

UNIVERSITÀ DEGLI STUDI DI TORINO

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Molecular Characterization and Pathogenicity of Diaporthe Species Causing Nut Rot of Hazelnut in Italy

This is the author's manuscript
Original Citation:
Availability:
This version is available http://hdl.handle.net/2318/1947538since 2023-12-11T17:22:08Z
Dublished version:
DOI:10.1094/PDIS-01-23-0168-RE
Terms of use:
Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)

1	Molecular Characterization and Pathogenicity of <i>Diaporthe</i> Species Causing Nut Rot of
2	Hazelnut in Italy
3	
4	Muhammad Waqas ¹ , Vladimiro Guarnaccia ^{1,2} , Simone Bardella ³ , Davide Spadaro ^{1,2,†}
5	
6	¹ Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo
7	Braccini 2, 10095 Grugliasco (TO), Italy
8	² AGROINNOVA – Centre of Competence for the Innovation in the Agro-environmental Sector,
9	University of Torino, Largo Braccini 2, 10095 Grugliasco (TO), Italy
10	³ Fondazione Agrion - Via Falicetto, 24, 12030 Manta (CN), Italy
11	
12	†Corresponding author: D. Spadaro; davide.spadaro@unito.it
13	
14	
15	Keywords: Corylus avellana; Diaporthe eres; hazelnut; nut rot; pathogenicity; phylogeny

17 Abstract

Hazelnut (Corvlus avellana), a nut crop that is rapidly expanding worldwide, is endangered by a 18 19 rot. Nut rot results in hazelnut defects. A survey was conducted in north-western Italy during 2020 and 2021 to identify the causal agents of hazelnut rots. Typical symptoms of black rot, 20 21 mold, and necrotic spots were observed on hazelnut nuts. The prevalent fungi isolated from symptomatic hazelnut kernels were Diaporthe spp. (38%), Botryosphaeria dothidea (26%), 22 Diplodia seriata (14%), and other fungal genera with less frequent occurrences. Among 161 23 24 isolated Diaporthe spp., 40 were selected for further analysis. Based on morphological characterization and multi-locus phylogenetic analysis of the ITS, tef1- α , and tub2, seven 25 Diaporthe species were identified as D. eres, D. foeniculina, D. novem, D. oncostoma, D. 26 ravennica, D. rudis, and D. sojae. D. eres was the main species isolated from hazelnut rots, in 27 particular from moldy nuts. Pathogenicity test performed on hazelnut nuts 'Tonda Gentile del 28 Piemonte' using a mycelium plug showed that all the *Diaporthe* isolates were pathogenic on 29 their original host. To our knowledge, this work is the first report of D. novem, D. oncostoma and 30 D. ravennica on hazelnut nuts worldwide. Diaporthe foeniculina, D. rudis, and D. sojae were 31 reported for the first time as agents of hazelnut nut rot in Italy. Future studies should focus on the 32 comprehension of epidemiology and climatic conditions favoring the development of *Diaporthe* 33 spp. on hazelnut. Prevention and control measures should target D. eres, representing the main 34 35 causal agents responsible for defects and nut rot of hazelnuts in Italy.

36

37 Introduction

Hazelnut (*Corylus avellana* L.) belongs to Betulaceae family, which is native to Europe and
Western Asia, where it is widely distributed (Arciuolo et al. 2020). Hazelnut production

Page 3 of 44

3

increased in the last several years in response to a high demand for its health benefits from fiber
and nutrients (Glei et al. 2018; Nunzio 2019), but also for its massive use in spreadable creams
and other confectionery products (Silvestri et al. 2021). The main producers of hazelnuts are
Turkey, Italy, and the USA. In Italy, hazelnut is the major nut crop, cultivated on 84,440 ha, with
an annual production of about 118,791 t (ISTAT 2022). The cultivation of hazelnut is spread all
over Italy, from north to south, with main production regions as Latium (38%), Campania (37%),
and Piedmont (13%) (Scarpari et al. 2020).

47 Hazelnut production is threatened by various fungal pathogens and disorders which reduce nut quality and yield by altering its kernel (Arciuolo et al. 2022; Battilani et al. 2018; Teviotdale et 48 al. 2002) and can release mycotoxins (Spadaro et al. 2020; Valente et al. 2020). Several defects 49 are reported on hazelnut kernels, such as inner discoloration, necrosis, and presence of 50 blemishes, which reduce the market quality standards (Arciuolo et al. 2020). Hazelnut rot, called 51 "avariato" (spoiled) in Italian, affects 3 to 7% of the nuts every year, causing significant 52 economic losses (Vitale et al. 2020). Different fungal genera were isolated from rotten hazelnuts: 53 Alternaria, Aspergillus, Cladosporium, Colletotrichum, Diaporthe, Fusarium, Penicillium 54 Pestalotiopsis, and Phoma in the Caucasus region (Battilani et al. 2018); Alternaria, 55 Colletotrichum, Fusarium, and Phomopsis in central Italy (Librandi et al. 2006); Alternaria, 56 Botryosphaeria, Cladosporium, Colletotrichum, Diaporthe, Didymella, Fusarium, and Phoma in 57 58 northern and southern Italy (Vitale et al. 2020). Among the fungal pathogens, *Diaporthe* spp. seem to play a major role in the occurrence of hazelnut defects in the Caucasus region (Arciuolo 59 et al. 2022; Battilani et al. 2018), but it is unclear which of the above-mentioned fungal genera 60 play a key role in Italy. 61

62 The genus *Diaporthe* (anamorph *Phomopsis*) belongs to Diaporthaceae family and was originally established with *Diaporthe eres* as the typified species isolated from *Ulmus* sp. in Germany 63 64 (Nitschke 1870; Senanayake et al. 2017). The members of Diaporthe genus represent a cosmopolitan group of fungi which include plant pathogens, saprobes on decaying tissues and 65 66 endophytes widely distributed in tropical, and temperate regions worldwide (Guarnaccia et al. 2018; Marin-Felix et al. 2019; Yang et al. 2020). Diaporthe spp. are causal agents of diseases on 67 a wide range of economically important plant hosts, such as horticultural, forest, ornamentals, 68 69 and fruit crops (Bertetti et al. 2018; Dissanayake et al. 2017; Guarnaccia and Crous, 2018; Huang et al. 2015; Prencipe et al. 2017; Thompson et al. 2011; Udayanga et al. 2014; Yang et al. 2018). 70 Historically, *Diaporthe* spp. were considered monophyletic group based on unique and typical 71 72 Phomopsis spp. asexual and sexual morphs (Gomes et al. 2013). However, paraphyletic nature was revealed by Gao et al. (2017) showing that the genera Phaeocytostroma, Stenocarpella 73 (Lamprecht et al. 2011), Pustulomvces (Dai et al. 2014), Ophiodiaporthe (Fu et al. 2013) and 74 Mazzantia (Wehmeyer 1926) are embedded in Diaporthe s. lat. Moreover, Senanayake et al. 75 (2017) included *Diaporthe*-like clades within the order Diaporthales. 76

77 Pathogen identification at species level is crucial to understand the biology and epidemiology and to develop an appropriate disease management (Santos et al. 2017; Yang et al. 2018). 78 Traditionally, *Diaporthe* species identification was based on culture characteristics, morphology, 79 80 and host association (Udayanga et al. 2011; Yang et al. 2020), but morphological identification was unreliable for species identification because of high similarity of *Diaporthe* spp. 81 (Dissanayake et al. 2017; Udayanga et al. 2011). Several studies based on the use of multi-locus 82 phylogenetic analyses solved the boundaries within Diaporthe genus (Gomes et al. 2013; Marin-83 Felix et al. 2019; Udayanga et al. 2012). Mostly, internal transcribed spacer (ITS), translation 84

elongation factor-1 α (*tef-1* α), beta tubulin (β -*tubulin*), calmodulin (*CAL*), and histone (*HIS*) genes are used for molecular characterization of *Diaporthe* spp. (Guarnaccia et al. 2018; Yang et al. 2020).

In Northern Italy, hazelnuts often show nut rot. Several fungi have been associated to nut rot in 88 Italy (Librandi et al. 2006; Vitale et al. 2020). However, the role of the causal agents, and in 89 particular of *Diaporthe* spp., has not been clarified. Moreover, it is unclear which species of 90 Diaporthe are involved in the development of hazelnut nut rot. In order to investigate and better 91 92 understand the etiology of defected kernels, a monitoring of their possible causal agents was performed between 2020 and 2021. The aims of the present study were (i) to isolate and identify 93 the fungal species associated with hazelnut nuts defects in Northern Italy, (ii) to evaluate the 94 genetic diversity of *Diaporthe* spp. associated with hazelnut nuts defects in Northern Italy, and 95 (iii) to evaluate the pathogenicity of the species found. 96

97

98 Materials and methods

99

100 Sampling and isolation

Field surveys were conducted during November-December each in 2020 and 2021 in nine orchards located in Piedmont, Northern Italy. A total of 420 nut samples were collected from defected hazelnuts (moldy, black rotted, and necrotic) at BBCH 89 (nuts separated from the husk at the basal scar; Paradinas et al. 2022) (**Fig. 1**). Symptomatic kernels cut in half were disinfected in 1% sodium hypochlorite for 1 min, rinsed in sterile water for 1 min, and dried on sterile filter paper. Then five small pieces of half cut kernels were placed on potato dextrose agar (PDA, VWR international, Leuven, Belgium) containing streptomycin (0.025g/l). The PDA plates (9

108 cm diameter) were incubated at 23 ± 2 °C with a cycle of 12 h of light and 12 h of darkness for 109 2-3 days depending on colony growth. Pure cultures were obtained after 10 days by transferring 110 the mycelium plug from the edge of the colonies and placed in fresh PDA plates. Isolates used in 111 this study were maintained and kept at -80 °C in the culture collection of the University of Turin, 112 Torino, Italy.

113

114 Macro- and micro-morphological analysis

115 Mycelial plugs (5 mm diameter) were taken from the margins of actively growing colonies on PDA and transferred onto the center of Petri dishes containing 2% tap water agar supplemented 116 with sterile pine needles (PNA; Smith et al. 1996) and PDA and incubated at room temperature 117 (22± 2 °C) under a 12-h near-ultraviolet light/12-h dark cycle to induce sporulation according to 118 Gomes et al. (2013) and Lombard et al. (2014). Colony characters and pigment production on 119 PDA and PNA were noted after 7 and 10 days. Colony colors were ranked according to Rayner 120 (1970). Cultures were observed periodically for the development of ascomata and conidiomata. 121 Morphological characteristics were examined by mounting fungal structures in clear lactic acid. 122 Using an Eclipse 55i microscope (Nikon, Tokyo, Japan), 30 measurements at 1000× 123 magnification were performed per isolate. Initially, identification was performed by colony and 124 conidial morphology as described by Phillips et al. (2013), and then based on molecular 125 126 identification by using internal transcribed spacer sequence amplified with primers ITS 1 and ITS 4 (White et al. 1990). 127

128

129 DNA extraction and PCR amplification

130 Forty isolates of Diaporthe species were selected based on morphological analysis, DNA sequence, and geographical origin data for further study (Table S1). 131 132 Genomic DNA was extracted from selected isolates of *Diaporthe* spp. using E.Z.N.A. Fungal DNA mini kit (Omega Bio-tek, Darmstadt, Germany) from 100 mg of mycelium grown on PDA 133 according to the manufacturer's instructions. Partial regions of three loci were amplified. The 134 primer sets ITS1 (5'-TCCGTAGGTGAACCTGCGG-3')/ITS4 (5'-TCCGCTTATTGATATGC-135 3') (White et al. 1990) were used to amplify the internal transcribed spacer (ITS) of ribosomal 136 137 DNA. Primer pair EF1-728F (5'-CATCGAGAAGTTCGAGAAGG-3')/EF1-986R (5'-TACTTGAAGGAACCCTTACC-3') (Carbone and Kohn 1999) were used to amplify partial 138 translation elongation factor 1- α gene (*tef1-\alpha*), and the beta-tubulin (*tub2*) gene was amplified 139 using primers Bt2a (5' GGTAACCAAATCGGTGCTGCTTTC 3') and Bt2b 140 (5' ACCCTCAGTGTAGTGACCCTTGGC 3'). In case of lack of amplification of beta-tubulin 141 T1 (5'-AACATGCGTGAGATTGTAAGT-3') Bt2b 142 gene. and (5'-ACCCTCA-GTGTAGTGACCCTTGGC-3') primers were used (Glass and Donaldson 1995; O'Donnell and 143 Cigelnik 1997). The PCR amplification mixtures and cycling conditions for all three genes were 144 performed according to Guarnaccia and Crous (2018). The amplification products were analyzed 145 on 1% agarose (VWR Life Science AMRESCO® Biochemicals) after staining with GelRedTM. 146 PCR products were purified with the PCR Purification Kit (QIAquick®, Germany) before 147 148 sequencing by Macrogen Europe B. V. (Amsterdam, Netherlands). The obtained sequences were analyzed and using the Geneious v. 11.1.5 program (Auckland, New Zealand). 149

150

151 Phylogenetic analysis

152 The sequences obtained from the 40 strains in this study were subjected to a blast search in NCBI's GenBank (https://blast.ncbi.nlm.nih.gov/Blast.cgi) nucleotide database to determine the 153 154 closest species for a taxonomic framework of the studied isolates. The results of Blast analysis indicated that all the isolates belonged to *Diaporthe* genus. The sequences generated in this study 155 and reference sequences of *Diaporthe* spp. (Hilário et al. 2021) were initially aligned by using 156 the MAFFT v. 7 online servers (http://mafft.cbrc.jp/alignment/server/index.html) (Katoh and 157 Standley 2013), and then manually adjusted in MEGA v. 7 (Kumar et al. 2016). To achieve the 158 159 sub-genus identification of the Diaporthe spp., phylogenetic analysis was performed first individually for each gene and then as a multilocus analysis of three loci (ITS, *tef-1a* and *tub2*). 160 The phylogeny was based on Bayesian Inference (BI) and Maximum Parsimony (MP) for the 161 multi-locus analysis (Fig. 2). For BI, the best evolutionary model for each locus was determined 162 using MrModeltest v. 2.3 (Nylander 2004) and incorporated into the analysis. MrBayes v. 3.2.5 163 (Ronquist et al. 2012) was used to generate phylogenetic trees under optimal criteria per 164 partition. The Markov Chain Monte Carlo (MCMC) analysis used four chains and started from a 165 random tree topology. The heating parameter was set at 0.2 and trees were sampled every 1,000 166 167 generations. The analysis stopped when the average standard deviation of split frequencies was below 0.01. The MP analysis was performed using Phylogenetic Analysis Using Parsimony 168 (PAUP) v. 4.0b10 (Swofford 2003). Phylogenetic relationships were estimated by heuristic 169 170 searches with 100 random addition sequences. Tree bisection-reconnection was used, with the branch swapping option set on 'best trees', with all characters equally weighted and alignment 171 gaps treated as fifth state. Tree length (TL), consistency index (CI), retention index (RI), and 172 173 rescaled consistence index (RC) were calculated for parsimony, and the bootstrap analysis (Hillis

and Bull 1993) were based on 1,000 replications. Sequences generated in this study were
deposited in GenBank (Table S2).

176

177 Prevalence and distribution of *Diaporthe* spp.

The prevalence of *Diaporthe* spp. in hazelnut nuts collected from different sites in the investigated area was calculated according to Hilário et al. (2021). The Isolation Rate (RI) was calculated for each species using the formula:

181 $RI \% = [NS / NI] \times 100$

where NI was the total number of *Diaporthe* isolates collected during survey, NS was the number of isolates belonging to same species. Overall isolation rate was also determined by using the NI value that was equal total number of isolates from hazelnut nuts.

185

186 Pathogenicity trial

Pathogenicity of 40 Diaporthe strains was evaluated on detached ripening hazelnut nuts 'Tonda 187 Gentile del Piemonte' (BBCH: 85; over 50% of the shells changed color) (Table S3). Nuts were 188 surface disinfected with 1% NaClO and a piece of shell (5 mm diameter) was removed with a 189 sterile cork borer. A mycelium plug of 5 mm in diameter was taken from seven days old PDA 190 colony and placed with the mycelium in contact with the nuts inside each well in the shell. Each 191 192 inoculation point of nut was wrapped with Parafilm to avoid dehydration. Three replicates per isolate and three nuts per replicate were tested. Nine control nuts were treated with a sterilized 193 PDA plugs as described above and served as negative control. Inoculated nuts were placed in 194 195 plastic trays and covered with plastic foil and inoculated at 22±2 °C for 30 days in a chamber, with a 12 h light/12 h dark period each day. At the end of the incubation period disease severity 196

Page 10 of 44

was calculated by using a disease rating scale from 0 to 4 where 0= no visible symptoms, 1= <25% development of pycnidia, 2=25-50% development of pycnidia, 3=50-75% development of pycnidia $4=\geq75\%$ development of pycnidia (**Fig. 3**).

Analysis of variance (ANOVA) was utilized for statistical analysis. The mean values were separated by Tukey HSD (P < 0.05) by using SPSS software (IBM SPSS Statistics v. 28.0.1.0).

202

203 Results

204 Fungal isolation and identification

On hazelnut nuts with defects, three types of symptoms were observed: black rot, moldy, and 205 necrotic spots. Kernels were covered by white-grey mold and a few of them were totally rotten, 206 wet, and almost black (Fig. 1). Fungi were identified based on their symptoms type, morphology 207 (conidial morphology, colony shape, and color), and, when necessary, by using ITS sequencing. 208 The prevalent fungi isolated from symptomatic hazelnut kernels were *Diaporthe* spp. (38%). 209 Botryosphaeria dothidea (26%), and Diplodia seriata (14%). Moreover, Alternaria spp., 210 Aspergillus spp., Fusarium spp., Mucorales, Neofusicoccum spp., Penicillium spp., and 211 212 *Trichothecium roseum* were isolated from nuts but with incidence lower than 6%. *Diaporthe* spp. were isolated from moldy nuts (68%), followed by necrotic nuts (17%) and black rotted nuts 213 (15%). Members of Botryosphaeriaceae and *Alternaria* spp. were isolated only from black rotted 214 215 and necrotic nuts. Whilst Fusarium spp. and Trichothecium roseum were isolated only from moldy nuts. Other fungal pathogens were isolated from mixed nuts (moldy, necrotic or black 216 rotted). 217

218 *Diaporthe* spp. were isolated from all locations with different frequency: Lu and Cuccaro (30%),

- 219 Murazzano (82%), Marsaglia (64%), Rodello (47%), Belvedere Langhe (32%), Cravanzana
- 220 (36%), Cortemilia (50%), Borgo D'Ale (8%), and Cavaglià (42%) (**Table 1**).
- 221

222 Phylogenetic analysis

To further explore the diversity of the *Diaporthe* spp. isolates and to assign the species, three 223 genes were sequenced: ITS, tub2, and tef-la. A combined alignment of the three loci was 224 225 analyzed. The combined alignment consisted of 111 sequences including the outgroup Diaporthella corylina (CBS 121124). The final dataset comprised of 1,362 nucleotides (ITS: 1-226 473, tub2: 480-876, tef-1a: 883-1,362). A total of 559 nucleotides were parsimony-informative, 227 194 were variable and parsimony-uninformative, and 597 were constant. A maximum of 1,000 228 equally MP trees were saved (Tree length = 3049, CI = 0.471, RI = 0.872, and RC = 0.410). 229 Bootstrap support values from the MP analysis are included on the Bayesian tree in Fig. 2. For 230 the BI, MrModeltest suggested that all partitions should be analyzed with Dirichlet state 231 frequency distributions. The following models were recommended by MrModeltest and used: 232 GTR+I+G for ITS and *tef-1a*, and HKY+G for *tub2*. In the BI, the ITS partition had 179 unique 233 site patterns, the *tef-1a* partition had 350 unique site patterns, the *tub2* partition had 259 unique 234 site patterns and the analysis ran for 3,495,000 generations, resulting in 3,496 trees of which 235 236 2.622 trees were samples to calculate the posterior probabilities. Multi-locus phylogenetic analysis of 40 isolates showed that 28 isolates clustered with D. eres, 3 isolates clustered with D. 237 novem, 3 with D. foeniculina, and 3 with D. rudis. Hm-20a-2, HBr-9b-1 and HM-30-2 formed 238 239 distinct lineage with D. oncostoma, D. ravennica, and D. sojae, respectively.

241 Morphology

242 Morphological observations from edges of the Petri dishes, supported by phylogenetic inference,

243 were used to describe the seven species of *Diaporthe* spp. (Fig. 4 A-I).

Colonies of *Diaporthe sojae* growing on PDA reached 90 mm within 10 days at 25-26 °C. Colonies were white, with fluffy aerial mycelium. Reverse colonies were creamy and later developed a yellowish pigmentation in center of the Petri dish. Alpha-conidia were hyaline, aseptate, abundant, smooth, ellipsoidal and biguttulate with dimensions 5.8-7.3x2-3.2 μ m mean ±

248 SD = $6.67 \pm 0.78 \times 2.57 \pm 0.60$ (Fig. S1 A-B; Fig. S2 A).

Ten days colonies of *Diaporthe foeniculina* growing on PDA reached 90 mm at 25-26 °C. Colonies were white with fluffy aerial mycelium. Reverse colonies had green to yellowish pigmentation. Alpha conidia were hyaline, aseptate, smooth, ellipsoidal or fusiform, with one or many guttules with dimensions 7.6-9.5x2.5-2.9 μ m mean \pm SD = 8.6 \pm 0.96x2.7 \pm 0.21 (**Fig. S1**

253 C.D; Fig. S2 B).

Diaporthe novem had ten-day colonies on PDA reaching 90 mm at 25-26 °C. Colonies were flat, fluffy, and white to greyish colonies in center with white aerial mycelium at the margins of the Petri dish. Colony reverse had black circles and white margins. Alpha-conidia were hyaline, unicellular, oval to cylindrical, biguttulate with obtuse ends, with dimensions of 6.9-9.1x2.5-2.9 μ m, mean ± SD =8.1±1.11x2.73±0.21 μ m (Fig. S1 E-F; Fig. S2 C).

Ten days colonies of *Diaporthe ravennica* growing on PDA reached 90 mm at 25-26 °C. Colonies were white, spreading to the edge in wavy appearance, with pycnidia production in middle of plate, medium flat or dense. Reverse colony was creamy, radiating white outwardly with black dots in middle. Alpha-conidia were smooth, hyaline, aseptate, multi-guttulate, ovate

263	to ellipsoidal with dimensions 8.3-11.9x2.5-4.3 μm	mean \pm SD =10.1 \pm 1.80x3.30 \pm 0.92 (Fig. S1
264	G-H; Fig. S2 D).	

Colonies of *Diaporthe rudis* growing on PDA reached 85 mm within 4 weeks at 25-26 °C. Colonies were white and turn brown gradually, fluffy, and flat, radiating outwardly to the edge, with brown mycelium. Colony reverse was greyish with brown halos. Alpha conidia were ellipsoidal, hyaline, biguttulate and smooth. Dimensions of conidia were 7.5-8.5x2.4-2.7 μ m mean ± SD =7.97±0.50x2.57±0.15 μ m (**Fig. S1 I-J; Fig. S2 E**).

Colonies of *Diaporthe eres* were white greyish, fluffy aerial mycelium with abundant pycnidia at maturity. Colony reverse had dark pigmentation in center and whitish from edges of the Petri dish. Colonies growing on PDA reached 90 mm at 25-26 °C after 10 days. Alpha conidia were ovate to ellipsoidal, aseptate, smooth, hyaline, biguttulate, and base subtruncate with dimensions of 8.5-11.1x 3.5-4.5 μ m, mean ± SD =9.7±1.31x3.67±0.76 (**Fig. S1 K-L; Fig. S2 F**).

Colonies of *Diaporthe oncostoma* were smooth and flat with no exudate. Dense fluffy mycelium was observed. Colony reverse had yellowish green and periphery umber. Colonies growing on PDA reached 25 mm at 25-26 °C after 10 days. Alpha conidia were hyaline, septate, and bent cylindrical with dimensions of 11-14.5x 3.2-4.9 μ m, mean \pm SD = 12.83 \pm 1.76x4.20 \pm 0.89 (**Fig. S1 M-N; Fig. S2 G**).

280

281 Prevalence and distribution of *Diaporthe* spp.

Diaporthe spp. were isolated from all the sites surveyed (Lu and Cuccaro, Murazzano, Marsaglia, Rodello, Belvedere Langhe, Cravanzana, Cortemilia, Borgo D'Ale, and Cavaglià) showing symptoms of black rot, moldy, and necrosis. In particular, *Diaporthe* spp. were predominantly isolated from moldy nuts. Based on morphology, among 161 *Diaporthe* spp. isolates, *D. eres* was the dominant species, representing 92.5 % of the isolates collected. Three
strains per species of *D. rudis*, *D. novem*, and *D. foeniculina* were isolated. Only one isolate was
found per each of the species *Diaporthe oncostoma*, *D. sojae*, and *D. ravennica*.

Diaporthe eres was predominantly isolated in all the geographical areas: it was the only species isolated in Belvedere Langhe, Cravanzana, Cortemilia, and Borgo D'Ale. Moreover, it represented the most isolated species in the other geographical areas: 94 %, 88 %, 93 %, 88 %, and 86% of the collected isolates were *D. eres* in Lu and Cuccaro, Murazzano, Marsaglia, Rodello, and Cavaglià, respectively. Whilst *D. rudis* and *D. novem* were recovered only from three and two towns, respectively, with an abundance lower than 15 % (Fig. 5).

295

296 **Pathogenicity test**

After fifteen days, all the *Diaporthe* isolates developed lesions on the surface of inoculated kernels. Moreover, the inoculated kernels showed abundant development of pycnidia with different disease severity (disease rating scale 0-4) on the whole nut as shown in **Fig. 3 and Table S3**. In few cases internal black discoloration was also observed on nuts along with necrotic spots of variable sizes. All the *Diaporthe* isolates were successfully reisolated from all the inoculated nuts, fulfilling Koch's postulates. Control hazelnut kernels showed no internal or external symptoms.

304

305 **Discussion**

Hazelnut kernel defects are a serious threat for hazelnut yield, quality, and market value. The present study aimed to investigate the causal agents and the diversity of fungal species associated with rotten hazelnut nuts in Italy. During the survey performed from 2020 to 2021 in northern Page 15 of 44

309 Italy, we isolated and identified Alternaria spp., Aspergillus, B. dothidea, Diaporthe spp., D. seriata, Fusarium spp., Mucorales, Neofusicoccum spp., Penicillium spp., and T. roseum based 310 311 on morphological and ITS analysis. Distinct taxonomic groups were isolated from different categories of symptoms. Members of Botryosphaeriaceae and *Alternaria* spp. were isolated only 312 from black rotted and necrotic nuts. Whilst Fusarium spp. and Trichothecium roseum were 313 isolated only from moldy nuts. Previously, N. parvum (Wagas et al. 2022), Alternaria spp. 314 (Battilani et al. 2018; Belisario et al. 2004), B. dothidea and D. seriata (Luna et al. 2022) were 315 316 isolated from rotten hazelnuts or other nut crops.

Diaporthe spp. were the most dominant fungi isolated from defected hazelnut nuts in northern 317 Italy. Most Diaporthe spp. were isolated from moldy nuts (68%), but also from necrotic and 318 black rotted nuts. The prevalence of *Diaporthe* spp. associated with nut rot is closely correlated 319 to the sampling area and to the type of nut symptoms. The highest diversity of *Diaporthe* spp. 320 was observed in Murazzano, where 51% nuts were moldy which is in agreement with previous 321 studies on hazelnuts from Georgia and Turkey (Battilani et al. 2018; Arciuolo et al. 2020). 322 Diaporthe spp. have a wide host range (Gomes et al. 2013; Lombard et al. 2014; Udayanga et al. 323 2015; Yang et al. 2021) and were previously reported as causal agents of diseases of hazelnut 324 nuts (Arciuolo et al. 2020; Bai et al. 2022; Battilani et al. 2018; Gao et al. 2021; Guerrero et al. 325 2020) and other nut crops (Eichmeier et al. 2020; Lawrence et al. 2015; León et al. 2020; Yang 326 327 et al. 2018). Previously, *Diaporthe* spp. were isolated from hazelnut nuts and identified at genus level in Italy (Vitale et al. 2020). 328

ITS sequence is commonly used for species identification of Diaporthaceae and Botryosphaeriaceae (Hyde et al. 2014; Marin-Felix et al. 2019). However, ITS sequence is not informative to distinguish the *Diaporthe* species because of greater intraspecific variation in ITS

locus as compared to interspecific variation (Chaisiri et al. 2021; Santos et al. 2010). Therefore, a
multi-locus phylogenetic analyses approach is used for accurate identification and resolution of *Diaporthe* species (Guarnaccia et al. 2020; Lesuthu et al. 2019; Santos et al. 2017; Zapata et al.
2020). DNA sequence data combined with morphology has been extensively used to establish
the species boundaries in *Diaporthe* genus (Gao et al. 2017; Hilario et al. 2021).

Seven *Diaporthe* spp. were identified in this study based on morphological features and three genomic regions ITS, *tef-1a* and *tub2*. The closest taxa of the seven *Diaporthe* spp. recovered in this study were included in the analysis, based on BLASTn search in NCBI's GenBank (<u>https://blast.ncbi.nlm.nih.gov/Blast.cgi</u>) nucleotide database. The final multilocus phylogenetic tree differentiated *D. eres*, *D. foeniculina*, *D. novem*, *D. oncostoma*, *D. ravennica*, *D. rudis*, and *D. sojae* on hazelnut nuts.

D. eres was the most frequently isolated species associated with defected hazelnut nuts from all 343 the areas of northern Italy. D. eres is an important plant pathogen which can infect various hosts 344 (Bai et al. 2022) and has been considered the main causal agent of hazelnut nuts defects in the 345 Caucasus region (Arciuolo et al. 2020; Battilani et al. 2018). Although D. eres was reported on 346 347 hazelnut nuts in Italy and Turkey by Arciuolo et al. (2020), most isolates could not be classified at species level due to the poorly supported or non-monophyletic clade. Moreover, pathogenicity 348 of D. eres isolates was unknown on hazelnut nuts. However, our analysis based on three loci, 349 350 combined with morphological observations, clearly identified *D. eres* at species level. Previously, D. eres was associated with hazelnut canker in China and the USA (Bai et al., 2022; 351 Gao et al., 2021; Wiman et al. 2019), and on other hosts (Guarnaccia et al. 2018; Hilário et al. 352 353 2021; Lombard et al. 2014; Udayanga et al. 2014; Wang et al. 2021).

354 Previous studies showed that D. foeniculina and D. rudis could be pathogenic or saprophytic on 355 different host plants (Gajanavake et al. 2020; Marin-Felix et al. 2019; Udavanga et al. 2014). 356 Recently, Guerrero et al. (2020) described D. foeniculina associated with black tip and necrotic spots on hazelnut kernel in Chile and stem and shoot cankers on sweet chestnuts in Italy (Annesi 357 et al. 2016). Moreover, kernel mold of hazelnut was caused also by D. rudis in the USA 358 (Pscheidt et al. 2019) and on other hosts in Italy (Dissanayake et al. 2017; Guarnaccia et al. 359 2020). Similarly, we detected these species associated with nut rot of hazelnut nuts in Italy. 360 361 Moreover, D. sojae was isolated and identified for the first time from infected nuts of hazelnut in Italy, where it was already reported on hazelnut in Turkey (Arciuolo et al. 2020) and on *Glycine* 362 soja in Italy (Gomes et al. 2013). There are no previous records of D. novem, D. ravennica, and 363 D. oncostoma on hazelnut nuts. So, this study suggests that hazelnut could be a host for D. 364 novem, D. ravennica, and D. oncostoma. Previously, D. novem was reported on Citrus spp. in 365 Italy (Guarnaccia and Crous 2017) and on almond in the USA (Lawrence et al. 2015), whilst D. 366 ravennica and D. oncostoma were reported on Salvia sp. and Tamarix sp. in Italy (Dissanavake 367 et al. 2017; Thambugala et al. 2017) and Robinia pseudoacacia by Gomes et al. (2013) 368 369 respectively.

In our phylogeny, the three loci used in this study were unable, when considered singularly, to discriminate *D. revennica* from *D. foeniculina*, and *D. baccae*. Separation of *D. ravennica* from *D. foeniculina*, and *D. baccae* was possible only with a combined analysis of ITS, *tef-1a*, and *tub2* regions as reported in previous studies (Aiello et al. 2022; Gajanayake et al. 2020; Phukhamsakda et al. 2020). *D. sojae* strain also formed a well-supported clade with CBS 139282 (Udayanga et al. 2015). Our results of phylogeny showed a large diversity of *Diaporthe* spp. comprising several clades and species, associated with nut rot of hazelnut nuts in Italy. 377 The pathogenicity tests showed that all the studied isolates were pathogenic on hazelnut nuts. 378 resulting in different disease severity. A total of 40 strains of *Diaporthe*, belonging to *D. eres*, *D.* 379 foeniculina, D. novem, D. oncostoma, D. ravennica, D. rudis, and D. sojae were able to cause nut rot of hazelnut. D. eres was the most virulent species as compared to the other species of 380 Diaporthe which is in agreement with previous studies (Arciuolo et al. 2020; Bai et al., 2022; 381 Battilani et al. 2018; Gao et al., 2021). Whereas D. oncostoma was comparatively less 382 pathogenic (smaller lesions), suggesting that D. oncostoma is probably a weak pathogen on 383 384 hazelnut nuts. The other species were moderately pathogenic on their original host.

In conclusion, this study elucidates the species of *Diaporthe* associated with defected hazelnut nuts in northern Italy, by using morphology analysis, molecular data, and pathogenicity. This is the first report worldwide about nut rot of hazelnut caused by *D. novem*, *D. oncostoma*, and *D. ravennica*, and the first report of *D. foeniculina*, *D. rudis*, and *D. sojae* as agents of nut rot of hazelnut in Italy.

In this study, we also observed the co-occurrence of *Diaporthe* spp. in the same nuts with 390 members of Botryosphaeriaceae, as previously reported (Elfar et al. 2013; Guarnaccia et al. 391 2016; Moral et al. 2017). Such co-existence is not new, as it has been previously described on 392 branch cankers and stem-end rot of different hosts in Italy and on hazelnut nuts in Caucasus 393 region (Battilani et al. 2018; Guarnaccia et al. 2016; 2020). Furthermore, *Diaporthe* spp. are 394 395 cosmopolitan fungi and can infect a range of cultivated crops and natural ecosystem as a plant pathogens or saprophytes. Taking all of this into consideration, it deserves further investigation 396 that *Diaporthe* spp. with other members of Botryosphaeriaceae, may contribute to cause fungal 397 398 trunk disease (FTD) of hazelnuts in Italy, that could be a threat to European hazelnut production.

399	Future studies should also focus on elucidating the epidemiology of this disease and on the
400	environmental conditions favoring the development of Diaporthe spp. on hazelnut. Prevention
401	and control measures should target D. eres, which showed to be the main responsible species of
402	defects on hazelnuts in Italy.
403	
404	References
405	Aiello, D., Guarnaccia, V., Costanzo, M. B., Leonardi, G. R., Epifani, F., Perrone, G., and
406	Polizzi, G. 2022. Woody Canker and Shoot Blight Caused by Botryosphaeriaceae and
407	Diaporthaceae on Mango and Litchi in Italy. Horticulturae 8:330.
408	Annesi, T., Luongo, L., Vitale, S., Galli, M., and Belisario, A. 2016. Characterization and
409	pathogenicity of Phomopsis theicola anamorph of Diaporthe foeniculina causing stem
410	and shoot cankers on sweet chestnut in Italy. J. Phytopathol. 164: 412-416.
411	Arciuolo, R., Chiusa, G., Castello, G., Camardo Leggieri, M., Spigolon, N., and Battilani, P.
412	2022. Diaporthe spp. is confirmed as the main fungus associated with defective Turkish
413	hazelnuts. Plant Health Prog. https://doi.org/10.1094/PHP-01-22-0006-RS
414	Arciuolo, R., Santos, C., Soares, C., Castello, G., Spigolon, N., Chiusa, G., Lima, N., and
415	Battilani, P. 2020. Molecular characterization of Diaporthe species associated with
416	hazelnut defects. Front. Plant Sci. 11:611655.
417	Bai, Y., Pan, M., Gao, H., Lin, L., Tian, C., and Fan, X. 2022. Studies of Diaporthe Species
418	Causing Hazelnut Canker Disease in Beijing, China, with Two New Species Described.
419	Plant Pathol. 00:1-12.

421	2018. Diaporthe as the main cause of hazelnut defects in the Caucasus region.
422	Phytopathol. Mediterr., 57:320-333.
423	Belisario, A., Maccaroni, M., Coramusi, A., Corazza, L., Pryor, B. M., and Figuli, P. 2004. First
424	report of Alternaria species groups involved in disease complexes of hazelnut and walnut
425	fruit. Plant Dis. 88:426-426.
426	Bertetti D., Guarnaccia V., Spadaro D., Gullino M.L. 2018. First Report of Fruit Rot in European
427	Pear Caused by <i>Diaporthe eres</i> in Italy. Plant Dis. 102:2651.
428	Carbone, I., and Kohn, L. M. 1999. A method for designing primer sets for speciation studies in
429	filamentous ascomycetes. Mycologia 91:553–556.
430	Chaisiri, C., Liu, X., Lin, Y., Fu, Y., Zhu, F., and Luo, C. 2021. Phylogenetic and haplotype
431	network analyses of <i>Diaporthe eres</i> species in China based on sequences of multiple loci.
432	Biology 10:179.
433	Dai, D. Q., Wijayawardene N. N., Bhat, D. J., Chukeatirote, E., Bahkali, A. H., Zhao, R. L, Xu,
434	J. C., and Hyde, K. D. 2014. Pustulomyces gen. nov. accommodated in Diaporthaceae,
435	Diaporthales, as revealed by morphology and molecular analyses. Cryptogam. Mycol.
436	35:63-72.
437	Díaz, G. A., Latorre, B. A., Lolas, M., Ferrada, E., Naranjo, P., and Zoffoli, J. P. 2017.
438	Identification and characterization of Diaporthe ambigua, D. australafricana, D. novem,
439	and <i>D. rudis</i> causing a postharvest fruit rot in kiwifruit. Plant Dis. 101:1402-1410.
440	Dissanayake, A. J., Camporesi, E., Hyde, K. D., Wei, Z., Yan, J. Y., and Li, X. H. 2017
441	Molecular phylogenetic analysis reveals seven new Diaporthe species from Italy.
442	Mycosphere 8:853–877.

Battilani, P., Chiusa, G., Arciuolo, R., Somenzi, M., Fontana, M., Castello, G., and Spigolon, N.

443	Eichmeier, A., Pecenka, J., Spetik, M., Necas, T., Ondrasek, I., Armengol, J., León, M.,
444	Berlanas, C. and Gramaje, D. 2020. Fungal trunk pathogens associated with Juglans
445	regia in the Czech Republic. Plant dis.104:761-771.
446	Elfar, K., Torres, R., Diaz, G. A., and Latorre, B. A. 2013. Characterization of Diaporthe
447	australafricana and Diaporthe spp. associated with stem canker of blueberry in Chile.
448	Plant Dis. 97:1042-1050.
449	Fu, C. H., Hsieh, H. M., Chen, C. Y., Chang, T. T., Huang, Y. M., Ju, Y. M. 2013.
450	OphioDiaporthe cyatheae gen. et sp. nov., a diaporthalean pathogen causing a
451	devastating wilt disease of Cyathea lepifera in Taiwan. Mycologia 105: 861-872.
452	Gajanayake, A. J., Abeywickrama, P. D., Jayawardena, R. S., Camporesi, E., and Bundhun, D.
453	2020. Pathogenic Diaporthe from Italy and the first report of D. foeniculina associated
454	with Chenopodium sp. Plant Pathol. Quar. 10:172-197.
455	Gao, Y. H., Liu, F., Duan, W., Crous, P. W., and Cai, L. 2017. Diaporthe is paraphyletic. IMA
456	fungus 8:153-187.
457	Gao, H., Pan, M., Tian, C., and Fan, X. 2021. Cytospora and Diaporthe species associated with
458	hazelnut canker and dieback in Beijing, China. Front. cell. infect. 11.
459	Glass, N. L., Donaldson, G. C. 1995. Development of primer sets designed for use with the PCR
460	to amplify conserved genes from filamentous Ascomycetes. Appl. Environ. Microbiol.
461	61:1323–1330.
462	Glei, M., Fischer, S., Lamberty, J., Ludwig, D., Lorkowski, S., and Schlörmann, W. 2018.
463	Chemopreventive Potential of In Vitro Fermented Raw and Roasted Hazelnuts in LT97
464	Colon Adenoma Cells. Anticancer Res. 38:83-93.

- Gomes, R. R., Glienke, C., Videira, S. I. R., Lombard, L., Groenewald, J. Z., and Crous, P. W.
 2013. *Diaporthe*: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia:
 Molecular Phylogeny and Evolution of Fungi 31:1-41.
- Guarnaccia, V., Martino, I., Tabone, G., Brondino, L., and Gullino, M. L. 2020. Fungal
 pathogens associated with stem blight and dieback of blueberry in northern Italy.
 Phytopathol. Mediterr. 59:229-245.
- Guarnaccia, V., Groenewald, J. Z., Woodhall, J., Armengol, J., Cinelli, T., Eichmeier, A., Ezra,
 D., Fontaine, F., Gramaje, D., Gutierrez-Aguirregabiria, A., Kaliterna, J., Kiss, L.,
- 473 Larignon, P., Luque, J., Mugnai, L., Naor, V., Raposo, R., Sándor, E., Váczy, K.Z., and
- 474 Crous, P. W. 2018. *Diaporthe* diversity and pathogenicity revealed from a broad survey
 475 of grapevine diseases in Europe. Persoonia: Molecular Phylogeny and Evolution of Fungi
- 476 40:135-153.
- Guarnaccia, V., and Crous, P. W. 2018. Species of *Diaporthe* on Camellia and Citrus in the
 Azores Islands. Phytopathol. Mediterr. 57:307-319.
- 479 Guarnaccia, V., Vitale, A., Cirvilleri, G., Aiello, D., Susca, A., Epifani, F., Perrone, G. and
- 480 Polizzi, G. 2016. Characterization and pathogenicity of fungal species associated with
 481 branch cankers and stem-end rot of avocado in Italy. Eur. J. Plant Pathol. 146:963-976.
- 482 Guerrero Contreras, J., Galdames Gutierrez, R., Ogass Contreras, K., Pe'rez Fuentealba, S. 2020.
- 483 First report of *Diaporthe foeniculina* causing black tip and necrotic spot on hazelnut
 484 kernel in Chile. Plant dis. 104:975.
- Hilário, S., Gonçalves, M. F., and Alves, A. 2021. Using genealogical concordance and
 coalescent-based species delimitation to assess species boundaries in the *Diaporthe eres*complex. Journal of Fungi 7:507.

488	Huang, F., Udayanga, D., Wang, X., Hou, X., Mei, X., Fu, Y., Hyde, K.D. and Li, H. 2015.
489	Endophytic Diaporthe associated with Citrus: A phylogenetic reassessment with seven
490	new species from China. Fungal Biol. 119:331-347.
491	Hyde, K. D., Dong, Y., Phookamsak, R., Jeewon, R., Bhat, D. J., Jones, E. B., Liu, N. G.,
492	Abeywickrama, P. D., Mapook, A., Wei, D., and Perera, R. H. 2020. Fungal diversity
493	notes 115-1276: taxonomic and phylogenetic contributions on genera and species of
494	fungal taxa. Fungal Diversity 100:5-277.
495	Hillis, D. M., and Bull, J. J., 1993. An empirical test of bootstrapping as a method for assessing
496	confidence in phylogenetic analysis. Systematic Biology 42:182-192.
497	ISTAT. 2021. http://dati.istat.it/Index.aspx?QueryId=33702. Accessed 13 September 2022.
498	Katoh, K., and Standley, D. M. 2013. MAFFT Multiple sequence alignment software version 7:
499	Improvements in performance and usability. Mol. Biol. Evol. 30:772-780.
500	Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: Molecular Evolutionary Genetics
501	Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33:1870-1874.
502	Lamprecht, S. C., Crous, P. W., Groenewald, J. Z., Tewoldemedhin, Y. T., Marasas, W. F. O.,
503	2011. Diaporthaceae associated with root and crown rot of maize. IMA Fungus 2:13-24.
504	Lawrence, D. P., Travadon, R., and Baumgartner, K. 2015. Diversity of Diaporthe species
505	associated with wood cankers of fruit and nut crops in northern California. Mycologia
506	107: 926-940.
507	León, M., Berbegal, M., Rodríguez-Reina, J. M., Elena, G., Abad-Campos, P., Ramón-Albalat,
508	A., Olmo, D., Vicent, A., Luque, J., Miarnau, X. and Agustí-Brisach, C. 2020.
509	Identification and characterization of Diaporthe spp. associated with twig cankers and
510	shoot blight of almonds in Spain. Agronomy 10:1062.

511	Lesuthu, P., Mostert, L., Spies, C. F. J., Moyo, P., Regnier, T., and Halleen, F. 2019. Diaporthe
512	nebulae sp. nov. and first report of D. cynaroidis, D. novem, and D. serafiniae on
513	grapevines in South Africa. Plant Dis. 103:808-817.
514	Librandi, I., Galli M., and Belisario, A. 2006. Le patologie del frutto del nocciolo in Italia, con
515	particolare riguardo alla zona del viterbese. Petria 16:125-134.
516	Linaldeddu, B. T., Deidda, A., Scanu, B., Franceschini, A., Alves, A., Abdollahzadeh, J., and
517	Phillips, A. J. L. 2016. Phylogeny, morphology and pathogenicity of Botryosphaeriaceae,
518	Diatrypaceae and Gnomoniaceae associated with branch diseases of hazelnut in Sardinia
519	(Italy). Eur. J. Plant Pathol. 146:259-279.
520	Lombard, L., van Leeuwen, G., Guarnaccia, V., Polizzi, G., van Rijswick, P., Rosendahl, K.,
521	Gabler, J. and Crous, P. 2014. Diaporthe species associated with Vaccinium, with
522	specific reference to Europe. Phytopathol. Mediterr. 53:287-299.
523	Luna, I. J., Besoain, X., Saa, S., Peach-Fine, E., Morales, F. C., Riquelme, N., Larach, A.,
524	Morales, J., Ezcurra, E., Ashworth, V. E. and Rolshausen, P. E. 2022. Identity and
525	pathogenicity of Botryosphaeriaceae and Diaporthaceae from Juglans regia in Chile.
526	Phytopathol. Mediterr. 61:79-94.
527	Marin-Felix, Y., Hernández-Restrepo, M., Wingfeld, M. J., Akulov, A., Carnegie, A. J.,
528	Cheewangkoon, R., Gramaje, D., Groenewald, J. Z., Guarnaccia, V., Halleen, F.,
529	Lombard, L., Luangsaard, J., Marincowitz, S., Moslemi, A., Mostert, L., Quaedvlieg, W.,
530	Schumacher, R. K., Spies, C. F. J., Tangavel, R., Taylor, P. W. J., Wilson, A. M.,
531	Wingfeld, B. D., Wood, A. R., and Crous, P. W. 2019. Genera of phytopathogenic fungi:
532	GOPHY 2. Stud. Mycol. 92:47-133.

Page 25 of 44

533	Moral, J., Agustí-Brisach, C., Pérez-Rodríguez, M., Xavier, C., Raya, M. C., Rhouma, A., and
534	Trapero, A. 2017. Identification of fungal species associated with branch dieback of olive
535	and resistance of table cultivars to Neofusicoccum mediterraneum and Botryosphaeria
536	dothidea. Plant Dis. 101:306-316.
537	Nitschke, T. 1870. Pyrenomycetes Germanici. 2:245 Breslau. Eduard Trewendt, Germany.
538	Nunzio, M. D. 2019. Hazelnuts as source of bioactive compounds and health value
539	underestimated food. Curr. Res. Nutr. Food Sci. 7:17-28.
540	Nylander, J. A. A. 2004. MrModeltest v2. Program distributed by the author. Evolutionary
541	Biology Centre, Uppsala University, Uppsala.
542	O'Donnell, K., and Cigelnik, E. 1997. Two divergent intragenomic rDNA ITS2 types within a
543	monophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylogenet.
544	Evol. 7:103-116.
545	Paradinas, A., Ramade, L., Mulot-Greffeuille, C., Hamidi, R., Thomas, M. Toillon, J. 2022.
546	Phenological growth stages of 'Barcelona' hazelnut (Corylus avellana L.) described
547	using an extended BBCH scale. Sci. Hortic. 296:110902.
548	Phukhamsakda, C., McKenzie, E. H., Phillips, A. J., Gareth Jones, E. B., Jayarama Bhat, D.,
549	Stadler, M., and Hyde, K. D. 2020. Microfungi associated with Clematis
550	(Ranunculaceae) with an integrated approach to delimiting species boundaries. Fungal
551	diversity 102:1-203.
552	Prencipe, S., Nari, L., Vittone, G., Spadaro, D. (2017) First Report of Diaporthe eres causing
553	stem canker on peach (Prunus persica) in Italy. Plant Dis. 101:1052.

554	Pscheidt, J. W., Heckert, S., Wiseman, M., and Jones, L. 2019. Fungi associated with and
555	influence of moisture on development of kernel mold of hazelnut. Plant Dis. 103:922-
556	928.
557	Rayner, R. W. 1970. A mycological colour chart. Commonwealth Mycological Institute, Kew.
558	Ronquist, F., Teslenko, M., van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.;
559	Liu, L.; Suchard, M. A., Huelsenbeck, J. P. 2012. MrBayes 3.2: Efficient Bayesian
560	phylogenetic inference and model choice across a large model space. Syst. Biol. 61:539-
561	542.
562	Santos, L., Alves, A., Alves, R. 2017. Evaluating multi-locus phylogenies for species boundaries
563	determination in the genus Diaporthe. PeerJ, 5:e3120.
564	Santos, J. M., Correia, V. G., and Phillips, A. J. 2010. Primers for mating-type diagnosis in
565	Diaporthe and Phomopsis: their use in teleomorph induction in vitro and biological
566	species definition. Fungal Biol. 114:255-270.
567	Scarpari, M., Vitale, S., Di Giambattista, G., Luongo, L., De Gregorio, T., Schreiber, G., and
568	Voglmayr, H. 2020. Didymella corylicola sp. nov., a new fungus associated with hazelnut
569	fruit development in Italy. Mycol. Prog. 19:317-328.
570	Senanayake, I. C. Crous, P. W. Groenewald, J. Z. Maharachchikumbura, S. S. N. Jeewon, R.
571	Phillips, A. J. L. Bhat, J. D. Perera, R. H. Li, Q. R. Li, W. J., and Hyde, K. D. 2017.
572	Families of Diaporthales based on morphological and phylogenetic evidence. Stud.
573	Mycol. 86:217-296.
574	Silvestri, C., Bacchetta, L., Bellincontro, A., and Cristofori, V. 2021. Advances in cultivar
575	choice, hazelnut orchard management, and nut storage to enhance product quality and
576	safety: an overview. J. Sci. Food Agric. 101:27-43.

577	Slippers, B., Crous, P. W., Jami, F., Groenewald, J. Z., and Wingfield, M. J. 2017. Diversity in
578	the Botryosphaeriales: Looking back, looking forward. Fungal Biol. 121:307-321.
579	Smith, H., Wingfeld, M, J., Coutinho, T. A., and Crous, P. W. 1996. Sphaeropsis sapinea and
580	Botryosphaeria dothidea endophytic in Pinus spp. and Eucalyptus spp. in South Africa.
581	S. Afr. J. Bot. 62:86-88.
582	Spadaro, D., Meloni, G.R., Siciliano, I., Prencipe, S., and Gullino, M.L. 2020. HPLC-MS/MS
583	method for the detection of selected toxic metabolites produced by Penicillium spp. in
584	nuts. Toxins 12: 307.
585	Swofford, D. L. 2003. PAUP* Phylogenetic Analysis Using Parsimony, (*and Other Methods);
586	Version 4.0 b10; Sinauer Associates: Sunderland, MA, USA.
587	Teviotdale, L., Michailides, T. J., and Pscheidt, J. W. 2002. Compendium of Nut Crop Diseases
588	in Temperate Zones. American Phytopathological Society, St Paul, MN, USA, pp 100.
589	Thambugala KM, Daranagama DA, Phillips AJL, Bulgakov TS et al. 2017 - Microfungi on
590	Tamarix. Fungal Diversity 82:239–306.
591	Thompson, S. M., Tan, Y. P., Young, A. J., Neate, S. M., Aitken, E. A. B., and Shivas, R. G.
592	2011. Stem cankers on sunflower Helianthus annuus in Australia reveal a complex of
593	pathogenic Diaporthe (Phomopsis) species. Persoonia 27:80-89.
594	Udayanga, D., Castlebury, L. A., Rossman, A. Y., Chukeatirote, E., and Hyde, K. D. 2015. The
595	Diaporthe sojae species complex: phylogenetic re-assessment of pathogens associated
596	with soybean, cucurbits and other field crops. Fungal. Biol. 119:383-407.
597	Udayanga, D., Castlebury, L. A., Rossman, A. Y., Chukeatirote, E., and Hyde, K. D. 2014.
598	Insights into the genus Diaporthe: phylogenetic species delimitation in the D. eres
599	species complex. Fungal Diversity 67:203-229.

- Udayanga, D., Liu, X., Crous, P. W., McKenzie, E. H. C., Chukeatirote, E., and Hyde, K. D.
 2012. A multi-locus phylogenetic evaluation of *Diaporthe* (Phomopsis). Fungal Diversity
 56:157-171.
- Udayanga, D., Liu, X., McKenzie, E. H., Chukeatirote, E., Bahkali, A. H., and Hyde, K. D.
 2011. The genus Phomopsis: biology, applications, species concepts and names of
 common phytopathogens. Fungal Diversity 50:189-225.
- Valente, S., Meloni, G.R., Prencipe, S., Spigolon, N., Somenzi, M., Fontana, M., Gullino, M.L.,
 and Spadaro, D. 2020. Effect of drying temperature and exposure times on *Aspergillus flavus* growth and aflatoxin production on artificially inoculated hazelnuts. J. Food Prot.
 83:1241-1247.
- Vitale, S. M., Scarpari, L., Luongo, M., Galli, A., Belisario, G., Schreiber, M., Petrucci, G.,
 Fontaniello, T., De Gregorio, G., Castello. 2020. Nocciola avariata, un fenomeno in
 aumento che abbatte la qualità. Rivista di Frutticoltura, published online (available at:
 https://rivistafrutticoltura.edagricole.it/post-raccolta/nocciola-avariata-un-fenomeno-inaumento-che-abbatte-la-qualita/)
- Waqas, M., Guarnaccia, V., and Spadaro, D. 2022. First Report of Nut Rot Caused by
 Neofusicoccum parvum on Hazelnut (Corylus avellana) in Italy. Plant Dis. 106:1987.
- Wehmeyer, L. E. 1926. A biologic and phylogenetic study of stromatic Sphaeriales. Am. J. Bot.
 13:575-645.
- White. T. J., Bruns, T., Lee, S., and Taylor, J. 1990. Amplification and direct sequencing of
 fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: a guide to methods
 and applications. (Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds). Academic Press,
 New York, USA. 315–322.

623	Wiman, N. G., Webber III, J. B., Wiseman, M., and Merlet, L. 2019. Identity and pathogenicity
624	of some fungi associated with hazelnut (Corylus avellana L.) trunk cankers in Oregon.
625	Plos one 14:e0223500.
626	Yang, Q., Fan, X. L., Guarnaccia, V., and Tian, C. M. 2018. High diversity of <i>Diaporthe</i> species
627	associated with twelve new species described. MycoKeys 39:97-149.
628	Yang, Q., Jiang, N., and Tian, C. M. 2020. Three new Diaporthe species from Shaanxi province,
629	China. MycoKeys 67:1.
630	Yang, Q., Jiang, N., and Tian, C. M. 2020. Three new Diaporthe species from Shaanxi province,
631	China. MycoKeys, 67:1.
632	Yang, Q., Jiang, N., and Tian, C. M. 2021. New species and records of Diaporthe from Jiangxi
633	Province, China. MycoKeys, 77:41.
	Zapata, M., Palma, M. A., Aninat, M. J., and Piontelli, E. 2020. Polyphasic studies of new
	species of Diaporthe from native forest in Chile, with descriptions of Diaporthe araucanorum
	sp. nov., Diaporthe foikelaweni sp. nov. and Diaporthe patagonica sp. nov. Int. J. Syst. Evol.
	Microbiol. 70:3379-3390.

Tables

Table 1: Overall incidence of all *Diaporthe* spp. on hazelnut nuts (*Corylus avellana*) variety and

 date of cultivation from different towns in Piedmont, Italy

Sr. No.	Towns/Province ¹	Variety ²	Date of orchard	Diaporthe incidence
			planting ³	(%)
1	Lu and Cuccaro (AL)	TGP	NA	30.43
2	Murazzano (CN)	TGP	2010	82
3	Marsaglia (CN)	TGP	1995	63.6
4	Rodello (CN)	TGP	1990	47
5	Cravanzana (CN)	TGP	1995	36.3
6	Cortemilia (CN)	TGP	1980	50
7	Borgo D'Ale (VC)	TGP	2011	8.3
8	Cavaglià (BI)	TGP	2013	42.4
9	Belvedere Langhe (CN)	TGP	1975	32

¹ Provinces are administrative areas in Italy: AL (Alessandria); CN (Cuneo); BI (Biella); VC (Vercelli).

² TGP: 'Tonda Gentile del Piemonte'

³ NA: not available

Figures

Fig. 1. Symptoms observed on hazelnut (*Corylus avellana*) described as (A) black rot (B) moldy (C) necrotic.

Fig. 2. Consensus phylogram of 2,622 trees resulting from a Bayesian analysis of the combined ITS, *tef-1a*, and *tub2* sequence alignments of the *Diaporthe* species. Bootstrap support values and Bayesian posterior probability values are indicated at the nodes. Host and country of origin are listed next to the strain numbers. Ex-type isolates are indicated in bold. The isolates obtained in this study are in red. The tree was rooted with *Diaporthella corylina* (CBS 121124).

Fig. 3. Symptomatology induced on hazelnut nuts 'Tonda Gentile del Piemonte' inoculated with *Diaporthe* spp. and stored at 22±2 °C for 30 days in a chamber with a 12 h light/12 h dark. Symptoms of nut rot were evaluated by the following scale: 0: no visible symptoms (**E**); 1: <25% development of pycnidia (**D**); 2: 25-50% development of pycnidia (**C**); 3: 50-75% development of pycnidia (**B**); 4: \geq 75% development of pycnidia (**A**).

Fig. 4 Morphological features of *Diaporthe* spp. obtained from hazelnut nuts. **(A-B)** *D. sojae.* Front and reverse side of colony grown on PDA after 10 days at $23 \pm 2 \,^{\circ}C(C-D)$ *D. ravennica.* Front and reverse side of colony grown on PDA **(E-F)** *D. eres.* Front and reverse side of colony grown on PDA after 10 days at $23 \pm 2 \,^{\circ}C$. **(G)** Conidiomata of *D. eres* on sterilized pine needle on WA. **(H)** Conidiomata of *D. sojae* on sterilized pine needle on WA **(I)** Conidia of *D. eres* (dimensions: 8.5-11.1x 3.5-4.5 µm; scale bar: 10 µm).

Fig. 5. Incidence (%) and distribution of *Diaporthe* species from hazelnut nuts (*Corylus avellana*) according to their sampling locations of Piedmont, Italy.

e-Xtra (Supplementary) Files

Table S1.

Isolates of *Diaporthe* spp. across nine regions of Piedmont, Italy, obtained from hazelnut (*Corylus avellana*) during 2020-2021 and their GenBank accession numbers.

						GenBank Accession ²		
Sr. no.	Isolate code	Fungal species	Isolation year	Towns/Provinces ¹	Altitude	ITS	tef1-a	tub2
1	Hwa-18-1	Diaporthe eres	2020	Lu and Cuccaro (AL)	307 m	OM331706	ON933990	OP186258
2	HsN5a-2	D. eres	2020	Lu and Cuccaro (AL)	307 m	OM331707	ON933991	OP186259
3	HsM2a-3	D. eres	2020	Lu and Cuccaro (AL)	307 m	OM331708	ON933992	OP186260
4	HMb-1b-1	D. eres	2020	Lu and Cuccaro (AL)	307 m	OM331709	ON933993	-
5	HMb-5a-3	D. eres	2020	Lu and Cuccaro (AL)	307 m	OM331710	ON933994	OP186261
6	Hma-10a-1	D. eres	2020	Lu and Cuccaro (AL)	307 m	OM331711	ON933995	OP186262
7	HM-2a-1	D. eres	2020	Murazzano (CN)	739 m	OM331712	ON933996	OP186263
8	HM-4b-2	D. eres	2020	Murazzano (CN)	739 m	OM331713	ON933997	OP186264
9	HM-5a-1	D. eres	2020	Murazzano (CN)	739 m	OM331714	ON933998	OP186265
10	HM-8b-1	D. eres	2020	Murazzano (CN)	739 m	OM331715	ON933999	OP186266
11	HM-11b-2	D. eres	2020	Murazzano (CN)	739 m	OM331716	ON934000	OP186267
12	Hm-12a-1	D. novem	2020	Murazzano (CN)	739 m	OM331738	ON933987	OP156876
13	HM-17a-1	D. eres	2020	Murazzano (CN)	739 m	OM331717	ON934001	OP186268
14	Hm-20a-2	D. oncostoma	2020	Murazzano (CN)	739 m	ON911324	ON934002	OP186269
15	HBR-2b-1	D. eres	2020	Murazzano (CN)	739 m	OM331718	OP288105	OP186270
16	HBr-3a-2	D. eres	2020	Murazzano (CN)	739 m	ON911327	OP296410	OP186271
17	HBR-8a-1	D. eres	2020	Murazzano (CN)	739 m	OM331719	ON934003	OP186272
18	HBr-8b-2	D. rudis	2020	Murazzano (CN)	739 m	OM331733	ON934004	OP186273
19	HBr-9b-1	D. ravennica	2020	Murazzano (CN)	739 m	ON911325	ON934005	OP186274
20	HBR-12b-1	D. eres	2020	Murazzano (CN)	739 m	OM331720	ON934006	OP186275
21	HBr-13a-2	D. foeniculina	2020	Murazzano (CN)	739 m	ON911322	ON934007	OP186276

22	HBR-15b-1	D. eres	2020	Murazzano (CN)	739 m	OM331721	ON934008	OP186277
23	HBR-16a-1	D. eres	2020	Murazzano (CN)	739 m	OM331722	ON934009	OP186278
24	HN-27a-2	D. eres	2021	Lu and Cuccaro (AL)	307 m	OM331723	ON934010	OP186279
25	HBr-27a-2	D. rudis	2021	Lu and Cuccaro (AL)	307 m	OM331734	ON934011	OP186280
26	Hm-30-2	D. sojae	2021	Lu and Cuccaro (AL)	307 m	ON911326	ON934012	OP186281
27	HN-31a-2	D. eres	2021	Lu and Cuccaro (AL)	307 m	OM331724	ON934013	OP186282
28	HM-43b-1	D. eres	2021	Lu and Cuccaro (AL)	307 m	OM331725	ON934014	OP186283
29	Hm-46a-1	D. foeniculina	2021	Lu and Cuccaro (AL)	307 m	ON911323	ON934015	-
30	HM-93a-1	D. eres	2021	Cortemilia (CN)	247 m	OM331726	ON934016	OP186284
31	HN-100a-2	D. eres	2021	Cravanzana (CN)	580 m	OM331727	ON934017	OP186285
32	HM-108b-2	D. eres	2021	Marsaglia (CN)	550 m	OM331728	ON934018	OP186286
33	HN-104a-2	D. eres	2021	Belvedere Langhe (CN)	679 m	OM331729	ON934019	OP186287
34	Hm-110b-1	D. rudis	2021	Rodello (CN)	600 m	OM331735	ON934020	OP186288
35	HM-112a-1	D. eres	2021	Rodello (CN)	600 m	OM331730	ON934021	OP186289
36	HM-115b-3	D. eres	2021	Rodello (CN)	600 m	OM331731	ON934022	OP186290
37	Hm-128a-2	D. novem	2021	Cavaglià (BI)	270 m	OM331737	ON933988	OP156877
38	Hm-129a-2	D. novem	2021	Cavaglià (BI)	270 m	OM331736	ON933989	OP156878
39	HBr-108b-2	D. foeniculina	2021	Cavaglià (BI)	270 m	ON911321	ON934023	OP186291
40	HM-137a-1	D. eres	2021	Borgo D'Ale (VC)	240 m	OM331732	-	OP186292

¹ AL: Alessandria, CN: Cuneo, BI: Biella, VC: Vercelli; ² ITS: internal transcribed spacers 1 and 4 together with 5.8S nrDNA; *tef1-a*: translation elongation factor 1-a gene; *tub2*: beta-tubulin gene. Sequences generated in this study indicated in italics.

Table S2.

List of reference sequences of *Diaporthe* spp. including the outgroup *Diaporthella corylina* used in phylogenetic analyses for this study. Information includes GenBank accession numbers, strains, host, and origins.

Smaalaa	Studin 1	II ost	Courter	GenBank Accession ²		
Species	Strain ⁺	HOSI	Country	ITS	tef1-α	tub2
Diaporthe ambigua	CBS 114015 ^T	Pyrus communis	South Africa	KC343010	KC343736	KC343978
D. ambigua	CBS 123210	Foeniculum vulgare	Portugal	KC343012	KC343738	KC343980
D. amygdali	CBS 126679 ^T	Prunus dulcis	Portugal	KC343022	KC343748	KC343990
D. amygdali	CBS 115620	Prunus persica	USA	KC343020	KC343746	KC343988
D. anacardii	CBS 720.97 ^T	Anacardium occidentale	Eastern Africa	KC343024	KC343750	KC343992
D. angelicae	CBS 111592 ^T	Heracleum sphondylium	Austria	KC343027	KC343753	KC343995
D. australafricana	CBS 111886	Vitis vinifera	South Africa	KC343038	KC343764	KC344006
D. australafricana	CBS 113487 ^T	Vitis vinifera	South Africa	KC343039	KC343765	KC344007
D. baccae	CBS 136972 ^T	Vaccinium corymbosum	Italy	KJ160565	KJ160597	MF418509
D. baccae	CBS 142546	Citrus sinensis	Italy	MF418358	MF418437	MF418517
D. beckhausii	CBS 138.27	Viburnum species	Unknown	KC343041	KC343767	KC344009
D. citri	CBS 134239	Citrus cinensis	USA	KC357553	KC357522	KC357456
D. citri	CBS 135422 ^T	Citrus sp.	USA	KC843311	KC843071	KC843187
D. cinerascens	CBS 719.96	Ficus carica	Bulgaria	KC343050	KC343776	KC344018
D. cucurbitae	DAOM 42078	Cucumis sativus	Canada	KM453210	KM453211	KP118848
D. cuppatea	CBS 117499	Aspalathus linearis	South Africa	KC343057	KC343783	KC344025
D. cynaroidis	CBS 122676	Protea cynaroides	South Africa	KC343058	KC343784	KC344026
D. eres	CBS 138594 ^T	Ulmus laevis	Germany	KJ210529	KJ210550	KJ420799
D. eres	CBS 143344	Vitis vinifera	Czech Republic	MG281020	MG281541	MG281193
D. eres	CAA756	<i>Banksia</i> sp.	Portugal	MW040531	MW052385	MW091320
D. eres	CBS 146.46	Alnus sp.	The Netherlands	KC343008	KC343734	KC343976
D. eres	CBS 121004	Juglans sp.	USA	KC343134	KC343860	KC344102

D. eres	CBS 124030	Malus pumila	New Zealand	KC343149	KC343875	KC344117
D. eres	CBS 134470	Castanea sativa	Australia	KC343146	KC343872	KC344114
D. eres	DNP128	Vaccinium corymbosum	China	KC763096	KJ210561	KJ420801
D. eres	CBS 139.27	Celastrus sp.	USA	KC343047	KC343773	KC344015
D. eres	CBS 135428	Juglans cinerea	USA	KC843328	KC843121	KC843229
D. eres	CBS 439.82	Cotoneaster sp.	UK	KC343090	KC343816	KC344058
D. eres	CBS 338.89	Hedera helix	Yugoslavia	KC343152	KC343878	KC344120
D. eres	CBS 160.32	Vaccinium macrocarpon	USA	AF317578	GQ250326	KC344196
D. eres	MUM 19.31=CAA830	Vaccinium corymbosum	Portugal	MK792309	MK828080	MK837931
D. foeniculina	CBS 123208	Foeniculum vulgare	Portugal	KC343104	KC343830	KC344072
D. foeniculina	CBS 111553 ^T	Foeniculum vulgare	Spain	KC343101	KC343827	KC344069
D. helianthi	CBS 592.81 ^T	Helianthus annuus	Serbia	KC343115	KC343841	KC344083
D. inconspicua	CBS 133813 ^T	Maytenus ilicifolia	Brazil	KC343123	KC343849	KC344091
D. infecunda	CBS 133812 ^T	Schinus terebinthifolius	Brazil	KC343126	KC343852	KC344094
D. lusitanicae	CBS 123212	Foeniculum vulgare	Portugal	KC343136	KC343862	KC344104
D. macadamiae	BRIP 66526 ^T	<i>Macadamia</i> sp.	South Africa	MN708230	MN696528	MN696539
D. malorum	CAA740	Malus domestica	Portugal	KY435642	KY435629	KY435670
D. malorum	CBS 142383 ^T	Malus domestica	Portugal	KY435638	KY435627	KY435668
D. nothofagi	BRIP 54801	Nothofagus cunninghamii	Australia	JX862530	JX862536	KF170922
D. novem	CBS 127270	Glycine max	Croatia	KC343156	KC343882	KC344124
D. novem	CBS 127271 ^T	Glycine max	Croatia	KC343157	KC343883	KC344125
D. novem	CPC 26188 =CBS 142553	Citrus japonica	Italy	MF418426	MF418505	MF418586
D. novem	CPC 28165 = CBS 142554	glycine max	Italy	MF418427	MF418506	MF418587
D. novem	CPC 28167	Citrus aurantiifolia	Italy	MF418428	MF418507	MF418588
D. oncostoma	CBS 589.78	Robinia pseudoacacia	France	KC343162	KC343888	KC344130
D. oncostoma	CBS 100454	Robinia pseudoacacia	Germany	KC343160	KC343886	KC344128
D. parvae	PSCG 034 ^T	Pyrus bretschneideri	China	MK626919	MK654858	MK691248
D. phaseolorum	CBS 139281=AR4203	Phaseolus vulgaris	USA	KJ590738	KJ590739	KJ610893

D. phillipsii	MUM 19.28 ^T	Vaccinium corymbosum	Portugal	MK792305	MK828076	MN000351
D. portugallica	CBS 144228=CPC34247 ^T	Camelia sinensis	Portugal	MH063905	MH063911	MH063917
	CBS 101339=		Dominican			
D. pseudomangiferae	MFLU 15-3228 ^T	Mangifera indica	Republic	KC343181	KC343907	KC344149
D. pterocarpi	MFLUCC 10-0571	Pterocarous indicus	Thailand	JQ619899	JX275416	JX275460
D. ravennica	MFLUCC 17-1029	<i>Salvia</i> sp.	Italy	KY964191	KY964147	KY964075
D. ravennica	MFLUCC 15-0479 ^T	<i>Tamarix</i> sp.	Italy	KU900335	KX365197	KX432254
D. ravennica	MFLUCC 15-0480	<i>Tamarix</i> sp.	Italy	KU900336	KX426703	KX377688
D. rudis	CBS 114436	Sambucus cf. racemosa	Sweden	KC343236	KC343962	KC344204
D. rudis	CBS 109492	Laburnum anagyroides	Austria	KC343232	KC343958	KC344200
D. rudis	CBS 113201 ^T	Vitis vinifera	Portugal	KC343234	KC343960	KC344202
D. rudis	CAA949	Pinus pinaster	Portugal	MN190304	MT309426	MT309452
D. rudis	CAA952	Eucalyptus globulus	Portugal	MN190307	MT309429	MT309455
D. salicicola	BRIP 54825	Salix purpurea	Australia	JX862531	JX862537	KF170923
D. schini	CBS 133181T	Schinus terebinthifolius	Brazil	KC343191	KC343917	KC344159
D. sennicola	CFCC 51634	Senna bicapsularis	China	KY203722	KY228883	KY228889
D. sojae	CBS 139282=FAU635 ^T	Glycine max	USA	KJ590719	KJ590762	KJ610875
D. subcylindrospora	MFLU 17-1195	Salix sp.	China	MG746629	MG746630	MG746631
D. terebinthifolii	CBS 133180 ^T	Schinus terebinthifolius	Brazil	KC343216	KC343942	KC344184
	CGMCC					
D. velutina	$3.18286 = LC4421^{T}$	<i>Neolitsea</i> sp.	China	KX986790	KX999182	KX999223
D. zaobaisu	PSCG031 ^T	Pyrus bretschneideri	China	MK626922	MK654855	MK691245
Diaporthella corylina	CBS 121124 ^T	Corylus sp.	China	KC343004	KC343730	KC343972

¹ BRIP: Plant Pathology Herbarium, Department of Primary Industries, Dutton Park, Queensland, Australia CAA: Culture Collection Artur Alves, University of Aveiro, Aveiro, Portugal; CBS: Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; CFCC: China Forestry Culture Collection Center, Beijing, China; CGMCC: China, General Microbiological Culture Collection, Beijing, China; CMW: Forestry and Agricultural Biotechnology Institute, University of Pretoria, South Africa; CPC: Culture collection of P.W. Crous, housed at Westerdijk Fungal Biodiversity Institute; DAOMC: The Canadian Collection of Fungal Cultures, Canada; DNP: Isolates in SMML culture collection, USDA-ARS, Beltsville, USA; FAU: Isolates in culture collection of Systematic Mycology and Microbiology Laboratory, USDA-ARS, Beltsville, MD, USA; LC: Working collection of Lei Cai,housed at Institute of Microbiology, Chinese; MFLU: Herbarium of Mae Fah Luang University, Thailand; MIFCC: Michigan Isolate Fungal Culture Collection, Michigan, USA; MUM: Culture Collection from Micoteca da Universidade do Minho, Center for Biological Engineering of University of Minho, Braga, Portugal. Ex-type isolates are indicated with ^T.

² ITS: internal transcribed spacers 1 and 4 together with 5.8S nrDNA; *tef1-a*: translation elongation factor 1- α gene; *tub2*: beta-tubulin gene. Sequences generated in this study indicated in italics.

Sr. no.	Isolates code	Fungal spp.	DS% 1	SD ²	TK ³
1	Hwa-18-1	Diaporthe eres	86.1	4.81	efg
2	HsN5a-2	D. eres	80.6	9.62	defg
3	HsM2a-3	D. eres	77.8	4.81	defg
4	HMb-1b-1	D. eres	83.3	8.33	efg
5	HMb-5a-3	D. eres	100.0	0.00	g
6	Hma-10a-1	D. eres	80.6	4.81	defg
7	HM-2a-1	D. eres	75.0	8.33	cdefg
8	HM-4b-2	D. eres	91.7	8.33	fg
9	HM-5a-1	D. eres	80.6	9.62	defg
10	HM-8b-1	D. eres	83.3	8.33	efg
11	HM-11b-2	D. eres	88.9	9.62	efg
12	Hm-12a-1	D. novem	77.8	9.62	defg
13	HM-17a-1	D. eres	97.2	4.81	fg
14	Hm-20a-2	D. oncostoma	36.1	4.81	abcd
15	HBR-2b-1	D. eres	52.8	4.81	bcdef
16	HBr-3a-2	D. eres	55.6	9.62	bcdefg
17	HBR-8a-1	D. eres	86.1	9.62	efg
18	HBr-8b-2	D. rudis	86.1	4.81	efg
19	HBr-9b-1	D. ravennica	13.9	9.62	ab
20	HBR-12b-1	D. eres	88.9	12.73	efg
21	HBr-13a-2	D. foeniculina	72.2	4.81	cdefg
22	HBR-15b-1	D. eres	88.9	9.62	efg
23	HBR-16a-1	D. eres	58.3	8.33	bcdefg
24	HN-27a-2	D. eres	86.1	9.62	efg
25	HBr-27a-2	D. rudis	13.9	4.81	ab
26	Hm-30-2	D. sojae	91.7	8.33	fg
27	HN-31a-2	D. eres	69.4	12.73	cdefg
28	HM-43b-1	D. eres	88.9	12.73	efg
29	Hm-46a-1	D. foeniculina	77.8	12.73	defg
30	HM-93a-1	D. eres	94.4	4.81	fg
31	HN-100a-2	D. eres	58.3	8.33	bcdefg
32	HM-108b-2	D. eres	58.3	8.33	bcdefg
33	HN-104a-2	D. eres	80.6	4.81	defg
34	Hm-110b-1	D. rudis	94.4	4.81	fg
35	HM-112a-1	D. eres	44.4	9.62	abcde
36	HM-115b-3	D. eres	86.1	12.73	efg
37	Hm-128a-2	D. novem	30.6	4.81	abc
38	Hm-129a-2	D. novem	75.0	0.00	cdefg
39	HBr-108b-2	D. foeniculina	100.0	0.00	g
40	HM-137a-1	D. eres	75.0	0.00	cdefg
41	Healthy Control		0.00	0.00	a

Table S3. Pathogenicity test of *Diaporthe* spp. on hazelnut nuts (*Corylus avellana*) and their disease severity

¹ Disease severity in percentage ² standard deviation ³ Tukey test

Fig. S1. Macromorphology of *Diaporthe* spp. obtained from hazelnut nuts (**A-B**) *D. sojae*. Front and reverse side of colony grown on PDA after 10 days at $23 \pm 2 \,^{\circ}$ C, (**C-D**) *D. foeniculina*. Front and reverse side of colony grown on PDA after 10 days at $23 \pm 2 \,^{\circ}$ C, (**E-F**) *D. novem*. Front and reverse side of colony grown on PDA after 10 days at $23 \pm 2 \,^{\circ}$ C, (**G-H**) *D. ravennica*. Front and reverse side of colony grown on PDA at $23 \pm 2 \,^{\circ}$ C, (**I-J**) *D. rudis*. Front and reverse side of colony grown on PDA at $23 \pm 2 \,^{\circ}$ C, (**I-J**) *D. rudis*. Front and reverse side of colony grown on PDA after 10 days at $23 \pm 2 \,^{\circ}$ C, (**K-L**) *D. eres*. Front and reverse side of colony grown on PDA after 10 days at $23 \pm 2 \,^{\circ}$ C, (**K-L**) *D. oncostoma*. Front and reverse side of colony grown on PDA after 10 days at $23 \pm 2 \,^{\circ}$ C, (**M-N**) *D. oncostoma*. Front and reverse side of colony grown on PDA after 10 days at $23 \pm 2 \,^{\circ}$ C, (**M-N**) *D. oncostoma*.

Fig. S2. Micromorphological features of *Diaporthe* spp. obtained from hazelnut nuts (**A**) Conidia of *D. sojae* (dimensions 5.8-7.3x2-3.2; scale bar: 10 μ m), (**B**) Conidia of *D. foeniculina* (dimensions 7.6-9.5x2.5-2.9 μ m; scale bar: 10 μ m), (**C**) Conidia of *D. novem* (dimensions: 6.9-9.1x2.5-2.9 μ m; scale bar: 10 μ m), (**D**) Conidia of *D. ravennica* (dimensions 8.3-11.9x2.5-4.3 μ m; scale bar: 10 μ m), (**E**) Conidia of *D. rudis* (dimensions: 7.5-8.5x2.4-2.7 μ m; scale bar: 10 μ m), (**F**) Conidia of *D. eres* (dimensions: 8.5-11.1x 3.5-4.5 μ m; scale bar: 10 μ m), (**G**) Conidia of *D. oncostoma* (11-14.5x 3.2-4.9 μ m; scale bar: 10 μ m).