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ABSTRACT: It is customary in molecular quantum chemistry to
adopt basis set libraries in which the basis sets are classified according
to either their size (triple-ζ, quadruple-ζ, ...) and the method/property
they are optimal for (correlation-consistent, linear-response, ...) but not
according to the chemistry of the system to be studied. In fact the vast
majority of molecules is quite homogeneous in terms of density (i.e.,
atomic distances) and types of bond involved (covalent or dispersive).
The situation is not the same for solids, in which the same chemical
element can be found having metallic, ionic, covalent, or dispersively
bound character in different crystalline forms or compounds, with
different packings. This situation calls for a different approach to the
choice of basis sets, namely a system-specific optimization of the basis
set that requires a practical algorithm that could be used on a routine
basis. In this work we develop a basis set optimization method based on an algorithm−similar to the direct inversion in the iterative
subspace−that we name BDIIS. The total energy of the system is minimized together with the condition number of the overlap
matrix as proposed by VandeVondele et al. [VandeVondele et al. J. Chem. Phys. 2007, 227, 114105]. The details of the method are
here presented, and its performance in optimizing valence orbitals is shown. As demonstrative systems we consider simple
prototypical solids such as diamond, graphene sodium chloride, and LiH, and we show how basis set optimizations have certain
advantages also toward the use of large (quadruple-ζ) basis sets in solids, both at the DFT and Hartree−Fock level.

1. INTRODUCTION
When dealing with the quantum chemical modeling of
crystalline solids, the existence of various types of chemical
bonding is clearly evident. For instance, the polymorphism of
carbon in the graphite (or graphene) and diamond allotropes is
just one of many examples, in which the profoundly different
chemical behavior is manifested by the same chemical element
in different crystal packings. Another exemplary case is that of
rocksalt NaCl: sodium is by nature metallic as a bulk material,
and chlorine is commonly found in the form of a molecular
crystal Cl2. NaCl is a prototypical ionic salt. The chemical
differences in those materials can be made evident by looking
at their electron density (see Figure 1): the electrons involved
in the metallic bond in Na are quite spread out over the whole
space, while in Cl2 the density is somewhat more localized on
molecules, with empty space between them. Conversely, the
wave function in an ionic system like NaCl is strongly confined
in a vicinity of the ions and features nodes in the planes in
between neighboring atoms. NaCl is also considerably more
densely packed.
This variety of chemical bondings in the solid state then

reflects the choice of the type and quality of the basis set
adopted in the mathematical form of the wave function when
solving the Schrödinger equation within periodic boundary
conditions (i.e., Bloch functions).1−3 The situation in the field

of molecular modeling is somewhat simpler as isolated
molecules or molecular aggregates have nearly comparable
atomic densities, and there are commonly no analogue
extended systems featuring metallic, ionic, or covalent bonds.
Therefore, in molecular calculations, atom-centered basis sets
as Gaussian-type orbitals4 are almost universally adopted,5

although other basis sets can be and are eventually used.
On the other hand, for solid-state calculations,2 plane

waves,6−8 atom-centered Gaussians9 (or their combinations10),
and numerical basis sets11,12 are all popular choices. The plane
wave basis, that is naturally suited for nonlocal wave functions
such as in the uniform electron gas or in a metal, has the
undeniable advantage of a one-knob tuning of accuracy and
cost through the kinetic energy cutoff parameter. However, the
correct description of local orbitals, core states, or the void can
result in a rather high computational cost. Similarly, the
inclusion of exact HF exchange in hybrid HF/DFT

Received: October 8, 2019
Published: March 26, 2020

Articlepubs.acs.org/JCTC

© 2020 American Chemical Society
2192

https://dx.doi.org/10.1021/acs.jctc.9b01004
J. Chem. Theory Comput. 2020, 16, 2192−2201

Made available through a Creative Commons CC-BY License

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 D

E
G

L
I 

ST
U

D
I 

D
I 

T
O

R
IN

O
 o

n 
O

ct
ob

er
 2

0,
 2

02
2 

at
 1

2:
58

:0
2 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Loredana+Edith+Daga"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bartolomeo+Civalleri"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lorenzo+Maschio"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.9b01004&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01004?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01004?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01004?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01004?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01004?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jctcce/16/4?ref=pdf
https://pubs.acs.org/toc/jctcce/16/4?ref=pdf
https://pubs.acs.org/toc/jctcce/16/4?ref=pdf
https://pubs.acs.org/toc/jctcce/16/4?ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.9b01004?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf
https://pubs.acs.org/JCTC?ref=pdf
http://pubs.acs.org/page/policy/authorchoice/index.html
https://creativecommons.org/licenses/by/4.0/


calculations leads to a steep increase in computational time.
Gaussian-type basis sets are less commonly adopted for the
quantum chemical treatment of solids, with respect to plane
waves. Gaussian functions have the great advantage of allowing
to transfer to the solid state a large part of the technology and
knowledge that is the legacy of several decades of advances in
molecular quantum chemistry and to retain the chemical
intuition when looking at the electronic charge distribution of
the investigated system. The price to pay is the mandatory
definition of a basis set for each atomic species, that is
ultimately left in the hands of the end user.
Nowadays, standardized basis set libraries are not commonly

available for solids as they are for molecules,13,14 despite recent
attempts in that direction being carried out by Bredow and co-
workers.15−17 The reasons are not only to be ascribed to a
lesser effort in a systematic construction of all-purpose basis
sets but also more specifically to the wide difference in
chemical bonding as outlined above. First attempts to
understand the role of basis functions in solids were done by
Hess and co-workers,18 but also more recently Jensen19

compared atomic, molecular, and solid-state basis sets for
carbon and silicon to highlight the differences originating from
the different chemical environments.
Another aspect related to the adoption of Gaussian-type

functions is the basis set incompleteness due to the use of a
finite number of basis functions. Basis set incompleteness is an
issue in all types of calculations, but most of all in calculations
that employ atom-centered basis sets−Gaussians, Slater
functions, or numerical orbitals. This is because the atomic
basis sets can never be made complete enough in polyatomic
systems, as the basis becomes overcomplete−necessitating the
removal of variational degrees of freedom−before becoming
complete. In molecules it is rather common to adopt a
sequence of basis sets of increasing size (e.g., cc-pVXZ (X =
D,T,Q,···)20 and pc-X (X = 1,2,3, ...)21), but this is not yet
routinely applicable for solids. Therefore, reaching the basis set
limit is not trivial−even for such simple systems as lithium
hydride22−26−and is not just a matter of computational efforts:
as basis sets grow larger, exponents tends to become more
diffuse, linear dependency problems arise, and the convergence
of infinite Coulomb and exchange series is jeopardized.
The problem of linear dependencies with an extended basis

set is a matter of active research not only for solids but also for
average-sized molecules.27 While the important role of diffuse
functions in solids has been recently highlighted by Kadek et

al.,28 too diffuse functions are often not needed for ground
state calculations because of the packing of the atoms in the
unit cell. Such very diffuse functions can also be added a
posteriori through dual basis set techniques.29 Seen from
another viewpoint, the main conceptual difference in basis sets
meant for the solid state as opposite to molecular electronic
structure calculations is that the latter have to describe the
asymptotic exponential decay of the electron density in a finite
system, requiring somewhat diffuse functions, whereas diffuse
basis functions are generally thought not to be necessary in
solid-state calculations because the density is much more
uniform throughout the cell. In this work our aim is to (i)
show to what extent the basis sets are different in different
chemical environments, by optimizing bases of the def2-TZVP
quality30−32 and (ii) attempt to use suitably optimized
quadruple-ζ basis sets, also from the def2- family, to verify
whether they can be adopted for solids without significant
pruning, and outline possible strategies for reaching such goal.
To this purpose we present a technique for the optimization

of basis set exponents and contraction coefficients, that is
based on the Direct Inversion in the Iterative Subspace (DIIS)
technique33−35 and actually quite similar to its geometry
optimization variant, GDIIS.36 The algorithm is implemented
in the CRYSTAL code.9 We show how such optimization allows
the retaining of the full number of Gaussians letting the
algorithm decide about the diffuseness of the exponents.

2. THEORETICAL FRAMEWORK
2.1. Background. In the linear combinations of atomic

orbitals (LCAO) framework, the crystalline orbitals ψ are
treated as linear combinations of Bloch functions (BF) ϕ that
are, in turn, defined in terms of local atom-centered functions
(AO) φ

ar k k r k( ; ) ( ) ( ; )i i,∑ψ ϕ=
μ

μ μ
(1)

er k r A g( ; ) ( )
g

ik g∑ϕ φ= − −μμ μ
·

(2)

in which g is a direct space lattice vector, k is the lattice vector
defining a point in the reciprocal lattice, A are the coordinates
of the atom in the reference cell on which the AO φ is
centered, and a are the variational coefficients. The sum over μ
is limited to the number of basis functions in the unit cell. The

Figure 1. Electron difference density maps (with respect to atomic densities) of molecular solid Cl2 (panel a), metallic sodium (panel b), and
rocksalt ionic NaCl (panel c).37
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sum over g is, in principle, extended to all the (infinite) lattice
vectors of the direct lattice; therefore, suitable screening
techniques have to be adopted.1,38,39

As usual, the AOs can be written as a contraction of a
number of primitive Gaussian-Type Functions (GTF) G
centered on the same atom

d Gr A g r A g( ) ( ; )
j

nG

j j∑φ α− − = − −μμ μ
(3)

in which dj are the contraction coefficients, and αj are the
exponents of the radial component of the function. The
number, type, and contraction scheme of the Gaussian basis set
define its quality. Gaussian functions are defined as

G R Yr A g r A g( ; ) ( ) ( , )j l lmα θ ρ− − = − −μ μ (4)

where Rl(r) = Ne−α·r
2

is the radial part−N being a
normalization constant−and Ylm(θ, ρ) is a spherical harmonic.
2.2. The BDIIS Method. Our goal is to devise a suitable

algorithm for a system-specific optimization of the exponents
αj and contraction coefficients dj as in eq 3. Taking inspiration
from the well-known Direct Inversion of Iterative Subspace
(DIIS) algorithm of Pulay,33,34 we describe in the following
our Basis-set DIIS (BDIIS) method.
The idea is that of an iterative procedure in which, at each

step n, exponents and contraction coefficients are obtained as a
linear combination of the trial vectors obtained in previous
iterations

c e( )n
i

n

i i i1
1

∑α α̅ = + α
+

= (5)

d c d e( )n
i

n

i i i
d

1
1

∑̅ = ++
= (6)

In the above, ei
α and ei

d are, respectively, the changes in
exponents and contraction coefficients, as predicted by a
simple Newton−Raphson step. In fact the gradients ei are
defined by

e e
di i

d

α
= ∂Ω

∂
= ∂Ω

∂
α

(7)

where Ω is a suitable functional to be minimized. Here we
decide to minimize the system’s total energy to which we add a
penalty function including the Overlap matrix condition
number, following the proposal of VandeVondele and
Hutter:40

d E d d( , ) ( , ) ln ( , )totα α γ κ αΩ { } = { } + { } (8)

The value γ = 0.001 was adopted as suggested in ref 40. In
eq 8, κ({α, d}) is the condition number, i.e., the ratio between
the largest and the smallest eigenvalue of the overlap matrix at
the center of the Brillouin zone (Γ-point). The purpose of such
penalty function is to prevent the onset of harmful linear
dependence. Linear dependence issues can give rise to
numerical instabilities and, as a consequence of that, the
appearance of unphysical states. Such unphysical states
generally lead to a catastrophic behavior of the total energy
that can drop to a value that is orders of magnitude larger, in
absolute value, than the proper one.
Although the first of derivatives in (7) could be in principle

computed analytically,41,42 in the present work we evaluate

both ei
α and ei

d by means of numerical derivatives (vide inf ra).
The length of the estimated Newton steps represented by the
eα and ed can assume the meaning of an estimated distance
from the minimum of Ω and thus be utilized as a measure of
the “error” at step n.
The DIIS error matrix, that has the size of the iterative space

considered, is built from the scalar products

e e eij i
T

j= (9)

By imposing the constraint c 1i
n

i1∑ == , we can obtain the
linear combination coefficients of the BDIIS method to be
used in (5) and (6) by solving the linear equation system

i

k

jjjjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzzzz

i

k

jjjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzzz

i

k
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y

{
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e e

e e

c

c

... 1

... 1

1 ... 1 0

0

0
1

n

n n n n

1,1 1,

,1 ,

1

λ

=∂ ∏ ∂ ∂ ∂ ∂

(10)

where λ is a Lagrange multiplier. Such an approach is, in fact,
similar to geometry-optimization DIIS (GDIIS36) adopting an
identity Hessian.

2.3. Details of the Implementation. The BDIIS
procedure outline above has been implemented in a develop-
ment version of the CRYSTAL17 code.9 As already mentioned, in
this work we compute the derivatives in (7) by means of a two-
sided numerical derivative. Which means, for exponents α

e
( ) ( )

2i
i iα α α α

α
=

Ω + Δ ̅ − Ω − Δ ̅
Δ ̅

α
(11)

and similarly for coefficients d.
The displacement is 1% of the exponent value (Δα̅ =

0.01·α), while for coefficients the step is set to 0.1%, weighted
by the relative exponents (Δd̅ = 0.001·d/α).
We have also tried to compute a diagonal Hessian using the

three points αi + Δα̅, αi and αi − Δα̅, so to improve the step
(error) as defined in eqs 5 and 6 at the same computational
cost. However, such a diagonal Hessian seemed not to improve
on the quality of the step, and the overall convergence pattern
turned out to be similar or slower in all cases we tested. We
surmise that the cause can reside in the insufficient accuracy of
a three-point numerical estimate of the second derivative.
Once a suitable step Δα̅n = α̅n − αn−1 is obtained from eq 5,

a line search is performed for tuning the optimal parameter f l

fn n l n1α α α∼ = + Δ ̅− (12)

by sampling f l from 0.1 to 1 in a suitable discrete point grid.
The point with the minimum value of Ω is then retained.
The convergence of the iterative optimization procedure is

verified by checking the absolute value of the largest
component of both the gradients and the penalty function.
The iterative space used in the BDIIS procedure is set at most
to the 14 previous cycles, and the BDIIS step is active since the
second basis set optimization step. The optimization is
complete when the absolute value of the difference in the
penalty function is less than 1.0 · 10−5 au and the absolute
value of the largest component of gradient converges to 3.0 ·
10−4.

3. RESULTS
In this section we first briefly describe the performance of the
BDIIS method in minimizing the Ω energy functional as
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defined in eq 8. Then we focus on the effect of system-specific
basis set optimizations, by showing the differences between
optimized exponents of a typical triple-ζ basis in simple
systems containing the same atoms but in a different chemical
bonding situation. Finally, we analyze how extended basis sets,
such as molecular quadruple-ζ quality, can be optimized for
dense solids without significant pruning. In the Supporting
Information the reader can find full CRYSTAL179 inputs for all
the calculations presented in the following, including the
explicit definition of the atomic basis sets.
All of the optimizations in this work have been carried out

starting from molecular def2-TZVP or def2-QZVP basis
sets.30−32 Although the implemented algorithm is general, as
described in the previous section, in the following we will focus
on the optimization of valence and polarization functions
only−the ones relevantly changing in a different chemical
environment. Since they are usually uncontracted Gaussian
functions, the optimization has been performed solely for the
exponents. As a general strategy, we took as a starting point the
molecular basis sets, upscaled the exponents of all outermost
functions so to avoid small values (<0.1) but without pruning
the basis set, and finally optimized the corresponding values by
minimizing the function Ω.
For all the calculations the convergence for the self-

consistent field (SCF) algorithm is achieved when the energy
difference is 1.0 · 10−8 au (1.0 · 10−10 au for LiH) using a
Monkhorst−Pack (MP) shrinking factor of 8 (64 for
graphene). For triple-ζ basis sets the truncation criteria of
Coulomb and Exchange infinite sums are [8,8,8,12,24] for
diamond, [8,8,8,15,30] for LiH, and [8,8,8,8,16] for the other
systems. Convergence in the case of quadruple-ζ basis sets
requires tighter thresholds, up to [10,10,10,35,175] in the case
of diamond (Hartree−Fock). In the SI we report all CRYSTAL17
inputs that can be used to reproduce our results.
In many cases, we adopted pure GGA functionals such as

PBE43 and PBEsol44 in order to have a faster time to solution.
In other cases we used PBE045 or Hartree−Fock. More
generally, we do not regard our basis set optimizations to be
much dependent on the chosen method,46 since we do not
deal with the reoptimization of the core. As the focus of our
work is on accuracy and numerical stability, we will not present
timings.
3.1. Performance of the BDIIS Method. In Figure 2 we

report the progress of the Ω functional minimization−cf. eq
8−along with the BDIIS iterations, in two exemplary yet
challenging cases for Gaussian-type basis sets: graphene and
bulk metallic sodium. In graphene, the basis set optimizer, run
with the PBEsol functional, leads to a stable result after a few
iterations, which represents a significant energy gain with
respect to the starting point and remains stable for long. If the
optimization is allowed to continue for hundreds of cycles, a
rise in the penalty function γ ln κ({α,d}) is observed, which
evidently prevents the gaussians to become too diffuse. A
corresponding decrease of the electronic energy is observed.
We remark that such changes are however minimal with
respect to the effect of the first iterations, and the optimization
is essentially converged after 50 cycles to all practical purposes.
In the same figure we have also reported the curve obtained
using the Broyden−Fletcher−Goldfarb−Shanno (BFGS)
method. It is seen that such a method reaches the same
value of the Ω functional, more slowly but also more stably.
We will discuss the differences in the solution in the following.

The case of bulk metallic sodium (Figure 2(a)) is different:
the electronic energy varies little (and even increases slightly
with respect to the starting point); but the penalty function is
much more relevant than in other cases, and about 100
iterations are required to reach a plateau. Notably, in this case
the basis set optimization was carried out with a hybrid HF/
DFT functional (i.e., PBE0). This level of theory is usually
expected to be problematic for metallic systems, but the BDIIS
algorithm runs smoothly to convergence.

3.2. Role of the Chemical Environment. We compare
here two sets of systems, composed by the same elements: first
crystalline diamond, graphene, and carbyne chain and then
NaCl with bulk Na and Cl solids. We compare our system-
dependent optimized basis sets with the pob-TZVP15,17 ones.
These were also derived from def2-TZVP but differently from
ours: (i) the valence exponents were optimized for each system
in a comprehensive set of solids with different chemical
environments, (ii) for multiple optimization of the same
atomic species an averaged value of the exponent was
considered, and (iii) most notably, many of the outermost
functions were removed, thus reducing the consistent quality
of the basis.
We will refer to the basis sets optimized in this work as

“dcm-TZVP”. Since different basis sets of the same nominal

Figure 2. Minimization of the Ω functional of eq 8 as a function of
the BDIIS algorithm iteration for two of the systems studied in this
work: panel (a) sodium (PBE0), panel (b) graphene (PBEsol). The
two components of the functional, Etot and κ, are also reported
individually. The dashed line in the bottom panel reports the behavior
of the BFGS algorithm.
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quality are obtained through optimization on different systems,
we will adopt the more detailed notation dcm[···]-TZVP,
specifying in square brackets the system used for the
optimization (e.g., dcm[NaCl]-TZVP).
3.2.1. Diamond, Graphene, and Carbyne Chain. Diamond

and graphene are two allotropes of carbon. Both are covalently
bound systems but differ by hybridization (sp3 and sp2), as well
as crystalline (3D Vs 2D) and electronic (insulator and
conductor) structures. Carbyne is a model system with 1D
periodicity (polymer), two atoms in the unit cell and
alternating bond length.
In Table 1 we compare the exponents of the original def2-

TZVP, the original pob-TZVP, the recently revised pob-rev2
basis set, and our dcm-TZVP basis specifically optimized for
diamond, graphene, and carbyne with the PBE functional. For
brevity, we will refer to the latter two basis sets as dcm[Cdiam]-
TZVP, dcm[Cgraph]-TZVP, and dcm[Ccby]-TZVP, respectively.
Figure 3 shows a corresponding graphical representation of the
radial component of some of the involved gaussians. The first
striking effect observed is the overall contraction of exponents
with respect to the molecular basis. This is not unexpected15,19

and is to be ascribed to the higher density of atoms in the
solid-state phase.
The outermost p-type function shows probably the most

significant difference between diamond and graphene. Such
difference is due both to the different chemical bonding (sp-
hybridization) and atomic density−graphene is a 2D system
surrounded by vacuum in the third dimension. This vacuum
offers more space for the Gaussian functions to expand and at
the same time requires more extended functions to cover that
empty space. Such interpretation is corroborated by the
example of the 1D carbyne chain basis dcm[Ccby]-TZVP, which
features an even more diffuse p-shell. We take the opportunity
here to remind that−conversely to plane-waves−in an atom-
centered Gaussian-based approach the true 2D and 1D
periodicity is possible, hence the vacuum in the nonperiodic
directions is a true vacuum. The effect of the reduced
dimensionality is, however, partly counterbalanced by a
progressively shorter carbon−carbon distance that is 2.92 Å
in diamond, 2.69 Å in graphene, and 2.39/2.46 Å in carbyne
due to the different hybridization of the carbon atom in the
three compounds. The more diffuse p-function is responsible
for the failed convergence when using the graphene dcm-
[Cgraph]-TZVP basis set in diamond (Table 2). Also d- and f-
type functions have a somewhat different spread in the two
systems, showing that quadrupole and octupole interactions
act differently in the two allotropes.
In Table 2 we report some total energies obtained at the

DFT/PBE level: in addition to dcm-TZVP and pob-TZVP

bases, the dcm[Cdiam]-TZVP basis was also tested in graphene
and the dcm[Cgraph]-TZVP in diamond. From Table 2, we see
that the energies relative to the proper dcm bases are lower by
about 0.014 Eh than the pob- ones. On the other hand,
swapping the two dcm-TZVP bases led to an energy similar to
(though still lower than) that of pob-TZVP[G] while the more
diffuse dcm[Cgraph]-TZVP turned out to be unusable in the

Table 1. Uncontracted Gaussian Exponents for Different Carbon TZVP Basis Setsb

def230 pob15 pob-rev217 dcm[Cdiam]
a dcm[Cgraph]

a dcm[Ccby]
a

s 0.5770 0.4941 0.4941 2.7288 1.0961 1.1383
0.2297 0.1644 0.1644 0.7083 0.5911 0.6557
0.0952 0.2754 0.2374 0.2323

p 0.2889 0.5662 0.5662 0.6187 0.3387 0.2857
0.1006 0.2674 0.1973 0.2713 0.1594 0.0906

d 1.0970 0.8792 0.5792 2.0114 1.2502 1.3095
0.3180 0.6265 0.7194 0.6132

f 0.7610 1.0624 0.7067 1.1330
aPresent work. bdcm[Cdiam]-TZVP, dcm[Cgraph]-TZVP, and dcm[Ccby]-TZVP refer to our basis set optimized by BDIIS with the PBE functional in
diamond, graphene, and carbyne, respectively.

Figure 3. Radial part of some Gaussian functions of carbon from def2-
TZVP (def2), pob-TZVP (pob), and two different dcm-TZVP
(dcm[Cdiam] for diamond, dcm[Cgraph] for graphene) basis sets.
Exponents of s-, p-, and d-type functions are reported in panels (a),
(b), and (c), respectively.
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more closely packed diamond lattice, leading to linear
dependencies, numerical instabilities, and no possible SCF
convergence in the end. The same happened when we tried to
use the unmodified original molecular def2-TZVP basis sets,
with the sole exception of carbyne thanks to its one-
dimensional extension. The corresponding energy is
−76.098306 Eh, about 1 mEh higher than our dcm[Ccby]-
TZVP result.
The optimization carried out with the BFGS algorithm leads

to a very similar basis set for graphene, yielding essentially the
same energy. For diamond, a significantly different result is
obtained with respect to the BDIIS one reported in Table 1
with an energy that is 68 μEh higher (exponents are 1.0163;
0.6367; 0.2392 for valence s-functions, 0.5646; 0.2728 for p-
functions, 1.0242; 0.5957 for d-functions, and 0.8239 for the f-
function).
3.2.2. Crystalline NaCl, Na, and Cl2. Let us now compare

the optimal basis set obtained with the PBE0 functional for
three bulk structures with very different chemical bonding,
namely: metallic Na, molecular Cl2, and ionic rocksalt NaCl,
whose electronic charge densities are reported in Figure 1. As
discussed in the Introduction, the significantly different
features in the electronic structure expectedly require a
different support and hence a specific basis set. The geometries
adopted are fully reported in the Supporting Information and
have been obtained from experimental references in the
literature.47−49

In Table 3 we see that for the Cl2 molecular crystal, not
unexpectedly, the original def2 basis set undergoes very little

modifications when optimized in the solid. Actually, it
performs much better than the pob-TZVP basis (see Table
5) with the total energy being 0.1 Ha lower. The removal of
the outermost p-function in the pob basis sets leads to an
overall decrease of the exponents of the remaining functions
that partly compensates the contribution to the total energy of
the missing function. If one includes the outermost p-function
from the dcm basis set, a further energy lowering of 13 and 17
mEh is observed for the pob and pob-rev2 basis set,
respectively. However, this is not enough to reach the final

energy of solid Cl2 as obtained with the optimized dcm basis
set thus showing the crucial role of the outermost p-function.
The dcm[NaCl] basis for Cl, optimized in the rocksalt

structure, features significantly more contracted exponents, as
far as s- and p-functions are concerned, while the d exponent
becomes more diffuse. As reported in Table 4, a stronger

contraction is observed in exponents of the s-type orbitals in
going from the molecular def2 to the bulk metal and then the
ionic NaCl. In this case we had to remove the most diffuse p-
function (0.03 au) in order to ensure convergence, but at
difference with the pob-TZVP case, we were able to keep all
the d-functions in.
As shown in Table 5 it can be seen that in all cases dcm-

energies are significantly lower than pob- ones, and quite
surprisingly the dcm[Cl2]-TZVP and dcm[Na]-TZVP basis
sets seem to perform well also in the ionic case.
Such basis sets effects are also reflected in geometry

optimizations. In Table 6 we report the optimized lattice
parameters obtained with the different basis sets. It is seen that
the dcm-basis sets lead in all cases to an expanded volume with
respect to the pob- ones and in the case of Na and NaCl also
to a better agreement with experiment at the PBE0 level. In the
molecular crystal Cl2, dispersion effects act as a key role, hence
the plain PBE0 leads to an excessively expanded volume when
the dcm[Cl2] basis is used, while the introduction of -D3
dispersion correction restores a more correct description. It is
reasonable to assume that the volume expansion associated
with the dcm[Cl2] basis is related to a mitigation of BSSE
effects−which usually act as spurious dispersion.

3.3. Use of Large, Extended Basis Sets. Solid LiH is a
rather standard benchmark for methods assessment in the solid
state. Recently24,26 lithium hydride has been used as a
benchmark for estimating the Hartree−Fock basis set limit
compared with results from different approaches.23,50,51 The
case of LiH, similarly as NaCl, poses certain difficulties since
standard molecular basis sets are designed for neutral atoms,
not ions, hence inapplicable to bulk ionic crystals without
modification. We optimized the basis set series def2-SVP/def2-
TZVP/def2-QZVP with our BDIIS algorithm, obtaining the

Table 2. Total Energies at the DFT/PBE Level for Diamond and Graphene as Computed with Different Triple-ζ Basis Setsb

ETOT
PBE pob15 pob-rev217 dcm[Cdiam]

a dcm[Cgraph]
a dcm[Ccby]

a

diamond −76.157894 −76.154752 -76.161457
graphene −76.155441 −76.158920 −76.158342 -76.169383
carbyne −76.072706 −76.086918 −76.073559 −76.096273 -76.099140

aThis work. bEnergies in Eh. Energies for the consistently optimized basis sets are reported in bold.

Table 3. Gaussian Exponents for Different Cl TZVP Basis
Setsb

def2 pob15 pob-rev217 dcm[Cl2]
a dcm[NaCl]a

s 0.5023 0.4499 0.4499 0.5075 0.5724
0.1796 0.1364 0.1364 0.1831 0.2312

p 2.9433 2.8015 2.8015 2.8983 2.9386
1.0405 0.7396 0.7896 1.1044 1.1903
0.3846 0.2106 0.2106 0.4092 0.4697
0.1307 0.1365 0.1747

d 0.3390 0.2373 0.2373 0.3326 0.2838
f 0.7060 0.5990 0.6898

aThis work. bThe dcm-variants were optimized with the PBE0
functional.

Table 4. Gaussian Exponents for Different Na TZVP Basis
Setsb

def2 pob15 pob-rev217 dcm[Na]a dcm[NaCl]a

s 0.0500 0.6746 0.4246 0.2127 0.3436
0.0193 0.1006 0.1205 0.0782 0.0828

p 0.4174 0.4009 0.4009 0.4034 0.4023
0.0910 0.1007 0.1207 0.0851 0.0981
0.0300

d 2.6090 1.0463 0.3053 2.6086 2.6074
0.4300 0.4337 0.4040
0.1000 0.1115 0.0985

aThis work. bThe dcm-variants were optimized with the PBE0
functional.
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corresponding dcm[LiH]-SVP/dcm[LiH]-TZVP/dcm[LiH]-
QZVP. The corresponding Hartree−Fock total energy values
are −8.059489, −8.063808, and −8.064618 Eh, respectively. In
Figure 4 we compare such energies with previous data from the

literature also obtained with the CRYSTAL code. It is seen that
with the quadruple basis we reach a value that is very close to
that of ref 26 (i.e., −8.06475 Eh), where a much larger basis set
was used. This last result was already close to the CBS limit
compared to methods employing different basis set types.26 If
the dcm-TZVP and dcm-QZVP total energies are used to
estimate the HF complete basis set (CBS) limit by using a two-
point extrapolation scheme based on an exponential formula, a
value of −8.065089 is attained. Notably, this energy limit is
even lower than the one reached by Usvyat and co-workers26

by 0.3 mEh. When using the CBS energy for the atoms,52 the
cohesive energy is then −3.60 eV in very good agreement with
results from different theoretical approaches.23,50,51

Similarly, we have optimized a quadruple-ζ basis for
diamond and graphene. The original def2-QZVP basis does
not allow convergence in either case, while with the basis sets
as reported in Table 7 the energies of −76.165178 and

−76.174386 Eh are obtained for the two systems at the PBE
level. The latter value we believe to be close to basis set
completeness. Extrapolation to the CBS limit leads to a value
of −76.167396 and −76.177298 Eh, respectively.
In Table 7 we report the reoptimized exponents with respect

to def2-QZVP basis sets−all other functions are the same as in
the molecular basis set. It is worth noting that g-type functions
were also included in the basis set as they were recently made
available in the development version of the CRYSTAL code.53

BSSE effects are reduced much more considerably by the
increasing of the basis set quality, rather than by the
optimization of the exponents, so that BSSE is quite similar
for pob- or dcm- basis sets.
For diamond, we have also calculated the Hartree−Fock

CBS limit by using the dcm-TZVP and dcm-QZVP basis sets.

Table 5. Total Energies at the DFT/PBE0 Level for Na, Cl2, and NaCl as Computed with Different TZVP Basis Setsb

ETOT
PBE0 pob15 pob-rev217 dcm[Na]a dcm[Cl2]

a dcm[NaCl]a

Na −162.202291 −162.198836 -162.210106 −162.209707
Cl2 −1840.065404 −1840.052238 -1840.186164 −1840.175452
NaCl −622.394522 −622.392474 −622.405254 -622.405810

aThis work. bEnergies in Eh. Energies for the consistently optimized basis sets are reported in bold.

Table 6. Experimental47−49 and Calculated Lattice Parameters for Solid Na, Cl2, and NaCl, as Obtained with Different Basis
Setsb

PBE0 pob15 pob-rev217 dcm[Na]a dcm[Cl2]
a dcm[NaCl]a exp

Na a 4.041 (−0.184) 3.957 (−0.268) 4.258 (0.033) 4.225
a 6.211 (0.066) 6.634 (0.489) 6.145

Cl2 b 4.387 (−0.008) 4.683 (0.287) 4.395
c 8.126 (−0.028) 8.549 (0.395) 8.154

NaCl a 5.602(−0.038) 5.609(−0.031) 5.644(0.004) 5.640
PBE0-D3 pob15 pob-rev217 dcm[Na]a dcm[Cl2]

a dcm[NaCl]a exp

Cl2 a 6.011 (−0.134) 6.034 (−0.111) 6.175 (0.030) 6.145
b 4.224 (−0.171) 4.255 (−0.140) 4.307 (−0.088) 4.395
c 8.013 (−0.140) 8.021 (−0.133) 8.239 (0.085) 8.154

aThis work. bThe difference with respect to the experimental reference is reported in round brackets.

Figure 4. Energy of bulk LiH at the HF level: a comparison of our
dcm-XVZP basis set results. Extrapolated CBS limit and literature
data (Civalleri et al.24 and Usvyat et al.26).

Table 7. Exponents Comparison of Gaussian Basis Setsb

def2-QZVP dcm[Cdiam]-QZVP
a dcm[Cgraph]-QZVP

a

s 5.2404 6.2060 5.2404
2.2905 3.3250 2.3278
0.6967 1.0952 1.0461
0.2760 0.6304 0.5218
0.1074 0.3436 0.2004

p 0.4605 0.8740 0.4500
0.1894 0.5426 0.3287
0.0760 0.1832 0.1249

d 1.8480 1.9639 1.9130
0.6490 0.9684 0.8630
0.2280 0.5478 0.4526

f 1.4190 1.5109 1.4143
0.4850 0.7423 0.5982

g 1.0110 1.1825 0.9931
aThis work. bDiamond and graphene cases for quadruple-ζ basis sets.
Optimization carried out at the PBE level.
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Computed total energies are −75.772638 and −75.774752 Eh,
respectively. The adopted extrapolation scheme leads to a HF
CBS limit of −75.775983 Eh that corresponds to a cohesive
energy for diamond52 of −10.58 eV, very close to a previously
reported HF value of −10.56 eV.54 Interestingly, results show
that the basis sets optimized with the PBE functional can also
be used for HF even if a tighter setting of the computational
parameters is required (see the Supporting Information).
In Figure 5 we compare, for graphene, the electronic band

structure computed with Gaussian basis sets with the bands for
the same systems as obtained from a plane wave code55 using a
considerably high cutoff. It is evident that the bands at the
triple-ζ level are different from the reference ones, specially in
the Γ and M points of the Brillouin zone. Nevertheless, the
dcm[Cgraph]-TZVP performs better than the pob-TZVP. A
considerably better agreement is attained by using the
dcm[Cgraph]-QZVP basis (right panel of Figure 5). We believe
this is strong evidence of the possibility of reaching converged
results with Gaussian basis sets and the effectiveness of a
system-specific optimization scheme.

4. CONCLUSIONS

In the present work, we have developed a basis set optimizer
based on the DIIS algorithm that minimizes the total energy of
the system constrained to keep the condition number of the
overlap matrix as small as possible in a similar approach as
proposed by VandeVondele et al.40 The latter constraint acts
as a pivot in the optimization of the basis set and prevents the
lowest exponents of the basis set to decrease too much thus
reducing the risk of linear dependency and numerical
instability. This is particularly important in solid-state
calculations where the use of atom-centered diffuse functions
is more delicate and sometime useless.
We have then shown that the proposed method is quite

effective for solid-state calculations and allows for an easy
optimization of basis sets not only of triple-ζ quality but even
of quadruple-ζ size. Furthermore, we have demonstrated that
the BDIIS method can be used to obtain basis sets for solids of
consistent quality as molecules without pruning the original
basis sets. Results for simple solids as diamond and graphene
for which the definition of an appropriate and system-
consistent basis set is uglily difficult are very promising. Also,
the possibility of employing basis sets specifically calibrated on
a given system allowed us to easily reach the HF complete
basis set limit for LiH which has been a long debated issue and
for diamond.

While reasonable questions can be raised about the
transferability of such optimized basis sets from one method
to another, we have seen that a basis set optimized, say, with
PBE is very close to convergence when inserted in HF or
PBE0. For our diamond test case the energy with such basis
was only a few μEh away from the minimum when transferred
from one method to another.
The evidence of the excellent performance of the BDIIS

method paves the way for a careful definition of system-specific
basis sets, as a viable alternative to all-purpose basis sets.
Nevetheless, it could be employed for a more extensive work
that would permit the creation of all-purpose basis set families
for a larger set of atomic species. Furthermore, the algorithm
here described could be very useful to optimize basis sets for
post-HF correlation methods20,56 as well as for response
properties.57−59
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(51) Marsman, M.; Grüneis, A.; Paier, J.; Kresse, G. Second-order
Møller−Plesset Perturbation Theory Applied to Extended Systems. I.
Within the Projector-Augmented-wave Formalism Using a Plane
Wave Basis Set. J. Chem. Phys. 2009, 130, 184103.
(52) Reference HF atomic energies for H, Li, and C were computed
with an aug-cc-pV5Z basis set.
(53) Desmarais, J. K.; Erba, A.; Dovesi, R. Generalization of the
Periodic LCAO Approach in the CRYSTAL Code to g-type Orbitals.
Theor. Chem. Acc. 2018, 137, 28.
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