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Abstract
Digital Contact Tracing (DCT) has been proved to be an effective tool to counteract the new
SARS-CoV-2 or Covid-19. Despite this widespread effort to adopt the DCT, less attention
has been paid to the organisation of the health logistics system that should support the tracing
activities. Actually, the DCT poses a challenge to the logistics of the local health system in
terms of number of daily tests to be collected and evaluated, especially when the spreading of
the virus is soaring. In this paper we introduce a new optimisation problem called the Daily
Swab Test Collection (DSTC) problem, that is the daily problem of collecting swab tests at
home in such a way to guarantee a timely testing to people notified by the app to be in contact
with a positive case. The problem is formulated as a variant of the team orienteering problem.
The contributions of this paper are the following: (i) the new optimisation problemDSTC that
complements and improves the DCT approach proposed by Ferretti et al. (Science https://
doi.org/10.1126/science.abb6936, 2020), (ii) the DSCT formulation as a variant of the TOP
and a literature review highlighting that this variant can have useful application in healthcare
management, (iii) new realistic benchmark instances for the DSTC based on the city of
Turin, (iv) two new efficient and effective hybrid algorithms capable to deal with realistic
instances, (v) the managerial insights of our approach with a special regard on the fairness of
the solutions. The main finding is that it possible to optimise the underlying logistics system
in such a way to guarantee a timely testing to people recognised by the DCT.
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1 Introduction

Contact tracing is one of the key tools to avoid or to limit an outbreak of a pandemic disease.
Unfortunately, manual contact tracing could be not efficient as soon as the speed of spread
disease increases. Digital contact tracing (DCT) has been experimentally proved to be an
effective tool to counteract the new SARS-CoV-2 or Covid-19, as discussed in Ferretti et al.
(2020). The basic idea is to implement the DCT through a smartphone app which builds a list
of proximity contacts and immediately notifies contacts of positive cases. The authors proved
that viral spread is too fast to be contained by manual contact tracing, but could be controlled
if this process was faster, more efficient and implemented at a large-scale. In accordance
with their research findings, their models show that it is possible to stop the epidemic if the
adoption rate of the DCT app is approximately 60% of the population, even if the DCT has
an effect at all levels of uptake.

Many countries in the world launched its own DCT app. Despite this widespread effort,
less attention has been posed to the organisation of the health logistic system that should
support the tracing activities. To the best of our knowledge, this is the first paper deal-
ing with the healthcare logistics underlying a DCT system from an Operations Research
perspective. Accordingly, the DCT poses a challenge to the logistic of the local health sys-
tem in terms of number of daily tests to be collected and evaluated, especially when the
spreading of the virus is soaring. For instance, the number of daily tests in Italy increases
from 250,000 on average in September 2021 up to 1,000,000 on average in January 2022
(lab24.ilsole24ore.com/coronavirus/). In that period the DCTwas available in Italy andmany
newspaper reported really long queues and the inability to access the testing service for the
elderly.

As a matter of fact, the success of the DCT is directly related to the ability of the local
health system to test the majority of the contacts of a positive case as soon as possible. By
consequence the following research question arises: is it possible to optimise the underlying
logistics system in such a way to guarantee a timely testing to people notified by the app to
be in contact with a positive case?

In this paper we introduce a new optimisation problem called the Daily Swab Test Col-
lection (DSTC) problem, that is the daily problem of collecting swab tests at home of those
people likely to be positive in accordance with the guidelines described by Ferretti et al.
(2020). The DSTC can be formulated as a variant of the Team Orienteering Problem (TOP)
(Butt and Cavalier, 1994; Chao et al., 1996b). We generate a new set of realistic bench-
mark instances based on the city of Turin. We propose two new hybrid algorithms based
on machine learning and a neighbourhood search, which are capable to largely reduce the
solution running time with respect to those computed by a general purpose solver, especially
when the complexity of the problem increases.

In summary, the contributions of this study are the following: (i) the new optimisation
problem DSTC that complements and improves the DCT approach proposed by Ferretti
et al. (2020), (ii) the DSCT formulation as a variant of the TOP and a literature review
highlighting that this variant can have useful application in healthcare management, (iii) new
realistic benchmark instances for the DSTC based on the city of Turin, (iv) two new efficient
and effective hybrid algorithms capable to deal with realistic instances, (v) the managerial
insights of our approach with a special regard on the fairness of the solutions.

The paper is organised as follows. After a more detailed description of the DCT and a
literature review in Sect. 2, the problem statement and an integer linear programming model
for the DSTC are reported in Sect. 3. The solution algorithms are described in Sect. 4. The
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Fig. 1 General description of digital contact tracing (from Ferretti et al. (2020))

quantitative analysis based on the set of the new realistic instances is reported and discussed
in Sect. 5. Conclusions, challenges and future works are discussed in Sect. 6.

2 Literature review

The DCT can be a fundamental component of the triple T strategy, that is test, trace and
treat. Basically, it consists of a smartphone app for automatically tracing the contacts of
people in order to trace them faster as soon as a new case occurs as proposed by Ferretti et
al. (2020) and depicted in Fig. 1: after reporting the main symptoms (e.g., fever, cough, ...),
the potential new case starts isolation and requests home test. Such a test should be collected
and evaluated as soon as possible in order to alert all the people in contact with her/him. But
if the test is delayed, the benefits of the DCT can be wasted.

Many countries in the world launched its own DCT app, especially in Europe so much
that the EU commission has set up an EU-wide system to ensure interoperability among the
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DCT apps in order to exploit their full potential to break the chain of Covid-19 infections
across borders and save lives 1.

Wymant et al. (2021) investigated the impact of the NHS COVID-19 app for England
and Wales, from its launch on 24 September 2020 through to the end of December 2020. It
was used regularly by approximately the 28% of the total population sending approximately
1.7 million exposure notifications resulting in about the 6.0% of individuals subsequently
showing symptoms and testing positive. The authors estimated that for every percentage
point increase in app users, the number of cases can be reduced by 0.8% (modelling) or
2.3% (statistical analysis). These findings provide evidence for continued development and
deployment of such apps.

As reported in Fig. 1, the closest contacts of a positive case require a swab test as soon as
possible. Such a swab test should be done at home due to self-isolation. Further, the number
of swab tests can become larger and larger: the number of daily tests in the province of Turin
increases from 50,000 on average in September 2021 up to 100,000 on average in January
2022 (lab24.ilsole24ore.com/coronavirus/) determining long waiting queues and limiting the
access for the elderly to the testing service.

Therefore the need of a quantitative model-like the DSTC-to support the inherent health
logistics of the DCT is evident. Basically the DSTC consists in organising the daily collection
of swab tests reaching the house of the contact(s) of a positive case detected the day(s) before.
A set of teams are in charge of collecting the swab tests around the city.

The DSTC could be modelled as a variant of the TOP (see, e.g., Vansteenwegen et al.
(2011); Gunawan et al. (2016); Vansteenwegen and Gunawan (2019) for more detailed liter-
ature reviews). The TOP is a routing problem belonging to the class of the Vehicle Routing
Problemswith Profits, which are characterised by the fact that not all customers can be served
unlike the classical Vehicle Routing Problem. This implies the need to consider two different
decisions (Archetti et al. 2014), that is (i) which customers to serve, and (ii) how to cluster
the customers to be served in different routes (if more than one) and order the visits in each
route. The customer selection is driven by a profit associated with each customer that makes
such a customer more or less attractive.

The DSTC differs from the TOP for the fact that a non-negligible service time at the
customer should be considered. Erdogan and Laporte (2013) introduces the Orienteering
Problem with Variable Profits (OPVP) in which a single vehicle can collect the whole profit
at the customer after a discrete number of “passes” or spending a continuous amount of time.
As in the classical orienteering problem, the objective is to determine a maximal profit tour
for the vehicle, starting and ending at the depot, and not exceeding a travel time limit. A well-
known application of the OPVP is the Tourist Trip Design Problem (TTDP): in the TTDP,
the main challenges are (i) the decision of which Points Of Interest (POIs) should be visited,
and (ii) to determine the best sequence for the trip day. In accordance with Vansteenwegen
and Gunawan (2019) (chapter 7), the multiple day TTDP can be formulated as the TOP in
which days are modelled as teams.

The aim of the work of Gavalas et al. (2014) is to survey models, algorithmic approaches
and methodologies concerning the TTDP. Literature approaches were examined, focusing on
problemmodels that best capture a multitude of realistic POIs attributes and user constraints.
In Yu et al. (2019), the authors consider the case in which a duration of the attraction visit is
considered, and the score of visiting an attraction is different depending on the time of visit.
The authors proposed a hybrid artificial bee colony optimisation algorithm to solve instances
with 25, 50, and 100 locations and up to 4 tours. Exposito et al. (2019) consider an extension of

1 Url: https://ec.europa.eu/commission/presscorner/detail/en/ip_20_1904.
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the TTDP, named TTDPwith Clustered POIs, where they are grouped in clusters representing
different types of attraction sites. The authors proposed aFuzzyGreedyRandomizedAdaptive
Search Procedure for solving this problem, in which both distance based and score based
evaluation criteria are used to guide the candidates selection in the construction phase. More
recently, the study inMoosavi Heris et al. (2022) aims (i) to maximise the profit from visiting
the POIs to increase the satisfaction level, and (ii) to maximise the number of visited POIs to
improve the satisfaction level of the tourists. The authors introduced the concepts of “indirect
coverage” and “neighbourhood radius” to increase the accessibility of the tourist attractions
and POIs. Solutions of the problem are computed using CPLEX (for small-scale instances)
and NSGA-II algorithm (for large-scale instances).

Few contributions are available in the literature outside the TTDP operative context. Lin
and Yu (2017) investigates a new variant of the TOP with time windows in which some
customers are important customers that must be visited. The other customers are called
optional customers. Each customer carries a positive score and service time. The goal is to
determine a given number of paths to maximise the total score collected at visited nodes,
while observing side constraints such as mandatory visits and time window constraints.
The authors proposed a multi-start simulated annealing (MSA) heuristic for this problem.
Stavropoulou et al. (2019) introduces the Consistent Vehicle Routing Problemwith Profits as
a variant of the TOP. In this problem there are two sets of customers, the frequent customers
that are mandatory to service and the non-frequent potential customers with known and
estimated profits respectively, both having known demands and service requirements over
a planning horizon of multiple days. The objective is to determine the vehicle routes that
maximise the net profit, while satisfying vehicle capacity, route duration and consistency
constraints. For addressing this computationally challenging problem, an Adaptive Tabu
Search has been developed, utilising both short- and long-term memory structures to guide
the search process. Hanafi et al. (2020) study a new variant of the TOP where precedence
constraints are introduced. Each customer has a set of tasks that have to be accomplished
according to a predefined order by an heterogeneous fleet of vehicles. If a customer is selected,
then all the tasks have to be completed by possibly different vehicles. To tackle the problem,
the authors proposed an enhancement of the Kernel Search (KS) framework that makes use
of different sorting strategies and compare its performance to a Branch-and-Cut algorithm
embedding the dynamic separations of different valid inequalities and the use of a simplified
KS as primal heuristic.

To the best of our knowledge, only two applications of theTOP framework to the healthcare
logistics are available in the literature. Jin and Thomas (2019) formulates he phlebotomist
intrahospital routing problem as a TOP with stochastic rewards and service times. They
present an a priori solution approach and derive a method for efficiently sampling the value
of a solution, a value that cannot be determined analytically. The aimof the study inAringhieri
et al. (2022) is to find the best ambulance tours to transport the patients during a disaster
in relief operations while considering fairness and equity to deliver services to patients in
balance. The problem is formulated as a new variant of the TOP with hierarchical objectives
to address also the efficiency issue.

Our work contributes to this variant of the TOP proposing two new hybrid algorithms
based on machine learning and a neighbourhood search. Furthermore, it contributes to the
application of the TOP framework to the healthcare logistics sector.
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3 Problem statement andmathematical formulation

We recall that the DSTC consists in organising the daily collection of swab tests reaching
the house of the contact(s) of a positive case detected the day(s) before. A set of teams are
in charge of collecting the swab tests along a path in the city.

We assume that (i) the number of required tests is larger than the daily capacity of all
teams in terms of working time, and (ii) all tests to be collected are known in advance. We
would remark that these assumptions represent the situation in which the pandemic is rapidly
spreading over a given geographic area. Each team travels around the city collecting the
swab tests. A priority is associated to each person in accordance with her/his health status
and social connections. The priority represents the need of testing some people before other
since they could become a spreader of the virus and/or they belong to more risky class of
people (e.g., elderly and/or frail people). Such a priority drives the selection of which tests
should be collected. Finally, time is crucial since we have to take into account both travel
times and service times for collecting the swab(s) at home.

Let P = {1, . . . n} be a set of places where a number bp (p ∈ P) of swab tests should
be collected. The collection of the swab tests follows an integer priority rp: the greater the
priority is, the greater the importance of collecting such a swab test is. When the number
of required tests are larger than the daily capacity, the priority represents the need of testing
some people before other since they could become a spreader of the virus and/or they belong
to more risky class of people (e.g., elderly and/or frail people). In our operational context, the
priority is provided by the health authority since the DCT data are private. Further remarks
are discussed in the conclusions.

For each place p ∈ P , we assume to have an estimate of the time t+p and t−p respectively

needed to dress and to undress the personal protective equipment, the time thp to reach the
house, and the time t sp to collect a single swab test. Therefore, the overall time tp needed
to perform all the operations needed to collect a swab test at the place p ∈ P is equal to
tp = t+p + 2 thp + (bp tsp) + t−p . It is worth noting that t+p and t−p can be a constant but our
choice is to be as general as possible in this description.

Let M = {1, . . . k} be a set of medical teams in charge of collecting swab tests during
their work-shift whose maximum duration is equal to tmax. The teams start their work-shift
from a depot 0 ending at the laboratory n+1. Depot and laboratory could be the same place.
Considering P+ = P ∪ {0, n + 1}, let tpq be the travelling time to reach q ∈ P+ from
p ∈ P+.

We are now ready to propose the integer linear programming model for the DSTC. Let us
introduce the following decision variables:

– xpqm = 1 if the team m ∈ M visits the place q ∈ P+ immediately after visiting the
place p ∈ P+, 0 otherwise;

– ypm = 1 if the place p ∈ P+ is visited by team m ∈ M , 0 otherwise;
– u pm is an integer representing the position of the place p ∈ P+ in the path of the team

m ∈ M .

The objective function seeks to maximise the overall priority of the swab tests collected:

max z =
∑

m∈M

∑

p∈P

rp bp ypm . (1)

The rationale behind the idea of multiplying the priority for the number of requests on a place
is that the collection of a greater number of swab tests is to be preferred. This is under the
assumption that all the requests on a place are satisfied when it is visited, and is coherent
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with the objective of maximising the sum of priority scores associated with the collection of
single swab tests. For instance, suppose to have among all the requests: (i) a place p0 with
priority score r and b > 1 tests to be collected, and (ii) b place p1, . . . , pb with the same
score r and only one test to be collected in each one. Since the objective is to maximise
the sum of the scores, visiting p0 gives the same overall score br of visiting all p1, . . . , pb,
as we would like. On the other hand, the value of rp depends on the instance. If we would

specify a different score rpi for each patient of the place p, then we can fix rp =
∑

i r pi
bp

, that
is equivalent under the assumption of satisfying all the requests on a place when it is visited.
Finally, it is worth noting that this objective function recalls the Clustered TeamOrienteering
Problem (Yahiaoui et al., 2019).

Constraint 2 ensures that each team starts its work-shift from the depot ending at the
laboratory:

∑

m∈M

∑

q∈P

x0qm =
∑

m∈M

∑

p∈P

xp(n+1)m = k, (2)

where k is the number of teams. Constraints 3 ensure that every place is visited at most once:
∑

m∈M
ypm ≤ 1, p ∈ P. (3)

Constraints 4 guarantee the connectivity of the work-shift of each medical team:
∑

q∈P∪{0}
xqpm =

∑

q∈P∪{n+1}
xpqm = ypm, p ∈ P,m ∈ M . (4)

Constraints 5 ensure that the duration of each work-shift is less than or equal to the maximum
duration:

∑

p∈P∪{0}

∑

q∈P∪{n+1}
tpq x pqm +

∑

p∈P

tp ypm ≤ tmax, m ∈ M . (5)

Finally, the constraints 6 and 7 are necessary to prevent subtours in accordance with the
Miller-Tucker-Zemlin formulation for the Travelling Salesman Problem (TSP) (Miller et al.,
1960):

2 ≤ u pm ≤ n + 2, p ∈ P ∪ {n + 1},m ∈ M . (6)

u pm − uqm + 1 ≤ (n + 1)(1 − xpqm), p, q ∈ P ∪ {n + 1},m ∈ M . (7)

4 Ad hoc solution algorithms

As reported in Sect. 3, the DSTC is formulated as a variant of the TOP, which has been proved
to be NP-hard (Butt and Cavalier, 1994). As soon as the complexity of the instance increases
due to an increase of the number of places and/or the number of teams, an ad hoc and more
efficient algorithm for solving the DSTC problem is required. In this section we report two
new solution algorithms sharing the idea of computing the initial solution exploiting the
clustering approach described in Sect. 4.1. For both algorithms (Sects. 4.2 and 4.3), first
we provide a general description to introduce the main elements of the algorithm. Then, a
detailed description of such elements is provided. It is worth noting that our algorithms share
several ideas with the Tabu Search methodology (Glover and Laguna, 1997).
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4.1 Initial solution based on aMachine Learning approach

The two algorithms share the same procedure to compute the initial solution,which is inspired
by a Machine Learning approach to clustering. As a matter of fact, the initial set P can be
partitioned in k clusters, one for each team m ∈ M . In our settings we adopt two well known
algorithms:k-means (MacQueen, 1967) and spectral clustering (Ng et al., 2001).

The k-means clustering algorithm determines a partition of a set of observations into
a given number of clusters in order to minimise the sum of the square distances of the
observations from the centre of their closest cluster, that is the one to which they belong.
The spectral clustering is an algorithm used to identify communities of nodes in a
graph based on the edges connecting them. It makes use of a similarity matrix that consists
in a quantitative assessment of the relative similarity of each pair of nodes in the graph or
points in the dataset.

The procedure initialSolution(P) returns a partition [P1, . . . Pk] and a solution
S composed of T 1, . . . , T k tours: first, a partition [P1, . . . , Pk] of P is computed exploiting
one of the above clustering algorithm, and then such a partition is the input for a procedure
that computes a tour Tm for each cluster Pm . Each tour starts from 0, traverses a subset of
places belonging to the cluster Pm , and ends in n + 1, and is computed as follows.

First, a 0 − 1 knapsack problem (Martello and Toth, 1990) is solved, in which the places
belonging to the cluster Pm are the elements to be inserted in the knapsack whose capacity
is set to tmax, and each element/place p ∈ Pm has weight equals to the service time tp and
profit equals to rb bp . This instance of the 0 − 1 knapsack is solved by applying the classic
dynamic programming algorithm (Martello et al., 1999). The subset of places selected by
solving the 0 − 1 knapsack are then the input for a TSP procedure to compute the tour Tm .
In our implementation, such a tour is computed using a TSP heuristic starting from the depot
0 and modifying the solution obtained by connecting the last node to the laboratory instead
of coming back to the depot. We tested both the Christofides (Christofides, 1976) and the
Lin-Kernighan (Lin and Kernighan, 1973) algorithms.

4.2 Clustering search CS1 algorithm

Algorithm 1: ClusteringSearch (CS1) algorithm.

Data: P , M , tp with p ∈ P , tpq with p, q ∈ P+, tmax;
Result: solution S = [T 1, . . . T k ];

1 (S, P1, . . . , Pk ) := initialSolution(P);
2 while not stoppingCondition do
3 intraClusterSearch(S, P1, . . . , Pk );

4 interClusterSearch(S, P1, . . . , Pk );

5 restartSearch(S, P1, . . . , Pk );

6 return S;

As depicted in Algorithm 1, the algorithm ClusteringSearch CS1 starts computing an
initial solution using the procedure initialSolution(P). This initial solution is then
improved during a cycle repeated until the stopping condition is met, that is the algorithms
terminates after a number N I1 of not improving iterations. At each iteration, the improvement
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phase consists in two steps. The intraClusterSearch tries to improve the tour of each
cluster exchanging places in the tour with places not yet visited but in the same cluster. On
the contrary, the interClusterSearch tries to improve the tour of a cluster by moving
places from a different cluster. Finally, after a number of not improving iterations, a restart
is performed to diversify the search.

Procedure intraClusterSearch. In order to improve the quality of each single tour
Tm ⊆ Pm , we implemented a straightforward neighbourhood search based on a simple swap
between a pair of places p1 ∈ Tm and p2 ∈ Pm \ Tm . Such a neighbourhood is completely
explored to determine the best feasible move (best improvement), that is the pair of places
returning the tour having the highest value given by the sum of the values rb bp for each
p ∈ Tm . The neighbourhood search can accept also not improving moves, that is moves
determining tours whose values is less than or equal to the incumbent one. To avoid cycles
among already visited solutions, two tabu lists L1 and L2 - based on tabu tags (Gendreau et
al., 1994) - has been implemented in such a way to avoid a place to be moved from or into
a tour for the next �1 and �2 moves, respectively. Such a neighbourhood search is repeated
100 times.

Procedure interClusterSearch. Since the quality of the tour Tm can depend on the
initial clustering, we developed an improvement phase based on the idea of moving places
from a cluster to another one. Basically the procedure interClusterSearch tries to
improve the quality of the tour Tm by moving a place p ∈ Pv in the cluster Pm , with v ∈ M
and v �= m.

Such a neighbourhood is completely explored to determine the best feasible move (best
improvement). The neighbourhood search can accept also not improving moves. To avoid
cycles among already visited solutions, a tabu list L3 - based on tabu tags (Gendreau et al.,
1994) - has been implemented in such a way to avoid a place to bemoved from the destination
cluster for the next �3 moves. Each single move is evaluated by computing the knapsack
problem as in the procedure initialSolution on the tentative cluster Pm ∪ {p}.

After selecting the best move, that is the pair (p, Pm) maximising the knapsack solution,
the tour Tm is re-computed as in the procedureinitialSolution. If the resulting tour Tm

improves the previous one, a simple intensification is performed by repeating the procedure
intraClusterSearch.

Such a neighbourhood is also used to have a weak diversification of the search: actually,
after a number of neighbourhood explorations W1, we force to move a place p ∈ Pv such
that it belongs to the tour T v .

The procedure interClusterSearch is repeated until a maximum number of not
improving iterations I1 is reached.

Procedure restartSearch. After the end of the interClusterSearch proce-
dure, a restart method is applied in order to diversify the search. For each cluster, the
restart randomly moves the 25% of the places to the closest one. After that, the tours
for the modified clusters are re-computed in accordance with the same procedure used in
initialSolution(P).

4.3 Clustering search CS2 algorithm

As depicted in Algorithm 2, the algorithm ClusteringSearch CS2 starts computing
an initial solution using the procedure initialSolution(P). This initial solution is
then improved during a cycle repeated until the stopping condition is met, that is the algo-
rithms terminates after reaching a maximum number MI2 of iterations. At each iteration, the
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improvement phase consists in two steps. The increaseTour tries to improve the current
tour by adding a place not belonging in any tours in such a way to do not exceed its maximum
duration. The modifyTour tries to improve the current tour by swapping a place belonging
to a tour with a place not belonging in any tours. Finally, after a number of not improving
iterations, a restart is performed to diversify the search.

Algorithm 2: ClusteringSearch (CS2) algorithm.

Data: P , M , tp with p ∈ P , tpq with p, q ∈ P+, tmax;
Result: solution S = [T 1, . . . T k ];

1 (S, P1, . . . , Pk ) := initialSolution(P);
2 while not stoppingCondition do
3 increaseTour(S, T 1, . . . , T k );

4 modifyTour(S, T 1, . . . , T k );

5 destroyTour(S, T 1, . . . , T k );

6 return S;

ProcedureincreaseTour. TheincreaseTour implements a simple neighbourhood
search whose target is to improve the contribution of the Tm to the objective function without
exceeding the maximum duration tmax.

Let Pout be the set of the places that do not belong to any tours, that is Pout = P \ {T 1 ∪
. . . ∪ T k}. For each tour T 1 ∪ . . . ∪ T k , the search consists in evaluating the insertion of a
place p ∈ Pout in the tour Tm in a greedy way: for each pair of places q1 and q2 ∈ Tm , we
try to insert the place p between q1 and q2 by considering the new possible tour Tm given by
the sequence [. . . , q1, p, q2, . . .] instead of [. . . , q1, q2, . . .]; if the resulting tour is feasible,
it will be considered as the best move at the end of the neighbourhood exploration. Note that
in the case of two moves determining a tour with the same values, the search will favour that
solution with minimal tour duration.

Such a neighbourhood is completely explored to determine the best feasible move (best
improvement). At the end of the exploration, the best move is applied modifying a tour and
increasing the whole value of objective function determining a new best solution S. The
increaseTour ends as soon as a new place insertion is not found.

Procedure modifyTour. After the increaseTour, we expect that the only way
to improve a tour Tm is a swap between a place p ∈ Pout and a place q ∈ Tm . The
modifyTour implements a neighbourhood search based on this simple idea.

For each place p ∈ Pout and for each tour Tm , the search consists in evaluating the swap
between the pair (p, q) with q ∈ Tm by considering the new possible tour Tm given by the
sequence [. . . , q1, p, q2, . . .] instead of [. . . , q1, q, q2, . . .]; if the resulting tour is feasible,
it will be considered as the best move at the end of the neighbourhood exploration. Again,
the neighbourhood is fully explored to determine the best feasible move (best improvement).
Note that in the case of two moves determining a tour with the same values, the search will
favour that solution with minimal tour duration.

The neighbourhood search can accept also not improving moves, that is moves determin-
ing tours whose values is less than or equal to the incumbent one. To avoid cycles among
already visited solutions, we adopt the same tabu list L1 and L2 already introduced for
intraClusterSearch but with different values of �1 and �2 moves, respectively.

The procedure modifyTour is repeated until a maximum number of not improving
iterations I2 is reached.
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Procedure destroyTour. After the end of the modifyTour procedure, a restart
method is applied in order to diversify the search. For each tour, the restart deletes a third
of the places p ∈ Tm . Such places are those having the lower ratio between the overall tour
priority and the tour duration. The diversification is guaranteed by the fact that such places are
inserted in the tabu list L2, which avoids a place to be re-inserted in its origin tour for the next
�2 moves. By consequence, such places are not considered during the next increaseTour
application.

5 Quantitative analysis

In this section we report a quantitative analysis performed on a set of realistic instances
(depicted in Sect. 5.1) in order to evaluate (i) the possibility of solving the DSTC problem
in a realistic operational context, and (ii) the quality and the efficiency of the two algorithms
proposed for its solution (reported in Sect. 5.2 and Sect. 5.3).

5.1 Description of the instances

A set of 54 instances has been randomly generated in order to test the impact of the optimi-
sation on realistic scenarios based on the city of Turin, Italy, which has a surface of 130km2

and a population of 887, 000 inhabitants. Each instance is defined starting from (i) a set of
nodes (representing the locations of the depot, the laboratory and the places), (ii) a probability
distribution that assigns an integer score in [1, 100] to the places, and (iii) a fixed number of
teams k.

Five different set of nodes N1, . . . , N5 are taken from the test instances for the TOP pro-
vided in (Tsiligirides, 1984; Chao et al., 1996a), which are downloadable on the KU Leuven
website (www.mech.kuleuven.be/en/cib/op). Since such sets have cardinality between 21
and 102, we generated with a uniform distribution two further sets of nodes N6 and N7,
with cardinality 150 and 200 respectively, in order to have medium size instances. Finally,
two further sets of nodes N8 and N9, with cardinality 907 and 2149 respectively, have been
generated in order to have bigger and more challenging instances. The number of nodes
of instances N8 and N9 have been computed taking into account the actual daily swab
tests collected at the beginning of the second wave of the Covid-19 pandemic, when the
DCT was available in Italy. We considered the average (N8) and the maximum (N9) num-
ber of regional swab tests in the period between 22nd September and 21st October, 2021
(lab24.ilsole24ore.com/coronavirus/) multiplied for 0.2, that is approximately the fraction of
the inhabitants of the city of Turin on the total of Piedmont region population. Finally, we
fixed the number of nodes in such a way to have an expected value of the required swab tests
equal to the half of the estimate of the swab tests executed in the city of Turin, that is the
scenario in which the 50% of them need to be collected at home.

All set of nodes are scaled on the area of Turin as depicted in Figs. 2 and 3 in which the
red and the blue squares represent the depot and the laboratory, respectively.

Travelling distances are derived computing the 1-norm between each pair of nodes and
considering an average speed of 20km/h. We decided to compute distances with the 1-
norm because of the “checker-board structure” of most of the city, resulting in a better
approximation than the classic Euclidean distance.

Furthermore, for each node representing a place p ∈ P , we generate the number of swab
bp to be executed using the distribution of the households in accordance with the data of
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Fig. 2 Graphical representation of the set of nodes on the city of Turin

Fig. 3 Graphical representation of the set of nodes on the city of Turin

the Statistic Office of the City of Turin (http://www.comune.torino.it/statistica/): the families
with 1, 2, 3, 4, 5, and 6+ members are respectively the 46.99%, 26.84%, 14.12%, 9.10%,
2.13%, and 0.82%. The rationale of this choice is that each place can correspond to a family,
and if a person needs a test, then all the family members could have a contact with her/him.

For each set of nodes representing a place p ∈ P , we generate the priority rp of visiting
a node using two different distributions in [1, 100]: a discretised uniform and a discretised
cumulative exponential.

The maximum duration tmax and the number of the teams/tours k have been set in such a
way to guarantee that the available resources are not sufficient to collect all the swabs, fixing
t sp = 3 minutes for each swab test plus t+p + 2 thp + t−p = 5 minutes for the additional time
spent on the place p ∈ P .

For each set of nodes, we used the 1-tree bound (Valenzuela and Jones, 1997) for the TSP
as lower-bound of the travelling time needed to visit all the nodes with only 1 team. We sum
the whole service time tp to the 1-tree bound value in order to have a lower bound L of the
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Table 1 Summary of the 54 instances used in our quantitative analysis

Starting set |P+| tmax k id Starting set |P+| tmax k id

N1 32 150 1 N1U1 N5 102 420 1 N5U1

2 N1U2 2 N5U2

3 N1U3 3 N5U3

1 N1E1 1 N5E1

2 N1E2 2 N5E2

3 N1E3 3 N5E3

N2 21 90 1 N2U1 N6 150 540 1 N6U1

2 N2U2 2 N6U2

3 N2U3 3 N6U3

1 N2E1 1 N6E1

2 N2E2 2 N6E2

3 N2E3 3 N6E3

N3 33 120 1 N3U1 N7 200 540 2 N7U2

2 N3U2 3 N7U3

3 N3U3 4 N7U4

1 N3E1 2 N7E2

2 N3E2 3 N7E3

3 N3E3 4 N7E4

N4 100 360 1 N4U1 N4 100 360 1 N4E1

2 N4U2 2 N4E2

3 N4U3 3 N4E3

N8 907 540 10 N8U1 N9 2149 540 23 N9U1

15 N8U2 35 N9U2

20 N8U3 47 N9U3

10 N8E1 23 N9E1

15 N8E2 35 N9E2

20 N8E3 47 N9E3

total time. Then, we fixed tmax in such a way that it results as a multiple of 30 minutes less
than or equal to 9 hours, and k tmax < L . The characteristics of the 54 instances are reported
in Table 1 in which the letters U and E stand for uniform and exponential distributions used
to generate the priority.

5.2 Computational analysis

The aim of this section is to report the quantitative analysis on the realistic instances described
in the previous section. First we summarise the analysis performed using a general purpose
solver to solve the DSTC problem. Then, we discuss the efficiency and the quality of the solu-
tions computed by our proposed algorithms. The computational tests have been performed
on a standard desktop computer equipped with a Intel Core i7-8700 3.20GHz with 12 cores,
and 16 Gb of memory.
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Table 2 Summary of the results obtained with CPLEX as general purpose solver

cplex 3% cplex 1% cplex 3% cplex 1%

id Best secs Best secs id Best secs Best secs

N1U1 1301 0.2 1311 0.2 N4E1 3850 11.5 3850 10.2

N1U2 2207 52.0 2207 992.6 N4E2 6676 1998.9 6676 1826.4

N1U3 2782 29.1 2784 3754.8 N4E3 8755 1187.7 8747 1019.1

N1E1 1772 0.2 1772 0.2 N5U1 3793 14.1 3853 39.0

N1E2 3344 440.8 3345 5207.0 N5U2 6103 1498.3 6181 3671.9

N1E3 3668 2699.4 3668 3836.3 N5U3 7459 1185.7 7425 1176.3

N2U1 675 0.0 675 0.0 N5E1 4273 1.5 4309 9.5

N2U2 1123 0.2 1123 2.2 N5E2 7388 403.8 7445 2997.7

N2U3 1465 144.4 1465 52.5 N5E3 9198 1158.2 9273 1026.7

N2E1 837 0.0 837 0.0 N6U1 5201 33.6 5264 36.0

N2E2 1270 0.5 1270 0.5 N6U2 8632 698.8 8651 1647.6

N2E3 1680 3119.4 1680 3051.7 N6U3 10230 1920.0 10689 2093.2

N3U1 850 0.1 850 0.0 N6E1 3806 34.1 3821 287.2

N3U2 1921 0.8 1921 4.0 N6E2 6278 2650.3 6465 8281.3

N3U3 2360 4654.9 2360 4625.6 N6E3 7874 1812.2 8276 7148.1

N3E1 1124 0.2 1124 0.1 N7U2 10831 8023.3 10937 5587.6

N3E2 1513 4.8 1513 12.5 N7U3 12653 2244.5 12653 2239.5

N3E3 2586 294.8 2586 5006.3 N7U4 14408 3613.3 14135 3317.9

N4U1 3714 5.7 3714 23.8 N7E2 6834 1381.8 6801 1383.4

N4U2 5955 729.9 6046 469.5 N7E3 8810 2093.0 7866 1908.5

N4U3 7623 822.7 7644 2717.9 N7E4 10359 9867.8 10152 8225.6

Avg. time Cplex 3%: 1305.5 secs Avg. time Cplex 1%: 1992.6 secs

The integer linear program (1)–(7) has been implemented in Python adopting the Pyomo
optimisation library (Hart et al., 2017) and CPLEX 12.9 as general purpose solver. The main
settings of CPLEX are the default ones except for the relative MIP gap tolerance, which has
been set to 3% and 1% respectively in two subsequent tests. The rationale is to evaluate the
running time required by a general purpose solver to compute a good quality solution for the
DSTC. Then, we compare these results with the solutions computed by our algorithms. In
other words, we will use CPLEX as competitors of our algorithms.

Table 2 reports the computational results of the general purpose solver with different
relative MIP gap tolerance on the first 42 instances belonging to the sets N1–N7: the columns
“best” and “secs” report the value of the best integer solution computed and the running
time required in seconds, respectively. Such results proved the increasing complexity of the
problem as soon as the number of teams k and/or the number of places n increases. For this
reason, we do not consider the instance with k = 1 in the next comparisons since they can
be easily solved. We would remark that the general purpose solver stopped its computation
(for an out of memory error) before reaching the requested gap for an unexpected number
of the medium size instances. This number increases as soon as the MIP gap is set to 1%.
For the sake of completeness, we report an average running time of 621.6 and 825.8 for the
same test reported in Table 2 but with MIP gap set to 10% and 5%, respectively.
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Table 3 reports the comparisons between our algorithms and the general purpose solver
on the instances belonging to the sets N1–N7: the columns “best”, “secs” report respectively
the values of the best solution and the running time in seconds for each considered algorithm;
the columns “gap cplex 3%” and “gap cplex 1%” report the relative gap of the two proposed
algorithms with respect to the solution computed by CPLEX with different relative MIP
gap tolerance, respectively. The computational results of our algorithms are obtained with
the following settings: N I1 = {500, 1000, 2000}, W1 = {5, 8, 15} and I1 = {15, 25, 50},
MI2 = {50000, 10000} and I2 = n; the lengths of the tabu lists are �1 = 6, �2 = 10,
�3 = 10 for CS1, and �1 = 5, �2 = 12 for CS2. Further, we used the spectral clustering in
our computational tests. This parameter setting has been selected among others since it is the
one providing better average results.

The results reported in Table 3 prove the capability of our algorithms to compute good
quality solutions saving a large amount of running time ranging between 88% and 93%. The
gaps with initialSolution(P) ranges between the 4.9% and the 7.2%, which prove
their capability to improve the initial solution by escaping from local optima.

In terms of pure solution quality (discarding the running time), algorithm CS1 is less
competitive on average with respect to the general purpose solver: while the solver is better
on smaller instances, algorithm CS1 performs better on the larger ones. On the contrary,
algorithmCS2 computes on average better solution than the general purpose solver, especially
on larger instances. Summing up, the gaps between our algorithms and the general purpose
solver largely increases as soon as the complexity of the instances increases in terms of
number of places and/or number of teams. For the sake of completeness, the comparison of
our algorithms with the general purpose solver with MIP gap set to 10% and 5% showed
that the two algorithms compute better solutions than the solver: about 2.8% and 5.0% (MIP
gap set to 10%) and 0.7% and 2.9% (MIP gap set to 5%). Although not explicitly listed, we
would like to remark that the algorithms CS1 and CS2 perform very well also in the instances
having k = 1.

From the proposed analysis emerges the fact that the instances whose scores are generated
by a discretised uniform seems easier than those with a score generated by a discretised
cumulative exponential. This fact can be explained considering that the former distribution
generates scores that are more spread in the interval [1, 100] with respect to the latter, which
concentrates the scores in the values closest to 100. Accordingly, solutions of instances with
uniform scores are more heterogeneous than the ones with cumulative exponential scores,
which could lead to symmetry issues.

Table 4 reports the computational on the larger instances belonging to the sets N8 and
N9: the columns “best” and “secs” report respectively the values of the best solution and the
running time in seconds for each considered algorithm; the columns “gap init” and “gap CS1”
report the relative gap of the twoproposed algorithmswith respect to the solution computed by
initialSolution(P) and the CS1 algorithm, respectively. Such computational results
are obtained by changing only the parameters concerning the stopping conditions, that is
N I1 = 100 and MI2 = 1000. We would remark that CPLEX results are not reported since
it is not able to compute a good solution in a reasonable running time.

The results reported in Table 4 prove the better efficiency and quality of algorithm CS2
with respect to CS1: as a matter of fact, CS2 is capable to computer, on average, better
solutions (about 20.41%) than CS1 in less running time (CS2 is about ten times faster than
CS1). Furthermore, the bigger gaps with initialSolution(P) confirm their capability
to improve the initial solution by escaping from local optima.
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Table 3 Comparing the results of Clustering Search algorithms with CPLEX with a given MIP gap on the
instances with k > 1

id init CS1 CS2 Gap cplex 3% Gap cplex 1%

Best Best secs Best secs CS1 (%) CS2 (%) CS1 (%) CS2 (%)

N1U2 2181 2181 49.6 2207 36.0 −1.2 0.0 −1.2 0.0

N1U3 2643 2709 38.4 2766 38.8 −2.6 −0.6 −2.7 −0.6

N1E2 3235 3344 58.3 3340 37.0 0.0 −0.1 0.0 −0.1

N1E3 3409 3525 52.6 3631 39.9 −3.9 −1.0 −3.9 −1.0

N2U2 951 1026 36.3 1123 15.6 −8.6 0.0 −8.6 0.0

N2U3 1175 1422 21.7 1464 20.4 −2.9 −0.1 −2.9 −0.1

N2E2 1071 1235 21.9 1270 16.1 −2.8 0.0 −2.8 0.0

N2E3 1481 1645 35.7 1680 19.4 −2.1 0.0 −2.1 0.0

N3U2 1681 1921 63.8 1921 36.9 0.0 0.0 0.0 0.0

N3U3 1995 2215 37.3 2360 44.7 −6.1 0.0 −6.1 0.0

N3E2 1234 1467 25.8 1513 33.8 −3.0 0.0 −3.0 0.0

N3E3 2336 2385 27.6 2514 44.7 −7.8 −2.8 −7.8 −2.8

N4U2 5571 5702 153.1 5939 139.3 −4.2 −0.3 −5.7 −1.8

N4U3 7258 7269 149.3 7417 150.2 −4.6 −2.7 −4.9 −3.0

N4E2 6301 6397 105.0 6660 134.9 −4.2 −0.2 −4.2 −0.2

N4E3 8382 8572 115.5 8591 153.0 −2.1 −1.9 −2.0 −1.8

N5U2 6140 6143 192.3 6140 145.2 0.7 0.6 −0.6 −0.7

N5U3 7684 7684 194.2 7684 143.2 3.0 3.0 3.5 3.5

N5E2 7074 7276 168.0 7309 145.8 −1.5 −1.1 −2.3 −1.8

N5E3 9518 9571 162.0 9592 147.4 4.1 4.3 3.2 3.4

N6U2 8348 8348 212.2 8434 224.5 −3.3 −2.3 −3.5 −2.5

N6U3 10939 10939 220.7 10939 225.3 6.9 6.9 2.3 2.3

N6E2 6132 6202 249.5 6264 213.4 −1.2 −0.2 −4.1 −3.1

N6E3 8135 8212 226.9 8238 208.8 4.3 4.6 −0.8 −0.5

N7U2 10695 10757 220.1 10821 347.6 −0.7 −0.1 −1.6 −1.1

N7U3 14057 14127 224.4 14217 345.2 11.6 12.4 11.6 12.4

N7U4 14041 15649 392.6 16581 396.8 8.6 15.1 10.7 17.3

N7E2 7094 7108 221.7 7239 312.1 4.0 5.9 4.5 6.4

N7E3 9469 9469 222.7 9476 342.0 7.5 7.6 20.4 20.5

N7E4 9481 10452 290.1 11028 353.2 0.9 6.5 3.0 8.6

Avg. values 139.6 150.4 −0.4 1.8 −0.4 1.8
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Table 4 Comparing the results of Clustering Search algorithms on the larger instances

id init CS1 CS2 CS1 CS2
Best Best secs Best secs Gap init (%) Gap init (%) Gap CS1 (%)

N8E1 25937 58082 2378 65387 267 123.93 152.10 12.58

N8U1 21660 47156 3741 49650 268 117.71 129.22 5.29

N8E2 26202 74438 3024 81897 277 184.09 212.56 10.02

N8U2 22073 58988 7376 63598 329 167.24 188.13 7.82

N8E3 27777 83485 5457 97551 340 200.55 251.19 16.85

N8U3 22567 65272 10312 74572 338 189.24 230.45 14.25

N9E1 44785 129892 17285 148674 1549 190.03 231.97 14.46

N9U1 38188 108222 18981 116239 1576 183.39 204.39 7.41

N9E2 46899 142753 25912 189598 1628 204.38 304.27 32.82

N9U2 39581 105981 24841 149814 2060 167.76 278.50 41.36

N9E3 49968 156584 28459 222044 3095 213.37 344.37 41.81

N9U3 41286 125468 31587 175937 2273 203.90 326.14 40.22

Avg. values 14946 1167 178.80 237.77 20.41

Table 5 Evaluating the impact of solutions over different categories of patients

% Visited by cardinality % Tested by score % Tested by dist.

id 1 2 3 4 5 6 Min. Low Avg. High Max. A B C D

N9E1 1 33 48 56 68 63 0 0 20 36 67 38 29 40 31

N9U1 2 29 52 55 74 75 0 10 40 60 72 38 34 30 65

N9E2 4 59 66 67 81 88 2 12 38 50 55 52 47 52 46

N9U2 10 53 64 68 85 81 0 34 68 73 81 51 51 49 65

N9E3 36 60 66 68 81 88 3 26 62 71 91 60 56 59 50

N9U3 32 62 72 75 90 88 7 50 74 83 96 62 62 59 71

Avg. 14 49 61 65 80 80 2 22 50 62 77 50 46 48 55

5.3 Fairness andmanagerial insights

Althoughwe shown the effectiveness of the proposed approach in determining a near-optimal
solution of theDSTCproblem, severalmanagerial issues could not be directly deducible from
the results reported in Tables 3 and 4 . In fact, themodelling choice to use an objective function
representing an overall social cost or the behaviour of the proposed algorithm could lead to
undesirable effects from the point of fairness, with some categories of patients benefiting at
the expense of others. For this reason, we present a more detailed analysis of the solutions
determined by the CS2 algorithm, where we consider the fraction of patients who are selected
on the basis of the urgency to be tested, the number of family members, and the location of
their home in the geographical area on which the swab tests need to be collected.

In Table 5 we report the percentage of tested patients in the solution provided by the
algorithm CS2, dividing the nodes of the graph with respect to three different characteristics:
the cardinality, the score, and the sum of the distance from the depot and from the laboratory.
The scores have been divided into 5 classes: min (1–20), low (21–40), avg (41–60), hig (61–
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Fig. 4 Percentage (bubble dimension) of visited nodes by cardinality (x-axis) and score (y-axis) for instances
with uniformly distributed scores and different number of teams

80), and max (81–100). Furthermore, the geographic area has been divided into 4 sub-areas,
depending by the ratio between the sum of the distance between the node and both the depot
and the laboratory, and the distance between the depot and the laboratory:A (1.0 – 1.4),B (1.4
– 1.8),C (1.8 – 2.2), andD (2.2 – 2.6). From a geometrical point of view, the borders between
the 4 sub-areas could be seen as 4 concentric ellipses having the depot and the laboratory as
foci. We remark that these all nodes’ attributes has been considered as independent during
the instance generation, and we present results about the larger instances, since they are the
more significant from a statistical point of view.

As expected, the cardinality and the score are very relevant on the fraction of the nodes
selected in the solution. While this is desired with regard to scores, small families are disad-
vantaged, especially when the resources available are scarce. Indeed, less than 10% of nodes
corresponding to mononuclear families are visited when the number of teams is equal to 23
(instances N9E2 and N9U2) or 35 (instances N9E2 and N9U2). This means that most of
nodes with higher score and cardinality 1 and 2 are not visited because the time needed for
their test collection would decrease the overall social cost. This phenomenon can be better
seen in Fig. 4, where 30 different groups of nodes are considered on the basis of both the
cardinality and the score class. The impact of increasing the number of teams can be further
observed by comparing the three bubble charts, where the coverage is guaranteed also for the
more urgent mononuclear families as soon as the quantity of resource increases. Finally, we
observe that scores generated with exponential distribution amplify this effect. Therefore, the
issue of fairness between families with different number of components should be discussed
with the decision maker when defining the score to be associated to each node, since it could
lead to different trade-offs between the number of traced infected patients and level of fair-
ness. From a managerial point of view, a what-if analysis by comparing the characteristics
of solution provided by different scores using our approach is suggested.

On the contrary, a greater distance from the depot and the laboratory does not seem to
represent a disadvantage in terms of probability of being tested. As can be observed in the last
four columns of Table 5, on average, the fraction of patients tested does not depend on how
far they are from the start and end position of the tours. Sub-area D has counter-intuitively a
slightly higher percentage of patients tested than the more central ones. This is also evident
from Fig. 5, where fraction of tested patients divided by sub-area and score class is shown.
We notice that the impact of the score is definitely superior with respect to the sub-area in
which the patients are located. In particular, more urgent swabs in sub-area D are slightly
more likely to be executed with respect other sub-areas, while the opposite happens for the
lower score classes. Nevertheless, this phenomenon is attenuated by increasing the number
of teams (instance N9U3). Finally, we remark that although the number of collected swab
tests increases when more resources are available, a node can be visited in the solution with
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Fig. 5 Percentage (bubble dimension) of tested patients by geographical area (x-axis) and score (y-axis) for
intances with uniformly distributed scores and different number of teams

a certain number of teams and not visited in the solution with a higher one (the reverse is
obvious). This fact has been observed several times in the solutions provided by the algorithm
CS2 and further proves the need of a tool such as that proposed in thiswork to support complex
decisions for the DSTC by computing non-trivial solutions.

6 Conclusions

One of the main reasons of the limited spread of the DCT app in Italy was the fear of being
trapped at home without being able to take the test urgently. This happened (and it was
reported by many newspapers) in several northern cities when the pandemic was soaring.
This lead us to investigate the DSTC problem as stated in the research question reported in
the introduction.

We introduced a new optimisation problem arising in the daily management of a contact
tracing system. We provided a mathematical formulation of the problem and two new algo-
rithms for its solution. Our quantitative analysis considered a set of 54 instances randomly
generated in order to test the impact of the optimisation on realistic scenarios based on the city
of Turin, Italy. The quantitative analysis proved the possibility of solving the DSTC prob-
lem in a realistic operational context while the comparison with a general purpose solver
proves the effectiveness and the efficiency of the proposed algorithms. Furthermore, it is
worth noting that the computed solutions are not trivial: actually, some places with higher
priority are “sacrificed” to visit a greater number of places with lower priority, in the name of
a better result for the community. Summing up, we can answer positively to the our research
question since we proved the capability (especially that of the algorithm CS2) to deal with
real instances, that is those belonging to the benchmark sets N8 and N9. Further, from the
specific analysis, it was ascertained that the solutions provided by the proposed approach do
not present any critical issues in terms of fairness with respect to the geographical area to
which the patients belong.

The DSTC poses a managerial implication that should be addressed by healthcare man-
agers, that is how to deal with places that are not served during a day. There are several
possibilities. One is to avoid such a situation with a proper forecasting of the the number
of swab tests to be collected the day after (as reported in Aringhieri et al. (2017) for ambu-
lance management) in order to determine the appropriate number of teams. Alternatively,
the healthcare managers can decide to improve their priority in order to push them to the top
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of the list. We would recall that the choice of the priority scores rp is left to the decision
maker, who can adopt a range of policies frommaximising the absolute number of swab tests
(rp = 1 for all p) up to establish a hierarchical priority among the places (e.g., rp � r ′

p
implies that the place p′ can be visited only if p is also visited).

One of the possible extensions of this work is therefore the development of a prioritisation
method. To this end, we can drawn inspiration from the work of Charkhgard et al. (2018) in
which the authors studied the problem of minimising the spread of influenza virus infections
in (dynamic) networks of people by isolating sick nodes (or vaccinating susceptible nodes)
over time. From an optimisation perspective, this can be viewed as a problem of removing
nodes with certain characteristics from networks of people over time. This problem belongs
to the larger class of problems called critical node problem for which we developed several
efficient optimisation algorithms (Aringhieri et al., 2016b; Addis et al., 2016; Aringhieri
et al., 2016a). The challenge posed by the development of such a prioritisation method is
to evaluate which nodes are critical, that is maximising the fragmentation of the resulting
network. From this point of view, the distributed approach of many DCT apps makes this
evaluation more difficult. The distributed approach is a way to foster privacy protections in
the form of local storage of data on smartphones, which can be uploaded to the central system
only after the approval of the person involved. The main effect is a limited knowledge of the
dynamic network of possible infected people making more challenging the understanding
which are the most critical nodes, that is those corresponding to people that should be tested
before others.

Another possible extension of this work is to consider the possible dynamics of the DSTC
problem operational context. We considered a static version of the problem in which all the
swab tests are known in advance. Our work can be extended to include the case in which new
swab tests to be collected might arrive over time. A possible solution is to develop online
re-optimisation algorithms (Aringhieri, 2020).
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