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Abstract

Motivated by the recent paper of Boggiatto-Garello in J. Pseudo-Differ. Oper.
Appl. 11 (2020), 93-117, where a Gabor operator is regarded as pseudodiffer-
ential operator with symbol p(x, ω) periodic on both the variables, we study
the continuity and invertibility, on general time frequency invariant spaces,
of pseudodifferential operators with completely periodic symbol and general τ
quantization.
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Pseudodifferential Operators

1 Introduction.

Consider the formal expression of the Gabor operator: Sf =
∑

h,k∈Zd
(f, gh,k)

L2 gh,k,

gh,k(t) = e2πiβk·tg(t − αh), α, β ∈ R+, and that of the pseudodifferential opera-

tor with Kohn-Nirenberg quantization: a(x,D)ϕ(x) =

∫∫
e2πiω·(x−t)a(x, ω)f(t) dt dω,

where f ∈ S(Rd), a(x, ω) ∈ S ′(R2d) and the integration is intended in distribution
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sense. In the recent work [3] it is proven that S = a(x,D), where

a(x, ω) =
∑

h,k∈Zd
e−2πi(x−αh)·(ω−βk)g(x− αh)¯̂g(ω − βk), (1)

with suitable decay conditions on g, ĝ, and convergence in L∞(R2d). Then using the
Calderón - Vaillancourt Theorem about L2 continuity of pseudodifferential operators,
see [20], one can prove that for α+β less than a suitable positive constant Cg, depend-
ing only on the decay at infinity of g, ĝ and some of their derivatives, the Gabor
operator is invertible as a bounded linear operator on L2(Rd). Then as well known in
frame theory, the Gabor system {gh,k}h,k∈Zd realizes to be a frame.
The literature about Gabor frame theory is wide, we quote here only the monographs
[15], [17], [6]. Among others, the problem of finding conditions on the parameters α, β
in order to obtain Gabor frames is a challenging one, see for example [10], [16] and
the references therein.
Notice now that the symbol in (1) is completely periodic, with period α with respect to
the spatial variable x and period β with respect to ω. For all the reasons listed above,
we think it should be of some relevance to develop the study of pseudodifferential
operators with completely periodic symbols, their continuity and possible invertibility
in L2 or more general function spaces.
Concerning symbols independent of x, that is Fourier multipliers, we quote the papers
[12], [22], where the periodic case in considered.
Wider is the literature concerning the pseudodifferential operators on compact Lie
groups, see the fundamental book of Ruzhansky-Turunen [27], which have as partic-
ular case symbols periodic in x and discrete (non periodic) in ω. Also interesting is
the reversed case where the symbols are discrete in x and periodic in ω; the related
operators are called in this case ”pseudo-difference” operators, see [4], [21]. About
pseudodifferential operators on generalized spaces, e.g. modulation spaces, we refer to
the following papers [29], [30], [8], [2], [24], [25], [5], [11], [7], [9].
The plan of the paper is the following: in §2 we give the notations and definitions;
then we review some basic facts about periodic distributions with respect to a general
invertible matrix and their Fourier transform. In §3 we introduce the pseudodifferential
operators with general τ quantization and for the case of periodic symbols we pro-
vide a representation formula, obtained by linear combination of time frequency shift
operators. At the end, respectively in §4 and §5 we set the results of continuity and
invertibility on general families of time frequency shift invariant spaces. The Appendix
A is devoted to give some technicalities in order to compare periodic distributions on
Rn and distributions on the n dimensional torus Tn.

2 Preliminaries

2.1 Notations and basic tools

In whole the paper we will use the following notations and tools:

• Rn0 = Rn \ {0}, Zn0 = Zn \ {0};
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• 〈x〉 =
√

1 + |x|2, where |x| is the Euclidean norm of x ∈ Rn;
• x · ω = 〈x, ω〉 =

∑n
j=1 xjωj ; x, ω ∈ Rn;

• (f, g) =
∫
f(x)ḡ(x) dx is the inner product in L2(Rn);

• Ff(ω) = f̂(ω) =
∫
f(x)e−2πix·ω dx the Fourier transform of f ∈ S(Rn), with the

well known extension to u ∈ S ′(Rn).

The polynomial weight function v is defined for some s ≥ 0 by

v(z) = (1 + |z|2)s/2 , ∀ z ∈ Rn . (2)

A non negative measurable function m = m(z) on Rn is said to be a polynomially
moderate (or temperate) weight function if there exists a positive constant C such that

m(z1 + z2) ≤ Cv(z1)m(z2) for all z1, z2 ∈ Rn. (3)

For other details about weight functions see [15, §11.1].
In the following we will use in many cases the matrix in GL(2d)

J =

(
0 −I
I 0

)
, (4)

which defines the symplectic form, see [15, §9.4],

[z1, z2] := 〈z1,J z2〉 = x2 · ω1 − x1 · ω2 , z1 = (x1, ω1), z2 = (x2, ω2) ∈ R2d.

2.2 Time frequency shifts (tfs)

For z = (x, ω) ∈ R2d we define the operators:

Txf(t) = f(t− x) (translation);

Mωf(t) = e2πiω·tf(t) (modulation),

πzf = MωTxf (time frequency shift),

with suitable extension to distributions in D′(Rd).
For u ∈ S ′(Rd), z = (x, ω) ∈ R2d, the next properties easily follow:

TxMωu = e−2πix·ωMωTxu, (5)

F(Txu) = M−xFu, F−1(Txu) = MxF−1u,

F(Mωu) = TωFu, F−1(Mωu) = T−ωF−1u,

F(πzu) = e2πix·ωπJ T zFu; F−1(πzu) = e2πix·ωπJ zF−1u.
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2.3 Modulation spaces

Definition 1. For a fixed nontrivial function g the short-time Fourier transform (or
Gabor transform) of a function f with respect to g is defined as

Vgf(z) := (f, πzg) =

∫
Rd
f(t)e−2πiω·tg(t− x)dt , for z = (x, ω) ∈ R2d ,

whenever the integral can be considered, also in weak distribution sense.
When f, g ∈ L2(Rd) , Vgf is a uniformly continuous function on R2d, Vgf ∈

L2(R2d) and ‖Vgf‖L2 = ‖f‖L2‖g‖L2 . See e.g. [15, §3].

Definition 2. For a fixed g ∈ S(Rd) \ {0} and p, q ∈ [1,+∞], the m−weighted
modulation space Mp,q

m (Rd) consists of all tempered distributions f ∈ S ′(Rd) such that

‖f‖Mp,q
m

:=

(∫
Rd

(∫
Rd
|Vgf(x, ω)|pm(x, ω)pdx

)q/p
dω

)1/q

< +∞ ,

(with expected modification in the case when at least one among p or q equals +∞).
The definition of the space Mp,q

m is independent of the choice of the window g,
different windows g provide equivalent norms and Mp,q

m turns out to be a Banach
space. In the case of p = q we denote Mp

m := Mp,p
m , when m(x, ω) ≡ 1 we write Mp,q.

For more details about modulation spaces see [15, §6.1, §11].

2.4 Periodic distributions

We say that a distribution u ∈ D′(Rn) is periodic (of period 1) if

Tκu = u for any κ ∈ Zn.

Notice that u is in this case a tempered distribution in S ′(Rn), so that its Fourier
transform û can be considered. Moreover it can be shown that

û =
∑
κ∈Zn

cκ(u)δκ,

where the series converges in S ′(Rn),

cκ(u) := 〈u, φe−2πi〈·,κ〉〉 = ûφ(κ), (6)

and φ ∈ C∞0 (Rn) satisfies ∑
κ∈Zn

φ(x− κ) = 1. (7)

For the details see Hörmander [18, §7.2]. Now by a straightforward application of
Fourier inverse transform we obtain

u =
∑
κ∈Zn

cκ(u)e2πi〈·,κ〉, (8)
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with convergence in S ′ and cκ(u) defined in (6).
Notice that a general periodic distribution u can be regarded as a distribution on
the torus Tn = Rn/Zn, that is a linear continuous form on C∞(Tn). In the following
D′(Tn) will be the topological dual space of C∞(Tn). Thus the coefficients in the
expansion (8) can be regarded as the Fourier coefficients of u, namely

cκ(u) = 〈u, e−2πi〈·,κ〉〉Tn , (9)

where 〈·, ·〉Tn denotes the duality pair between D′(Tn) and C∞(Tn). Agreeing with
(9), for f ∈ L1(Tn), using (7), we get

cκ(f) =

∫
Rn
f(x)φ(x)e−2πix·κ dx =

∫
[0,1]n

f(x)e−2πix·κ dx.

In Appendix A we clarify how to make rigorous the above calculations in D′(Tn), see
in particular (A4).
For a detailed discussion about distributions on the torus one can see the book of M.
Ruzhansky and V. Turunen [27].

Consider now and in the whole paper L = (aij) ∈ GL(n), the space of invertible
matrices of size n× n.
For TnL := Rn/LZn, we still identify the set of L-periodic distributions, that is u ∈
D′(Rn) such that, for any κ ∈ Zn, TLκu = u, with the spaceD′(TnL) of linear continuous
forms on C∞(TnL). Notice that also in this case D′(TnL) ⊂ S ′(Rn).
For any u ∈ D′(TnL) observe that v = u(L·) is a 1-periodic distribution. Applying then
the Fourier expansion v =

∑
κ∈Zn cκ(v)e2πi〈·,κ〉, cκ(v) = 〈v, e−2πi〈·,κ〉〉Tn , we obtain

u = v(L−1·) =
∑
κ∈Zn

cκ(v)e2πi〈k,L−1·〉 =
∑
κ∈Zn

cκ(v)e2πi〈L−T k,·〉,

where L−T := (L−1)T denotes the transposed of the inverse matrix of L and

cκ(v) = 〈u(L·), e−2πi〈κ,·〉〉Tn =
1

|detL|
〈u, e−2πi〈L−Tκ,·〉〉TnL .

Thus we obtain for any u ∈ D′(TnL) the Fourier expansion

u =
∑
κ∈Zn

cκ,L(u)e2πi〈L−T k,·〉, (10)

with the Fourier coefficients

cκ,L(u) := cκ(u(L·)) =
1

|detL|
〈u, e−2πi〈L−Tκ,·〉〉TnL . (11)

For short in the following we set cκ(u) = cκ,L(u).
Consider Lp(TnL), 1 ≤ p < ∞, the set of measurable L-periodic functions on Rn such
that ‖f‖Lp(TnL) =

∫
L[0,1]n

|f(x)|p dx <∞, with obvious modification for the definition

5



of L∞(TnL).
Then for f ∈ L1(T1

L) the following:

f(x) =
∑
κ∈Zn

cκ(f)e2πiL−Tκ·x (12)

holds with convergence in S ′(Rn), and

cκ(f) =
1

|detL|

∫
L[0,1]n

e2πiL−Tκ·xf(x) dx (13)

Remark 1. It can be useful to write the Fourier expansion of u ∈ D′(TnL) in terms
of the lattice Λ = LZn:

u =
∑
µ∈Λ⊥

û(µ)e2πi〈µ,·〉,

with

û(µ) :=
1

vol(Λ)
〈u, e−2πi〈µ,·〉〉TnL .

Here Λ⊥ := L−TZn and vol(Λ) := |detL| = meas (L[0, 1]n) are respectively called dual
lattice and volume of Λ.
Example 1. For α = (α1, . . . , αn) ∈ Rn, αj > 0, let us consider the diagonal matrix
A ∈ GL(n), together with its inverse

A =

 α1 . . . 0
...

. . .
...

0 . . . αn

 ; A−1 =


1
α1

. . . 0
...

. . .
...

0 . . . 1
αn

 (14)

and introduce for κ ∈ Zn the following notations, αk := Aκ = (α1k1, . . . , αnkn);
κ
α := A−1k =

(
κ1

α1
, . . . , κnαn

)
,
∏
α :=

∏n
j=1 αj . Consider now an A-periodic function

f which satisfies
∫ α1

0
· · ·
∫ αn

0
|f(x)| dx1 . . . dxn < +∞, then directly from (12), (13) we

obtain

f(x) =
∑
κ∈Zn

ck(f)e2πi kα ·x,

where

ck(f) =
1∏
α

∫ α1

0

· · ·
∫ αn

0

f(x)e−2πi κα ·x dx1 . . . dxn.
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3 Pseudodifferential Operators with periodic symbol

We say τ pseudodifferential operator, 0 ≤ τ ≤ 1, with symbol p(z) = p(x, ω) ∈
S ′(R2d), the operator acting from S(Rd) to S ′(Rd) defined by

Opτ (p)u(x) :=

∫
Rdω

∫
Rdy
e2πi(x−y)·ωp ((1− τ)x+ τy, ω)u(y) dy dω, u ∈ S(Rd).

The formal integration must be understood in distribution sense. For the definition
and development of pseudodifferential operators see the basic texts [28], [19].

For I and 0 respectively the identity and null matrices of dimension d × d, let us
introduce the d× 2d matrices

I1 = (I, 0), I2 = (0, I)

Proposition 1. Consider p ∈ D′(T2d
L ), L ∈ GL(2d). Then for any 0 ≤ τ ≤ 1 and

u ∈ S(Rd) we can write

Opτ (p)u =
∑
κ∈Z2d

cκ(p)e2πiτ〈I2L−Tκ , I1L−Tκ〉π
JL−T κ

u, (15)

where cκ(p) are the Fourier coefficients defined in (11) and J the matrix introduced
in (4).

Proof. Using (10), (11) we perform the Fourier expansion of the symbol p

p =
∑
κ∈Z2d

cκ(p)e2πi〈L−Tκ,·〉

with convergence in S ′(R2d). Then for any u ∈ S(Rd) we get

Opτ (p)u(x) =

∫∫
e2πi(x−y)·ω

∑
κ∈Z2d

cκ(p)e2πiL−Tκ·((1−τ)x+τy,ω)u(y) dy dω.

Considering the decomposition

L−T =

(
I1L
−T

I2L
−T

)
,

we obtain

L−Tκ · ((1− τ)x+ τy, ω) = I1L
−Tκ · ((1− τ)x+ τy) + I2L

−Tκ · ω.
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Let us set for simplicity of notation L−Tj = IjL
−T , j = 1, 2. Then in view of

convergence in S ′ and formal integration in distribution sense it follows

Opτ (p)u(x) =
∑
κ∈Z2d

cκ(p)

∫∫
e2πi(x−y)·ω e2πiL−T1 κ·((1−τ)x+τy)×

×e2πiL−T2 κ·ωu(y) dy dω =

=
∑
κ∈Z2d

cκ(p)

∫
e2πix·ωe2πiL−T2 κ·ω

∫
e−2πiy·ωe2πiL−T1 κ·((1−τ)x+τy)u(y) dy dω =

=
∑
κ∈Z2d

cκ(p)e2πiL−T1 κ·((1−τ)x)

∫
e2πi(x+L−T2 κ)·ω

∫
e−2πi(ω−τL−T1 κ)·yu(y) dy dω =

=
∑
κ∈Z2d

cκ(p)e2πi(1−τ)L−T1 κ·x
∫
e2πi(x+L−T2 κ)·ωû

(
ω − τL−T1 κ

)
dω =

=
∑
κ∈Z2d

cκ(p)e2πi(1−τ)L−T1 κ·x
∫
e2πi(x+L−T2 κ)·ωTτL−T1 κû(ω) dω =

=
∑
κ∈Z2d

cκ(p)e2πi(1−τ)L−T1 κ·x
∫
e2πi(x+L−T2 κ)·ω ̂MτL−T1 κu(ω) dω =

=
∑
κ∈Z2d

cκ(p)e2πi(1−τ)L−T1 κ·x
(
MτL−T1 κu

) (
x+ L−T2 κ

)
=

=
∑
κ∈Z2d

cκ(p)e2πi(1−τ)L−T1 κ·x T−L−T2 κMτL−T1 κu(x) =

=
∑
κ∈Z2d

cκ(p)M(1−τ)L−T1 κT−L−T2 κMτL−T1 κu(x).

The proof ends by observing that, thanks to (5),

M(1−τ)L−T1 κT−L−T2 κMτL−T1 κ =

= e−2πi〈−L−T2 κ,τL−T1 κ〉M(1−τ)L−T1 κMτL−T1 κT−L−T2 κ =

= e2πiτ〈L−T2 κ,L−T1 κ〉ML−T1 κT−L−T2 κ = e2πiτ〈L−T2 κ,L−T1 κ〉πJL−Tκ.
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Remark 2. Consider µ = L−Tκ ∈ Λ⊥. In view of (15) the pseudodifferential operator
Opτ may be written in lattice notation

Opτ (p) =
∑
µ∈Λ⊥

p̂(µ)e2πiτ〈I2µ,I1µ〉πJµ. (16)

Example 2. Let a = (a1, . . . ad), b = (b1, . . . , bd) be two vectors in (R \ {0})d. Using
the notation in Example 1, we say that a symbol p ∈ S ′(R2d) is ab-periodic if, for any
κ = (h, k) ∈ Z2d, p(·+ ah, ·+ bk) = p(·, ·). Considering the matrix

L =

(
A 0
0 B

)
,

with A,B diagonal matrices defined as in (14), it is trivial to show that I1L
−Tκ = h

a

and I2L
−Tκ = k

b . Then for any u ∈ D′(Rd)

πJL−Tκu = Mh
a
T− kb

u = e2πi〈ha ,·〉u(·+ k

b
).

Thus for any 0 ≤ τ ≤ 1 we have

Opτp(u) =
∑

(h,k)∈Z2d

ch,k(p)e2πiτ〈ha ,
k
b 〉e2πi〈ha ,·〉u(·+ k

b
),

with convergence in S ′(Rd) and ch,k(p) defined by formal integration

ch,k(p) =
1

|
∏
ab|

∫ a1

0

. . .

∫ ad

0

∫ b1

0

. . .

∫ bd

0

p(x, ω)e−2πi(ha ·x+ k
b ·ω) dx dω .

4 Continuity

We say that a Banach space S(Rd) ↪→ X ↪→ S ′(Rd), with S(Rd) dense in X, is time
frequency shifts invariant (tfs invariant from now on) if for some polynomial weight
function v and C > 0

‖πzu‖X ≤ Cv(z)‖u‖X , u ∈ X, z ∈ R2d. (17)

Example 3. • The m−weighted modulation spaces Mp,q
m (Rd), p, q ∈ [1,+∞] are time

frequency shifts invariant, see [15, Theorem 11.3.5].
• The m−weighted Lebesgue space Lpm(Rd) and m−weighted Fourier-Lebesgue space
FLpm(Rd) are respectively defined as the sets of measurable functions and tem-
pered distributions in Rd, making finite the norms ‖f‖Lpm := ‖m(·, ω0)f‖Lp and

‖f‖FLpm = ‖m(x0, ·)f̂‖Lp , whatever are (x0, ω0) ∈ R2d. (Equivalent norms in
Lpm(Rd) and FLpm(Rd) should correspond to different choices of (x0, ω0). See [25,
Remark 1.1])
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For z = (x, ω) ∈ R2d, assuming (x0, ω0) = (0, 0) and using (3), we compute:

‖πzf‖pLp = ‖MωTxf‖pLpm =
∫
m(t, 0)p|f(t− x)|p dt =

∫
m(t+ x, 0)p|f(t)|p dt

≤ Cpv(x, 0)p
∫
m(t, 0)p|f(t)|p dt = Cpv(x, 0)p‖f‖p

Lpm

and
‖πzf‖pFLpm = ‖MωTxf‖pFLpm =

∫
m(0, t)p| ̂MωTxf(t)|p dt

=
∫
m(0, t)p|TωM−xf̂(t)|p dt =

∫
m(0, t)p|f̂(t− ω)|p dt

≤ Cpv(0, ω)p
∫
m(0, t)p|f̂(t)|p dt = Cpv(0, ω)p‖f‖pFLpm .

Then Lpm(Rd) and FLpm(Rd) are time frequency shifts invariant for any p ∈ [1,+∞].

In both the examples the positive constants C are directly obtained by (3) and
depend only on the weights m.

Theorem 2. Let X be a time frequency shifts invariant space, L ∈ GL(2d), p ∈
D′(T2d

L ). Assume that the Fourier coefficients cκ(p) defined in (11) satisfy,

‖cκ(p)‖`1L,v :=
∑
κ∈Z2d

v
(
JL−Tκ

)
|cκ(p)| < +∞. (18)

Then for any τ ∈ [0, 1] the operator Opτ (p) is bounded on X and

‖Opτ (p)‖L(X) ≤ C‖cκ(p)‖`1L,v ,

Where C is the constant in (17).

In lattice terms, see (16), we can write

‖cκ(p)‖`1L,v =
∑

µ=∈Λ⊥

|p̂(µ)|v(J µ) := ‖p̂(µ)‖`1v ,

where µ = L−Tκ, κ ∈ Z2d.

Proof. Using Proposition 1 and in view of the tfs invariance (17) we obtain for u ∈
S(Rd)

‖Opτ (p)u‖X ≤
∑
κ∈Z2d

|cκ(p)|‖πJL−Tκu‖X ≤ C
∑
κ∈Z2d

|cκ(p)|v(JL−Tκ)‖u‖X ,

where C is the constant in (17). The proof follows from the density of S(Rd) in X.

4.1 The case of Fourier Multipliers

Assume now that the symbol is independent of x, namely consider a Fourier multiplier
σ = σ(ω) ∈ S ′(Rd), P−periodic, with P ∈ GL(d), that is

TPkσ = σ , ∀ k ∈ Zd .
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In such a case the related pseudodifferential operator, as a linear bounded operator
from S(Rd) to S ′(Rd), reads as

σ(D)u = F−1(σû) , ∀u ∈ S(Rd) . (19)

Inserting within (19) the Fourier expansion of σ

σ(ω) =
∑
k∈Zd

ck(σ)e2πiP−T k·ω , (20)

where the series is convergent in S ′(Rd), we compute

σ(D)u = F−1(σû) =
∑
k∈Zd

ck(σ)T−P−T ku , for any u ∈ S(Rd) , (21)

with convergence of the series in S ′(Rd); in (19), (20), ck(σ) stand as usual for the
Fourier coefficients of σ.
The following result shows that in the case of Fourier multiplier operators the sufficient
boundedness condition given in Theorem 2 is also necessary for σ(D) to be extended
as a linear bounded operator in the weighted Lebesgue space L1

v(Rd), where v = v(x)
is a polynomial weight function in Rd.
Proposition 3. Let σ = σ(ω) ∈ S ′(Rd) be P−periodic for P ∈ GL(d). If we assume
that σ(D) extends to a bounded operator in L1

v(Rd), that is

‖σ(D)u‖L1
v
≤ C‖u‖L1

v
, ∀u ∈ S(Rd) ,

for a constant C > 0, then ∑
k∈Zd

v
(
P−T k

)
|ck(σ)| < +∞. (22)

Proof. It is enough to evaluate σ(D) on a non negative continuous function ũ ∈ L1
v(Rd)

supported on the compact set P0 := P−T ([0, 1]d), such that ‖u‖L1
v

= 1 1. The function

T−PT kũ will be then supported on Pk := P0 − P−T k for all k ∈ Zd. Since the set
collection {Pk}k∈Zd defines a covering on Rd such that Pk ∩ Ph has zero Lebesgue
measure, whenever k 6= h, we get

‖σ(D)ũ‖L1
v

=
∑
k∈Zd

∫
Pk
v(x)|σ(D)ũ(x)|dx .

1Such a function u can be defined by ũ(x) := |detP |ψ(PT x)
v(x)

, where ψ is any non negative smooth function

supported on the unit cube Q = [0, 1]d such that
∫
ψ(z)dz = 1.

11



It is even clear that σ(D)ũ reduces to ck(σ)T−P−T kũ in the interior of the set Pk, for
each k, so that by change of integration variable and sub-multiplicativity of v, we get

‖σ(D)ũ‖L1
v

=
∑
k∈Zd

|ck(σ)|
∫
Pk
v(x)|ũ(x+ P−T k)|dx

=
∑
k∈Zd

|ck(σ)|
∫
P0

v(y − P−T k))|ũ(y)|dy ≥ 1

K

∑
k∈Zd

|ck(σ)|v(P−T k) ,

with K > 0 depending only on P and v.

Remark 3. Combining Proposition 3 and Theorem 2 we obtain that, in the case of
Fourier multipliers, condition (22) is actually equivalent to the continuity in any tfs
invariant Banach space, as defined in (17); here translation invariance of the space is
enough, due to the Fourier multiplier structure (21).
Instead, condition (18) is no longer necessary for continuity of periodic pseudodifferen-
tial operators, with x-dependent symbol, in tfs invariant spaces. It can be easily shown
by taking a symbol of the following form p(x, ω) = ν(x)σ(ω) where ν is a function in
L∞(T), such that the sequence of its Fourier coefficients {ck(ν)} /∈ `1(Z) and σ(ω)
satisfies (22). For instance we could take ν(x) = 1 for 0 ≤ x < 1/2, ν(x) = 0 for
1/2 ≤ x < 1, repeated by periodicity. It is straightforward to check that the pseudodif-
ferential operator p(x,D) maps continuously Lpv(R) into itself, whenever 1 ≤ p < +∞.
On the other hand we compute at once that∑

(h,k)∈Z2

v(k)|c(h,k)(p)| =
∑
h∈Z
|ch(ν)|

∑
k∈Z

v(k)|ck(σ)| = +∞.

5 Invertibility

For the study of invertibility condition of pseudodifferential operators we will make
use of the well known properties of the von Neumann series in Banach algebras, see
e.g. [26], in the following version.
Proposition 4. Consider x ∈ A, where (A, ‖ · ‖) is a Banach algebra on the field of
complex numbers, with multiplicative identity e. If there exists c ∈ C \ {0} such that
‖e− cx‖ < 1, then x is invertible in A and

x−1 = c

∞∑
n=0

(e− cx)n.

Theorem 5. Let X be a tfs invariant space, L ∈ GL(2d), p ∈ D′(T2d
L ). Assume that

the Fourier coefficients cκ(p), κ ∈ Z2d, satisfy

c0(p) 6= 0 and
∑
κ∈Z2d

0

|cκ(p)|v (πJL−Tκ) <
|c0(p)|
C

, (23)

where C is the constant in (17). Then for any 0 ≤ τ ≤ 1

12



i) the operator Opτ (p) is invertible in L(X);
ii) the norm in L(X) of the inverse operator satisfies the following estimate

‖(Opτ (p))−1‖L(X) ≤
1

(1 + Cv(0)) |c0(p)| − C‖ck(p)‖`1L,m
.

Notice that, according to the previous estimate, the invertibility of Opτ (p) is
independent of the quantization τ .

Proof. Our goal is to estimate the operator norm ‖I − cOpτ (p)‖L(X), for any 0 ≤
τ ≤ 1, and c suitable non vanishing constant. Let us consider the definition of Fourier
coefficient (11). Since the monochromatic signals e−2πi〈L−Tκ,x〉 are L-periodic, it easily
follows that c0(1) = 1 and cκ(1) = 0 when κ ∈ Z2d

0 . Thus cκ(1 − cp) = −ccκ(p),
when κ 6= 0 and c0(1 − cp) = 1 − c c0(p). Assuming that 〈p, 1〉T2d

L
6= 0, thus c0(p) =

〈p,1〉T2d
L

detL 6= 0, and setting c = 1
c0(p) , the symbol of the operator I − 1

c0(p)Opτ (p) admits

the following Fourier coefficients

cκ

(
1− p

c0(p)

)
=

{
0 when κ = 0

− cκ(p)
c0(p) when κ 6= 0 .

The following estimate then follows directly from Theorem 2,

‖I − 1
c0(p)Opτ (p)‖L(X) ≤ C‖ck(1− p

c0(p) )‖`1L,m =

= C
|c0(p)|

∑
κ∈Z2d

0

|cκ(p)|v
(
JL−Tκ

)
,

(24)

where C is the constant in (17). Thus i) directly follows from Proposition 4 .
Thanks to the assumption (23), the estimate (24) and Proposition 4, the inverse
operator (Opτ (p))−1 can be expanded in Neumann series

(Opτ (p))−1 =
1

c0(p)

+∞∑
n=0

(
I − 1

c0(p)
Opτ (p)

)n
,

13



then using again (24) we have

‖(Opτ (p))−1‖L(X) ≤ 1
|c0(p)|

+∞∑
n=0
‖I − 1

c0(p)Opτ (p)‖nL(X)

≤ 1
|c0(p)|

+∞∑
n=0

Cn

|c0(p)|n

( ∑
κ∈Z2d

0

|ck(p)|v
(
JL−Tκ

))n
≤ 1
|c0(p)|

+∞∑
n=0

(
C

|c0(p)| (‖cκ(p)‖`1L,m − |c0(p)|v(0))
)n

≤ 1
|c0(p)|

1

1− C
|c0(p)|

(
‖cκ(p)‖`1L,m − |c0(p)|v(0)

)
=

1

(1 + Cv(0)) |c0(p)| − C‖ck(p)‖`1L,m
,

which proves ii).

Remark 4. In order to stay in the classical setup of rapidly decreasing functions and
tempered distributions, when dealing with modulation spaces, we reduced our previous
study to the case when v(z), z = (x, ω), is a polynomial weight (2). However, weighted
modulation spaces can be defined even for more general types of non polynomial weight
functions, that are only sub-multiplicative, namely satisfying

v(z1 + z2) ≤ v(z1)v(z2) , ∀ z1, z2 ∈ R2d .

This allows e.g. weight functions which exhibit an exponential growth at infinity.
One way to make such an extension is the one indicated by Gröchenig [15, Chapter
11.4]: it relies on the usage of a space of special windows in STFT and replacing the
space of tempered distributions S ′(Rd) by the (topological) dual of the modulation space
M1
v , which is shown to include S ′(Rd), for certain non polynomial weight functions v.

An alternative approach is the one resorting to the Björck’s theory of ultradistribu-
tions [1], where the modulation spaces are recovered as subspaces of ultradistributions
under suitable Gelfand-Shilov type growth conditions [14]. Along this second approach,
Dimovski et al. [13] introduced a notion of translation-modulation shift invariant
spaces, generalizing to the framework of ultradistributions the notion of time frequency
shift invariant spaces considered in the present paper, see Section 4. It is likely expected
that our main results in Theorem 2 and Theorem 5 could be extended to the case of
non polynomial weight functions, by working in the more general setting of ”tempered”
ultradistristributions introduced in [13], instead of standard tempered distributions in
S ′(Rd).

14



Appendix A On periodic distributions and
distributions on the torus

This section is devoted to shortly review some known facts about the comparison
between the space of periodic distributions in Rn, see Section 2.4, and the space D′(TnL)
of distributions on the torus TnL := Rn/LZn, in order to justify the identification of
the aforementioned spaces, that we have implicitly assumed in the whole paper. Recall
that D′(TnL) is the space of linear continuous forms on the function space C∞(TnL) (the
latter being endowed with its natural Fréchet space topology). As already mentioned
in Section 2.4, the reader is referred to Ruzhansky - Turunen [27] for a thorough study
of distributions on the torus.
For the rest, the results collected herebelow come essentially from making explicit
some of the results established in Hörmander [18, Section 7.2].
It is well understood that functions on the torus TnL can be naturally identified with
L−periodic functions in Rn. Below, we will illustrate a way to extend the same iden-
tifications to all L−periodic distributions in Rn. This extension to distributions can
be made by a duality argument, as it is customary. Thought the following arguments
work in the case of L−periodicity, with arbitrary invertible matrix L ∈ GL(n), just
for simplicity we will restrict to the case of L = In the n× n identity matrix, leading
to 1−periodic functions and distributions.
So let us first consider a 1−periodic measurable function f = f(x) in Rn such that
f ∈ L1([0, 1]n); of course, such a function f is a 1−periodic tempered distribution in
Rn. On the other hand, when identified (as usual) with an integrable function on the
torus Tn, f defines an element of D′(Tn), whose action on test functions ψ ∈ C∞(Tn)
is given by

〈f, ψ〉Tn :=

∫
[0,1]n

f(x)ψ(x)dx ;

in order to avoid confusion, here and below 〈·, ·〉Tn stands for the duality pair between
D′(Tn) and C∞(Tn), whereas 〈·, ·〉 is denoting the dual pair between S(Rn) and S ′(Rn).
Testing f against an arbitrary function ϕ ∈ S(Rn) we compute

〈f, ϕ〉 =

∫
Rn
f(x)ϕ(x)dx =

∑
κ∈Zn

∫
[0,1]n+κ

f(x)ϕ(x)dx

=
∑
κ∈Zn

∫
[0,1]n

f(y + κ)ϕ(y + κ)dy =

∫
[0,1]n

∑
κ∈Zn

f(y + κ)ϕ(y + κ)dy

=

∫
[0,1]n

f(y)
∑
κ∈Zn

ϕ(y + κ)dy ,

(A1)

where the countable-additivity of the Lebesgue integral, together with Fubini’s
theorem to interchange the sum and the integral, and the periodicity of f are used.
The function

ϕper(x) :=
∑
κ∈Zn

ϕ(x+ κ) , x ∈ Rn ,
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which appears in the last line in (A1), is a 1−periodic C∞function that can be canon-
ically identified with a (unique) element in C∞(Tn) ); we call it 1−periodization of
ϕ. It is fairly easy to check that the mapping ϕ 7→ ϕper is continuous as a (linear)
operator from S(Rn) to C∞(Tn) (thus from C∞0 (Rn) to C∞(Tn), as well). Therefore
the calculations above show naturally the way to define a linear mapping T from the
space D′(Tn) to the subspace of D′(Rn) consisting of 1−periodic distributions (which
are automatically tempered distributions), just by setting for U ∈ D′(Tn)

〈T (U), ϕ〉 := 〈U,ϕper〉Tn , ∀ϕ ∈ S(Rn) . (A2)

It is easy to verify that T acts continuously from D′(Tn) to 1−periodic distributions
in Rn. Moreover (A1) shows that T (U) properly reduces to the 1−periodic tempered
distribution in Rn corresponding to a function U ∈ L1(Tn).
It is a little less obvious that T is invertible, so that it actually defines an isomorphism.
This can be proved by noticing that every function ψ ∈ C∞(Tn) can be regarded as
the 1−periodization of (at least) one function ϕ ∈ S(Rn), namely ψ = ϕper. To see
this, consider a function φ ∈ C∞0 (Rn) satisfying (7) and set

ϕ := φψ , (A3)

for any function ψ ∈ C∞(Tn) (identified with its 1−periodic C∞−counterpart in
Rn). Of course, ϕ defined above belongs to C∞0 (Rn) so it is rapidly decreasing in Rn;
moreover, in view of (7) and the periodicity of ψ, we get for any x ∈ Rn

ϕper(x) =
∑
κ∈Zn

ϕ(x+ κ) =
∑
κ∈Zn

φ(x+ κ)ψ(x+ κ) = ψ(x)
∑
κ∈Zn

φ(x+ κ) = ψ(x) ,

showing that ψ is actually the 1−periodization of ϕ. This leads to associate to any
periodic distribution u ∈ S ′(Rn) a linear form U on C∞(Tn) by setting for every
ψ ∈ C∞(Tn)

〈U,ψ〉Tn := 〈u, ϕ〉 , (A4)

being ϕ = ϕ(x) the rapidly decreasing (actually compactly supported smooth) func-
tion in Rn associated to ψ as in (A3). In order to give consistency to the definition
of U , we must prove that it is independent of ϕ. Let us notice that, thanks to (6),
any function ϕ ∈ S(Rn), whose 1−periodization is given by ψ ∈ C∞(Tn), satisfies the
following:

ϕ̂(κ) = cκ(ψ) , ∀κ ∈ Zn .
Thus using the Fourier expansion (8) we obtain

〈u, ϕ〉 =
∑
κ∈Zn

cκ〈e2πi〈·,κ〉, ϕ〉 =
∑
κ∈Zn

cκϕ̂(κ) =
∑
κ∈Zn

cκcκ(ψ) .

This shows the consistency of the definition of U above; the continuity of the linear
form U on C∞(Tn) also easily follows, so that U ∈ D′(Tn).
The mapping u 7→ U defined on 1−periodic distributions in Rn by (A4) provides
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a linear continuous operator from the space of 1−periodic (tempered) distributions
in Rn to D′(Tn), which is actually the inverse of the operator T introduced before,
see (A2). This equivalently shows that T is an isomorphism, up to which 1−periodic
distributions in Rn can be thought to be elements of D′(Tn) and viceversa.
Thus a 1−periodic distribution u ∈ S ′(Rn) can be regarded as a linear continuous
form on C∞(Tn); in particular this makes rigorous the testing of u against 1−periodic
smooth functions in C∞(Tn), such as e−2πi〈κ,·〉, with κ ∈ Zn, providing meanwhile an
explicit explanation of formula (9) for the Fourier coefficients of u.
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[18] L. Hörmander, The analysis of linear partial differential operators. I, volume 256
of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences]. Springer-Verlag, Berlin, 1990.
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