l‘)

Check for
updates

Explicit Identifiers and Contexts
in Reversible Concurrent Calculus

Clément Aubert!®)@® and Doriana Medié¢?

1 School of Computer and Cyber Sciences, Augusta University, Augusta, USA
caubert@augusta.edu
2 Focus Team/University of Bologna, Inria, Sophia Antipolis, France

Abstract. Existing formalisms for the algebraic specification and rep-
resentation of networks of reversible agents suffer some shortcomings.
Despite multiple attempts, reversible declensions of the Calculus of Com-
municating Systems (CCS) do not offer satisfactory adaptation of notions
usual in “forward-only” process algebras, such as replication or context.
Existing formalisms disallow the “hot-plugging” of processes during their
execution in contexts with their own past. They also assume the existence
of “eternally fresh” keys or identifiers that, if implemented poorly, could
result in unnecessary bottlenecks and look-ups involving all the threads.
In this paper, we begin investigating those issues, by first designing a
process algebra endowed with a mechanism to generate identifiers with-
out the need to consult with the other threads. We use this calculus to
recast the possible representations of non-determinism in CCS, and as a
by-product establish a simple and straightforward definition of concur-
rency. Our reversible calculus is then proven to satisfy expected prop-
erties. We also observe that none of the reversible bisimulations defined
thus far are congruences under our notion of “reversible” contexts.

Keywords: Formal semantics - Process algebras and calculi - Context
for reversible calculi

1 Introduction: Filling the Blanks in Reversible Process
Algebras

Reversibility’s Future is intertwined with the development of formal mod-
els for analyzing and certifying concurrent behaviors. Even if the development
of quantum computers [30], CMOS adiabatic circuits [18] and computing bio-
chemical systems promise unprecedented efficiency or “energy-free” computers,
it would be a mistake to believe that whenone of those technologies—each with
their own connection to reversibility—reaches a mature stage, distribution of
the computing capacities will become superfluous. On the opposite, the future
probably resides in connecting together computers using different paradigms

This work has been supported by French ANR project DCore ANR-18-CE25-0007.

© Springer Nature Switzerland AG 2021
S. Yamashita and T. Yokoyama (Eds.): RC 2021, LNCS 12805, pp. 144-162, 2021.
https://doi.org/10.1007/978-3-030-79837-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-79837-6_9&domain=pdf
http://orcid.org/0000-0001-6346-3043
http://orcid.org/0000-0002-7163-5375
https://project.inria.fr/dcore/
https://doi.org/10.1007/978-3-030-79837-6_9

Explicit Identifiers and Contexts in Reversible Concurrent Calculus 145

(i.e., “traditional”, quantum, biological, etc.), and possibly themselves heteroge-
neous (for instance using the “classical control of quantum data” motto [37]). In
this coming situation, “traditional” model-checking techniques will face an even
worst state explosion problem in presence of reversibility, that e.g. the usual
“back-tracking” methods will likely fail to circumvent. Due to the notorious dif-
ficulty of connecting heterogeneous systems correctly and the “volatile” nature
of reversible computers—that can erase all trace of their actions—, it seems
absolutely necessary to design languages for the specification and verification of
reversible distributed systems.

Process Algebras offer an ideal touch of abstraction while maintaining
implementable specification and verification languages. In the family of process
calculi, the Calculus of Communicating Systems (CCS) [35] plays a particu-
lar role, both as seminal work and as direct root of numerous systems (e.g.
m- [42], Ambient [33], applied [1] and distributed [23] calculi). Reversible CCS
(RCCS) [15] and CCS with keys (CCSK) [38] are two extensions to CCS pro-
viding a better understanding of the mechanisms underlying reversible concur-
rent computation—and they actually turned out to be the two faces of the
same coin [27]. Most [3,14,32,34]—if not all—of the later systems developed to
enhance the expressiveness with some respect (rollback operator, name-passing
abilities, probabilistic features) stem from one approach or the other. However,
those two systems, as well as their extensions, both share the same drawbacks,
in terms of missing features and missing opportunities.

An Incomplete Picture is offered by RCCS and CCSK, as they miss
“expected” features despite repetitive attempts. For instance, no satisfactory
notion of context was ever defined: the discussed notions [5] do not allow the
“hot-plugging” of a process with a past into a context with a past as well.
As a consequence, defining congruence is impossible, forbidding the study of
bisimilarities—though they are at the core of process algebras [41]. Also, recur-
sion and replication are different [36], but only recursion have been investi-
gated [22,25] or mentioned [15,16], and only for “memory-less” processes. Stated
differently, the study of the duplication of systems with a past has been left aside.

Opportunities Have Been Missed as previous process algebras are con-
servative extensions of restricted versions of CCS, instead of considering “a fresh
start”. For instance, reversible calculi inherited the sum operator in its guarded
version: while this restriction certainly makes sense when studying (weak) bisim-
ulations for forward-only models, we believe it would be profitable to suspend
this restriction and consider all sums, to establish their specificities and interests
in the reversible frame. Also, both RCCS and CCSK have impractical mecha-
nisms for keys or identifiers: aside from supposing “eternal freshness”—which
requires to “ping” all threads when performing a transition, creating a potential
bottle-neck—, they also require to inspect, in the worst case scenario, all the
memories of all the threads before performing a backward transition.

146 C. Aubert and D. Medié

Our Proposal for “yet” another language is guided by the desire to “com-
plete the picture”, but starts from scratch instead of trying to “correct” exist-
ing systems'. We start by defining an “identified calculus” that sidesteps the
previous limitations of the key and memory mechanisms and considers mul-
tiple declensions of the sum: 1. the summation [35, p. 68], that we call “non-
deterministic choice” and write @, [44], 2. the guarded sum, +, and 3. the internal
choice, M, inspired from the Communicating Sequential Processes (CSP) [24]—
even if we are aware that this operator can be represented [2, p. 225] in forward
systems, we would like to re-consider all the options in the reversible set-up,
where “representation” can have a different meaning.Our formalism meets the
usual criterion, and allows to sketch interesting definitions for contexts, that
allows to prove that, even under a mild notion of context, the usual bisimulation
for reversible calculi is not a congruence. As a by-product, we obtain a notion
of concurrency, both for forward and forward-and-backward calculi, that rests
solely on identifiers and can be checked locally.

Our Contribution tries to lay out a solid foundation to study reversible
process algebras in all generality, and opens some questions that have been
left out. Our detailed frame explicits aspects not often acknowledged, but does
not yet answer questions such as “what is the right structural congruence for
reversible calculi” [7]: while we can define a structural relation for our calculus,
we would like to get a better take on what a congruence for reversible calculi
is before committing. How our three sums differ and what benefits they could
provide is also left for future work, possibly requiring a better understanding
of non-determinism in the systems we model. Another direction for future work
is to study new features stemming from reversibility, such as the capacity of
distinguishing between multiple replications, based on how they replicate the
memory mechanism allowing to reverse the computation.

All proofs and some ancillary definitions are in the extended version [8].

2 Forward-Only Identified Calculus with Multiple Sums

We enrich CCS’s processes and labeled transition system (LTS) with identifiers
needed to define reversible systems: indeed, in addition to the usual labels, the
reversible LTS developed thus far all annotate the transition with an additional
key or identifier that becomes part of the memory. This development can be
carried out independently of the reversible aspect, and could be of independent
interest. Our formal “identifier structures” allows to precisely define how such
identifiers could be generated while guaranteeing eternal freshness of the iden-
tifiers used to annotate the transitions (Lemma 1) of our calculus that extends
CCS conservatively (Lemma 2).

1 Of course, due credit should be given for those previous calculi, that strongly inspired
ours, and into which our system can be partially embedded, cf. Sect. 3.3.

Explicit Identifiers and Contexts in Reversible Concurrent Calculus 147

2.1 Preamble: Identifier Structures, Patterns, Seeds and Splitters

Definition 1 (Identifier Structure and Pattern). An identifier structure
IS=(l,7,®) is s.t.

— | is an infinite set of identifiers, with a partition between infinite sets of
atomic identifiers |, and paired identifiers I, i.e. [, Ul, =1, I, N1, =0,

- v:N =, is a bijection called a generator,

- @y x 1y — 1, is a bijection called o pairing function.

Given an identifier structure 1S, an identifier pattern ip is a tuple (c,s) of
integers called current and step such that s > 0. The stream of atomic identifiers
generated by (c,s) is 1S(c, s) = v(¢),y(c+ s),y(c+ s+ 8),y(c+ s+ s+ 3),....

Ezxample 1. Traditionally, a pairing function is a bijection between N x N and N,
and the canonical examples are Cantor’s bijection and (m,n) +— 2™(2n + 1) —
1 [40,43]. Let p be any of those pairing function, and let p~(m,n) = —(p(m,n)).

Then, |Z = (Z,idy,p™~) is an identifier structure, with |, = N and |, = Z~.
The streams 1Z(0,2) and 1Z(1,2) are the series of even and odd numbers.

We now assume given an identifier structure IS and use 1Z in our examples.

Definition 2 (Compatible Identifier Patterns). Two identifier patterns ip,
and ip, are compatible, ip; L ipsy, if the identifiers in the streams 1S(ip;) and
IS(ipy) are all different.

Definition 3 (Splitter). A splitter is a function N from identifier pattern to
pairs of compatible identifier patterns, and we let Ny (ip) (resp.Na(ip)) be its first
(resp. second) projection.

We now assume that every identifier structure IS is endowed with a splitter.

Ezample 2. For |Z the obvious splitter is N(¢, s) = ((¢,2 % s), (c+ 5,2 x s)). Note
that N(0,1) = ((0,2), (1,2)), and it is easy to check that the two streams 1Z(0, 2)
and 1Z(1,2) have no identifier in common. However, (1,7) and (2,13) are not
compatible in IZ, as their streams both contain 15.

Definition 4 (Seed (Splitter)). A seed s is either an identifier pattern ip,
or a pair of seeds (s1,s2) such that all the identifier patterns occurring in sy and
So are pairwise compatible. Two seeds s; and sy are compatible, s; L so, if all
the identifier patterns in s1 and sy are compatible.

We eatend the splitter N and its projections N; (for j € {1,2}) to functions
from seeds to seeds that we write [N] and [N;] defined by

[N](ip) = N(ip) [M51(ip) = Nj(ip)
[M](s1,52) = ([N](s1), [N](s2)) [M5](s1552) = ([M5)(s1), [Ny](s2))

Ezample 3. A seed over 1Z is (id x N)(n(0,1)) = ((0,2), ((1,4), (3,4))).

148 C. Aubert and D. Medié

2.2 Identified CCS and Unicity Property

We will now discuss and detail how a general version of (forward-only) CCS can
be equipped with identifiers structures so that every transition will be labeled
not only by a (co-)name, 7 or v2, but also by an identifier that is guaranteed to
be unique in the trace.

Definition 5 (Names, Co-names and Labels). Let N = {a,b,c,...} be a
set of names and N = {a,b,¢,...} its set of co-names. We define the set of
labels L = NUN U {7,v}, and use o (resp. u, \) to range over L (resp. L\{7},
L\{7,v}). The complement of a name is given by a bijection - : N — N, whose
inverse is also written ~.

Definition 6 (Operators).

P,Q =\P (Prefix) P@Q (Non-deterministic choice)
P | @ (Parallel Composition) (A1-P1) + (A2.P2) (Guarded sum)
P\X (Restriction) PNQ (Internal choice)

As usual, the inactive process 0 is not written when preceded by a prefiz, and
we call P and Q the “threads” in a process P | Q.

The labeled transition system (LTS) for this version of CCS, that we denote
-, can be read from Fig. 1 by removing the seeds and the identifiers. Now, to
define an identified declension of that calculus, we need to describe how each
thread of a process can access its own identifier pattern to independently “pull”
fresh identifiers when needed, without having to perform global look-ups. We
start by defining how a seed can be “attached” to a CCS process.

Definition 7 (Identified Process). Given an identifier structure 1S, an iden-
tified process is a CCS process P endowed with a seed s that we denote so P.

We assume fixed a particular identifier structure IS = (l,v,®,N), and now
need to introduce how we “split” identifier patterns, to formalize when a pro-
cess evolves from e.g. ip o a.(P | Q) that requires only one identifier pattern to
(ipy,ipy) © P | Q, that requires two—because we want P and @ to be able to
pull identifiers from respectively ip; and ip, without the need for an agreement.
To make sure that our processes are always “well-identified” (Definition 10),
i.e. with a matching number of threads and identifier patterns, we introduce an
helper function.

2 We use this label to annotate the “internally non-deterministic” transitions intro-
duced by the operator M. It can be identified with 7 for simplicity if need be, and as
T, it does not have a complement.

Explicit Identifiers and Contexts in Reversible Concurrent Calculus 149

Definition 8 (Splitter Helper). Given a process P and an identifier pattern
ip, we define

. (N*(Nu(ip), P1), " (N2(ip), o)) if P = P1| Py
N (ip, P) = 9. .
ipo P otherwise
and write e.g.N’ipo a | b for the “recomposition” of the pair N’ (ip,a | b) =
(N1 (ip) o a,Na(ip) 0 b) into the identified process (N1 (ip), N2(ip)) o a | b.

Note that in the definition below, only the rules act., + and ' can “uncover”
threads, and hence are the only place where N7 is invoked.

Definition 9 (ILTS). We let the identified labeled transition system between
identified processes be the union of all the relations =~ for i € | and a € L of
Fig. 1. Structural relation is as usual [8] but will not be used.

Ezample 4. The result of N*(0,1)o(a | (b (c+d)))is ((0,2),((1,4), (3,4)))o(a |
(0] (¢c+d)), and a (resp. b, ¢+ d) would get its next transition identified with 0
(resp. 1, 3).

Definition 10 (Well-Identified Process). An identified process so P is well-
identified iff s = (s1,52), P = Py | P> and sy o Py and sy o Py are both well-
identified, or P is not of the form Py | Py and s is an identifier pattern.

We now always assume that identified processes are well-identified.

Definition 11 (Traces). In a transition t : so P %5 s' o P!, process so P is
the source, and s’ o P’ is the target of transition t. Two transitions are coinitial
(resp. cofinal) if they have the same source (resp. target). Transitions t; and
to are composable, t1;ta, if the target of t1 is the source of to. A sequence of
pairwise composable transitions is called a trace, written t1;--- ;t,.

Lemma 1 (Unicity). The trace of an identified process contains any identifier
at most once, and if a transition has identifier iy © i2 € l,, then neither iy nor
19 occur in the trace.

Lemma 2. For all CCS process P, 3s s.t. P s ... 2" P/ & (so P LN
L P).

Definition 12 (Concurrency and Compatible Identifiers). Two coinitial
transitions so P 2215 51 0 P; and so P 222, 55 0 P5 are concurrent iff i1 and

io are compatible, i1 L io, i.e. iff

i1 7 iz if i1, i € g
there is no i € l, s.t. i1 i =19 if i1 € lg,i2 € 1)
there is no i € l, s.t. i ®ig = i1 if i1 € lp,i2 €1y

12 1 2 SRS Q) 2
foriy,i1,i5 and i5 s.t. i1 =i D7 and i2 = iy D 5,

i £k for g,k € {1,2} if i1,ia €1,

150 C. Aubert and D. Medié

Action and Restriction

soP -ty ¢ op!

@ act. ¢{ 7}
y(e): 2 a a, @ - res.
(¢,s) oA P———>nN'(c+s,8)oP so P\a -2 ¢' o P'\a
Parallel Group
L ORI o 0@ g o
2 - - syn.
i1 D127 o / /
) 15
1 (s1,82) 0 P | Q@ ——— (s1,s5) o P' | Q
sioP -t ¢l o P!
s1 L s -
(s1,82) o P | Q =% (s1,s2) 0 P’ | Q
SQOQ io SIQOQI
s;1 L sy — |R
(s1,52) 0 P | Q =% (s1,82) o P | Q'
Sum Group
SOP (e S/OPl SOQ (R S,OQ/
- QL - Ur
soPQQ "% s oP soPQQ "% s o0Q

+L

(c;8) 0 (M.P1) + (Ao Po) 25 37(c 45 5) o Py

+r
(¢,8) o (M. P1) + (A2.P2) IRIGECI N'(c+s,8) 0P

ML
(c,s)oPI‘IQMﬁ%c—l—&s)oP

MNr

(c,s)oPI‘IQﬂ N'(c+s,8)0Q
Fig. 1. Rules of the identified labeled transition system (ILTS)

Ezample 5. The identified process so P = ((0,2),(1,2)) o a + b | @.c has four
possible transitions:

tp:so P 2%, ((2,2),(1,2) 00| @.c ts3:soP % ((0,2),(3,2)0a+b]|c
ty 5o P-2%5((2,2),(1,2)) 00 |@c ti:soP 25T, ((2,2),(3,2))00]c

Among them, only t; and t3, and t5 and t3 are concurrent: transitions are con-
current when they do not use overlapping identifiers, not even as part of syn-
chronizations.

Explicit Identifiers and Contexts in Reversible Concurrent Calculus 151

Hence, concurrency becomes an “easily observable” feature that does not
require inspection of the term, of its future transitions—as for “the diamond
property” [29]—or of an intermediate relation on proof terms [11, p. 415]. We
believe this contribution to be of independent interest, and it will help sig-
nificantly the precision and efficiency of our forward-and-backward calculus in
multiple respect.

3 Reversible and Identified CCS

A reversible calculus is always defined by a forward calculus and a backward cal-
culus. Here, we define the forward part as an extension of the identified calculus
of Definition 9, without copying the information about the seeds for conciseness,
but using the identifiers they provide. The backward calculus will require to make
the seed explicit again, and we made the choice of having backward transitions
re-use the identifier from their corresponding forward transition, and to restore
the seed in its previous state. Expected properties are detailed in Sect. 3.2.

3.1 Defining the Identified Reversible CCS

Definition 13 (Memories and Reversible Processes). Let o € {@,+,M},
d € {L,R}, we define memory events, memories and identified reversible pro-
cesses as follows, for n > 0:

e :=(i,u, ((01, P1,d1),...(0n, Pn,dyn))) (Memory event)
mg :=e.mg | 0 (Memory stack)
my =[m, m] (Memory pair)

m=ms | m, (Memory)
R,S:=somp>P (Identified reversible processes)

In a memory event, if n = 0, then we will simply write _. We generally do
not write the trailing empty memories in memory stacks, e.g. we will write e
instead of e.().

Stated differently, our memory are represented as a stack or tuples of stacks,
on which we define the following two operations.

Definition 14 (Operations on Memories). The identifier substitution in a
memory event is written eli « j] and is defined as substitutions usually are. The
identified insertion is defined by

<i,ﬂ, ((017P17d1)7' . '(Onaandn)» —H—j (07 P: d) =
<7:7/J«7 ((017P17d1)7 s (On,Pn,dn), (07 P7 d))> Zf’L :]
(2, 1, ((01, P1,d1), ... (On, Pn,dn))) otherwise

The operations are easily extended to memories by simply propagating them to
all memory events.

152 C. Aubert and D. Medié

When defining the forward LTS below, we omit the identifier patterns to help
with readability, but the reader should assume that those rules are “on top” of
the rules in Fig. 1. The rules for the backward LTS, in Fig. 3, includes both the
seeds and memories, and is the exact symmetric of the forward identified LTS
with memory, up to the condition in the parallel group that we discuss later.
A bit similarly to the splitter helper (Definition 8), we need an operation that
duplicates a memory if needed, that we define on processes with memory but
without seeds for clarity.

Definition 15 (Memory Duplication). Given a process P and a memory
m, we define

6‘7(P) (5?(m?P1)75?(m7P2)) ZfP:Pl ‘PQ
’(m, P) = .
m> P otherwise

and write e.g. §°(m) > a \ b for the “recomposition” of the pair of identified
processes 0°(m,a | b) = (6°(m,a),5"(m,b)) = (m > a,m > b) into the process
[m,m]>a|b.

Definition 16 (IRLTS). We let the identified reversible labeled transition sys-
tem between identified reversible processes be the union of all the relations =
and 9 fori € | and o € L of Figs. 2 and 3, and let —»=— U ~-. Structural
relation is as usual [8] but will not be used.

In its first version, RCCS was using the whole memory as an identifier [15],
but then it moved to use specific identifiers [4,31], closer in inspiration to CCSK’s
keys [38]. This strategy, however, forces the act. rules (forward and backward)
to check that the identifier picked (or present in the memory event that is being
reversed) is not occurring in the memory, while our system can simply pick iden-
tifiers from the seed without having to inspect the memory, and can go backward
simply by looking if the memory event has identifier in |,—something enforced
by requiring the identifier to be of the form y~!(c). Furthermore, memory events
and annotated prefixes, as used in RCCS and CCSK, do not carry information
on whenever they synchronized with other threads: retrieving this information
require to inspect all the memories, or keys, of all the other threads, while our
system simply observes if the identifier is in |,, hence enforcing a “locality”
property. However, when backtracking, the memories of the threads need to be
checked for “compatibility”, otherwise i.e. ((1,2), (2,2))o[(0,a,), {0,a,)|>P | Q
could backtrack to ((1,2), (0,2))o[{0,a, -), > P | a.Q and then be stuck instead
of (0,1) 00> a.(P|Q).

3.2 Properties: From Concurrency to Causal Consistency
and Unicity

We now prove that our calculus satisfies typical properties for reversible pro-
cess calculi [13,15,26,38]. Notice that showing that the forward-only part of our

Explicit Identifiers and Contexts in Reversible Concurrent Calculus 153

Action and Restriction

act.

m> AP -2 57 ((i,\,)om)> P

m> P % m' > P!
a¢ {o,a} - res.
m> P\a - m' > P\a

Parallel Group

i1:A PIDN
m>P25mi>P ma Q25 mh>Q

—— Syn.
[m1,ma] > P | Q 22205 [mf [iy « i1 @ ia], mbliz « iz @ ia]] > P | Q'

my > P %) > P

L

[m1,ma] > P | Q2% [ml,ma] > P' | Q

Sum Group

m>P-E% g/ > P

mD(P@Q)i:—a>m,'H‘i(@7Q:R)°P/

— +L
m > (()\1P1) + ()\2P2)) & 5?(<i,/\1, (—|—7)\QPQ,R)>TT'L) > P

Il
m> (PNQ) % 6°((4,v, (M, Q,R)).m) > P -

The rules |r, @r, +r and Mg can easily be inferred.

Fig. 2. Forward rules of the identified reversible labeled transition system (IRLTS)

calculus is a conservative extension of CCS is done by extending Lemma 2 to
accommodate memories and it is immediate. We give a notion of concurrency,
and prove that our calculus enjoys the required axioms to obtain causal consis-
tency “for free” [28]. All our properties, as commonly done, are limited to the
reachable processes.

Definition 17 (Initial, Reachable and Origin Process). A process som>P
is initial if s o P is well-identified and if m = () if P is not of the form Py | Ps,
or if m = [my,ma], P = Py | P» and [N;]|(s) om; > P; for j € {1,2} are initial.
A process R is reachable if it can be derived from an initial process, its origin,
written Og, by applying the rules in Figs. 2 and 3.

154 C. Aubert and D. Medié

Action and Restriction

act.

A (v @) + 8,8) 067 ((i, A, _).m) > PR (y71(i),s) om > AP

somp> P~A%s om' > P
a ¢ {a,a} - res.
som > P\a~%=s om' > P'\a

Parallel Group

The rule syn. (resp. |1.) can be applied only if s1 L so and i1 & m5, i2 & m}
(resp. i & m2).

. . . Q1A
s1 omilin @iz « i1] > P~AS sfom)> P’

. . . BEDN
Szomz['LQ@ZlFZQ]DQ’J\%\/\,—}SIQOmIQDQI

. syn.
(s1,52) © [ma,ma] > P | Q AUETA(s), sh)o [mf, mb] > P’ | @

siomy > P~A%—ssiom) > P’

(51752) o [ml,mg] > P ‘ QwH(SII,SQ)O [m'l,mg} > P’ | Q

Sum Group

sombp> P~~A%as'om’ > P’

somHi (@,Q,R) > P~A%x=s'om/ > (P @ Q)

- +L
A7 (v (3) + 5, 8) 0 67 ((i, A, (+, Aa. Pa, R)).m) B Py ~-X—
(Y71 (@), 8) om > (M.Pr) + (M2 P2))

ML

N (v7H(4) + 5,5) 087 ((i,v, (M, Q,R)).m) > P ~EA= (77 (i), 5) om > (P Q)
The rules |r, @r, +r and Mg can easily be inferred.

Fig. 3. Backward rules of the identified reversible labeled transition system (IRLTS)

Concurrency. To define concurrency in the forward and backward identified
LTS is easy when both transitions have the same direction: forward transitions
will adopt the definition of the identified calculus, and backward transitions will
always be concurrent. More care is required when transitions have opposite direc-
tions, but the seed provides a good mechanism to define concurrency easily. In a
nutshell, the forward transition will be in conflict with the backward transition
when the forward identifier was obtained using the identifier pattern(s) that have

Explicit Identifiers and Contexts in Reversible Concurrent Calculus 155

been used to generate the backward identifier, something we call “being down-
stream”. Identifying the identifier pattern(s) that have been used to generate an
identifier in the memory is actually immediate:

Definition 18. Given a backward transition t :som> P ~5% s om/ > P!, we
write ip, (resp. ip;, ip?) for the unique identifier pattern(s) in's' such thati € 1,
(resp. i1 and iz s.t. i1 @iz =1 € |,,) is the first identifier in the stream generated
by ip, (resp. are the first identifiers in the streams generated by ip% and ipf).

Definition 19 (Downstream). An identifier i is downstream of an identifier
pattern (¢, s) if

{i € 15(c, s) ifiel,

there exists j,k € 1, s.t. j® k=1 and j or k is downstream of (c,s) ifiel,

Definition 20 (Concurrency). Two different coinitial transitions t1 : somp>
P2 siomy> P and ty:som > P22 59 omsy > Py are concurrent iff

— t1 and ty are forward transitions and i; L io (Definition 12);

— t1 18 a forward and ty is a backward transition and iy (or z% and zf if iy =
it @143) is not downstream of ip,, (or ip;, nor ip;,);

— t1 and ty are backward transitions.

Ezample 6. Re-using the process from Example 5 and adding the memories,
after having performed ¢; and t3, we obtain the process s o [my,ms] >0 | ¢,
where s = ((2,2),(3,2)), m; = (0,a, (+,b,R)) and ms = (1,G, _), that has three
possible transitions:

t1:somy,ma] >0 |25 ((2,2),(5,2) o [m1, (3,¢,).ma] >0 0
ty :so[my,ma] > 0] e~ ((2,2),(1,2)) o [my,0] > 0| @.c
t3 :s0 [mi,ma] >0 [¢ ((0,2),(3,2)) o [0, mo] >a+b|c

Among them, ¢, and t3 are concurrent, as they are both backward, as well as t;
and t3, as 3 was not generated by ip,, = (0,2). However, as 3 is downstream of
ip;, = (1,2), t; and o are not concurrent.

Causal Consistency. We now prove that our framework enjoys causal consis-
tency, a property stating that an action can be reversed only provided all its
consequences have been undone. Causal consistency holds for a calculus which
satisfies four basic axioms [28]: Loop Lemma—“any reduction can be undone”—,
Square Property—“concurrent transitions can be executed in any order”—,
Concurrency (independence) of the backward transitions—“coinitial backward
transitions are concurrent”— and Well-foundedness—“each process has a finite
past”. Additionally, it is assumed that the semantics is equipped with the inde-
pendence relation, in our case concurrency relation.

156 C. Aubert and D. Medié

Lemma 3 (Axioms). For every reachable processes R, R', IRLTS satisfies
the following azioms:

Loop Lemma: for every forward transition t : R 2% R’ there exists a backward
transition t* : R’ ~~% R and vice versa.

Square Property: if t; : R =% R, and ty : R Jzioa, Rs are two coinitial
concurrent transitions, there exist two cofinal transitions th : Ry BCEEEN Rs
and t, : Rp ~£%%

Backward Tran31t10ns are Concurrent' any two coinitial backward transi-
tions t; : R "X Ry and to : R~A25 Ry where tq %ty are concurrent.

Well-Foundedness: there is no infinite backward computation.

We now define the “causal equivalence” [15] relation on traces allowing to
swap concurrent transitions and to delete transitions triggered in both directions.
The causal equivalence relation is defined for the LTSI which satisfies the Square
Property and re-use the notations from above.

Definition 21 (Causal Equivalence). Causal equivalence, ~, is the least
equivalence relation on traces closed under composition satisfying t1;th ~ ta;t]
and t;t® ~ e— € being the empty trace.

Now, given the notion of causal equivalence, using an axiomatic approach [28]
and that our reversible semantics satisfies necessary axioms, we obtain that our
framework satisfies causal consistency, given bellow.

Theorem 1 (Causal Consistency). In IRLTS, two traces are coinitial and
cofinal iff they are causally equivalent.

Finally, we give the equivalent to the “unicity lemma” (Lemma 2) for IRLTS:
note that since the same transition can occur multiple times, and as backward
and forward transitions may share the same identifiers, we can have the exact
same guarantee that any transition uses identifiers only once only up to causal
consistency.

Lemma 4 (Unicity for IRLTS). For a given trace d, there exist a trace d’,
such that d’ ~ d and d' contains any identifier at most once, and if a transition
in d’ has identifier i1 @ g € |, then neither i1 nor iz occur in d'.

3.3 Links to RCCS and CCSK: Translations and Comparisons

It is possible to work out an encoding of our IRLTS terms into RCCS and CCSK
terms [8]. Our calculus is more general, since it allows multiple sums, and more
precise, since the identifier mechanism is explicit, but has some drawbacks with
respect to those calculi as well.

While RCCS “maximally distributes” the memories to all the threads, our
calculus for the time being forces all the memories to be stored in one shared

Explicit Identifiers and Contexts in Reversible Concurrent Calculus 157

place. Poor implementations of this mechanism could result in important bot-
tlenecks, as memories need to be centralized: however, we believe that an asyn-
chronous handling of the memory accesses could allow to bypass this limita-
tion in our calculus, but reserve this question for future work. With respect to
CCSK, our memory events are potentially duplicated every time the 67 operator
is applied, resulting in a space waste, while CCSK never duplicates any memory
event. Furthermore, the stability of CCSK’s terms through execution—as the
number of threads does not change during the computation—could be another
advantage.

We believe the encoding we present to be fairly straightforward, and that it
will open up the possibility of switching from one calculus to another based on
the needs to distribute the memories or to reduce the memory footprint.

4 Contexts, and How We Do Not Have Congruences yet

We remind the reader of the definition of contexts C[] on CCS terms P, before
introducing contexts C'[-] (resp. M[], CR[]) on identified terms | (resp. on mem-
ories M, on identified reversible terms R).

Definition 22 (Term Context). A context C[] : P — P is inductively defined
using all process operators and a fresh symbol - (the slot) as follows (omitting
the symmetric contexts):

Cl1=XC[| PIC[] | CI[\A | Ai.P+X.C[] | PQC[] | PTIC[] | -

When placing an identified term into a context, we want to make sure that
a well-identified process remains well-identified, something that can be easily
achieved by noting that for all process P and seed s, (U’N’s) o P is always
well-identified, for the following definition of U”:

Definition 23 (Unifier). Given a process P and a seed s, we define
u?(ip, P) =ipo P

U?((s1,s2), P) = {(U?(Fh(sl),P)) if s1 is not of the form ip,

(N1(s1), P) otherwise
Definition 24 (Identified Context). An identified context C'[] : | — | is
defined using term contexts as C'[-] = (U'N"-) o C[].
Ezample 7. A term (0,1) o a + b, in the identified context (U’N’) o - | @, gives
the term ((0,2),(1,2)) ca+b | @ from Example 5. The term ((0,2),(1,2))oa | b
|

placed in the same context would give ((0,4),(1,4)),(2,4)) o (a |b) | @.

To study memory contexts, we write M for the set of all memories.

158 C. Aubert and D. Medié

Definition 25 (Memory Context). A memory context M[] : M — M is
inductively defined using the operators and operations of Definitions 13, 14 and
15, an “append” operation and a fresh symbol - (the slot) as follows:

ML) =[M[],m] | [m, M[]] | eM[] | M[]e | §"M[] | M[][j < K]
‘ M[]—H_J (07P7d) ‘ :

Where e.m = [e.my, e.ma)and m.e = [my.e,ma.€] if m = [my1, ms], and m.e =
m'.e.) if m=m'.0.

Definition 26 (Reversible Context). A reversible context CR[] : R — R is
defined using term and memory contests as CR[] = (U'N’-) o M[] > C[]. It is
memory neutral if M|[-] is built using only -, [0, M[]] and [M[],0].

Of course, a reversible context can change the past of a reversible process R,
and hence the initial process Og to which it corresponds (Definition 17).

Ezample 8. Let CR[]; = [0,] > P | C[] and CR[]a = 67[] > P | C[-]. Letting
R = (1,1) 0 (0,a,_) > b, we obtain CR[R]; = ((1,2),(2,2)) o [0,(0,a,)] > P | b
and CR[R], = ((1,2),(2,2)) o [{0,a,), (0,a,_)] > P | b, and we have

CR[R]; ¥% ((1,2),(0,2)) 0 [0,0] > P | a.b CR[R]y %% (0,1) 0 O > a.(P | b)

Note that not all of the reversible contexts, when instantiated with a
reversible term, will give accessible terms. Typically, the context [0, -] > - will be
“broken” since the memory pair created will never coincide with the structure
of the term and its memory inserted in those slots. However, even restricted
to contexts producing accessible terms, reversible contexts are strictly more
expressive that term contexts. To make this more precise in Lemma 5, we
use two bisimulations close in spirit to Forward-reverse bisimulation [39] and
back-and-forth bisimulation [10], but that leave some flexibility regarding iden-
tifiers and corresponds to Hereditary-History Preserving Bisimulations [6]. Those
bisimulations—B&F and SB&F [6,8]—are not congruences, not even under
“memory neutral” contexts.

Lemma 5. For all non-initial reversible process R, there exists reversible con-
texts CR[-] such Ocwrip is reachable and for all term context C[], C|Og] and
Ocr(g) are not B&F.

Theorem 2. B&F and SB&F are not congruences, not even under memory
neutral contexts.

Proof. The processes Ry = (1,1) o (0,a,-) > b + b and Ry = (1,1) o
(0,a, (+,a.b,R))>b are B&F, but letting CR[-] = ->-+¢, CR[R;] and CR[R,] are
not. Indeed, it is easy to check that Ry and R, as well as Og, = (0, 1)ofr>a.(b+b)
and Og, = (0,1)of>(a.b)+(a.b), are B&F, but Ocr(p,) = (0,1)o0>a.((b+b)+c)
and Ocr(p,) = (0,1) 001> (a.(b+¢)) + (a.b) are not B&F, and hence CR[R;] and
CR[Rs] cannot be either. The same example works for SB&F.

Explicit Identifiers and Contexts in Reversible Concurrent Calculus 159

We believe similar reasoning and example can help realizing that none of
the bisimulations introduced for reversible calculi are congruences under our def-
inition of reversible context. Some congruences for reversible calculi have been
studied [5], but they allowed the context to be applied only to the origins of
the reversible terms: whenever interesting congruences allowing contexts to be
applied to non-initial terms exist is still an open problem, in our opinion, but
we believe our formal frame will allow to study it more precisely.

5 Conclusion

We like to think of our contribution as a first sketch enabling researchers to
tackle much more ambitious problems. It is our hope that our identified calculus
can at the same time help sidestepping some of the implementation issues for
reversible protocols [12], and can be re-used for RCCS or CCSK as a convenient
base, or plug-in, to obtain distributed and reliable keys or identifiers. We also
hope that the probabilistic choice [17]—whose representation requires to either
develop an auxiliary relation [17, p. 67], to make the transition system become
probabilistic as well [9], or to use Segala automata [44]—will be within the realm
of reversible protocols, as its implications and applications could be numerous.
The interleaving of the sums—for instance in the mixed choice [21], that offers
both probabilistic choice and nondeterministic choice—could then possibly be
unlocked and provides opportunities to model and study more complex behavior
without leaving the reversible frame.

It is known that CCS is not “universally expressive” [19,20], and we would
like to assess how universal the protocol detailed in this paper is. To that aim,
careful study of reversible and heterogeneous computing devices will be required,
that in turns could shed a new light on some of the questions we left unanswered.
Typically, this could lead to the development of “location-aware” calculi, where
the distribution of seeds and memory is made explicit, or to make progress in the
definition of “the right” structural congruence [7]. Last but not least, interesting
declensions of contexts were left out in this study, taking for instance a reversible
context - > P that “throws away” the term under study but “steals” its memory.

Acknowledgments. The authors wish to express their gratitude to Ioana Cristescu
for asking some of the questions we tried to answer in this paper, to Assya Sellak for
suggesting to use (something close to) caktus stacks to represent our memories, and to
the reviewers for their interesting observations.

References

1. Abadi, M., Blanchet, B., Fournet, C.: The applied Pi calculus: mobile values, new
names, and secure communication. J. ACM 65(1), 1:1-1:41 (2018). https://doi.
org/10.1145/3127586

2. Amadio, R.M.: Operational methods in semantics. Lecture notes, Université Denis
Diderot Paris 7, December 2016. https://hal.archives-ouvertes.fr/cel-01422101

https://doi.org/10.1145/3127586
https://doi.org/10.1145/3127586
https://hal.archives-ouvertes.fr/cel-01422101

160

10.

11.

12.

13.

14.

15.

16.

17.

C. Aubert and D. Medié

Arpit, Kumar, D.: Calculus of concurrent probabilistic reversible processes. In:
ICCCT, pp. 34-40. ICCCT-2017. ACM, New York, NY, USA (2017). https://doi.
org/10.1145/3154979.3155004

Aubert, C., Cristescu, I.: Reversible barbed congruence on configuration structures.
In: ICE 2015. EPTCS, vol. 189, pp. 68-95 (2015). https://doi.org/10.4204/EPTCS.
189.7

Aubert, C., Cristescu, I.: Contextual equivalences in configuration structures and
reversibility. J. Log. Algebr. Methods Program. 86(1), 77-106 (2017). https://doi.
org/10.1016/j.jlamp.2016.08.004

Aubert, C., Cristescu, I.: How reversibility can solve traditional questions: the
example of hereditary history-preserving bisimulation. In: CONCUR. LIPIcs, vol.
2017, pp. 13:1-13:24. Schloss Dagstuhl (2020). https://doi.org/10.4230/LIPIcs.
CONCUR.2020.13

Aubert, C., Cristescu, I.: Structural equivalences for reversible calculi of communi-
cating systems (oral communication). Research report, Augusta University (2020).
https://hal.archives-ouvertes.fr/hal-02571597, communication at ICE 2020
Aubert, C., Medié¢, D.: Enabling Replications and Contexts in Reversible Concur-
rent Calculus (Extended Version), May 2021. https://hal.archives-ouvertes.fr/hal-
03183053

Baier, C., Kwiatkowska, M.Z.: Domain equations for probabilistic processes. MSCS
10(6), 665-717 (2000). https://doi.org/10.1017/S0960129599002984

Bednarczyk, M.A.: Hereditary history preserving bisimulations or what is the
power of the future perfect in program logics. Technical report, Instytut Pod-
staw Informatyki PAN filia w Gdansku (1991). http://www.ipipan.gda.pl/~marek/
papers/historie.ps.gz

Boudol, G., Castellani, I.: Permutation of transitions: an event structure semantics
for CCS and SCCS. In: Linear Time, Branching Time and Partial Order in Logics
and Models for Concurrency, School/Workshop, Noordwijkerhout, The Nether-
lands, 30 May—3 June 1988, Proceedings. LNCS, vol. 354, pp. 411-427. Springer
(1988). https://doi.org/10.1007/BFb0013028

Cox, G.: SimCCSK: simulation of the reversible process calculi CCSK. Master’s
thesis, University of Leicester (4 2010). https://leicester.figshare.com/articles/
thesis/SimCCSK _simulation_of _the_reversible_process_calculi_ CCSK /10091681
Cristescu, 1., Krivine, J., Varacca, D.: A compositional semantics for the reversible
p-calculus. In: LICS, pp. 388-397. IEEE Computer Society (2013). https://doi.
org/10.1109/LICS.2013.45

Cristescu, 1., Krivine, J., Varacca, D.: Rigid families for CCS and the 7-calculus. In:
Theoretical Aspects of Computing - ICTAC 2015. LNCS, vol. 9399, pp. 223-240.
Springer (2015). https://doi.org/10.1007/978-3-319-25150-9_14

Danos, Vincent, Krivine, Jean: Reversible communicating systems. In: Gardner,
Philippa, Yoshida, Nobuko (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292-307.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8_19
Danos, V., Krivine, J.: Transactions in RCCS. In: Abadi, M., de Alfaro, L.
(eds.) CONCUR 2005. LNCS, vol. 3653, pp. 398-412. Springer, Heidelberg (2005).
https://doi.org/10.1007/11539452_31

Fischer, N., van Glabbeek, R.J.: Axiomatising infinitary probabilistic weak bisim-
ilarity of finite-state behaviours. J. Log. Algebr. Methods Program. 102, 64—-102
(2019). https://doi.org/10.1016/j.jlamp.2018.09.006

https://doi.org/10.1145/3154979.3155004
https://doi.org/10.1145/3154979.3155004
https://doi.org/10.4204/EPTCS.189.7
https://doi.org/10.4204/EPTCS.189.7
https://doi.org/10.1016/j.jlamp.2016.08.004
https://doi.org/10.1016/j.jlamp.2016.08.004
https://doi.org/10.4230/LIPIcs.CONCUR.2020.13
https://doi.org/10.4230/LIPIcs.CONCUR.2020.13
https://hal.archives-ouvertes.fr/hal-02571597
http://www.discotec.org/2020/ice.html
https://hal.archives-ouvertes.fr/hal-03183053
https://hal.archives-ouvertes.fr/hal-03183053
https://doi.org/10.1017/S0960129599002984
http://www.ipipan.gda.pl/~marek/papers/historie.ps.gz
http://www.ipipan.gda.pl/~marek/papers/historie.ps.gz
https://doi.org/10.1007/BFb0013028
https://leicester.figshare.com/articles/thesis/SimCCSK_simulation_of_the_reversible_process_calculi_CCSK/ 10091681
https://leicester.figshare.com/articles/thesis/SimCCSK_simulation_of_the_reversible_process_calculi_CCSK/ 10091681
https://doi.org/10.1109/LICS.2013.45
https://doi.org/10.1109/LICS.2013.45
https://doi.org/10.1007/978-3-319-25150-9_14
https://doi.org/10.1007/978-3-540-28644-8_19
https://doi.org/10.1007/11539452_31
https://doi.org/10.1016/j.jlamp.2018.09.006

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Explicit Identifiers and Contexts in Reversible Concurrent Calculus 161

Frank, M.P., Brocato, R.W., Tierney, B.D., Missert, N.A., Hsia, A.H.: Reversible
computing with fast, fully static, fully adiabatic CMOS. In: ICRC, Atlanta,
GA, USA, 1-3 December 2020, pp. 1-8. IEEE (2020). https://doi.org/10.1109/
ICRC2020.2020.00014

van Glabbeek, R.J.: On specifying timeouts. Electron. Notes Theor. Comput. Sci.
162, 173-175 (2006). https://doi.org/10.1016/j.entcs.2005.12.083

van Glabbeek, R.J., Hofner, P.: CCS: it’s not fair! - fair schedulers cannot be imple-
mented in ccs-like languages even under progress and certain fairness assumptions.
Acta Inform. 52(2-3), 175-205 (2015). https://doi.org/10.1007/s00236-015-0221-
6

Goubault-Larrecq, J.: Isomorphism theorems between models of mixed choice.
MSCS 27(6), 10321067 (2017). https://doi.org/10.1017/S0960129515000547
Graversen, E., Phillips, I., Yoshida, N.: Event structure semantics of (controlled)
reversible CCS. In: RC 2018, Leicester, UK, September 12-14, 2018, Proceedings.
LNCS, vol. 11106, pp. 102-122. Springer (2018). https://doi.org/10.1007/978-3-
319-99498-7_7

Hennessy, M.: A distributed Pi-calculus. CUP (2007). https://doi.org/10.1017/
CBO0O9780511611063

Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Hoboken
(1985)

Krivine, J.: Algebres de Processus Réversible - Programmation Concurrente
Déclarative. Ph.D. thesis, Université Paris 6 & INRIA Rocquencourt (2006).
https://tel.archives-ouvertes.fr/tel-00519528

Lanese, 1., Lienhardt, M., Mezzina, C.A., Schmitt, A., Stefani, J.-B.: Concurrent
flexible reversibility. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol.
7792, pp. 370-390. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-37036-6_21

Lanese, 1., Medié¢, D., Mezzina, C.A.: Static versus dynamic reversibility in CCS.
Acta Informatica 1-34 (2021). https://doi.org/10.1007/s00236-019-00346-6
Lanese, 1., Phillips, I.C.C., Ulidowski, I.: An axiomatic approach to reversible com-
putation. In: FOSSACS 2020, Dublin, Ireland, 25-30 April 2020, Proceedings.
LNCS, vol. 12077, pp. 442-461. Springer (2020). https://doi.org/10.1007/978-3-
030-45231-5_23

Lévy, J.J.: Réductions correctes et optimales dans le lambda-calcul. Ph.D. thesis,
Paris 7, January 1978. http://pauillac.inria.fr/~levy /pubs/78phd.pdf

Matthews, D.: How to get started in quantum computing. Nature 591(7848), 166—
167, March 2021. https://doi.org/10.1038/d41586-021-00533-x

Medié, D., Mezzina, C.A.: Static VS dynamic reversibility in CCS. In: RC 2016.
LNCS, vol. 9720, pp. 36-51. Springer (2016). https://doi.org/10.1007/978-3-319-
40578-0_3

Medié, D., Mezzina, C.A., Phillips, 1., Yoshida, N.: A parametric framework for
reversible 7-calculi. Inf. Comput. 275, 104644 (2020). https://doi.org/10.1016/j.
ic.2020.104644

Merro, M., Zappa Nardelli, F.: Behavioral theory for mobile ambients. J. ACM
52(6), 961-1023 (2005). https://doi.org/10.1145/1101821.1101825

Mezzina, C.A., Koutavas, V.: A safety and liveness theory for total reversibility.
In: TASE 2017, Sophia Antipolis, France, 13-15 September, pp. 1-8. IEEE (2017).
https://doi.org/10.1109/TASE.2017.8285635

Milner, R.: A Calculus of Communicating Systems. LNCS, Springer-Verlag (1980).
https://doi.org/10.1007/3-540-10235-3

https://doi.org/10.1109/ICRC2020.2020.00014
https://doi.org/10.1109/ICRC2020.2020.00014
https://doi.org/10.1016/j.entcs.2005.12.083
https://doi.org/10.1007/s00236-015-0221-6
https://doi.org/10.1007/s00236-015-0221-6
https://doi.org/10.1017/S0960129515000547
https://doi.org/10.1007/978-3-319-99498-7_7
https://doi.org/10.1007/978-3-319-99498-7_7
https://doi.org/10.1017/CBO9780511611063
https://doi.org/10.1017/CBO9780511611063
https://tel.archives-ouvertes.fr/tel-00519528
https://doi.org/10.1007/978-3-642-37036-6_21
https://doi.org/10.1007/978-3-642-37036-6_21
https://doi.org/10.1007/s00236-019-00346-6
https://doi.org/10.1007/978-3-030-45231-5_23
https://doi.org/10.1007/978-3-030-45231-5_23
http://pauillac.inria.fr/~levy/pubs/78phd.pdf
https://doi.org/10.1038/d41586-021-00533-x
https://doi.org/10.1007/978-3-319-40578-0_3
https://doi.org/10.1007/978-3-319-40578-0_3
https://doi.org/10.1016/j.ic.2020.104644
https://doi.org/10.1016/j.ic.2020.104644
https://doi.org/10.1145/1101821.1101825
https://doi.org/10.1109/TASE.2017.8285635
https://doi.org/10.1007/3-540-10235-3

162

36.

37.

38.

39.

40.

41.
42.
43.

44.

C. Aubert and D. Medié

Palamidessi, C., Valencia, F.D.: Recursion vs replication in process calculi: Expres-
siveness. Bull. EATCS 87, 105-125 (2005). http://eatcs.org/images/bulletin/
beatcs87.pdf

Perdrix, S., Jorrand, P.: Classically-controlled quantum computation. Electron.
Notes Theor. Comput. Sci. 135(3), 119-128 (2006). https://doi.org/10.1016/].
entcs.2005.09.026

Phillips, 1., Ulidowski, I.: Reversing algebraic process calculi. In: Aceto, L.,
Ingdélfsdbttir, A. (eds.) FoSSaCS 2006. LNCS, vol. 3921, pp. 246-260. Springer,
Heidelberg (2006). https://doi.org/10.1007/11690634-17

Phillips, 1., Ulidowski, I.: Reversibility and models for concurrency. Electron. Notes
Theor. Comput. Sci. 192(1), 93-108 (2007). https://doi.org/10.1016/j.entcs.2007.
08.018

Rosenberg, A.L.: Efficient pairing functions - and why you should care.
Int. J. Found. Comput. Sci. 14(1), 3-17 (2003). https://doi.org/10.1142/
S012905410300156X

Sangiorgi, D.: Introduction to Bisimulation and Coinduction. CUP (2011)
Sangiorgi, D., Walker, D.: The Pi-calculus. CUP (2001)

Szudzik, M.P.: The Rosenberg-strong pairing function. CoRR abs/1706.04129
(2017)

de Visme, M.: Event structures for mixed choice. In: CONCUR. LIPIcs, vol.
140, pp. 11:1-11:16. Schloss Dagstuhl (2019). https://doi.org/10.4230/LIPIcs.
CONCUR.2019.11

http://eatcs.org/images/bulletin/beatcs87.pdf
http://eatcs.org/images/bulletin/beatcs87.pdf
https://doi.org/10.1016/j.entcs.2005.09.026
https://doi.org/10.1016/j.entcs.2005.09.026
https://doi.org/10.1007/11690634_17
https://doi.org/10.1016/j.entcs.2007.08.018
https://doi.org/10.1016/j.entcs.2007.08.018
https://doi.org/10.1142/S012905410300156X
https://doi.org/10.1142/S012905410300156X
https://doi.org/10.4230/LIPIcs.CONCUR.2019.11
https://doi.org/10.4230/LIPIcs.CONCUR.2019.11

	Explicit Identifiers and Contexts in Reversible Concurrent Calculus
	1 Introduction: Filling the Blanks in Reversible Process Algebras
	2 Forward-Only Identified Calculus with Multiple Sums
	2.1 Preamble: Identifier Structures, Patterns, Seeds and Splitters
	2.2 Identified CCS and Unicity Property

	3 Reversible and Identified CCS
	3.1 Defining the Identified Reversible CCS
	3.2 Properties: From Concurrency to Causal Consistency and Unicity
	3.3 Links to RCCS and CCSK: Translations and Comparisons

	4 Contexts, and How We Do Not Have Congruences yet
	5 Conclusion
	References

