Effect Gladio Centauro Carnaroli Ronaldo 

1 NPRE+TILL Plant density 0.290 - - - 
2 NPRE+TILL Tillering capacity 0.223 0.259 0.247 0.557 
3 NPRE+TILL Spikelets number per panicle 0.138 0.228 - - 
4 NPRE+TILL 1000-grain weight -0.614 -0.533 -0.340 -0.660 
5 NPRE+TILL Sterility percentage -0.514 -0.372 - -0.434 
       

6 NPI Spikelets number per panicle 0.367 0.495 0.255 0.697 
7 NPI 1000-grain weight 0.124 - - -0.329 
8 NPI Sterility percentage -0.187 - -0.296 -0.258 
       

9 Plant density Grain yield 0.788 0.284 0.293 0.561 
10 Tillering capacity Grain yield 0.712 0.473 0.236 0.716 
11 Spikelets number per panicle Grain yield 0.445 0.446 0.170 0.487 
12 1000-grain weight Grain yield 0.166 - 0.259 - 
13 Sterility percentage Grain yield - -0.223 0.165 - 

       
14 Plant density Spikelets number per panicle -0.657 -0.218 0.219 -0.397 
15 Tillering capacity Spikelets number per panicle -0.389 -0.295 0.176 -0.382 
16 Plant density 1000-grain weight -0.246 - -0.238 - 
17 Tillering capacity 1000-grain weight - -0.325 -0.175 - 
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Plant density was affected by N supplied as sum of pre-sowing and 

tillering stage applications only in Gladio variety. Early growth stage N 

application positively affected tillering capacity in all rice varieties, with the 

highest effect in Ronaldo. In both Gladio and Centauro, early growth stage 

N application, as well as topdressing N fertilisation at PI, positively 

affected spikelets number per panicle, with NPI showing the highest effect 

in both varieties. Moreover, the effect was higher in Centauro than in 

Gladio. In Carnaroli and Ronaldo, only NPI had a large positive effect on 

spikelets number per panicle. The 1000-grain weight resulted negatively 

affected by early growth stage N application in all rice varieties. In all rice 

varieties, ln (1-S) was negatively affected by N supply. In particular, in 

Gladio and Ronaldo both NPRE+TILL and NPI showed a negative effect, while 

in Centauro and Carnaroli the parameter was affected only by NPRE+TILL 

and NPI, respectively. 

As excepted, yield components highly affected grain yield but differently 

between the considered varieties. In Gladio, plant density, tillering 

capacity, spikelets number per panicle, and 1000-grain weight had a 

significant positive direct effect on grain yield, with plant density having 

the greatest effect, followed by tillering capacity. In Centauro, tillering 

capacity recorded the highest positive effect, followed by spikelets 

number per panicle. Conversely, sterility percentage showed a negative 

effect. In Carnaroli, all grain yield components had a positive direct effect 

on grain yield, with plant density showing the highest effect and sterility 

pointing out the lowest. In Ronaldo, only plant density, tillering capacity, 

and spikelets number per panicle recorded a positive direct effect on grain 

yield, with tillering capacity showing the highest effect. 

Significant effects were highlighted also among grain yield components 

each other. In Gladio, Carnaroli, and Ronaldo plant density and tillering 

capacity showed a negative effect on spikelets number per panicle. 

Conversely, Carnaroli had an opposite behaviour. In Gladio, plant density 

had a negative effect on 1000-grain weight. In Centauro, tillering capacity 
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negatively affected 1000-grain weight. In Carnaroli, both high plant 

density and high tillering capacity resulted in low 1000-grain weight. 

Conversely, in Ronaldo, neither plant density nor tillering capacity affected 

1000-grain weight. 

In the second path model, only indirect effect, i.e. the effect of NDRE on 

grain yield as mediated by yield components, resulted significant in 

determining grain yield for all rice varieties (Table 9). 

Table 9: P value of the path type for the different rice varieties. Results are 
referred to the second path model. 

Path type Gladio Centauro Carnaroli Ronaldo 

Direct (NDRE→yield 
components) 

P<0.001 n. s. n. s. 0.002 

Direct (yield 

components→yield) 

P<0.001 n. s. P<0.001 n. s. 

Total indirect effect P<0.001 P<0.001 P<0.001 P<0.001 
Total effect P<0.001 P<0.001 P<0.001 0.006 

 

Considering the second path model, in all rice varieties, high NDRE values 

had a detrimental effect on both 1000-grain weight and sterility, with the 

highest values recorded in Ronaldo (Table 10). 



97 
 

Table 10: Path coefficients expressing the effect of cause variable on effect variable. Results are referred to the second path model. 
Arrow numbers represents the arrows reported in Figure 1b. 

Arrow Cause Effect Gladio Centauro Carnaroli Ronaldo 

1 NDRE Plant density - - 0.281 - 
2 NDRE Tillering capacity 0.540 0.249 - 0.584 
3 NDRE Spikelets number per panicle - 0.272 - - 
4 NDRE 1000-grain weight -0.668 -0.439 -0.336 -0.780 
5 NDRE Sterility percentage -0.297 -0.459 -0.301 -0.503 
       

6 NPI Spikelets number per panicle 0.468 0.490 0.261 0.697 
7 NPI 1000-grain weight 0.376 - - -0.322 
8 NPI Sterility percentage -0.316 - -0.298 -0.239 
       

9 Plant density Grain yield 0.677 0.284 0.292 0.564 
10 Tillering capacity Grain yield 0.846 0.473 0.235 0.721 
11 Spikelets number per panicle Grain yield 0.380 0.454 0.168 0.494 
12 1000-grain weight Grain yield - - 0.253 - 
13 Sterility percentage Grain yield - -0.223 - - 

       
14 Plant density Spikelets number per panicle -0.463 -0.246 0.173 -0.411 
15 Tillering capacity Spikelets number per panicle -0.535 -0.326 - -0.417 
16 Plant density 1000-grain weight - - - - 
17 Tillering capacity 1000-grain weight - -0.376 -0.172 - 
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As previously observed in the first path model, rice grain yield was 

positively affected by plant density, tillering capacity, and spikelets 

number per panicle in all rice varieties. Moreover the 1000-grain weight 

effect on grain yield disappeared in Gladio and was confirmed in 

Carnaroli. Sterility percentage reduced grain yield in Centauro. On the 

contrary, as for the first model, sterility had no effect for Carnaroli.  

Huge differences were highlighted among the rice varieties. Indeed, in 

Gladio, Centauro, and Ronaldo grain yield was mostly affected by tillering 

capacity. Conversely, plant density showed the highest effect in Carnaroli, 

where it was positively affected by NDRE. Moreover, high NDRE values 

are related to high tillering capacity, with Ronaldo showing the highest 

effect. Again, significant compensative effects arose among grain yield 

components. In Gladio, Centauro, and Ronaldo varieties plant density, as 

well as tillering capacity reduced spikelets number per panicle. Moreover, 

in Centauro, high tillering capacity decreased 1000-grain weight, too. 

Conversely, in Carnaroli, plant density positively affected spikelets 

number per panicle, while tillering had a detrimental effect on 1000-grain 

weight. 

 

3.5 Discussion 

3.5.1 Description of the four rice varieties and consequences on the 

optimal N splitting 

All rice varieties showed a significant yield response to N fertiliser 

application. Nitrogen supply both at early growth stage and at PI were 

effective in determining rice grain yield, as well as their interaction. These 

findings are consistent with previous results on Centauro variety reported 

by Cordero et al. (2018). Consequently, also for Gladio, Carnaroli, and 

Ronaldo varieties a possible compensation of deficient N supply at early 

growth stages can be achieved through huge application at PI. Then, this 

study agrees with previous results by Xiong et al. (2018), that indicated 
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young panicle differentiation stage as an effective compensation period 

for N deficiency in super hybrid late rice.  

Clearly, different rice varieties required different N management 

strategies, in terms of total N supply as well as splitting, considering both 

N rates and period of supply during the growing season. Ronaldo reached 

the highest grain yield, showing also the highest total N supply over the 

whole growing season. Gladio and Centauro showed similar N 

requirements, coupled with similar maximum obtainable yield. Total N 

supply resulted lower in Carnaroli, as a consequence of the reduced grain 

yield potential. Moreover, since Carnaroli is characterised by a higher 

plant height with respect to both Gladio and Centauro, the lower total N 

supply restricts yield losses due to lodging, generally promoted by larger 

N supply. 

In all rice varieties, replacement value of NPI with respect to NPRE+TILL 

express the capability of compensating deficient N supply at early growth 

stages with larger applications at PI. That is, for any N unit not taken up 

in the early growth phase a further amount of N equal to the replacement 

value should be applied at PI stage in order to reach the maximum 

obtainable yield. 

Considering their absolute values, replacement values decreased 

progressively for Centauro, Gladio, Carnaroli, and Ronaldo pointing out 

the same capability of rice varieties to efficiently use N at PI stage. 

Therefore, the share of total N amount that has to be supplied at PI to 

achieve the maximum potential grain yield showed the same trend. This 

finding states that deficient early N applications can be easily 

compensated with an amount of N at PI that is almost proportional to the 

share of N distributed at PI with respect to total N supply, to optimise crop 

yield. 

The differences in optimal N fertilisation splitting are related to the 

agronomic traits of the rice varieties. Gladio requires more N at early 

growth stages, as a consequence of the highest panicle density, mainly 
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determined by the highest plant density (data not shown). Similarly, 

Ronaldo benefits more from N supply during early stages than at PI stage 

but this is more related to the increase in tillering capacity. Indeed, limited 

plant density can be normally controlled by increasing N application (Bah 

et al., 2009; Hirzel et al., 2011; Moe et al., 2014; Tayefe et al., 2014).   

However, Huang et al. (2013) suggest to compensate the low plant 

density increasing N application late in the growing season. Results 

obtained in the present study agree with this finding for Carnaroli and 

Gladio, both characterised by lower plant density. For these varieties 

optimal N splitting suggests to reduce N supply as sum of pre-sowing and 

tillering stage application, then increasing N at panicle initiation stage. 

Also Centauro, recording the highest tillering capacity, as well as the 

highest spikelets number per panicle, benefit from N supplied at PI stage. 

In the different varieties, yield components were differently affected by N 

fertilisation at PI. Therefore, since Centauro had lower panicle density 

than Gladio, N supplied at PI stage increased spikelets number per 

panicle and reduced panicle size, calculated as the product between the 

number of fertile spikelets per panicle and single grain weight (Fageria, 

2007). On the contrary N supplied at PI, considering the highest panicle 

density for Gladio, induced the highest sterility percentage (according to 

both model of path analysis, negatively correlated to NPI) coupled with an 

increase of single grain weight. Overall, rice grain yield can be adequately 

estimated through NDRE determination at PI stage. However, NDRE 

values recorded differences in rice canopy reflectance that can attributed 

not only to rice N status, but also to agro-climatic conditions of the growing 

seasons, as well as soil fertility variability. Then, NDRE values can be 

profitably used to drive N fertilisation taking into account specific agro-

environmental conditions. The significant interaction between NDRE and 

NPI recorded for Gladio, Carnaroli, and Ronaldo, as well, strengthened 

the hypothesis of compensating low NDRE values with topdressing N 

fertilisation, previously suggested by Cordero et al. (2018) on Centauro 
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variety. Then, this study further confirmed that deficient N supply at early 

growth stage, responsible for low NDRE values, can be balanced through 

N application at PI, without compromising rice grain yield. Moreover, 

among topdressing applications, N supply at PI most improves yield 

attributes (Inamura et al., 2003; Bah et al., 2009; Lee et al., 2009; Sathya 

and Ramesh, 2009)  

Prescription functions can suggest topdressing N supply at PI stage on 

the basis of NDRE values measured just before N application, with the 

aim of achieving specific grain yield goals. The share of N to be supplied 

in PI, compared to the total, provides advice on the slope of the 

prescription function relating N at PI based on N at pre-sowing and 

tillering.  

Indeed, the slope of the prescription functions, even if specific for each 

rice variety, remained almost constant because of the smooth curvature 

of the function that describes maximum grain yield close to the vertex. 

Consequently, the intercept, being related to the grain yield goal, can be 

chosen on the basis of the grain yield potential of the field. Hence, it is 

possible to adapt N supply to the specific characteristics of each agro-

environment. 

Despite the similar grain yield potential, NDRE value corresponding to 

maximum grain yield was higher in Centauro than in Gladio and Ronaldo. 

Consequently, Centauro requires larger application at PI stage for 

compensating the lower crop vigour detected before topdressing N 

application. This finding is further confirmed by the highest absolute value 

of the replacement value showed by Centauro variety, assessing that the 

effect of NPI fertilisation in higher than for the other varieties. 
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3.5.2 Principal Component Analysis as a qualitative tool for determining 

prescription functions 

The two PCs built from the original dataset well described the differences 

among the rice varieties, as well as the agronomic traits responsible for 

the differences among them. The PC1 clearly separated rice varieties in 

the left and right quadrant, clearly distinguishing Carnaroli variety from 

both Gladio and Centauro, with Ronaldo having an intermediate 

positioning. Both 1000-grain weight and sterility mostly contributed to 

PC1, indicating that Carnaroli is characterised by high 1000-grain weight, 

as well as lower sterility. Gladio and Centauro showed instead an opposite 

behavior. However, PC1 did not allow separating Gladio and Centauro, 

assessing their higher degree of similarity. The PC2 isolated the rice 

varieties in the upper and lower quadrants, detecting differences between 

Gladio and Centauro. Indeed, while Centauro is characterised by the 

highest tillering capacity and spikelets number per panicle, Gladio showed 

the highest plant density. Communalities analysis allowed the 

identification of spikelets number per panicle, plant density, and tillering 

capacity as variables more representative of the total variability. 

Conversely, sterility was found to be not representative of the variability 

among the rice varieties. These results agree with previous studies by 

Ortega Blu (2007) and De Souza et al. (2017), that indicated the low 

temperature during pollen formation and flowering as the main reason for 

sterility. 

 

3.5.3 Path analysis as a quantitative tool for determining prescription 

functions 

Path analysis showed that indirect effect resulted significant for all rice 

varieties, confirming the hypothesis that N fertilisation affects grain yield 

through the influence on grain yield components. Moreover, N fertilisation 

showed a significant direct effect on grain yield components in all rice 
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varieties, with the only exception of Carnaroli. This finding agrees with the 

higher R2 value recorded by the GLM used to explain grain yield as 

function of N amount and splitting during the growing season, in Gladio, 

Centauro, and Ronaldo. Moreover, path analysis allowed pointing out the 

different response of rice varieties to N fertilisation. Plant density showed 

the highest direct effect in determining rice grain yield in Gladio and 

Carnaroli, while in Centauro and Ronaldo tillering capacity was the most 

influent yield component. These results agree with previous studies by 

Samonte et al. (1998) and Artacho et al. (2009), that indicated panicle 

density as one of grain yield components having the greater direct effect 

on rice grain yield. In all rice varieties sterility percentage was negatively 

affected by N fertilisation. Indeed, according with previous studies (Hirzel 

et al., 2011; Hirzel and Rodriguez, 2017), grain sterility increases 

corresponding to high soil N availability, due to both N fertilisation and 

natural N supply. In all rice varieties N supply as sum of pre-sowing and 

tillering stage applications promoted tillering capacity, showing the highest 

direct effect in Ronaldo variety. Then, deficient NPRE+TILL reduced tillering 

capacity, especially in Ronaldo variety. Examining the significant effects 

among the grain yield components, rice varieties showed different 

compensation strategies. As previously mentioned, both Gladio and 

Ronaldo compensated the reduced tillering by increasing spikelets 

number per panicle, while Centauro increased 1000-grain weight, as well. 

Conversely, Carnaroli reduced spikelets number per panicle, then 

increasing 1000-grain weight. Hence, path analysis allowed to better 

understand the optimal fertilisation strategy. Among the considered 

varieties, Ronaldo required the highest N amount as sum of pre-sowing 

and tillering stage application, as tillering was the main factor that 

influenced grain yield. Gladio required high early growth stage N 

application as well, as it was effective on both plant density and tillering 

capacity. In Centauro, considering the highest path coefficient, a smaller 

NPRE+TILL is needed. Moreover, in Centauro, spikelets number per panicle 
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had a contribution to grain yield slightly lower than tillering capacity. 

Spikelets number per panicle is promoted more by larger topdressing 

amount at PI stage than by N application as sum of pre-sowing and 

tillering stage applications. Consequently, in Centauro variety, a little N 

amount has to be supplied at early growth stages, then increasing 

topdressing N applications. In Carnaroli, with the aim of promoting 1000-

grain weight, NPRE+TILL has to be reduced because of its negative effect, 

then increasing NPI. 

Different crop vigour recorded just before NPI application led to differences 

in grain yield for all rice varieties, because of the influence on the 

development of grain yield components. Then, NDRE can be conveniently 

used to drive N topdressing application. 

 

3.6 Conclusions 

The optimal fertilisation strategy has to be adapted considering the 

agronomical traits of the rice varieties, as they induce large differences in 

both N requirements and spectral response. Then, prescription functions 

determining NPI as function of NDRE measured just before N application 

has to be adapted to the different rice varieties. This study pointed out that 

rice varieties showed different growth patterns, leading to wide differences 

in response to N fertilisation and NDRE interpretation. The role of the yield 

components determining the final grain yields is different in the rice 

varieties. Moreover, N fertilisation applications bring to a different 

development of grain yield components in each rice varieties depending 

on the interaction of timing and amount. Integration of Principal 

Component Analysis and path analysis helps in choosing the best 

prescription function on the basis of the agronomic traits of each rice 

variety, being a qualitative and quantitative tool, respectively. Then, the 

statistical procedure proposed in the present study can be extended to 

results of other experiments investigating the contribution of grain yield 
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components to final yield, with the aim of extending prescription functions 

to other rice varieties.  
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4.1 Abstract 

Nitrogen (N) fertilisation determines maize grain yield (MGY). Precision 

agriculture (PA) allows matching crop N requirements in both space and 

time. Two approaches have been suggested for precision N management, 

i.e. management zones (MZ) delineation and crop remote and proximal 

sensing (PS). Several studies have demonstrated separately the 

advantages of these approaches for precision N application. This study 

evaluated their convenient integration, considering the influence of 

different PA techniques on MGY, N use efficiency (NUE), and farmer’s net 

return, then providing a practical tool for choosing the fertilisation strategy 

that best applies in each agro-environment. A multi-site-year experiment 

was conducted between 2014 and 2016 in Colorado, USA. The trial 

compared four N management practices: uniform N rate, variable N rate 

based on MZ (VR-MZ), variable N rate based on PS (VR-PS), and variable 

N rate based on both PS and MZ (VR-PSMZ), based on their effect on 

MGY, partial factor productivity (PFPN), and net return above N fertiliser 

cost (RANC). Maize grain yield and PFPN maximisation conflicted in 

several situations. Hence, a compromise between obtaining high yield 

and increasing NUE is needed to enhance the overall sustainability of 

maize cropping systems. Maximisation of RANC allowed defining the best 

N fertilisation practice in terms of profitability. The spatial range in MGY is 

a practical tool for identifying the best N management practice. Uniform N 

supply was suitable where no spatial pattern was detected. If a high 

spatial range (>100 m) existed, VR-MZ was the best approach. 

Conversely, VR-PS performed better when a shorter spatial range (<16 

m) was detected, and when maximum variability in crop vigour was 

observed across the field (range of variation=0.597) leading to a larger 

difference in MGY (range of variation=13.9 Mg ha-1). Results indicated 

that VR-PSMZ can further improve maize fertilisation for intermediate 

spatial structures (43 m).  
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4.2 Introduction 

Sustainable intensification of crop production is required to fulfil the 

growing consumption needs of humanity while reducing the 

environmental impact of agriculture (Cassman, 1999; Foley et al., 2011). 

Sustainable cultivation requires a more efficient resource use, including 

fertiliser applications. Nitrogen (N) is among the most important nutrients 

supplied to maize for obtaining the full yield potential, as it affects both 

grain yield and quality (Miao et al., 2007). A proper N management should 

aim to meet maize N needs, to avoid exceeding crop requirements. An 

optimally tailored N fertilisation could increase maize production and 

maintain soil fertility, while limiting environmental concerns through the 

reduction of N imbalances and inefficiencies (Ma and Biswas, 2015). 

Excess N is subjected to losses in the environment, through leaching, 

surface run-off, denitrification and ammonia emissions (Cai et al., 2002; 

Ma and Biswas, 2015). Several studies reported that N losses in maize 

cultivation could range between 10 and 70% of the applied N, considering 

different environmental conditions and fertilisation management (Cai et 

al., 2002; Delgado et al., 2005; Wang et al., 2014; Prasad and Hochnut, 

2016). Crop N demand varies spatially and temporally within a field, due 

to the inherent variations in soil N availability, soil properties and crop 

growing conditions (e.g. edge effect) across the field (Khosla et al., 2002; 

Nawar et al., 2017). Two main approaches have been proposed in 

literature to adapt N fertilisation to the spatial variability: soil-based 

methods and plant-based methods. The former includes the concept of 

homogeneous management zones (Khosla and Shaver, 2001), while the 

latter relies on crop N status monitoring with crop canopy sensors during 

the growing season (Roberts et al., 2012). Few studies have compared 

these two approaches or assessed the possibility of using them in 

combination. 
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The identification of management zones (MZ) represents a cost-effective 

method to manage field variability, through field classification into areas 

of broad similarities (Khosla et al., 2002; Nawar et al., 2017). Management 

zones approach was originally suggested to overcome the limitation of 

intensive grid soil sampling for mapping the variance of soil properties, 

due to high cost and labour (Fleming et al., 2000). Therefore, it can be 

suggested as an alternative method to produce prescription maps for site-

specific crop management, by identifying areas of similar productivity 

potential within a field (Hornung et al., 2006). Indeed, in the location of a 

field where yield potential is low, added N fertiliser profitability can be 

reduced (Ma and Biswas, 2015). Doerge (1999) defined MZ as sub-

regions of a field that express a homogeneous combination of yield 

limiting factors. Therefore, MZ can be considered as homogeneous areas 

within a field that show similar characteristics in landscape and soil 

conditions, that should lead to a similar yield potential and input use 

efficiency (Schepers et al., 2004). However, the delineation of uniform 

sub-field regions may be challenging as different physical, biological and 

chemical processes acting simultaneously with different intensities and 

with complex interactions can affect crop yield potential (Moral et al., 

2010). Several techniques have been proposed in literature to delineate 

MZ, using various soil and crop properties individually or in combination 

(Longchamps and Khosla, 2017). Topography, bare soil aerial imagery, 

apparent electrical conductivity (ECa), farmers’ management experiences 

together with yield maps have been extensively used to define the 

boundaries of MZ (Khosla et al., 2002; Schepers et al., 2004). Indeed, 

grain yield data, being a total reflection of all biotic and abiotic factors that 

can affect crop production, can be combined with other soil variables in 

order to explain field variability associated with both crop and soil 

properties (Hornung et al., 2006, Bunselmeyer and Lauer, 2015). 

However different weights should be attributed to the different data layers, 

on the basis of their contribution to crop production variability (Hornung et 
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al., 2006). Moreover, yield patterns are often inconsistent across growing 

seasons (Hornung et al., 2006). Therefore, it is important to also consider 

temporal variation of crop yield, which reflects climate variability across 

the growing seasons (Schepers et al., 2004) and is not necessarily 

correlated to soil properties variations (Nawar et al., 2017). The 

knowledge of yield history could improve MZ delineation through the 

identification of yield patterns at sub-field levels (Bunselmeyer and Lauer, 

2015). Indeed, Maestrini and Basso (2018) built a spatial indicator that 

combines the processes that regulates yield by averaging the normalised 

values of each pixel over the yearly map, using the previous three-year 

data. Considering the complex interactions involved in yield variability, at 

least five or more years of yield data should be used to identify sTable MZ 

(Nawar et al., 2017). Typically, traits such as low-lying topography, dark 

colour, and historic high yields were designated as zones of potentially 

high productivity, or high zones (Khosla et al., 2002). Soil-based 

information used alone to manage maize N fertilisation may not always 

lead to improvement in Nitrogen Use Efficiency (NUE, defined as the grain 

yield obtained at a certain level of N supplied with fertilisers). Such an 

approach fails to account for in-season micro-variability (i.e., variability 

that occurs at shorter range) associated with crop N status, since the crop 

response in unsTable zones has been demonstrated to be strictly 

dependent on weather (Maestrini and Basso, 2018). Consequently, the 

delineation of MZ alone does not characterise the entire representation 

for variable N applications (Shanahan et al., 2008). Crop monitoring, 

which exploits optical properties of leaf pigments, allows integrating soil, 

climate, agronomic management, and other environmental factors on crop 

N status (Shanahan et al., 2008; Muñoz-Huerta et al., 2013). Ground-

based reflectance measurements have been proposed as promising tools 

to assess crop N status during the growing season (Roberts et al., 2012). 

Several vegetation indices can be determined combining reflectance data 

recorded at specific wavelengths (Bajwa et al., 2010). Among these, the 
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most widely used is Normalised Difference Vegetation Index (NDVI), 

calculated as the difference between the NIR and red reflectance divided 

by the sum of these two values (Shanahan et al., 2008. NDVI values are 

positively correlated with leaf area index (LAI), green biomass and leaf N 

(Shaver et al., 2010). Consequently, they provide a measure of canopy 

chlorophyll content in the field-of-view of the sensor. Maize growth stage 

at the moment of spectral data acquisition heavily affects NDVI values. 

Teal et al. (2006) demonstrated that NDVI readings acquired at V8 (8-leaf) 

maize growth stage showed the highest ability to distinguish in-field N 

variability. Shaver et al. (2010) found out that the best time for maize N 

status monitoring is between V10 and V12 growth stages. This is in line 

with the optimal sensing period reported in the Trimble’s Greenseeker 

manufacturer’s manual 

(https://www.manualslib.com/download/1485318/Trimble-Greenseeker-

Rt-200.html), a sensor widely used for NDVI determination at field scale. 

Several studies have demonstrated separately the potential advantages 

of soil-based and plant-based methods of driving variable N fertilisation in 

maize, while very few tried to investigate the possibility of integrating them 

(e.g. Longchamps and Khosla, 2015). The information from MZ 

delineation is potentially complementary to ground-based active sensors 

for crop N status monitoring, and could further improve NUE, economics 

and overall sustainability of maize cropping systems (Khosla et al., 2010; 

Roberts et al., 2012). The integration of the two approaches may allow 

tailoring N rate algorithms for each MZ independently, through the 

detection of both soil and crop properties correlated with crop productivity, 

then demonstrating the advantages derived by this data fusion, 

considering different information layers.  

This study aimed at verifying the hypothesis that uniform N management 

practices can be improved through PA techniques, taking advantage of a) 

proximal crop sensing and b) MZ delineation, and overall c) combination 

of the two strategies. The specific objectives of this study were to assess 
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the influence of precision N management practices on i) maize grain yield, 

(ii) NUE, and (iii) farmer’s net return.  

4.3 Materials and methods 

4.3.1 Site and soil characteristics 

The experiment was carried out over three crop growing seasons (2014, 

2015 and 2016) in four different experimental sites in north-eastern 

Colorado (USA), located in Fort Collins, Ault Iliff, and Atwood (Figure 1). 

 

Figure 1: Map showing the location of each experimental site along with 
information about the farm type, the size of the study area within the field, the 
slope and the soil type according to USDA National Resources Conservation 

Services’ Web Soil Survey (www.websoilsurvey.sc.egov.usda.gov). 

 

The climate of the area is classified as semi-arid (Moshia et al., 2014), 

with a mean annual temperature of 10.1 °C and a mean annual rainfall of 

408 mm (U. S. Climate Data, 2018). 

Mean monthly temperature and cumulative monthly rainfall over the 

experimental period are shown in Table 1. 

 

 

 

 

 

http://www.websoilsurvey.sc.egov.usda.gov/
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Table 1: Description of average climatic data for each site and each year for the 
crop growing seasons (May 1st to September 30th) of 2014-16. Table includes 
NOAA’s normal weather conditions for the crop growing season from 1981 to 
2010 for each location. 

Site Year 
Average temperature 

(°C) 
Total precipitations 

(mm) 

Fort Collins 

2014 17.4 236 
2015 17.9 254 
2016 18.2 89 

1981-2010 17.9 227 

Ault 
2014 17.7 259 
2015 18.1 227 

1981-2010 19.8 215 

Iliff 
2014 18.9 369 

1981-2010 19.9 303 

Atwood 
2014 18.2 435 

1981-2010 19.0 290 

 

Prior to the start of the experiment, maize was continuously cultivated on 

all experimental sites for a period of at least three years. 

The main soil properties of the experimental fields are summarised in 

Table 2.  
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Table 2: Main soil properties of the four experimental sites Mean values are reported. Sampling design consisted of random-within-
grid inside the study area on a square grid of 40 m. [the extended version of the table is reported in Cordero et al., 2019] 

Soil properties 
Fort Collins 

(n=82) 
Ault  
(n=6) 

Iliff  
(n=13) 

Atwood 
(n=12) 

Sand (%)a 539 64 39 
23 
38 
2 
8 
16 
33 
26 

695 

56 
21 
23 
1 
8 
10 
21 
55 

320 

Silt (%)a 14 14 
Clay (%)a 33 22 
Organic matter (%)b 2 1 

8 pHc 8 
Nitrate N (mg kg-1)d 14 8 

25 
46 
255 

CEC (meq /100 g)e 31 
Available P (mg kg-1)f 19 
Exchangeable K (mg kg-1)g 318 

Superscript indicates the method of measurement: a: hydrometer, b: loss-on-ignition, c: 1:1 water-soil, d: Cd reduction, e: Summation 
of exchangeable K, Ca, Mg and neutralisable acidity, f: Olsen method, g: ammonium acetate 
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Soil samples were collected at 0-20 cm depth prior to planting within each 

field, following a random-grid (40 m) spatial survey sampling design within 

the study area (Heltshe and Ritchley, 1984). Soil samples were then dried 

and analysed at a commercial laboratory (Ag Harris, Lincoln, NE). 

4.3.2 Management Zones delineation 

Management zones were used to characterise in-field variability, 

identifying areas of high, medium, and low productivity potential within the 

experimental sites. At Ault, Atwood, and Iliff sites, the delineation of MZ 

boundaries was accomplished through the Management Zone Analyst 

(MZA) free software, developed by Fridgen et al. (2004). The MZA uses 

a fuzzy k-means clustering algorithm to delineate MZ from geo-referenced 

field information, that showed effective results for zone delineation in 

previous studies by Odeh et al. (1992). Different clustering variables were 

used in the delineation process, notably: elevation, bare-soil aerial 

imagery of the field, and soil apparent electrical conductivity (ECa). Bare-

soil imagery was acquired after field preparation and before sowing, using 

Google Earth Pro (Google LLC, Mountain View, CA) to select dates when 

there was no canopy cover in the selected field. The images exported 

from Google Earth Pro were georectified with at least six ground control 

points using the ArcMap software (ESRI, Redlands, CA). Soil ECa was 

measured on each field prior to planting in spring through EM38 (Geonics 

Ltd., Mississauga, Ontario, Canada), an electrical conductivity meter that 

measures ECa on the basis of the principle of electromagnetic induction 

at two depths. Data were collected in vertical dipole orientation. Sensor 

was combined with a GPS and data loggers, mounted on an all-terrain 

vehicle travelling in parallel transects. High-resolution soil ECa readings 

were acquired when the soil was at field capacity. The ECa data was 

overlaid with the satellite imagery from Google Earth Pro in the ArcMap 

software. The rough field topography was extracted from ECa survey data 

using the elevation data recorded by a Trimble Ag114 DGPS (Trimble 
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Navigation, Sunnyvale, CA) corrected by a VBS Omnistar (Omnistar, 

Houston, TX) signal providing a vertical resolution of about 2 m. Despite 

the low resolution for absolute topography measurements, the relative 

topography values were accurate enough to detect the overall spatial 

pattern of topography in each field. A grid of points was laid on the entire 

surface of the study area using the Fishnet tool from ArcMap on a 2 m by 

2 m cell. Using a raster sampling tool from ArcMap, each point was 

attributed to the corresponding information: the Red, Green and Blue pixel 

value from the geotiff extracted from Google Earth Pro (raster sampling), 

the deep and shallow ECa value as well as the elevation value (nearest 

point algorithm) from the ECa survey dataset. The point feature file was 

then converted into a Table to be uploaded in the MZA software. The MZA 

software performed a fuzzy k-means clustering of the soil information 

used as input and provided simultaneously a range of cluster number. 

Mahalanobis distance was chosen as measure of similarity for allocating 

each individual observation to a particular cluster, as it is reported to be 

the most appropriate when correlation exists among variables (Fridgen et 

al., 2004). Other option settings were defined, considering fuzziness 

exponent of 1.5, maximum number of iterations of 300 and convergence 

criterion of P<0.0011 according to Fridgen et al. (2004). The minimum and 

maximum number of zones was set to 2 and 6 respectively, in order to 

allow a sufficient differentiation avoiding at the same time excessive 

fragmentation of zones’ sub-areas. Moreover, after performing the 

clustering procedure, the software calculated two performance indices, 

i.e. Fuzziness Performance Index – FPI and Normalised Classification 

Entropy – NCE, that allowed the decision of the most appropriate number 

of MZ for each field. The FPI measures the degree of separation between 

the zones, while NCE indicates the amount of disorganisation of each 

partitioning (Fridgen et al., 2004). Consequently, the best number of MZ 

is achieved when both indices have the minimum value, leading to the 

least membership sharing and the greatest amount of organisation as a 
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result of the clustering process. Therefore, by evaluating both FPI and 

NCE values, the optimal number of MZ was chosen. Finally, each geo-

referenced soil measurement point was assigned to a specific 

management zone. The vector containing MZ values was transferred to 

the ArcMap software and converted into polygon features representing 

the MZ. The attribution of low, medium or high productivity potential of 

each management zone was reflective of the historical yield performances 

according to farmers’ knowledge of the field. In Fort Collins, MZ had 

already been defined prior to the project using bare soil imagery, coarse 

elevation, and yield and management history as layers for delineation. 

The Rapid Eye satellite imagery platform was used to acquire bare soil 

imagery of the field. It deploys the Jena-Optronik multi-spectral imager 

(Jena, Germany), in five distinct bands of the electromagnetic spectrum: 

Blue (440-510 nm), Green (520-590 nm), Red (630-690 nm), Red-Edge 

(690-730 nm) and Near-Infrared (760-880 nm). Zone clustering was done 

using the AgriTrak Professional software (Agritrak L.L.C, Fort Morgan, 

CO, USA) described by Fleming et al. (1999). This method consisted of 

enhancing the contrast of the bare soil image into various strata or zones 

using the AgriTrak Professional software. Following which, the actual 

farmer of that field designated the zones with low, medium, or high 

productivity potential. The designation of zones was based on the 

historical knowledge of management practices and yield performance of 

that field. The delineated MZ in each experimental site are shown in 

Figure 2.  
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Figure 2. Maps of the four experimental sites (a. Iliff; b. Ault; c. Atwood and d. 
Fort Collins) showing the management zones and the N treatments. 

Afterwards, QGIS open source software (http://qgis.org) was used to 

assign each yield point from the yield map obtained during the experiment 

to the corresponding MZ, through Voronoi polygons delineation. 

Subsequently, the information about the MZ corresponding to each yield 

point was added to the original dataset using QGIS. This procedure aimed 

to link each yield value to the productivity potential of the yield sampling 

point, expressed by the MZ. 

4.3.3 Experimental design and treatments 

This experimental setup at each site-year aimed at comparing four 

fertilisation practices, characterised by different N management in maize 

production: 

• traditional farmers’ management, with a uniform N rate (UR); 

• variable rate N management based on crop proximal sensing (VR-

PS); 

• variable rate N management based on MZ delineation (VR-MZ); 
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• variable rate N management based on both crop sensing and MZ 

delineation (VR-PSMZ). 

In each site-year, several N rates were tested, as shown in Table 3. 
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Table 3: Width of N strips and N rates (kg ha-1) considered in the different locations and year of the experiment. Values in bold 
represent standard dose used by farmers. 

Site-year Location Year Width of N strips (m) N rates (kg ha-1) 

1 Fort Collins 2014 4.6 0 -85 – 170 – 255 
2 Fort Collins 2015 4.6 0 – 60 – 120 – 180- 240 - 300 
3 Fort Collins 2016 4.6 0 – 60 – 120 – 180- 240 
4 Ault 2014 7.5 40 – 80 - 120 
5 Ault 2015 7.5 0 – 40 – 80 – 120 
6 Iliff 2014 2.3 0 – 75 – 150 – 225 
7 Atwood 2014 6.9 100 – 170 – 275 
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For each site, during the first year of experiment a standard N dose (in 

bold in Table 3) was selected based on farmer's business as usual. During 

the second and third years of the experiment, the reference dose was 

slightly adjusted, if needed, in order to cope with crop needs. 

Moreover, in each site, other N rates were tested in order to fit with higher 

or lower productive MZs or NDVI responses. The respective rates were 

chosen according to expected levels of productivity based on expert 

knowledge derived from farm managers. Unfertilised treatments were 

added in site-years 1, 2, 3, 5, and 6. In the other site-years, farmers 

preferred to add a minimal N fertilizer of 50% of their usual N rate to avoid 

further yield loss. Nitrogen treatment strips were imposed at each site-

year, however, the size of the treatment strips varied across the site-years 

(Table 3). The width of the strip corresponded to the width of the fertiliser 

sprayer used by the farmer and the length corresponded to the entire 

length of the field when possible. When not possible, the strips were long 

enough to contain at least 15 yield data points (based on the assumption 

that a commercial combine harvester generates about one yield data point 

at every 2.5 m length) for each zone by treatment section. Nitrogen 

treatment strips were randomly distributed (randomised using the Sample 

function in R without replacement and with the seed of the number 

generator set to 123) within the field. 

The comparison among the different fertilisation approaches was realised 

by selecting observations that fulfil specific conditions, then simulating the 

different fertilisation strategies. At each site-year the UR received various 

N rates distributed uniformly, without taking into account neither MZ, nor 

NDVI values obtained from PS.  

The VR-PS was analysed selecting observations where increasing N 

rates were coupled with lower NDVI values and vice-versa, without 

accounting for MZ. Consequently, with the aim of identifying classes 

reflecting homogeneous crop vigour, NDVI values were clustered using k-

means clustering to obtain NDVI classes. For each site-year, the number 
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of NDVI classes was equal to the number of N levels. During data 

analysis, N rates were paired to NDVI classes, considering pairs where 

the highest N amount was coupled with the lowest crop vigour, then 

progressively considering lower N application at increasing crop vigour. 

The VR-MZ considered the observations where reduced N supply was 

coupled with lower productivity and increased N supply was coupled with 

higher productivity. Then, zones characterised by intermediate 

productivity received the standard N rate, while in high and low zones N 

rates was increased or reduced, respectively. The VR-PSMZ accounts for 

both soil productivity potential (through MZ) as well as crop N status 

(through in-season PS measurements). Three N rates were selected 

based on three NDVI classes (e.g. low NDVI received a high N rate), and 

these three selected N rates were modulated depending on which zone 

they were located in (e.g. very low N, low N and medium N for the low 

productivity zone). Depending on the number of N treatments available, 

not all site-years allowed a complete set of combinations.  

4.3.4 Crop agronomic management 

In all site-years, maize hybrids belonging to FAO maturity class 300 were 

grown. Standard agronomic techniques were adopted for all the crop 

growing seasons at each location. All field sites were conventionally tilled 

for planting, as presented in Table 4.  
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Table 4: Date and type of tillage operation for each site-year. 

 

 

Likewise, details of the agronomic management are reported in Table 5. 

In each site-year, the total amount of N fertiliser was localised in strips 

close to plant rows, at the 6th leaf crop stage development of maize (V6, 

according to Reitsma et al., 2009). All N was supplied using urea 

ammonium nitrate (UAN), a 32% N fertiliser. In order to prevent drought 

stress, irrigation was carried out by means of a centre - Pivot system in 

site-years 1, 2, and 3 (Table 3); and a surface furrow irrigation system in 

site-years 4, 5, and 7, and a lateral move irrigation system in site-year 6. 

Water was applied uniformly across the entire experimental area, until the 

end of the crop dough stage (R4). The irrigation scheduling was 

performed by collaborating with farmers, primarily on the basis of soil 

moisture measurements, previous occurrence of precipitation, and related 

weather data as well as visual assessment of the field. Adequate pesticide 

treatments were undertaken throughout the maize growth, enabling an 

optimal control of diseases and pests. Fields were treated with chemical 

herbicides to control weed development. 

Site-
year 

Date 
Type of tillage 

operation 

1 
20th November 2013 Disk harrow 

28th March 2014 Brillion mulcher 
1st April 2014 Brillion mulcher 

2 30th April 2015 Spring-tooth harrow 

3 
25th November 2015 Disk harrow 

25th April 2015 Brillion mulcher 
4 15th April 2014 Field cultivator 
5 20th April 2015 Field cultivator 
6 11th April 2014 Strip tillage 

7 
18th November 2013 Disk harrow 

15th April 2014 Brillion mulcher 
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Table 5: Details of the agronomic management. 

Site-year Maize hybrid 
Relative days 

to maturity 
Seeding date 

Seed rate 
(seed ha-1) 

Fertiliser 
 application 

Harvesting 
date 

1 Dekalb DKC46-20RIB 96 29th April 2014 84 000 11th June 2014 30th October 2014 
2 Dekalb DKC46-20RIB 96 27th May 2015 84 000 30th June 2015  19th November 2015 
3 Dekalb DKC46-20RIB 96 6th May 2016 93 900 21st June 2016 21st October 2016 
4 Pioneer P0474 104 5th May 2014 84 000 17th June 2014 24th October 2014 
5 Pioneer 35F48AM1 105 2nd May 2015 93 900 23rd June 2015 12th November 2015 
6 Pioneer P0157AM 101 19th May 2014 84 000 24th June 2014 23rd October 2014 
7 Pioneer P0474 104 7th May 2014 84 000 17th June 2014 26th November 2014 
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4.3.5 Field measurements 

Ground-based crop reflectance measurements were performed on 

different dates, corresponding to maize growth stage between the 

development of the 2nd and the 12th leaf (V2 to V12) (Table 6). 

Table 6: Dates of NDVI measurements in the different years and locations. 

Site-year Dates of NDVI readings Maize growth stage 

1 June, 26th V6-V7a 

 

July, 10th V8-V10 
July, 14th V10 

July, 17th2 V10-V11 
July, 21st V11-V12 

3 
June, 27th V9 
July, 5th V12 
July, 8th V14 

4 
June, 26th V6-V7 
June, 17th V8-V10 

5 
June, 23th V10 
July, 1st V10-V11 
July, 7th V11-V12 

6 July, 23rd V2 

7 June, 17th V3-V4 
a: Vn stage: development of the n leaf 

 

The Greenseeker (Trimble, Sunnyvale, California, USA) handheld active 

optical sensor was used to determine NDVI, detecting canopy reflectance 

in the visible red (wavelength 660 nm) and in the NIR (wavelength 770 

nm) spectral regions. The measurements were taken by holding the 

instrument at a distance of about 0.8 m above the maize canopy, as 

suggested by the manufacturer’s instruction manual and reported in Solari 

et al. (2008). Reflectance measurements were acquired around noon, 

even though Padilla et al. (2019) demonstrated that radiation conditions 

did not alter NDVI values measured with active sensors. Being an active 

sensor not influenced by the sunlight (Solari et al., 2008; Schmidt et al., 

2009), reflectance data was acquired walking at a constant speed 

alternatively along the crop rows. NDVI readings were acquired 
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continuously on one of the central rows of each strip. Each NDVI 

measurement was georeferenced. 

Grain yield, adjusted to a moisture content of 15.5%, was determined at 

harvest. At physiological maturity maize was harvested with a combine 

harvester equipped with a GPS receiver and a yield monitor, ensuring that 

all grain yield sampling points are geo-referenced. Experimental plots 

were located on commercial fields, then a different combine harvester was 

used at each location except for the Atwood site, where data was collected 

by hand. In Fort Collins, the grain was harvested using a 6-row Case 

combine harvester model Case IH 1660 (Case Corporation, Racine, WI) 

equipped with an AgLeader (AgLeader Technology, Ames, IA) yield-

monitoring system. In Ault, the grain was harvested using an 8-row John 

Deere 9670 STS (Deere and Company, Moline, IL) combine harvester 

model equipped with a GreenStar yield-monitoring system. In Iliff, the 

grain was harvested using a 2-row John Deere 3300 (Deere and 

Company, Moline, IL) combine harvester model equipped with an 

AgLeader yield-monitoring system. Yield data was then cleaned following 

the procedures described in Khosla and Flynn (2008). In Atwood, a 

combine harvester equipped with a yield-monitoring system was not 

available and therefore, the yield values were harvested by hand on a 3 

m length of maize row at 75 locations regularly distributed throughout the 

study area and evenly distributed across N treatments. Hand harvested 

maize ears were then transported to a facility where kernels were 

separated from the maize ears, weighted and analysed for moisture 

content using a Dickey-John GAC 2100b (Dickey-John Corp., Auburn, IL) 

grain analysis computer.  

4.3.6 Data analysis 

A database was built for each site-year. The databases reported the list 

of geo-referenced observations, each one referred to an area of 2*4 m2. 
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For each area, N rate, belonging to a specific MZ, NDVI value and grain 

yield were provided. 

Then, partial factor productivity (PFPN) was determined for each area, as 

an indicator of maize NUE, according to Cassman et al. (1996): 

 𝑃𝐹𝑃𝑁 =
𝑌

𝑁𝑇
     (1) 

where Y represents grain yield and NT is the total amount of N applied, 

both expressed in kg ha-1. Consequently, it was not possible to calculate 

PFPN where no fertiliser was applied. Considering the agronomic output 

that can be obtained at a certain level of all N resources in the cropping 

system, PFPN could be considered a useful integrative NUE index. 

Indeed, PFPN takes into account total available N derived from both soil 

and N applied fertiliser (Cassman et al., 1996; Ladha et al., 2005).  

Additional data columns containing NDVI classes were added to the 

original dataset, with the aim of identifying classes reflecting homogenous 

crop vigour. The NDVI classes were created using k-means clustering 

with the k-means function in the R stats package (R Core Team, 2018). 

For each site-year, the number of NDVI classes was equal to the number 

of N levels established for the experimental site. 

A statistical procedure was applied in order to check the significance of 

the difference in grain yield among precision fertilisation practices and 

uniform practices. As grain yield depends mostly on N rate, the check of 

the significance was performed based on the same N rate for both 

practices. Average field grain yield and N rate for each precision 

fertilisation practices were calculated as the total grain yield or supplied N 

divided by the corresponding strip area. Corresponding values of grain 

yield in uniform practice were derived from interpolation of a linear model 

applied to the different site-years. The linear model was applied only to 

uniform N application data and expressed grain yield as a function of N 
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rate accounting for an additive component due to site-year effects 

(Equation 2).  

 𝑌𝑖𝑒𝑙𝑑 = µ + (𝑠𝑖𝑡𝑒_𝑦𝑒𝑎𝑟) + 𝛽 ∗  𝑁𝑟𝑎𝑡𝑒 (2) 

where  is the grand mean of all data, site_year is the fixed effect 

representing the shift from the grand mean of each site-year, Nrate is the 

covariate representing the N rate uniformly supplied, while  is its 

coefficient. 

The statistical assumptions of homogeneity of variances and normality 

hypothesis of the residuals were graphically checked, as suggested by 

Zuur et al. (2010). Moreover, Laara (2009) stated that for large datasets 

the central limit theorem implies approximate validity of the statistical 

methods that require normality. Therefore, with the aim of comparing 

precision N fertilisation practices with uniform application of the same N 

amount, t tests were calculated for each PA approach against the 

corresponding value fitted on the LM model using the following Equation 

3: 

 
𝑡 =

𝑥̅ − 𝑓𝑖𝑡𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

√𝑆𝐸𝑢𝑛𝑖𝑓𝑜𝑟𝑚 + 𝑆𝐸𝑃𝐴 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ

 
(3) 

Where  is the average grain yield of a given PA approach, fitted values 

are the grain yields for uniform N application predicted by the LM for the 

same N rate, and SEuniform and SEPA approaches are the standard errors of 

uniform and precision agriculture approaches, respectively. 

In order to underline the Nrate effect, both grain yields represented by  

and fitted values where shifted by site-year to be represented on a single 

equation, according to Equation 4.  

 𝑔𝑟𝑎𝑖𝑛 𝑦𝑖𝑒𝑙𝑑𝑠ℎ𝑖𝑓𝑡𝑒𝑑 = 𝑔𝑟𝑎𝑖𝑛 𝑦𝑖𝑒𝑙𝑑 − (𝑠𝑖𝑡𝑒_𝑦𝑒𝑎𝑟) (4) 
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The same procedure was applied to PFPN values, but including also the 

reciprocal of N rate as covariate, with the aim of introducing the 

hyperbolical components into the model (Equation 5). 

 
𝑃𝐹𝑃𝑁 = µ + (𝑠𝑖𝑡𝑒_𝑦𝑒𝑎𝑟) + 𝛾1 ∗ 𝑁𝑟𝑎𝑡𝑒 + 𝛾2 ∗

1

𝑁𝑟𝑎𝑡𝑒
 (5) 

where again  is the grand mean, site_year is the effect related to the site-

year, while Nrate represents the N rate uniformly supplied, and n are its 

coefficients. 

Finally, an economic evaluation was conducted, with the aim of assessing 

the influence of precision N management practices on farmers’ net return. 

Net return above N fertiliser cost (RANC) was calculated as the difference 

between grain yield market value and N fertiliser cost (Bachmaier and 

Gandorfer, 2009). The calculation was computed as previously reported 

in Casa et al. (2011). Maize grain prices were based on Agricultural 

Statistics (2017) published by USDA. The values employed were 0.15 $ 

kg-1, 0.14 $ kg-1, and 0.13 $ kg-1, for 2014, 2015, and 2016, respectively. 

The price of UAN fertiliser was obtained from a fertiliser retail dealer in 

Colorado which was equal to approximately 16 000 $ metric ton-1 (15.70 

$ kg-1). Then, aiming at assessing the influence of precision N 

management practices on PFPN, grain yield, and RANC, radar charts 

were created for each location and year of the experiment. The 

considered variables (i.e. PFPN, grain yield, and RANC) were 

standardised by centring on zero (by subtracting the mean) and further 

scaling them dividing by the standard deviation, so that they have a 

standard deviation equal to 1. This procedure allowed incorporating the 

different variables on a comparable scale. 

Lastly, the presence or absence of a spatial pattern in grain yield data was 

investigated through Moran’s I test (Moran, 1950); following which, the 

spatial structure was described with a semivariogram, which is a plot of 

semivariances as a function of distances between the observations. 
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Geostatistical methods implemented in the library GeoR (Ribeiro and 

Diggle, 2016) were used for the estimation of the empirical 

semivariogram. After that, standard theoretical variogram models 

(exponential, Gaussian, and spherical) were fitted to the empirical 

semivariogram. With the aim of assessing the theoretical model that best 

fitted the empirical semivariogram, the goodness of fit was evaluated 

through the Akaike’s Information Criterion (AIC), then taking into account 

also the complexity of the given model. For each year and location, the 

model that showed the lowest AIC value was considered the most 

appropriate to represent the experimental semivariogram, according to 

McBratney and Webster (1986). Semivariograms were described using 

range (i.e. the distance at which observations are no longer spatially 

autocorrelated), sill (representing the maximum variance of the field 

relative to grain yield, disregarding the spatial structure), and nugget (i.e. 

the microscale variation or measurement error). Statistical analysis was 

performed using R software version 3.4.3 (R Core Team, 2018) and R 

Studio version 1.1.183 (RStudio Team, 2016). 

4.4 Results 

Mean temperature during the growing season correlates with the obtained 

grain yield, with higher values in site-year 3 and lower in site-years 1, 4, 5 

(Table 1). Also, annual total precipitation highlighted a different amount 

among the site-years (Table 1).  

Figure 3 shows the overall yield response to N rates, expressed as the 

average N application at field scale, across the site-years and the N 

management strategies. Site-year effect was removed according to 

Equation 4. 
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Figure 3: Grain yield response to N rate for uniform (black symbols) and precision 
fertilisation practices (coloured symbols). For all N management practices, grain 
yield shifted is represented according to equation 4. Nitrogen rates for precision 
fertilisation practices are the average values supplied at field scale. For precision 
N management practices, error bars represent standard errors. Grey area 
represents the confidence interval calculated for uniform N management practice. 

 

The linear model used in the study was suitable at fitting the experimental 

data (R2=0.61). Nrate was significant (P(F) = P<0.001, df numerator = 1, 

df denominator = 4139); site-year was significant as well (P(F) = P<0.001, 

df numerator = 6, df denominator = 4139).  

In general, for uniform N management practices maize grain yield 

increased with increasing N rates. The application of the linear model to 

uniform treatments allowed to parametrise the crop response function to 

increasing N rates. Precision N management yields were then compared 

with uniform application, considering the average amount of N applied on 

the whole treatment. A general trend cannot be highlighted. In particular, 

VR-PS and VR-PSMZ maintained grain yield with respect to the uniform 
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application of the same N amount in five site-years, while VR-MZ did in 

six. Moreover, in three site-years, VR-PSMZ improved grain yield, while 

VR-PS and VR-MZ did in other one site-year. 

Figure 4 shows PFPN values obtained through the different N 

management practices in each site-year, corresponding to each N supply 

after removing site-year effect. 

 

 

 

Figure 4: Partial factor productivity (PFPN) as function of N rate for uniform (black 
symbols) and precision N fertilisation practices (coloured symbols). For all N 
management practices, PFPN shifted is represented according to equation 4, 
introducing PFPN instead of grain yield. Nitrogen rates for precision fertilisation 
practices are the average values supplied at field scale. For precision N 
management practices, error bars represent standard error. Grey area 
represents the confidence interval calculated for uniform N management practice. 

 

The linear model referred to uniform N application and used to express 

PFPN as a function of N rate properly fitted PFPN values obtained in the 
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present experiment (R2=0.92). Nrate and 1/Nrate were significant (P(F) = 

P<0.001, df numerator = 1, df denominator = 3390); site-year was 

significant as well (P(F) = P<0.001, df numerator = 6, df denominator = 

3390).  

Overall, PFPN values decreased with increasing N rates. As expected, in 

all site-years the lowest PFPN was obtained with the highest uniform N 

supply. Figure 4 clearly highlights the potential of precision fertilisation 

techniques to increase PFPN. Hence, in most site-years, PFPN values 

obtained through precision fertilisation practices lay over the curve fitted 

on uniform N rates. 

Table 7 shows grain yield and PFPN values obtained with precision 

fertilisation practices, compared to uniform supply of the same N amount 

through Student’s t test, as described in Equation 3.
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Table 7: Grain yield and PFPN values obtained with uniform or variable rate application of the same N amount, compared through 
Student’s t test.  

Site -year PNMPa N rate (Kg ha-1)  
Grain yield (Mg ha-1) PFPN

b 

Uniform PNMP P(t) Uniform PNMP P(t)  

1 
VR-MZ 117 10.2 10.4 n. s. c 0.082 0.099 n. s. 
VR-PS 174 10.4 10.3 n. s. 0.06 0.069 n. s. 

VR-PSMZ 170 10.6 10.4 n. s. 0.061 0.073 n. s. 

2 
VR-MZ 112 10.2 9.3 0.002 0.086 0.098 n. s. 
VR-PS 119 9.4 10.9 P<0.001 0.081 0.123 0.007 

VR-PSMZ 158 10 10.8 0.001 0.064 0.08 n. s. 

3 
VR-MZ 169 10.9 12.1 P<0.001 0.061 0.078 n. s. 
VR-PS 132 10.4 9.9 n. s. 0.074 0.105 n. s. 

VR-PSMZ 125 10.3 9.1 0.007 0.078 0.093 n. s. 

4 
VR-MZ 88 9.9 10 n. s. 0.109 0.136 0.047 
VR-PS 80 9.8 9.1 0.004 0.118 0.15 0.042 

VR-PSMZ 81 9.8 8.8 P<0.001 0.118 0.102 n. s. 

5 
VR-MZ 82 9.8 9.9 n. s. 0.116 0.142 n. s. 
VR-PS 109 10 9.7 n. s. 0.088 0.106 n. s. 

VR-PSMZ 80 9.8 9.7 n. s. 0.119 0.13 n. s. 

6 

VR-MZ 130 10.4 10.1 n. s. 0.075 0.084 n. s. 

VR-PS 120 9.5 9.9 n. s. 0.081 0.094 n. s. 

VR-PSMZ 95 10 10.9 0.038 0.101 0.111 n. s. 

7 
VR-MZ 235 11.6 11.7 n. s. 0.050 0.052 n. s. 
VR-PS 151 10.6 10.7 n. s. 0.066 0.083 n. s. 

VR-PSMZ 160 10.7 12 0.001 0.063 0.069 n. s. 
aPNMP= precision N management practice;  bPFPN = partial factor productivity; cn.s. = not significant; bold underlined values highlight 

the highest values when comparing uniform and precision N management practices considering the same N supply.
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In site-years 1 and 5, precision fertilisation practices did not positively 

affect grain yield, it resulted in similar grain yield as compared to the 

uniform application of the same N rate. In the other site-years, the impact 

on grain yield was different, depending on both site-year and the precision 

N management practice. In particular, in site-year 2, VR-MZ reduced grain 

yield by approximately 9% compared to uniform supply of the same N 

amount. Conversely, both VR-PS and VR-PSMZ raised grain yield, by 

16% and 8%, respectively. In site-year 3, VR-MZ increased grain yield by 

11%, while VR-PSMZ led to a grain yield reduction (-12%). Moreover, N 

supply based on proximal sensing did not affect grain yield. In site-year 4, 

VR-MZ obtained a grain yield value similar to that of the same uniform N 

supply, while both VR-PS and VR-PSMZ led to a moderate reduction, 

approximately equal to 7% and 10%, respectively. In site-year 6, VR-

PSMZ improved grain yield by 9%, while the other precision N fertilisation 

practices did not affect grain yield. Lastly, in site-year 7, VR-PSMZ 

increased grain yield with respect to uniform application of the same N 

amount (+12%), while both N supply based on proximal sensing or MZ 

delineation obtained similar grain yield levels. Then, despite differences 

among the site-years, maize grain yield improvement seems to not to be 

the main outcome of precision fertilisation practices. 

In general, precision N fertilisation practices increased PFPN compared to 

uniform supply of the same N amount (Table 7). However, only in site-

years 2 and 4, PFPN improvement resulted to be significant. In particular, 

in site-year 2, VR-PS increased PFPN by approximately 52%. In site-year 

4 VR-MZ and VR-PS improved PFPN by 25% and 27% respectively. 

Radar charts were used to represent the positioning of each N fertilisation 

practices according to their respective contribution to PFPN, grain yield, 

and RANC for each year and location (Figure 5). 
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Figure 5: Radar graph showing the positioning of each N fertilisation practice 

according to their respective contribution to PFPN (PFPN), grain yield, and net 

return above N fertiliser cost (RANC) for all site-years. UR – x: uniform N 

application of x kg ha-1; VR-PS: variable rate N management based on crop 

sensing; VR-MZ: variable rate N management on MZ; VR-PSMZ: variable rate N 

management based on both crop sensing and MZ delineation. 
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A rational N management would lead to reductions in N losses and 

improvement in crop yield and PFPN. In each year and location of this 

study, the N fertilisation management that allowed to obtain the highest 

RANC was considered the best N fertilisation practice. Indeed, RANC 

value is a useful indicator that takes into account the effect of N 

management both on grain yield and PFPN. The highest RANC coupled 

with the highest PFPN values were observed in site-years 1, 5, and 6. In 

the other site-years, RANC value was shown to be mostly related to the 

grain yield levels, achieving the highest value corresponding to higher 

grain yield levels. Moreover, in site-year 6, VR-PSMZ resulted the most 

profitable N fertilisation practice, leading to the highest PFPN coupled with 

a negligible, but significant, grain yield decrease (2%).  

Finally, theoretical semivariogram models were used to analyse the 

spatial patterns in grain yield data in each site-year, with the aim of linking 

the presence of a spatial structure in grain yield data with the application 

of precision N fertilisation strategies.
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Table 8: Moran I p value, best theoretical variogram model, partial sill, range of spatial dependency, and nugget recorded in each 
location and year of the experiment. 

Site-year 
Moran I p 

value 
Model Partial sill Range (m) Nugget 

Best N 
management 

practice a 

1 - - - - - UR-85 
2 <0.01 gaussian 5.7 11.3 0.2 VR-PS 
3 <0.01 exponential 4.3 16.2 0.2 UR-240 
4 <0.01 exponential 3.0 101.9 0.5 VR-MZ 
5 <0.01 exponential 0.2 42.6 0.6 UR-40 
6 <0.01 exponential 2.4 8.8 0.0 VR-PSMZ 
7 - - - - - UR-170 

a: Nitrogen management practice that maximises Net return above N fertiliser cost (RANC), according to Figure 5 
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Results reported in Table 8 showed the presence of spatial structure in 

most (5 out of 7 site-years) of the site--years in this study, with the 

exception of site-year 1 and 7. Exponential model was the best fit for the 

experimental semivariogram on the basis of AIC, apart from grain yield 

data acquired in site-year 2 that were best described through a Gaussian 

model. The range of spatial structure, setting the limit of the 

autocorrelation and beyond which spatial structure does not exist 

anymore, varied among the different site-years. In particular, the range of 

spatial dependency was 9 m in site-year 6 while in site-year 2 and 3 it was 

11 m and 16 m, respectively. In site-year 4 and 5, spatial range values 

were higher and estimated to be 102 and 43 m, respectively. The range 

of spatial autocorrelation indicated the scale of spatial variability detected 

in the field. Higher range values are related to large scale variability, and 

vice versa. Semivariograms of grain yield, together with their approximate 

theoretical models, are reported in Figure 6. 
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Figure 6: Semivariograms of grain yield data obtained in each site-year. 
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4.5 Discussion 

In traditional maize cropping system in Colorado, N fertiliser is usually 

applied uniformly and at high rates (around 225 kg ha-1), as farmers want 

to ensure that N is not the limiting factor in their maize production system. 

Mean N fertilisation in the region varied between 100 and 250 kg ha-1 

depending on the different locations, with a mean annual uptake of about 

215 kg N ha-1 (Inman et al., 2005). Although N requirements become 

larger with increasing grain yield, crop production and N application are 

not linearly correlated. In general, the results obtained in this study 

highlighted a trend where the highest N supply is combined with the lower 

PFPN. This was anticipated as in theory, a field where no nitrogen is added 

would result with an infinite PFPN (i.e. divided by zero) even though yield 

could be very low. In order to appeal farmers, N application should be 

conveniently reduced in order to maintain grain yield, thus increasing 

PFPN. This finding was particularly evident in the experiment conducted 

in site-years 1, 2, and 3 where, by reducing uniform N supply to 180 kg 

ha-1, PFPN significantly improves by 25 to 49%, against a grain yield 

reduction varying approximately from 1.5 to 11% with respect to the value 

recorded supplying the highest N rate. 

In general, PFPN decreased with increasing N rates, confirming previous 

results reported by Barbieri et al. (2008) and Ma and Biswas (2016). This 

may indicate that maize was unable to absorb or utilise N at higher N 

rates. Another possible explanation is that higher N amount increased 

also N losses in the environment, which exceeded crop N uptake 

(Delgado et al., 2005). In this study, the total amount of N fertiliser was 

applied in experimental strips around the 6th leaf crop growth stage 

development. Splitting N application so that N supply is synchronised with 

maize uptake may improve nitrogen use by the crop, as suggested by 

Sharma and Bali (2018).  
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Overall, variable rate N management did not increase grain yield with 

respect to uniform N application when the same total N amount was used. 

This finding agrees with previous results by Ma et al. (2014). Indeed, 

where statistical differences in grain yield were detected, precision 

fertilisation practices increased or reduced maize grain yield of 

approximately 10%, corresponding to about 1 Mg ha-1. However, crop 

yield and N efficiency should both be considered for agroecosystem 

improvement (Jin et al., 2012). Results from this study clearly 

demonstrated the potential of precision fertilisation techniques for 

increasing PFPN. 

The economic evaluation suggests that the optimisation of N 

management not only improved the environmental sustainability of the 

agricultural system, but also positively affected farmers’ economic return 

above N fertiliser cost. Improving PFPN is a promising tool to also increase 

the profitability for the farmers. Farmers choose the best fertilisation 

practice on the basis of RANC maximisation. However, it appears evident 

that RANC is largely affected by maize grain yield, due to the large 

influence of fertiliser application on maize production value. 

Consequently, the results strengthened the hypothesis that a compromise 

between achieving high yield and increasing PFPN is essential. 

Variable rate input application requires to quantitatively assess spatial 

variability of grain yield at a field scale (Kravchenko et al., 2005). The 

analysis of semivariogram models determined the range of spatial 

dependency, allowing the link between the spatial structure of grain yield 

and the performance of the different N management practices. Indeed, 

range determination allowed choosing the best fertilisation practice, that 

can maximise RANC. 

On the whole, N application based on crop proximal sensing during the 

growing season was shown to be the best precision N management 

practice when the range of spatial variability is lower than 16 m. 

Conversely, for higher range, up to 102 m, N supply based on MZ 
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delineation performed better. These results agree with previous findings 

by Schepers et al. (2004), that have reported that MZs are a promising 

tool to identify spatial variability in grain yield for spatial range higher than 

16 m, leading to the identification of distinct spatial patterns. Uniform N 

application was the best approach where no spatial dependency was 

detected. As shown in site-year 5, for intermediate range value (43 m), 

the integration of crop proximal sensing and MZ delineation improved both 

PFPN and grain yield with respect to PS alone, but negatively affected 

RANC. 

In general, the high level of spatial structure corresponds to a high 

potential for variable rate N application to increase the profitability for the 

farmer. The only exception was represented by site-year 3, where the 

most profitable N management was uniform N application of 240 kg ha-1, 

despite the presence of spatial autocorrelation. Therefore, in these 

situations where spatial patterns were not highlighted or the variability in 

crop vigour across the field led to a moderate difference in grain yield, 

site-specific management is not suitable. Indeed, in site-year 5, despite a 

range equal to 43 m, the best fertilisation practice was uniform application 

of 40 kg N ha-1. 

Furthermore, N application based on crop proximal sensing during the 

growing season was shown to be suitable especially when maximum 

grain yield difference among the NDVI classes was substantial (CV>20%). 

In this experiment, such high value has been recorded only in site-year 2 

and 5 (data not shown), where the best N management were VR-PS and 

VR-PSMZ respectively, confirming that crop N status monitoring can be 

used to more efficiently apply N inputs. Both in site year 4 and 7, as well 

as in site-year 3, grain yield difference among the NDVI classes showed 

CV values varying between 10 and 15%. In these situations, VR-PS could 

not potentially be a promising tool to manage in-field micro-variability. 

However, in site-year 3, VR-PS has shown to be a promising fertilisation 

practice to increase PFPN. But considering the moderate variation of grain 
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yield among NDVI classes, the increment of N rate used in the present 

study should have been fairly large to compensate for small differences in 

crop vigour, leading to low yield level. Hence, this approach needs to be 

further tested with finer levels of N supply. Indeed, Kitchen et al. (2010) 

and Roberts et al. (2010) have stated that crop sensing can be used to 

more efficiently tune N inputs. However, they have considered N 

increments of 34 kg ha-1 while in the present study the experimental setup 

established 60 kg N ha-1 increments. In site-year 1 and 5, grain yield did 

not vary among the NDVI classes, showing a high uniformity across the 

field. Consequently, N supply based on crop proximal sensing is not a 

suitable approach. Moreover, in site-year 4 and 5, the factor that induced 

grain yield variability may have a range longer than the range that can be 

optimal for using proximal crop sensing to drive N fertilisation. 

The delineation of management zone defines sub-field regions with 

similar yield-limiting factors, for which a single rate of a specific crop input 

is appropriate (Schepers et al., 2004; Vrindts et al., 2005).  

However, in site-year 7, grain yield did not vary across the management 

zone (data not shown), assessing that, despite different yield-limiting 

factors, the yield potential is similar across the field. In such a situation, 

uniform N supply was proven to be the most profitable practice. 

In site-year 4, N supply on the basis of MZ delineation achieved the best 

compromise between high grain yield and PFPN values, evaluated on the 

basis of RANC. This can be mainly attributed to the reduction of N supply 

in the low productivity areas, according to a previous study by Koch et al. 

(2004). In site-years 4 and 5, furrow irrigation method was adopted over 

multiple years. Furrow irrigation transports soil particles and subsequently 

nutrients, inducing an important soil macro-variability that creates areas 

with different fertility within the field. This large-scale variability is 

confirmed by the presence of a spatial range of 102 m. Consequently, N 

management on the basis of the different MZ is able to better consider 

soil macro-variability. However, in site-year 5, the uniform application of 
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40 kg N ha-1 led to the highest PFPN, combined with a negligible grain 

yield loss. Interestingly, the synergic use of MZ delineation and PS for 

driving N application improved both PFPN and grain yield with respect to 

PS alone. A possible explanation is that crop proximal sensing during the 

growing season can well asses crop micro-variability, but is less effective 

in evaluating field macro-variability. Conversely, VR-MZ is an optimal N 

management practice when the field exhibit a strong macro-variability, 

with areas with similar yield limiting factors. Consequently, the 

combination of proximal sensing and MZ delineation can be a promising 

tool to consider both large and small scale sources of variability. 

Therefore, the integration of soil-based and plant-based methods to drive 

fertiliser applications can be considered a promising tool for N use 

efficiency without impacting grain yield, strengthening the hypothesis that 

supported the present study. Then, the present study confirmed the 

potential of precision fertilisation to improve maize cultivation 

sustainability, but also highlighted that the choice of the optimal N 

fertilisation strategy needs to be related to the range of spatial variability 

detected in the field. 

4.6 Conclusions 

The achievement of both high yield and high NUE is needed to increase 

sustainability without negatively impacting crop productivity. 

Precision fertilisation practices have been shown to be promising tools for 

improving PFPN without negatively impacting maize grain yield, thus 

increasing farmers’ profitability. However, adaptation to specific agro-

environments is needed. 

The quantitative evaluation of the spatial patterns in grain yield has been 

demonstrated to be an important tool to guide precision agriculture 

application. Variable rate N management based on MZ delineation is the 

best practice when large-scale variability is detected. Conversely, variable 

rate N management based on crop proximal sensing is more suitable 
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when the yield-limiting factors are related to a small-scale variability. Their 

integration can be helpful to manage both macro and micro-variability that 

may exist in a crop field, further improving maize fertilisation, and 

enhancing the overall sustainability of the cropping system. 

However, the need of considering whether the higher economic revenue 

can compensate for added cost for services or technologies required for 

variable rate N supply appears evident. 

4.7 Acknowledgments 

This research project was funded by Colorado Corn Board and USDA-

NRCS-CIG grant. Authors want to thank the students Marcelo Chan, 

Alfonso DeLara, Rafael Siqueira, Tawney Bleake and Jeffrey Siegfried of 

Colorado State University for their helpful collaboration in the data 

acquisition. 

4.8 References 

Bachmaier M., Gandorfer M., 2009. A conceptual framework for judging 

the precision agriculture hypothesis with regard to site-specific nitrogen 

application. Precis. Agric.10:95-110. 

 

Bajwa, S.G., Mishra, A.R., Norman, R.J. (2010). Canopy reflectance 

response to plant nitrogen accumulation in rice. Precision Agric. 11: 488-

506. 

 

Barbieri, P. A., Echeverría, H. E., Saínz Rozas, H. R., Andrade, F. H. 

(2008). Nitrogen Use Efficiency in maize as affected by nitrogen 

availability and row spacing. Agron. J, 100:1094–1100. 

 

Bunselmeyer, H. A., Lauer, J. C. (2015). Using corn and soybean yield 

history to predict subfield yield response. Agron. J. 107: 558–562. 

 



155 
 

Cai, G. X., Chen, D. L., Ding, H., Pacholski, A., Fan, X.H., Zhu, Z. L (2002). 

Nitrogen losses from fertilizers applied to maize, wheat and rice in 

theNorth China Plain. Nutrient Cycling in Agroecosystems 63: 187–195. 

 

Casa, R., Cavalieri, A., Locascio, B (2011) Nitrogen fertilization 

management in precision agriculture: A preliminary application example 

on maize. Italian Journal of Agronomy, 6:23-27. 

 

Cassman, K. G., Gines, G. C., Dizon, M. A., Samson, M. I., Alcantara, J. 

M. (1996). Nitrogen-use efficiency in tropical lowland rice systems: 

contributions from indigenous and applied nitrogen. Field Crops Research 

47: 1-12. 

 

Cassman, K. G. (1999). Ecological intensification of cereal production 

systems: yield potential, soil quality, and precision agriculture. Proc. Natl. 

Acad. Sci. USA 96: 5952-5959. 

 

Delgado, J., Khosla, R., Westfall, D. G., Bausch, W., Inman, D. (2005). 

Nitrogen fertilizer management based on site-specific management zones 

reduces potential for NO3-N leaching. J. of Soil & Water. 60: 402-410. 

 

Doerge, T. (1999). Defining management zones for precision farming. 

Crop Insight, 8, 21. Pioneer Hi-Bred International Inc. 

 

Fleming, K. L., Westfall, D. G., Wiens, D. W., Rothe, L. E., Cipra, J. E., 

Heermann, D. F. (1999). Evaluating farmer developed management zone 

maps for precision farming. In Robert, P. C. et al. (ed.) Precision 

agriculture. Proc. Int. Conf., 4th, Bloomington, MN. 19-22 July 1998. ASA, 

CSSA, and SSSA, Madison, WI, 335-343. 

 



156 
 

Fleming, K. L., Westfall, D. G., Wiens, D. W., Brodhal, M. C. (2000). 

Evaluating farmer defined management zone maps for variable rate 

fertilizer application. Precision Agriculture, 2:201-215. 

 

Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. 

S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., West, P. C., 

Balzer, C., Bennett E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, 

S., Rockstro, J., Sheehan, J., Siebert, S., Tilman, D., Zaks, D. P. M. 

(2011). Solutions for a cultivated planet. Nature 478: 337-342. 

 

Fridgen, J. J., Kitchen, N. R., Drummond, K. A. S., Wiebold, S. T., & 

Fraisse, C. W. (2004). Software Management Zone Analyst (MZA): 

Software for subfield management zone delineation. Agronomy Journal, 

96, 101–107. 

 

Heltshe, J. F., Ritchey, T. A. (1984). Spatial pattern detection using 

quadrat samples. Biometrics 40:877-885. 

 

Hornung, A., Khosla, R., Reich, R., Inman, D., Westfall, D. G. (2006). 

Comparison of site-specific management zones: soil-color-based and 

yield-based. Agron. J. 98:407–415. 

 

https://www.manualslib.com/download/1485318/Trimble-Greenseeker-

Rt-200.html 

 

Inman, D., Khosla, R., Westfall, D. G., Reich, R. (2005). Nitrogen uptake 

across site specific management zones in irrigated corn production 

systems. Agron. J. 97:169–176. 

 

Jin, L., Cui, H., Li, B., Zhang, J., Dong, S., Liu, P. (2012). Effects of 

integrated agronomic management practices on yield and nitrogen 



157 
 

efficiency of summer maize in North China. Field Crops Research 134:30–

35. 

 

Kitchen, N. R., Sudduth, K. A., Drummond, S. T., Scharf, P. C., Palm, H. 

L., Roberts, D. F., Vories, E. D. (2010). Ground-based canopy reflectance 

sensing for variable-rate nitrogen corn fertilization. Agron. J. 102:71-84. 

 

Khosla, R., Shaver, T. (2001). Zoning in on nitrogen needs. Colorado 

State University Agronomy Newsletter 21 (1): 24-26. 

 

Khosla, R., Fleming, K., Delgado, J. A., Shaver, T. M., Westfall, D.G. 

(2002). Use of site-specific management zones to improve nitrogen 

management for precision agriculture. Journal of soil and water 

conservation 57(6):513-518. 

 

Khosla, R., Flynn, B. (2008). Understanding and cleaning yield monitor 

data. Soil Science Step-by-Step Field Analysis:113-130. 

 

Khosla, R., Westfall, D. G., Reich, R. M., Mahal, J.S., Gangloff, W.J. 

(2010). Spatial variation and site-specific management zones. In 

Geostatistical applications for precision agriculture 8:195-219. 

 

Koch, B., Khosla, R., Frasier, W. M., Westfall, D. G., Inman, D. (2004). 

Economic feasibility of variable-rate nitrogen application utilizing site-

specific management zones. Agron. J. 96:1572–1580. 

 

Kravchenko, A. N., Robertson, G. P., Thelen K. D., Harwood, R. R. (2005). 

Management, topographical, and weather effects on spatial variability of 

crop grain yields. Agron. J. 97:514–523. 

 



158 
 

Laara, E. (2009). Statistics: reasoning on uncertainty, and the 

insignificance of testing null. Annales Zoologici Fennici 46: 138–157. 

 

Ladha, J. K., Pathak, H., Krupnik, J., Six, T., Van Kessel, J. (2005). 

Efficiency of fertilizer nitrogen in cereal production: retrospects and 

prospects. Adv. Agron. 87, 85–156. 

 

Longchamps, Louis, Khosla, Raj (2015). Improving N use efficiency by 

integrating soil and crop properties for variable rate N management. In: J. 

Stafford (Ed.), Precision Agriculture 2015, Proceedings of the 10th 

European Conference on Precision Agriculture (pp. 249–255). 

Wageningen Academic Publishers, Wageningen. 

 

Longchamps, Louis, Khosla, Raj (2017). Precision maize cultivation 

techniques. In Achieving sustainable cultivation of maize, Burleigh Dodds 

Science Publishing., 2: Cultivation techniques, pest and disease 

control:450. Cambridge, UK: Dave Watson. 

 

Ma, B. L., Biswas, D. K. (2016). Field-level comparison of nitrogen rates 

and application methods on maize yield, grain quality and nitrogen use 

efficiency in a humid environment. Journal of Plant Nutrition, 39(5): 727-

741. 

 

Ma, B. L., Biswas, D. K. (2015). Precision nitrogen management for 

sustainable corn production. In Sustainable Agriculture Reviews 16: 33-

62 (edited by Eric Lichtfouse and Aakash Goyal). 

 

Ma, B. L., Wu, T. Y., Shang, J. (2014). On-farm comparison of variable 

rates of nitrogen with uniform application to maize on canopy reflectance, 

soil nitrate, and grain yield. J. Plant Nutr. Soil Sci., 177: 216–226. 

 



159 
 

Maestrini, B., Basso, B. (2018). Predicting spatial patterns of within-field 

crop yield variability. Field Crop Research 219: 106-112. 

 

Mc Bratney, A. B., Webster, R. (1986). Choosing functions for semi-

variograms of soil properties and fitting them to sampling estimates. 

Journal of Soil Science, 37, 617439. 

 

Miao, Y., Mulla, D. J., Hernandez, D. J., Wiebers, M., Robert, P. C. (2007). 

Potential impact of precision nitrogen management on corn yield, protein 

content, and test weight. Soil Sci. Soc. Am. J. 71:1490–1499. 

 

Moral, F.J., Terrón, J.M., Marques da Silva, J.R. (2010). Delineation of 

management zones using mobile measurements of soil apparent 

electrical conductivity and multivariate geostatistical techniques. Soil and 

Tillage Research 106: 335–343. 

 

Moran, P. A. P. (1950). Notes on continuous stochastic phenomena. 

Biometrika 37 (1/2): 17–23. 

 

Moshia, M. E., Khosla, R., Longchamps, L., Reich, R., Davis, J. G., 

Westfall, D. G. (2014). Precision manure management across site-

specific management zones: grain yield and economic analysis. 

Agronomy Journal 106(6):2146-2156. 

 

Muños-Huerta, R. F., Guevara-Gonzalez, R. G., Contreras-Medina, L. M., 

Torres-Pacheco, I., Prado-Olivarez, J., Ocampo-Velazquez, R. V. (2013). 

A review of methods for sensing nitrogen status in plants: advantages, 

disadvantages and recent advances. Sensors 13: 10823-10843. 

 



160 
 

Nawar, S., Corstanje, R., Halcro, G., Mulla, D., Mouazen, A. M. (2017). 

Delineation of soil management zones for variable-rate fertilisation: a 

review. Advances in Agronomy 143: 175-245. 

 

Prasad, R., Hochmuth, G. J. (2016). Environmental nitrogen losses from 

commercial crop production systems in the Suwannee River Basin of 

Florida. PLoS ONE 11(12): e0167558. 

doi:10.1371/journal.pone.0167558. 

 

R Core Team (2018). R: A language and environment for statistical 

computing. R Foundation for Statistical Computing, Vienna, Austria. 

https://www.R-project.org/. 

 

RStudio Team (2016). RStudio: Integrated Development for R. RStudio, 

Inc., Boston. 

 

Reitsma, K. D., Clay, S., Hall, R. G. (2009). Best management practices 

for corn production in South Dakota: corn growth and development. SDSU 

Extension Circulars. 491. 

 

Ribeiro, P. J., Diggle, P. J. (2016). geoR: Analysis of Geostatistical Data. 

R package version 1.7-5.2. 

 

Roberts, D. F., Ferguson, R. B., Kitchen, N. R., Adamchuk, V. I., 

Shanahan, J. F. (2012). Relationships between soil-based management 

zones and canopy sensing for corn nitrogen management. Agron. J. 104: 

119–129. 

 

Roberts, D. F., Kitchen, N. R., Scharf, P. C., Sudduth, K. A. (2010). Will 

variable-rate nitrogen fertilization using corn canopy reflectance sensing 

deliver environmental benefits? Agron. J. 102:85–95. 



161 
 

Schepers, A. R., Shanahan, J. F., Liebig, M. A., Schepers, J. S., Johnson, 

S. H., Luchiari, A. J. (2004). Appropriateness of management zones for 

characterizing spatial variability of soil properties and irrigated corn yields 

across years. Agron. J. 96:195–203. 

 

Schmidt, J. P., Dellinger, A. E., Beegle, D. B. (2009). Nitrogen 

recommendations for corn: an on-the-go sensor compared with current 

recommendation methods. Agron. J. 101:916–924. 

 

Shanahan, J. F., Kitchen, N. R., Raun, W. R., Schepers, J. S. (2008). 

Responsive in-season nitrogen management for cereals. Computers and 

electronics in agriculture 61: 51–62. 

 

Sharma, L. K., Bali, S. K. (2018). A review of methods to improve Nitrogen 

Use Efficiency in agriculture. Sustainability, 10, 51. 

 

Shaver, T. M., Khosla, R., Westfall, D. G. (2010). Evaluation of two 

ground-based active crop canopy sensors in maize: growth stage, row 

spacing, and sensor movement speed. Soil Sci. Soc. Am. J. 74:2101–

2108. 

 

Schepers, A. R., Shanahan, J. F., Liebig, M. A., Schepers, J. S., Johnson, 

S. H., Luchiari, A. J. (2004). Appropriateness of management zones for 

characterizing spatial variability of soil properties and irrigated corn yields 

across years. Agron. J. 96:195–203. 

 

Solari, F., Shanahan, J., Ferguson, R., Schepers, J., Gitelson, A. (2008). 

Active sensor reflectance measurements of corn nitrogen status and yield 

potential. Agron. J. 100:571–579. 

 



162 
 

Teal, R. K., Tubana, B., Girma, K., Freeman, K. W., Arnall, D. B., Walsh, 

O., Raun W. R. (2006). In-season prediction of corn grain yield potential 

using normalized difference vegetation index. Agron. J. 98:1488–1494. 

 

Trimble’s Greenseeker manufacturer’s manual available at 

https://www.manualslib.com/download/1485318/Trimble-Greenseeker-

Rt-200.html. (last accessed on May 28, 2019). 

 

U. S. Climate Data (2018) available at https://www.usclimatedata.com/ 

(last accessed on May 28, 2019). 

 

USDA (2017) Agricultural Statistics. Available at 

https://www.nass.usda.gov/Publications/Ag_Statistics/2017/index.php 

(last accessed on May 25, 2018).  

 

Vrindts, E., Mouazen, A.M., Reyniers, M., Maertens, K., Maleki, M.R., 

Ramon, H., De Baerdemaeker, J., (2005). Management zones based on 

correlation between soil compaction, yield and crop data. Biosyst. Eng. 

92: 419–428. 

 

Wang, G., Chen, X., Cui, Z., Yue, S., Zhang, F. (2014). Estimated reactive 

nitrogen losses for intensive maize production in China. Agriculture, 

Ecosystems and Environment 197: 293–300. 

 

Zuur, A. F., Ieno, E. N., Elphick, C. S. (2010). A protocol for data 

exploration to avoid common statistical problems. Methods in Ecology and 

Evolution 1: 3–14. 

 



163 
 

5. Conclusions 
 

The main purpose of this Ph. D. thesis was to extend the current 

understanding on precision fertilisation, by analysing different fertilisation 

strategies on different crops and agro-environments.  

Particularly, Paper I and Paper III confirmed the positive environmental 

impact of PA techniques. In Paper I, maximising rice grain yield did not 

compromise N apparent recovery. Similar outcomes have been reported 

in Paper III, where precision fertilisation practices have been shown to be 

promising tools for increasing Nitrogen Use Efficiency without negatively 

affecting maize grain yield. 

Paper I developed a statistical procedure to optimise rice N fertilisation, 

that can be adapted to different rice varieties grown in different agro-

environments. Moreover, Paper I provided a statistical methodology for 

obtaining prescription functions linking crop vigour measured through 

vegetation indices and topdressing N supply. Then, prescription function 

based on the spectral response of rice canopy provided an objective tool 

to quantify last topdressing N application that can be applied in different 

agro-environment, then overcoming previous research gaps. Indeed, up 

to now, N recommendation relying on crop vigour were suggested on the 

basis of empiric regressions, estimated considering local agro-climatic 

conditions, cultivars, etc. 

Moreover, the experimental method reported in Paper I was realised in an 

experimental site. However, with the aim of promoting a widespread 

adoption of PA techniques, similar trials for obtaining prescription 

functions can be realised at farm level. The main advantage in realising 

such experiments is that farmers can adapt the prescription functions to 

the peculiar characteristics of their fields, then evaluating the effect of PA 

strategies on their cropping systems. 
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The statistical procedure for obtaining prescription functions proposed in 

Paper I has been extended to different rice varieties, highlighting a variety-

specific relationship between crop vigour and N requirements. Paper II 

allowed understanding the differences among them in terms of both 

spectral behaviour and response to N fertilisation is mainly due to a 

different development of grain yield components, as well as to their 

different contribution in determining the final yield. Integrating qualitative 

and quantitative statistical tools (such as Principal Component Analysis 

and Path Analysis) can investigate the specific contribution of grain yield 

components to the final yield, allowing the extension of prescription 

functions to other rice varieties. Then, this study can profitably contribute 

for obtaining a widespread application of precision fertilisation in rice. 

Further researches are needed to evaluate if the different spectral 

response of the rice varieties could be ascribed to a different crop canopy 

development. To this end, Leaf Area Index (LAI) measurement could be 

a useful tool. Moreover, LAI measurement is a promising tool for highlining 

changes in canopy geometry that can be ascribed to stress conditions due 

to other key elements in crop production (e.g. water stress). 

Consequently, LAI measurement can be used to improve the estimation 

of N requirements based on crop vigour in irrigated crop. Indeed, 

combining vegetation indices and LAI measurements could provide useful 

information for better managing the simultaneous presence of both N and 

water stress. This occurrence is common in our agro-environment, in 

which N is not the unique yield limiting factor in most crops. Therefore, 

integrating VIs and LAI measurements could allow the extension of the 

proposed statistical procedure for determining prescription functions to 

other crops, different from rice. 

Paper III suggested the integration of management zones delineation and 

crop vigour monitoring as helpful tool for managing both large and small-

scale variability that can exist in a crop field. This finding strengthens the 

hypothesis that optical crop monitoring should be conceived as a part of 
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an integrated system that combines additional information related to soil 

variability. 

Moreover, Paper III reported the quantitative evaluation of spatial patterns 

in grain yield as a practical tool for choosing the best fertilisation strategy 

in a specific agro-environment. However, it appeared evident the need of 

evaluating the effect of precision fertilisation techniques on farmers’ 

profitability, for choosing the fertilisation practice that best applies in each 

agro-environment. Then, further studies are required to better understand 

if the higher economic revenue obtained through the optimisation of the 

fertilisation strategies can compensate the added costs for precision 

farming technologies and services. A quantified information of the farm 

profit augmentation and an accurate estimation of investment cost for 

precision agriculture technology purchase is needed. Therefore, more 

research should be focused on the contribution of precision agriculture to 

the increase of production efficiency, considering both yield and 

economics. 

On the whole, the Ph. D. activity provided a complete evaluation the 

potential advantages derived from the application of precision fertilisation 

techniques on different cropping system, considering their effects on both 

crops yield and resources use efficiency. 
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