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The TUS observatory was the first orbital detector aimed at the detection of ultra-high energy
cosmic rays (UHECRs). It was launched on April 28, 2016, from the Vostochny cosmodrome in
Russia and operated until December 2017. It collected ∼ 80, 000 events with a time resolution of
0.8 `s. A fundamental parameter to be determined for cosmic ray studies is the exposure of an
experiment. This parameter is important to estimate the average expected event rate as a function
of energy and to calculate the absolute flux in case of event detection. Here we present results
of a study aimed to calculate the exposure that TUS accumulated during its mission. The role
of clouds, detector dead time, artificial sources, storms, lightning discharges, airglow and moon
phases is studied in detail. An exposure estimate with its geographical distribution is presented.
We report on the applied technique and on the perspectives of this study in view of the future
missions of the JEM-EUSO program.
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1. Introduction

The TUS observatory was launched as a part of the Lomonosov satellite on April 28Cℎ, 2016,
from the Vostochny cosmodrome in Russia. The main aim of the mission was to test the observation
principle of a space-based fluorescence cosmic ray detector. The satellite flew on a sun-synchronous
orbit with an inclination of 97.3◦, a 94 minutes period and an altitude of about 485 km. The detector
could acquire data until December 2017 and used to cover all latitudes from −82.7 to 82.7◦. The
detector consisted of a Fresnel mirror focusing the light onto a camera. The mirror had an area of
∼ 2 m2 and the focal length of 1.5 m. The field of view was of 9◦×9◦ which corresponded to an area
of approximately 80 km × 80 km on ground. The camera was implemented as a square matrix of
16×16 Hamamatsu R1463 photomultipliers (PMTs). The PMTs had a 13 mm diameter multi-alcali
cathodes covered by a UV glass filter and a reflective light guide with a square entrance with a
15 mm side. Each PMT covered an area of ∼ 5 km × 5 km on ground. The quantum efficiency in
the band 300–400 nm was around 20%. The gain of each single channel was measured before the
flight and was found to vary from 5 · 105 to 1.5 · 106 [1]. A protection mechanism was implemented
and the gains could be automatically reduced when the luminosity was too high.

The readout electronics could operate in four modes specifically designed for different classes
of events. The Extensive Air Shower (EAS) mode, which will be relevant for this contribution, was
aimed at the detection of ultra-high energy cosmic rays. The time sampling in this case was 0.8 `s
in order to give a good time resolution of extensive air showers.

The trigger schemewas structured in two steps to allow background rejection and the acceptance
of the cosmic ray events. A fast ADC converted analogue signals of PMTs into digital codes with
the resolution of 0.8 `s. The digitized signals were summed up on a sliding window of 16 frames
for each photomultiplier. The integrated values were compared then with a preset threshold on a
moving matrix of 3× 3 contiguous pixels. The first level trigger was activated in case the threshold
was overcome for any of such pixels. The persistency of such a signal excess was then tested each
16 frames. Once the persistency was longer than a predetermined value, the second level trigger
was issued. At this moment the data transfer was initiated. The Block of Information unit, that
managed the data acquisition for all scientific devices on board the Lomonosov satellite [1], could
accept data from TUS at most once in 50-60 seconds. This external constraint imposed a lower
limit to the acquisition dead time of the TUS detector.

2. The TUS geometrical aperture

The current work is based on events triggered in the EAS mode in the night segments of the
Lomonosov orbits. For each trigger, the signal for all pixels of the focal surface and 256 time frames
is available. Further information like the satellite position and speed vector were transmitted by the
satellite operator Roscosmos. The distribution of the triggers in time is shown in the left panel of
Fig. 1. In this plot the amount of triggers per day is shown as a function of the mission time. The
time is calculated as the number of days since the start of acquisition, with C0 being May 19, 2016.
Data have been acquired in several discontinuous sessions, with the highest exposure gathered in
Autumn 2016 and in the second half of 2017. The interruptions are mainly related to the operation
in other acquisition modes. The right panel shows the geographical distribution of the triggers. As
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it is clearly apparent, the triggers were distributed quite uniformly with a higher concentration over
continents. A notable exception to this is represented by Antarctica, the arctic and Sahara which
remain quiet areas with the trigger densities comparable to these above the oceans.
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Figure 1: Distribution of the triggered events. Left panel: the time distribution from the first day of
acquisition. Right panel: the geographical distribution of the triggers.

Most of the triggers can be grouped in sequences of about 2000 s (33 minutes) from the first
to the last (see Fig. 2, left). As a matter of fact, 2000 s is the time that the satellite takes to cross
the night side of the Earth and therefore such sequences can be associated to a single orbit of the
satellite. The number of triggers per orbit is shown in the right panel of Fig. 2.
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Figure 2: Left side: duration of the night time (or active time) of acquisition orbits. Right side: number of
triggers per orbit.

As we have already mentioned above, TUS had a dead time from 52 to 60 seconds after each
trigger, depending on the mission period, and therefore no orbits with more than ∼ 40 triggers
could be generally observed. An estimate of the active time can be therefore given for each orbit,
under the assumption that the detector has always been in acquisition. Orbits with a high number
of triggers have a very high fraction of dead time while, on the other hand, orbits with few triggers
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have a higher active time. This way, 3118 orbits with a total acquisition time of 73 full days were
identified. A total active time of 31 days is obtained as soon as the dead time is taken into account.
This amounts to ∼ 42% of the total acquisition time. Such an estimate is based only on the identified
orbits and could be potentially an underestimate of the real acquisition time.

Thanks to the knowledge of the satellite trajectory, it was possible to estimate with a ∼ 1
second resolution the status of the detector for each position on the Earth map. The geographical
distribution of active time fraction k(i, _) = Cact(i, _)/Ctr(i, _) is shown in Fig. 3. In this formula,
Cact is the amount of active time, Ctr is the total time integrated in a specific location of the Earth,
i is the latitude and _ is the longitude. It can be clearly seen that the presence of a higher trigger
rate implies a higher dead time. As a consequence of that, populated areas or stormy regions
are basically not contributing to the cumulated exposure. Aurora ovals are also clearly visible as
non-active areas in the polar regions. On the other hand, oceans are very quiet areas, where cosmic
ray studies would be favoured.

Figure 3: Ratio of active time over the total amount of transit time as a function of geographical location.

Positions of the Sun and the Moon were calculated based on data from the Japanese Coast
Guard [5, 6]. All triggers could be therefore classified depending on the Moon illumination. The
left panel of Figure 4 shows the distribution of the active time fraction k(i, _). The fraction of data
collected when the Moon was under horizon or under 20% phase (close to new moon) is shown in
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red. The whole data sample is shown in black. The presence of low or no-Moon illumination is
verified in 21.2 full days of acquisition. The amount of active time in this condition amounts to 12.9
days, 60% of moonless acquisition time. It is clearly apparent that a cut on the Moon illumination,
while decreasing the absolute amount of active time, would increase the data quality.
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Figure 4: Left panel: active time distribution for each acquisition orbit. The full data set is shown in black.
The distribution with low moon illumination is shown in red. Right panel: fraction of triggers with cloud
top height under ℎthr.

The cloud condition for each trigger has been estimated based on MERRA data [7]. In Fig. 4
(right side) we plot the fraction of events where the cloud top height is lower than a threshold (ℎthr).
It can be seen how most (∼ 70%) of the triggers are in cloudy condition. It is therefore crucial to
estimate the efficiency for cosmic ray detection in presence of clouds. Simulations will be used for
this purpose and we will follow the approach described in [4].

The signal recorded for each triggered event can be used to estimate the rate of photoelectrons
generated by the airglow emission. Such information is fundamental for the estimation of the
performances of future space-based detectors since all trigger algorithms must cope with this
emission. An accurate estimate of the airglow photon radiance requires detailed optics simulations
which go beyond the scope of this publication and therefore we will only estimate the rate of
photoelectrons per frame. Such information will be used in the simulations to estimate the energy
dependence of the exposure. The conversion rate from ADC channels to photoelectrons is given by
the following formula:

=0 = U
@4

�

'�

ΔC
�, (1)

where� is the gain of the channel,� and ' are the capacitance and resistance in the anode RC chain
of each PMT, ΔC is the time frame of TUS and @4 is the charge of the electron. The calculation is
performed only for the cases where the high voltage status flag was set to 255 ADC channels, or in
other terms, where the high voltage setting was maximum. In such cases the measured gain values
are reliable and Eq. (1) can be therefore used. The distribution of the background illumination
obtained with the TUS data is shown in Figure 5.

As it can be seen, the rate of the background illumination varies from 1 to over 100 photoelec-
trons per framewith some less common cases up to several thousand photoelectrons. The right panel
of Figure 5 shows the geographical location of events where a rate higher than 80 photoelectrons
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Figure 5: Left panel: estimated average photoelectron rate per pixel and time frame from airglow. Right
panel: distribution of high background rate frames (#ph > 80).

per frame was detected. It is apparent that such extremely high rates were found in the Aurora ovals
or above very densely populated areas. Several linear structures can be observed in the Southern
hemisphere. They appeared to be due to the transition from nocturnal segments of orbits to regions
where the satellite started to receive light from the Sun. Such data are collected during the Southern
hemisphere summer in a sequence of acquisition sessions separated by few weeks. The shift from
a dark region to a bright one causes the generation of triggers in a very limited space as it can be
seen in the figure. The detector is then switched to low gain mode once the satellite enters in the
full day light and all the following triggers are not taken into account anymore. All such high rate
conditions can be identified as extreme cases and do not reduce the exposure in a significant way.

3. The TUS trigger performance

An estimate of the trigger performance is obtained through Monte Carlo simulations. Two
thousand extensive air showers were injected in an area �simu larger than the field of view (±150 km)
to avoid border effects. Showers were simulated with zenith angles from 0◦ to 90◦ and the azimuth
from 0 to 360◦. The TUS trigger logic was implemented in the ESAF simulation software [8]
and used for this estimation. Several trigger thresholds used in the mission were tested with an
airglow rate of ∼ 18 photoelectrons per frame. The estimate of the trigger performance depends on
a number of factors, among them the sensitivity of the photodetector, the level of the background
illumination and software parameters of the trigger. During an incident described in [3], 20% of
the PMTs were destroyed and sensitivities of the remaining PMTs changed in comparison with
pre-flight measurements. A number of attempts of in-flight calibration have been performed but
none of them is fully reliable yet. This introduces a large factor of uncertainty in estimates of the
trigger threshold that can be wrong by a large amount. As a result of our preliminary estimation,
we obtain a trigger threshold & 400 EeV. Moreover, the TUS trigger algorithm is more efficient for
horizontal showers leading to a higher fraction of high zenith angle events. The majority of the
events could indeed trigger only above 40◦–50◦. This is a consequence of the persistency condition
of the trigger that rejects all events lasting for a short time.
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A set of simulations has been performed to estimate the efficiency of the trigger in cloudy
conditions. Thousand extensive air showers at fixed energy have been simulated for each cloud top
height condition the same way as for clear sky. Table 1 presents the fraction of triggers with clouds
below a specific altitude (as shown in the right panel of Figure 4 and indicated as [(ℎ < ℎthr)). The
second row of Table 1 shows the ratio of the efficiency ncloud obtained in cloudy conditions to the
one obtained in clear sky (nCS).

Clear sky 1 km 2 km 4 km 6 km 8 km 10 km 12 km 14 km
[(ℎ < ℎthr) 28% 29% 38% 56% 64% 72% 80% 93% 99.8%
ncloud/ nCS 100% 100% 83% 53% 40% 16% 6% 6% 0%

Table 1: Reduction of the trigger efficiency due to the presence of clouds with respect to clear sky at 2×1021

eV.

A higher cloud top height will cause a significant reduction of the triggered events given the
reduction of the amount of light reaching the detector. An estimate of the overall reduction of the
exposure in the whole flight can be given by an average of the trigger efficiency weighted by the
fraction of triggers in each condition. Given the cloud conditions in the field of view at the time of
the flight, an exposure of 57% of what is expected for the clear sky case has been estimated.

Airglow rate [ph / frame] 5 18 30 50 100
NTrigg./ NTrigg.,5 100% 60% 56% 18% 0%

Table 2: Triggers fraction at 2 × 1021 eV with respect to the 5 photoelectrons / frame case.

The efficiency of the trigger was also estimated for different airglow rates. We tested 5, 18,
30, 50 and 100 photoelectrons / frame and estimated the number of triggers in each condition for
a fixed energy. The lower rates are characterized by a higher efficiency. By assuming the rate at
5 photoelectrons / frame (NTrigg.,5) to be 100%, we could estimate the change in the trigger rate
shown in Tab. 2. As expected, we found a strong dependence of the efficiency on the airglow rate.
For space-based observatories it will be therefore crucial to estimate the brightness of the field of
view and the performances of the trigger in different illumination conditions.

4. Conclusions

Thanks to the analysis of the time distributions of the TUS triggers it was possible to identify
a minimum of 3118 complete orbits of data acquisition. This has to be considered as a preliminary
estimation given that particularly quiet orbits may not be counted at all in this analysis. By
considering the number of triggers occurring in such orbits and the dead time occurring after each
trigger, we identified 31 days of full time acquisition. The exposure is mainly concentrated on
the oceans, deserts and in Antarctica while populated or stormy areas do not contribute to the
total exposure given the very long dead time of TUS. A smaller dead time in future detectors will
certainly reduce the severity of this loss of exposure. Moon-free data are characterized by a higher
active time fraction. The estimation of the count rate from airglow gives a variable rate from a

7



P
o
S
(
I
C
R
C
2
0
2
1
)
3
3
3

Estimation of the exposure of the TUS space-based cosmic ray observatory Francesco Fenu

few photoelectrons per frame up to over 100. The most luminous parts of the Earth are the ones
associated to the Aurora ovals, densely populated areas and to regions close to the terminator. The
trigger performances must be still studied in detail but preliminary indications point to a trigger
threshold & 400 EeV. The presence of clouds reduces the exposure in this range by ∼ 40%. As
expected, a strong dependence of the trigger performances on the field of view luminosity is found.
The design of future missions must take carefully into account the variability of the field of view
scenario and the trigger performances for various sky conditions. Under the above mentioned
assumptions, the purely geometrical exposure of the TUS mission (E ), without clouds and for very
high event luminosity, can be estimated as E = �FOV × Ω × C. The geometrical exposure amounts
therefore to ∼ 1550 km2 sr yr.
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