
International Journal of Approximate Reasoning 164 (2024) 109065

Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

journal homepage: www.elsevier.com/locate/ijar

A preferential interpretation of MultiLayer Perceptrons in a 

conditional logic with typicality

Mario Alviano a, Francesco Bartoli b, Marco Botta b, Roberto Esposito b, 
Laura Giordano c, Daniele Theseider Dupré c,∗

a Università della Calabria, Italy
b Università di Torino, Italy
c Università del Piemonte Orientale, Italy

A R T I C L E I N F O A B S T R A C T

Keywords:

Conditional logics

Description logics

Many-valued logics

Neural networks

In this paper we investigate the relationships between a multipreferential semantics for defeasible 
reasoning in knowledge representation and a multilayer neural network model. Weighted 
knowledge bases for a simple description logic with typicality are considered under a (many-

valued) “concept-wise” multipreference semantics. The semantics is used to provide a preferential 
interpretation of MultiLayer Perceptrons (MLPs). A model checking and an entailment based 
approach are exploited in the verification of conditional properties of MLPs.

1. Introduction

Preferential approaches to commonsense reasoning [1–9] have their roots in conditional logics [10,11], and have been used to 
provide axiomatic foundations of non-monotonic or defeasible reasoning. They have been extended to Description Logics (DLs) [12], 
to deal with inheritance with exceptions in ontologies, by allowing for non-strict forms of inclusions, called typicality or defeasible 
inclusions, with different preferential semantics [13–15], and closure constructions [16–22]. Preferential extensions of DLs allow 
reasoning with exceptions through the identification of prototypical properties of individuals or classes of individuals.

In recent work, a “concept-wise” multi-preferential semantics has been proposed as a semantics of ranked knowledge bases (KBs) 
in a lightweight description logic [23], in which defeasible or typicality inclusions of the form 𝐓(𝐶) ⊑ 𝐷 (meaning “the typical 𝐶 ’s 
are 𝐷’s” or “normally 𝐶 ’s are 𝐷’s”) are given a rank, a natural number representing their strength. This two-valued concept-wise 
multi-preferential semantics, which takes into account preferences with respect to different concepts, has been shown to have some 
desirable properties from the knowledge representation point of view [23,24], and has also been used to develop a preferential 
interpretation for Self-Organising Maps [25], psychologically and biologically plausible neural network models.

The idea underlying the multi-preferential semantics is that different preferences should be associated to different concepts and, 
for instance, for two individuals Tom and Bob, and two concepts, Swimmer and Student, Tom might be more typical than Bob as a 
swimmer (tom <Swimmer bob) but less typical than Bob as a student (bob <Student tom).

In this paper, we focus on weighted defeasible knowledge bases (KBs), i.e., KBs in which typicality inclusions (conditionals) have a 
positive or negative weight, a real number representing the plausibility of the property. For instance, one may want to represent a 
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situation in which students are normally young and use to have classes, while they usually do not have a scholarship. In a weighted 
knowledge base these defeasible properties of students may be represented through some weighted typicality inclusions such as:

𝐓(Student) ⊑ Young,80

𝐓(Student) ⊑ ∃hasClasses.⊤,90

𝐓(Student) ⊑ ∃hasScholarship.⊤,−20

where negative weights represent implausible properties, so that, in this example, it is rather implausible for students to have a 
scholarship, while it is quite plausible for them being young and having classes (with having classes slightly more plausible than 
being young). Given such properties, a student Bob, who is young, has classes and has no scholarship, can be regarded as being more 
typical than a student Tom who is not young, but has classes and has a scholarship, so that bob <Student tom. Similarly, for concept 
Swimmer the prototypical elements can be characterized by a set of features and, hence, a set of typicality inclusions with their 
weights. In our approach such features (such as being young or having classes) are as well represented as concepts in the description 
logic.

We do not assume that concepts are crisp, but that a domain element (Bob) may belong to a concept (e.g., Young) to some 
degree. Hence, we build our approach on fuzzy description logics, which have been widely studied in the literature (see, for instance, 
[26–30]). We develop a fuzzy formulation of the concept-wise multi-preferential semantics for weighted KBs in the description logic 
, based on a non-crisp interpretation of typicality concepts (this different choice with respect to previous work, as we will see, 
has some impact on the properties of entailment). We start from a fuzzy extension of  [28], and further extend it with multiple 
preferences and with a non-crisp notion of typicality. The resulting fuzzy description logic with typicality is called 𝐅𝐓. To 
provide a semantics for weighted KBs, we introduce three different closure constructions for 𝐅𝐓, the coherent, the faithful and 
the 𝜑-coherent multi-preferential semantics for weighted knowledge bases. Such constructions are similar in spirit to other semantic 
constructions adopted in the logics of commonsense reasoning, such as the lexicographic closure [31] and c-representations [9,32], but 
exploit multiple preference relations associated to concepts.

While similar (but different) semantic constructions for weighted knowledge bases have been considered in previous work based 
on different description logics,1 here we aim at a uniform formulation of the three semantics for , under the assumption that 
the interpretation of typicality is non-crisp. This allows us to study their mutual relationships, and to prove additional properties of 
multi-preferential entailment for the different semantics.

In particular, we show that any 𝜑-coherent model of a weighted KB is a faithful (resp., coherent) model of the KB under suitable 
conditions, and that the notions of entailment under the different semantics satisfies (for some choice of fuzzy combination functions) 
all the KLM properties of a preferential consequence relation [4,6], as well as other properties of the typicality operator studied in [15]

for +𝐓, a two-valued typicality extension of . This contribution of the work extends the preliminary results on the properties 
of the typicality logic investigated in [34] under the faithful semantics. In that case, the faithful semantics failed to satisfy all KLM 
properties of a preferential consequence relation, a negative result which is now overcome by adopting a non-crisp interpretation of 
typicality.

The proposed (fuzzy) many-valued multi-preferential semantics are used in providing a logical characterization of Multilayer 
Perceptrons (MLPs) [36], which can be used for post-hoc verification. We will see that the input-output behavior of a multilayer 
network  can be captured by a preferential interpretation 𝐼Δ


built over a set of input stimuli Δ (e.g., the training set), through a 

simple construction, which exploits the activity level of units for the input stimuli, thus allowing for the verification of properties of 
the network by model checking over the preferential interpretation. We show that properties formalized as fuzzy typicality inclusions 
in the boolean fragment of 𝐅𝐓 can be verified on the interpretation 𝐼Δ


in polynomial time in the size of 𝐼Δ


and in the size of 

the property. This is another contribution of the paper.

A logical characterization of a trained multi-layer networks  is established by proving that the preferential interpretation 𝐼Δ


, 
describing the network behavior over a set Δ of input stimuli, is indeed a 𝜑-coherent model of the weighted knowledge base 𝐾

and, vice-versa, that any 𝜑-coherent model of the knowledge base 𝐾 captures the behavior of the network over some set Δ of input 
stimuli. This strengthens the result in [33] that the interpretation 𝐼Δ


is a coherent model of 𝐾 .

Undecidability results for fuzzy DLs with general inclusion axioms [37,30] has led to consider a finitely-valued notion of the 𝜑-

coherent semantics, the 𝜑𝑛-coherent semantics [38]. In this paper, we prove that the 𝜑𝑛-coherent semantics is indeed an approximation

of the 𝜑-coherent semantics, which provides a full path from the definition of the fuzzy typicality logic with its semantics to the 
verification of properties of feedforward neural networks, which is based on proof methods developed for 𝜑𝑛-coherent entailment 
[39] and on a Datalog encoding of the model checking approach [40]. In the experimentation, we exploit both the entailment-

based approach and the model-checking approach in the verification of properties of trained multilayer feedforward networks. Such 
properties, expressed as fuzzy typicality inclusions, rely on typicality in order to describe what the network has learned to be a 
typical member of a class. The experiments extend and complement the ones reported in [38,40,41].

The schedule of the paper is the following. Section 2 contains the preliminaries about the description logic  and its fuzzy 
version. Section 3 defines a (monotonic) extension of fuzzy  (called 𝐅𝐓) including a fuzzy notion of typicality. Section 4

1 In particular, the coherent semantics was first introduced in [33] for weighted ⊥ KBs under a fuzzy semantics; the faithful semantics was considered in [34] for 
weighted  KBs in the fuzzy case; the 𝜑-coherent semantics was first proposed as an argumentation semantics in [35]. In all cases the interpretation of typicality 
2

was crisp.
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introduces weighted knowledge bases in 𝐅𝐓 and their closure constructions through the notions of faithful, coherent and 𝜑-coherent

(fuzzy) multi-preferential models. It establishes their relationships and defines the associated notions of entailment. Section 5 studies 
the properties of 𝐅𝐓 and its closures, and proves that, for Gödel fuzzy combination functions, 1-entailment satisfies all KLM 
properties of a preferential consequence relation [6] (properties that also extend to 𝑘-entailment, except for Cautious Monotonicity), 
while Rational Monotonicity does not hold. Further properties of the notion of typicality are also studied. Section 6 establishes the 
relationships between multi-preferential semantics and multilayer networks. It is proven that a multilayer network can be interpreted 
as a (fuzzy) multi-preferential interpretation (Section 6.2), and that the network itself can be regarded as a weighted knowledge base 
in the boolean fragment of 𝐅𝐓 (Section 6.3). This allows both a model-checking approach and an entailment approach to be 
exploited for property verification. Section 7 proves that the 𝜑-coherent models can be approximated in the finitely-valued case, 
which justifies the use of the 𝜑-coherent semantics over a finite domain for verification. Section 8 reports about experiments in the 
verification of properties of feedforward neural networks for the recognition of basic emotions, based on both the entailment and 
the model-checking approaches. The networks considered for entailment are significantly larger than the ones considered in [23,41], 
implying a much larger search space for solving. How model checking and entailment can be used together, and can be seen as 
complementary, is also pointed out. Section 9 concludes the paper with a discussion of related work and open issues.

The paper extends the work in [40,41] by substantiating it with several technical contributions, including the above mentioned 
ones.

2. The description logic  and fuzzy 

Fuzzy description logics have been widely studied in the literature for representing vagueness in description logics, e.g., by 
[26–28,30], based on the idea that concepts and roles can be interpreted as fuzzy sets and fuzzy relations. In fuzzy DLs, formulas 
have a truth degree from a truth space  , usually the interval [0, 1], as in Mathematical Fuzzy Logic [42]. The finitely many-valued 
case is also well studied for DLs [29,43–45].

In this section we recall the syntax and semantics of the description logic  [12] and of its fuzzy extension [28]. We will also 
consider a finitely many-valued fragment of  with typicality.

2.1. 

Let 𝑁𝐶 be a set of concept names, 𝑁𝑅 a set of role names and 𝑁𝐼 a set of individual names. The set of  concepts (or, simply, 
concepts) can be defined inductively as follows:

• 𝐴 ∈𝑁𝐶 , ⊤ and ⊥ are concepts;

• if 𝐶 and 𝐷 are concepts, and 𝑟 ∈𝑁𝑅, then 𝐶 ⊓𝐷, 𝐶 ⊔𝐷, ¬𝐶, ∀𝑟.𝐶, ∃𝑟.𝐶 are concepts.

A knowledge base (KB) 𝐾 is a pair ( , ), where  is a TBox and  is an ABox. The TBox  is a set of concept inclusions (or 
subsumptions) 𝐶 ⊑𝐷, where 𝐶, 𝐷 are concepts. The ABox  is a set of assertions of the form 𝐶(𝑎) and 𝑟(𝑎, 𝑏) where 𝐶 is a concept, 𝑎
and 𝑏 are individual names in 𝑁𝐼 and 𝑟 a role name in 𝑁𝑅.

An  interpretation is defined as a pair 𝐼 = ⟨Δ, ⋅𝐼 ⟩ where: Δ is a domain—a set whose elements are denoted by 𝑥, 𝑦, 𝑧, … —and ⋅𝐼
is an extension function that maps each concept name 𝐶 ∈𝑁𝐶 to a set 𝐶𝐼 ⊆Δ, each role name 𝑟 ∈𝑁𝑅 to a binary relation 𝑟𝐼 ⊆Δ ×Δ, 
and each individual name 𝑎 ∈𝑁𝐼 to an element 𝑎𝐼 ∈Δ. It is extended to complex concepts as follows:

⊥𝐼 = ∅,

⊤𝐼 =Δ,

(¬𝐶)𝐼 =Δ∖𝐶𝐼 ,

(𝐶 ⊓𝐷)𝐼 = 𝐶𝐼 ∩𝐷𝐼 ,

(𝐶 ⊔𝐷)𝐼 = 𝐶𝐼 ∪𝐷𝐼 ,

(∃𝑟.𝐶)𝐼 = {𝑥 ∈Δ ∣ ∃𝑦.(𝑥, 𝑦) ∈ 𝑟𝐼 and 𝑦 ∈ 𝐶𝐼},

(∀𝑟.𝐶)𝐼 = {𝑥 ∈Δ ∣ ∀𝑦.(𝑥, 𝑦) ∈ 𝑟𝐼 ⇒ 𝑦 ∈ 𝐶𝐼}.

The notion of satisfiability of a KB in an interpretation and the notion of entailment are defined as follows:

Definition 1 (Satisfiability and entailment). Given an  interpretation 𝐼 = ⟨Δ, ⋅𝐼 ⟩:
- 𝐼 satisfies an inclusion 𝐶 ⊑𝐷 if 𝐶𝐼 ⊆ 𝐷𝐼 ;

- 𝐼 satisfies an assertion 𝐶(𝑎) (resp., 𝑟(𝑎, 𝑏)) if 𝑎𝐼 ∈ 𝐶𝐼 (resp., (𝑎𝐼 , 𝑏𝐼 ) ∈ 𝑟𝐼 ).

Given a knowledge base 𝐾 = ( , ), an interpretation 𝐼 satisfies  (resp. ) if 𝐼 satisfies all inclusions in  (resp. all assertions in 
); 𝐼 is a model of 𝐾 if 𝐼 satisfies  and .

A subsumption 𝐹 = 𝐶 ⊑ 𝐷 (resp., an assertion 𝐶(𝑎), 𝑟(𝑎, 𝑏)), is entailed by 𝐾 , written 𝐾 ⊧ 𝐹 , if for all models 𝐼 =⟨Δ, ⋅𝐼 ⟩ of 𝐾 , 𝐼
3

satisfies 𝐹 .
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Table 1

Properties for t-norms and s-norms.

Axiom T-norm S-norm

Tautology/contradiction 𝑎⊗ 0 = 0 𝑎⊕ 1 = 1
Identity 𝑎⊗ 1 = 𝑎 𝑎⊕ 0 = 𝑎

Commutativity 𝑎⊗ 𝑏 = 𝑏⊗ 𝑎 𝑎⊕ 𝑏 = 𝑏⊕ 𝑎

Associativity (𝑎⊗ 𝑏)⊗ 𝑐 = 𝑎⊗ (𝑏⊗ 𝑐) (𝑎⊕ 𝑏)⊕ 𝑐 = 𝑎⊕ (𝑏⊕ 𝑐)
Monotonicity if 𝑏 ≤ 𝑐, then 𝑎⊗ 𝑏 ≤ 𝑎⊗ 𝑐 if 𝑏 ≤ 𝑐, then 𝑎⊕ 𝑏 ≤ 𝑎⊕ 𝑐

Table 2

Properties for implication and negation functions.

Axiom Implication function Negation function

Tautology/contradiction 0⊳ 𝑏 = 1, 𝑎⊳ 1 = 1,1⊳ 0 = 0 ⊖0 = 1,⊖1 = 0
Antitonicity if 𝑎 ≤ 𝑏, then 𝑎⊳ 𝑐 ≥ 𝑏⊳ 𝑐 if 𝑎 ≤ 𝑏, then ⊖𝑎 ≥⊖𝑏

Monotonicity if 𝑏 ≤ 𝑐, then 𝑎⊳ 𝑏 ≤ 𝑎⊳ 𝑐

Given a knowledge base 𝐾 , the subsumption problem is the problem of deciding whether an inclusion 𝐶 ⊑𝐷 is entailed by 𝐾 .

2.2. Fuzzy  and a finitely-valued 

We shortly recall the semantics of a fuzzy extension of , referring to the survey by Lukasiewicz and Straccia [28]. We limit 
our consideration to a few features of a fuzzy DL and, in particular, we omit considering datatypes.

A fuzzy interpretation for  is a pair 𝐼 = ⟨Δ, ⋅𝐼 ⟩ where: Δ is a non-empty domain and ⋅𝐼 is fuzzy interpretation function that 
assigns to each concept name 𝐴 ∈𝑁𝐶 a function 𝐴𝐼 ∶ Δ → [0, 1], to each role name 𝑟 ∈𝑁𝑅 a function 𝑟𝐼 ∶ Δ ×Δ → [0, 1], and to each 
individual name 𝑎 ∈𝑁𝐼 an element 𝑎𝐼 ∈Δ. A domain element 𝑥 ∈Δ belongs to the extension of 𝐴 to some degree in [0, 1], i.e., 𝐴𝐼 is 
a fuzzy set.

The interpretation function ⋅𝐼 is extended to complex concepts as follows:

⊤𝐼 (𝑥) = 1, ⊥𝐼 (𝑥) = 0,

(¬𝐶)𝐼 (𝑥) =⊖𝐶𝐼 (𝑥),

(𝐶 ⊓𝐷)𝐼 (𝑥) = 𝐶𝐼 (𝑥)⊗𝐷𝐼 (𝑥),

(𝐶 ⊔𝐷)𝐼 (𝑥) = 𝐶𝐼 (𝑥)⊕𝐷𝐼 (𝑥),

(∃𝑟.𝐶)𝐼 (𝑥) = sup
𝑦∈Δ

𝑟𝐼 (𝑥, 𝑦)⊗𝐶𝐼 (𝑦),

(∀𝑟.𝐶)𝐼 (𝑥) = inf
𝑦∈Δ

𝑟𝐼 (𝑥, 𝑦)⊳𝐶𝐼 (𝑦),

where 𝑥 ∈ Δ, and ⊗, ⊕, ⊳ and ⊖ are arbitrary but fixed triangular norm (or t-norm), triangular co-norm (or s-norm), implication 
function, and negation function, chosen among the combination functions of some fuzzy logic. In particular, in Gödel logic 𝑎 ⊗𝑏 =
𝑚𝑖𝑛{𝑎, 𝑏}, 𝑎 ⊕𝑏 =𝑚𝑎𝑥{𝑎, 𝑏}, 𝑎 ⊳ 𝑏 = 1 if 𝑎 ≤ 𝑏 and 𝑏 otherwise; ⊖𝑎 = 1 if 𝑎 = 0 and 0 otherwise. In Łukasiewicz logic, 𝑎 ⊗𝑏 =𝑚𝑎𝑥{𝑎 + 𝑏 −
1, 0}, 𝑎 ⊕𝑏 =𝑚𝑖𝑛{𝑎 + 𝑏, 1}, 𝑎 ⊳ 𝑏 =𝑚𝑖𝑛{1 − 𝑎 + 𝑏, 1} and ⊖𝑎 = 1 − 𝑎. In Product Logic, 𝑎 ⊗𝑏 = 𝑎 ⋅ 𝑏, 𝑎 ⊕𝑏 = 𝑎 + 𝑏 − 𝑎 ⋅ 𝑏, 𝑎 ⊳ 𝑏 =𝑚𝑖𝑛{1, 𝑏∕𝑎}
and ⊖𝑎 = 1 if 𝑎 = 0 and 0 otherwise.2 Following [28], we will not commit to a specific choice of combination functions, but in Tables 1

and 2 we report their main properties (from Tables 1 and 2 in [28]).

The interpretation function ⋅𝐼 is also extended to non-fuzzy axioms (i.e., to strict inclusions and assertions of an  knowledge 
base) as follows:

(𝐶 ⊑𝐷)𝐼 = inf
𝑥∈Δ

𝐶𝐼 (𝑥)⊳𝐷𝐼 (𝑥)

(𝐶(𝑎))𝐼 = 𝐶𝐼 (𝑎𝐼 )

(𝑅(𝑎, 𝑏))𝐼 =𝑅𝐼 (𝑎𝐼 , 𝑏𝐼 ).

A fuzzy  knowledge base 𝐾 is a pair ( , ) where  is a fuzzy TBox and  a fuzzy ABox. A fuzzy TBox is a set of fuzzy concept 
inclusions of the form 𝐶 ⊑ 𝐷 𝜃 𝑛, where 𝐶 ⊑ 𝐷 is an  concept inclusion axiom, 𝜃 ∈ {≥, ≤, >, <} and 𝑛 ∈ [0, 1]. A fuzzy ABox  is 
a set of fuzzy assertions of the form 𝐶(𝑎)𝜃𝑛 or 𝑟(𝑎, 𝑏)𝜃𝑛, where 𝐶 is an  concept, 𝑟 ∈𝑁𝑅, 𝑎, 𝑏 ∈𝑁𝐼 , 𝜃 ∈ {≥, ≤, >, <} and 𝑛 ∈ [0, 1]. 
Following Bobillo and Straccia [46], we assume that fuzzy interpretations are witnessed, i.e., the sup and inf are attained at some 
point of the involved domain.

We refer to fuzzy concept inclusions and fuzzy assertions as fuzzy axioms.
4

2 Let us mention that any continuous t-norm can be expressed as an ordinal sum of copies of these three t-norms.
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Example 1. Let us consider the fuzzy concepts Tall (tall individuals) and ∃hasFriend.Tall (the individuals having a tall friend), 
where hasFriend might as well be a fuzzy role, as a domain individual Bob may be friend of Mary to a given degree, e.g., 
hasFriendI (bobI ,maryI ) = 0.7. Similarly, we may consider the fuzzy concept ∃hasParent.Tall.

For instance, we may have fuzzy assertions such as hasFriend(bob,mary) ≥ 0.5 or Tall(mary) ≥ 0.8 in the ABox 𝑓 , and fuzzy concept 
inclusions such as ∃hasParent.Tall ⊑ Tall ≥ 0.7 (an individual having at least a tall parent is tall, holding to a degree greater than or 
equal to 0.7) or ∀hasFriend.Nerd ⊑ Nerd ≥ 0.8 (an individual having all nerd friends is a nerd, holding to a degree greater than 0.8) in 
the TBox 𝑓 .

Let us assume Gödel logic, and that Bob has parents Mary and Tom. Consider an interpretation 𝐼 such that:

hasParent𝐼 (bob𝐼 ,mary𝐼 ) = 1, hasParent𝐼 (bob𝐼 , tom𝐼 ) = 1,

hasParent𝐼 (bob𝐼 , 𝑧) = 0, for all 𝑧 ∈Δ with 𝑧 ≠ mary𝐼 , tom𝐼 ,

hasParentI (x, z) = 0, for all 𝑥, 𝑧 ∈Δ with 𝑥 ≠ bob𝐼 ,

TallI (bobI ) = 0.8, TallI (maryI ) = 0.5, TallI (tomI ) = 0.9,

TallI (x) = 0.5, for all 𝑥 ∈Δ with 𝑥 ≠ bob𝐼 ,mary𝐼 , tom𝐼 .

As an example, we show that (∃hasParent.Tall ⊑ Tall)I = 0.8 holds. We have to show that inf 𝑥∈𝛥(∃hasParent.Tall)I (x)⊳ TallI (x) = 0.8.

Note that:

(∃hasParent.Tall)I (x) = sup
𝑦∈𝛥

hasParent𝐼 (𝑥, 𝑦)⊗ Tall𝐼 (𝑦)

= sup
𝑦∈𝛥

min{hasParent𝐼 (𝑥, 𝑦),Tall𝐼 (𝑦)}.

In particular, for x = bobI we have:

(∃hasParent.Tall)I (bobI ) = sup
𝑦∈𝛥

min{hasParentI (bobI , y),TallI (y)},

= sup
𝑦∈𝛥

min{hasParentI (bobI , y),TallI (y)} = 0.9.

In fact, we have three possible cases for 𝑦, 𝑦 =𝑚𝑎𝑟𝑦𝐼 , 𝑦 = 𝑡𝑜𝑚𝐼 and 𝑦 ≠𝑚𝑎𝑟𝑦𝐼 , 𝑡𝑜𝑚𝐼 :

min{hasParentI (bobI ,maryI),TallI (maryI)} = min{1,0.5} = 0.5

min{hasParentI (bobI , tomI ),TallI (tomI )} = min{1,0.9} = 0.9

min{hasParentI (bobI , y),TallI (y)} = min{0,TallI (y)} = 0,

for 𝑦 ≠𝑚𝑎𝑟𝑦𝐼 , 𝑡𝑜𝑚𝐼 . We take the maximum among the values, then

(∃hasParent.Tall)I (bobI )⊳ TallI (bobI ) = 0.9 ⊳ 0.8 = 0.8.

In a similar way, one can see that, for all 𝑥 ≠ 𝑏𝑜𝑏𝐼 ,

(∃hasParent.Tall)I (x)⊳ TallI (x) = 0 ⊳ 0.5 = 1,

where (∃hasParent.Tall)I (x) = 0 as, for 𝑥 ≠ 𝑏𝑜𝑏𝐼 , hasParentI (x, z) = 0 for all 𝑧 ∈ Δ.

Thus: inf 𝑥∈𝛥(∃hasParent.Tall)I (x)⊳ TallI (x) = 0.8.

The notions of satisfiability of a KB in a fuzzy interpretation and of entailment are defined in the natural way.

Definition 2 (Satisfiability and entailment for fuzzy KBs). A fuzzy interpretation 𝐼 satisfies a fuzzy  axiom 𝐸 (denoted 𝐼 ⊧ 𝐸), as 
follows:

- 𝐼 satisfies a fuzzy inclusion axiom 𝐶 ⊑𝐷 𝜃 𝑛 if (𝐶 ⊑𝐷)𝐼 𝜃 𝑛;

- 𝐼 satisfies a fuzzy assertion 𝐶(𝑎) 𝜃 𝑛 if 𝐶𝐼 (𝑎𝐼 )𝜃 𝑛;

- 𝐼 satisfies a fuzzy assertion 𝑟(𝑎, 𝑏) 𝜃 𝑛 if 𝑟𝐼 (𝑎𝐼 , 𝑏𝐼 )𝜃 𝑛,

where 𝜃 ∈ {≥, ≤, >, <}.

Given a fuzzy  knowledge base 𝐾 = ( , ), a fuzzy interpretation 𝐼 satisfies  (resp. ) if 𝐼 satisfies all fuzzy inclusions in 
(resp. all fuzzy assertions in ). A fuzzy interpretation 𝐼 is a model of 𝐾 if 𝐼 satisfies  and . A fuzzy axiom 𝐸 is entailed by a fuzzy 
knowledge base 𝐾 , written 𝐾 ⊧ 𝐸, if for all models 𝐼 =⟨Δ, ⋅𝐼 ⟩ of 𝐾 , 𝐼 satisfies 𝐸.

Example 2. Referring to the interpretation 𝐼 in Example 1, we have seen that (∃hasParent.Tall ⊑ Tall)I = 0.8 holds. Then, we can 
5

conclude that axiom ∃hasParent.Tall ⊑ Tall ≥ 0.7 is satisfied in 𝐼 .
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For the finitely many-valued case, we restrict to the boolean fragment  of  with no roles (and no universal and existential 
restrictions). We assume the truth space to be 𝑛 = {0, 1

𝑛
, …, 𝑛−1

𝑛
, 𝑛
𝑛
}, for an integer 𝑛 ≥ 1.

A finitely many-valued interpretation for  is a pair 𝐼 = ⟨Δ, ⋅𝐼 ⟩ where: Δ is a non-empty domain and ⋅𝐼 is an interpretation function

that assigns to each 𝑎 ∈𝑁𝐼 a value 𝑎𝐼 ∈ Δ, and to each 𝐴 ∈𝑁𝐶 a function 𝐴𝐼 ∶ Δ → 𝑛 and to each role name 𝑟 ∈𝑁𝑅 a function 
𝑟𝐼 ∶ Δ ×Δ → 𝑛. In particular, in [38] we have considered two finitely many-valued fragments on , the one based on Łukasiewicz 
logic, and the other based on Gödel logic extended with a standard involutive negation ⊖𝑎 = 1 − 𝑎. Such fragments are defined along 
the lines of the finitely many-valued extension of description logic  [43], of the logic GZ  [44], and of the logic 
∗(𝑆) [29].

In the following, we will use 𝑛 to refer to a finitely-valued extension of  interpreted over the truth space 𝑛, without 
committing to a specific choice of combination functions. In Section 8, we will mainly refer to 𝐺𝑛, the boolean fragment of 
𝑛 based on Gödel logic, and we will assume that the interpretation of negated concepts exploits involutive negation, i.e., 
(¬𝐶)𝐼 (𝑥) =⊖𝐶𝐼 (𝑥) = 1 −𝐶𝐼 (𝑥).

3. Fuzzy  with typicality: 
𝐅𝐓

In this section, we extend fuzzy  with typicality concepts of the form 𝐓(𝐶), where 𝐶 is a concept in fuzzy . The idea 
is similar to the extension of  with typicality [15], but transposed to the fuzzy case. The extension allows for the definition of 
fuzzy typicality inclusions of the form 𝐓(𝐶) ⊑ 𝐷 𝜃 𝑛, meaning that typical 𝐶-elements are 𝐷-elements with a degree greater than 𝑛. A 
typicality inclusion 𝐓(𝐶) ⊑ 𝐷, as in the two-valued case, stands for a KLM conditional implication 𝐶 ∣∼ 𝐷 [4,6], but now it has an 
associated degree.

We call 𝐅𝐓 the extension of fuzzy  with typicality. As in the two-valued case, such as in 𝐏𝐓, a preferential 
extension of  with typicality [47], or in the propositional typicality logic, PTL [48], the typicality concept may be allowed 
to freely occur within inclusions and assertions, while the nesting of the typicality operator is not allowed.

In the definition of the semantics for 𝐅𝐓, we diverge from the choice in [33,38] and consider a fuzzy interpretation for the 
typicality operator, rather than a crisp one. This will allow us to prove that all the properties of a preferential consequence relation 
hold for a notion of entailment.

Observe that, in a fuzzy  interpretation 𝐼 = ⟨Δ, ⋅𝐼 ⟩, the degree of membership 𝐶𝐼 (𝑥) of the domain elements 𝑥 in a concept 𝐶
induces a preference relation <𝐶 on Δ as follows:

𝑥 <𝐶 𝑦 iff 𝐶𝐼 (𝑥) > 𝐶𝐼 (𝑦) (1)

Each preference <𝐶 has the properties of preference relations in KLM-style ranked interpretations [6], that is, <𝐶 is a modular and 
well-founded strict partial order. Let us recall that, <𝐶 is well-founded if there is no infinite descending chain 𝑥1 <𝐶 𝑥0, 𝑥2 <𝐶 𝑥1, 
𝑥3 <𝐶 𝑥2, … of domain elements; <𝐶 is modular if, for all 𝑥, 𝑦, 𝑧 ∈Δ, 𝑥 <𝐶 𝑦 implies (𝑥 <𝐶 𝑧 or 𝑧 <𝐶 𝑦). Well-foundedness holds for the 
induced preference <𝐶 defined by condition (1) under the assumption that fuzzy interpretations are witnessed [46] (see Section 2) 
or that Δ is finite.

While each preference relation <𝐶 has the properties of a preference relation in KLM rational interpretations [6] (also called 
ranked interpretations), here there are multiple preferences and, therefore, fuzzy interpretations can be regarded as multipreferential

interpretations, which have also been studied in the two-valued case [23,49,21].

Each preference relation <𝐶 captures the relative typicality of domain elements wrt concept 𝐶 and may be used to identify the 
typical 𝐶-elements. We will regard typical 𝐶-elements as the domain elements 𝑥 that are preferred with respect to relation <𝐶 among 
those such that 𝐶𝐼 (𝑥) ≠ 0.

For an interpretation 𝐼 , let 𝐶𝐼
>0 be the crisp set containing all domain elements 𝑥 such that 𝐶𝐼 (𝑥) > 0, that is, 𝐶𝐼

>0 = {𝑥 ∈ Δ ∣
𝐶𝐼 (𝑥) > 0}. The (fuzzy) interpretation of typicality concepts 𝐓(𝐶) in 𝐼 is:

(𝐓(𝐶))𝐼 (𝑥) =
{

𝐶𝐼 (𝑥) if 𝑥 ∈𝑚𝑖𝑛<𝐶
(𝐶𝐼

>0)
0 otherwise

(2)

where 𝑚𝑖𝑛<𝐶
(𝑆) = {𝑢 ∶ 𝑢 ∈ 𝑆 and ∄𝑧 ∈ 𝑆 s.t. 𝑧 <𝐶 𝑢}. When (𝐓(𝐶))𝐼 (𝑥) > 0, we say that 𝑥 is a typical 𝐶-element in 𝐼 . Note that all 

typical 𝐶-elements have the same membership degree in concept 𝐶 .

Observe also that, if 𝐶𝐼 (𝑥) > 0 for some 𝑥 ∈Δ, 𝑚𝑖𝑛<𝐶
(𝐶𝐼

>0) is non-empty (and the size of the fuzzy concept (𝐓(𝐶))𝐼 is greater than 
zero). This generalizes the property that, in the crisp case, 𝐶𝐼 ≠ ∅ implies (𝐓(𝐶))𝐼 ≠ ∅.

Let us define a fuzzy multi-preferential interpretation for 𝐅𝐓 (shortly, an 𝐅𝐓 interpretation) as follows:

Definition 3 (𝐅𝐓 interpretation). An 𝐅𝐓 interpretation 𝐼 = ⟨Δ, ⋅𝐼 ⟩ is fuzzy  interpretation, equipped with the valuation 
of typicality concepts given by condition (2) above.

The fuzzy interpretation 𝐼 = ⟨Δ, ⋅𝐼 ⟩ implicitly defines a multi-preferential interpretation, where any concept 𝐶 is associated to a 
preference relation <𝐶 . This is different from the two-valued multi-preferential semantics in [23], where only a subset of distinguished 
concepts have an associated preference, and a notion of global preference < is introduced to define the interpretation of the typicality 
6

concept 𝐓(𝐶), for an arbitrary 𝐶 . Here, we do not need to introduce a notion of global preference. The interpretation of any 
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concept 𝐶 is defined compositionally from the interpretation of atomic concepts, and the preference relation <𝐶 associated to 𝐶 is 
defined from 𝐶𝐼 .

The notions of satisfiability in 𝐅𝐓, model of an 𝐅𝐓 knowledge base, and 𝐅𝐓 entailment can be defined in a similar 
way as in fuzzy  (see Section 2). In particular, given an 𝐅𝐓 knowledge base 𝐾 , a fuzzy concept inclusion 𝐓(𝐶) ⊑𝐷 𝜃 𝑘 (with 
𝜃 ∈ {≥, ≤, >, <} and 𝑘 ∈ [0, 1]) is entailed from 𝐾 in 𝐅𝐓 (written 𝐾 ⊧𝐅𝐓 𝐓(𝐶) ⊑ 𝐷 𝜃 𝑘) if 𝐓(𝐶) ⊑ 𝐷 𝜃𝑘 is satisfied in all 𝐅𝐓
models 𝐼 of the knowledge base 𝐾 . In the following, we will refer to the entailment of 𝐓(𝐶) ⊑ 𝐷 ≥ 𝑘 as 𝑘-entailment and, as a special 
case, for 𝑘 = 1, as 1-entailment.

As an example of satisfiability, the fuzzy concept inclusion ⟨𝐓(𝐶) ⊑ 𝐷 ≥ 𝑘⟩ is satisfied in a fuzzy interpretation 𝐼 = ⟨Δ, ⋅𝐼 ⟩ if 
inf𝑥∈Δ(𝐓(𝐶))𝐼 (𝑥) ⊳𝐷𝐼 (𝑥) ≥ 𝑘 holds, which can be evaluated based on the combination functions of some specific fuzzy logic.

As in the two-valued case, the typicality operator 𝐓 introduced in 𝐅𝐓 is non-monotonic in the following sense: for a given 
knowledge base 𝐾 , from the fact that 𝐶 ⊑ 𝐷 is 1-entailed from 𝐾 , we cannot conclude that 𝐓(𝐶) ⊑ 𝐓(𝐷) is 1-entailed from 𝐾 . 
Nevertheless, the logic 𝐅𝐓 is monotonic, that is, for two 𝐅𝐓 knowledge bases 𝐾 and 𝐾 ′, and a fuzzy axiom 𝐸, if 𝐾 ⊆ 𝐾 ′, 
and 𝐾 ⊧𝐅𝐓 𝐸 then 𝐾 ′ ⊧𝐅𝐓 𝐸. 𝐅𝐓 is a fuzzy relative of the monotonic logic  +𝐓 [15].

Although, as we will see, the KLM postulates of a preferential consequence relation [6] can be reformulated and hold for 𝐅𝐓, 
this typicality extension of fuzzy  is rather weak. Similarly, in the two-valued case, the preferential extension of  with 
typicality,  + 𝐓 [15], and the rational extension of  with defeasible inclusions [14] do not allow to deal with irrelevance. 
From the fact that birds normally fly, one would like to be able to conclude that normally yellow birds fly, the color being irrelevant 
to flying.

In the two-valued case, this has led to the definition of non-monotonic defeasible Description Logics [16–18,50,51,21], which 
build on some closure construction (such as the rational closure [6] and the lexicographic closure [31] in KLM framework) or some 
notion of minimal entailment [52]. In the next section, we introduce a notion of weighted knowledge base and strengthen 𝐅𝐓
by considering some different closure constructions, starting from the notion of coherent preferential interpretation introduced in 
[33], and we discuss their properties.

4. Weighted knowledge bases and closure constructions

To overcome the weakness of rational closure (as well as of preferential entailment), Lehmann introduced the lexicographic 
closure of a conditional knowledge base [31] which strengthens the rational closure by allowing further inferences. From the semantic 
point of view, in the propositional case, a preference relation is defined on the set of propositional interpretations, so that the 
interpretations satisfying conditionals with higher rank are preferred to the interpretations satisfying conditionals with lower rank 
and, in case of contradictory defaults with the same rank, interpretations satisfying more defaults with that rank are preferred. The 
ranks of conditionals used by the lexicographic closure construction are the ones computed by the rational closure construction 
[6], which capture specificity: the higher is the rank, the more specific is the default. In other cases, the ranks may be part of the 
knowledge base specification, such as for ranked knowledge bases in Brewka’s framework of basic preference descriptions [53], or 
might be learned from empirical data, as we will see in the following.

In this section, we consider weighted (fuzzy) knowledge bases, where typicality inclusions are associated to weights, and develop 
a (semantic) closure construction to strengthen 𝐅𝐓 entailment, which leads to some variants of the notion of fuzzy coherent 
multi-preferential model in [33]. The construction also relates to the definition of Kern-Isberner’s c-representations [9,32] which 
also include penalty points for falsified conditionals, and to the algebraic semi-qualitative approach to conditionals by Weydert [54].

A weighted 𝐅𝐓 knowledge base 𝐾 , over a set  = {𝐶1, … , 𝐶𝑘} of distinguished  concepts, is a tuple ⟨𝑓 , 𝐶1
, … , 𝐶𝑘

, 𝑓 ⟩, 
where 𝑓 is a set of fuzzy 𝐅𝐓 inclusion axioms, 𝑓 is a set of fuzzy 𝐅𝐓 assertions and, for each 𝐶𝑖 ∈ , 𝐶𝑖

= {(𝑑𝑖
ℎ
, 𝑤𝑖

ℎ
)} is 

a (non-empty) set of weighted typicality inclusions 𝑑𝑖
ℎ
= 𝐓(𝐶𝑖) ⊑𝐷𝑖,ℎ for 𝐶𝑖, indexed by ℎ, where each inclusion 𝑑𝑖

ℎ
has weight 𝑤𝑖

ℎ
, a 

real number. As in [33], the typicality operator is assumed to occur only on the left hand side of a weighted typicality inclusion, and 
the distinguished concepts are those concepts 𝐶𝑖 occurring on the l.h.s. of some typicality inclusion 𝐓(𝐶𝑖) ⊑𝐷 in 𝐶𝑖

. Arbitrary 𝐅𝐓
inclusions and assertions may belong to 𝑓 and 𝑓 .

Example 3. Consider the weighted knowledge base 𝐾 = ⟨𝑓 , 𝐵𝑖𝑟𝑑 , 𝑃𝑒𝑛𝑔𝑢𝑖𝑛, 𝐶𝑎𝑛𝑎𝑟𝑦, 𝑓 ⟩, over the set of distinguished concepts  =
{Bird,Penguin, Canary}, and assume the combination functions as in Gödel fuzzy logic. The Tbox 𝑓 contains the inclusions:

Yellow ⊓ Black ⊑ ⊥ ≥ 1 Yellow ⊓ Red ⊑ ⊥ ≥ 1 Black ⊓ Red ⊑ ⊥ ≥ 1

the ABox 𝑓 contains the following assertions:

Red(reddy) ≥ 1, ∃hasWings.Small(reddy) ≥ 1, Fly(reddy) ≥ 1

Black(opus) ≥ 1, ∃hasWings.Long(opus) ≥ 1, Fly(opus) ≤ 0,

the weighted TBox 𝐵𝑖𝑟𝑑 contains the following weighted defeasible inclusions:

(𝑑1) 𝐓(Bird) ⊑ Fly, +20

(𝑑2) 𝐓(Bird) ⊑ ∃hasWings.⊤, +50

(𝑑3) 𝐓(Bird) ⊑ ∃hasFeathering.⊤, +50;
7

and 𝑃𝑒𝑛𝑔𝑢𝑖𝑛 and 𝐶𝑎𝑛𝑎𝑟𝑦 contain, respectively, the following inclusions:
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(𝑑4) 𝐓(Penguin) ⊑ Bird, +100

(𝑑5) 𝐓(Penguin) ⊑ Fly, -70

(𝑑6) 𝐓(Penguin) ⊑ Black, +50;

(𝑑7) 𝐓(Canary) ⊑ Bird, +100

(𝑑8) 𝐓(Canary) ⊑ Yellow, +30

(𝑑9) 𝐓(Canary) ⊑ Red, +20

The intended meaning is that a bird normally has wings, has feathers and flies, but having wings and having feathers (both with 
weight 50) for a bird is more plausible than flying (weight 20), although flying is regarded as being plausible. For a penguin, flying is 
not plausible (inclusion (𝑑5) has negative weight -70), while being a bird and being black are very plausible properties of prototypical 
penguins, as (𝑑4) and (𝑑6) have positive weights (100 and 50, respectively). Similar considerations can be done for concept Canary.

Consider an interpretation 𝐼 , satisfying both TBox and ABox axiams, in which Reddy is red, has small wings, has feathers and 
flies (suppose all with degree 1) and Opus has long wings, has feathers (with degree 1), is black with degree 0.8 and does not fly 
(FlyI(opusI ) = 0). Considering the weights of defeasible inclusions, we might expect Reddy to be more typical than Opus as a bird, 
but less typical than Opus as a penguin in the interpretation 𝐼 .

The fuzzy axioms in TBox 𝑓 define strict constraints, e.g., for the second one, in any interpretation 𝐼 , for each domain 
element 𝑥, the value of (Red ⊓ Black)I(x) must be 0 (and, hence, BlackI(reddyI ) = 0). Note also that, as ABox 𝑓 contains the as-

sertion ∃hasWings.Small(reddy) ≥ 1, then (∃hasWings.Small)I (reddyI ) = 1 holds. Hence, there is a domain element 𝑦 ∈ Δ such that 
hasWingsI (reddyI , y) = 1 and SmallI (y) = 1. Thus, it follows that (∃hasWings.⊤)I (reddyI ) = 1, and hence the assertion ∃hasWings.⊤
(reddy) ≥ 1 is as well satisfied in 𝐼 .

We define the semantics of weighted knowledge bases as the one above through a semantic closure construction, similar in spirit to 
Lehmann’s lexicographic closure [31], but exploiting weights and based on multiple preferences. The construction allows a subset of 
the 𝐅𝐓 interpretations to be selected, the interpretations whose induced preference relations <𝐶𝑖

, for the distinguished concepts 
𝐶𝑖, faithfully represent the defeasible part of the knowledge base 𝐾 .

Let 𝐶𝑖
= {(𝑑𝑖

ℎ
, 𝑤𝑖

ℎ
)} be the set of weighted typicality inclusions 𝑑𝑖

ℎ
= 𝐓(𝐶𝑖) ⊑ 𝐷𝑖,ℎ associated to the distinguished concept 𝐶𝑖, and 

let 𝐼 = ⟨Δ, ⋅𝐼 ⟩ be a fuzzy 𝐅𝐓 interpretation. In the two-valued case, we would associate to each domain element 𝑥 ∈ Δ and 
each distinguished concept 𝐶𝑖, a weight 𝑊𝑖(𝑥) of 𝑥 wrt 𝐶𝑖 in 𝐼 , by summing the weights of the defeasible inclusions satisfied by 𝑥. 
However, as 𝐼 is a fuzzy interpretation, we do not only distinguish between the typicality inclusions satisfied or falsified by 𝑥; we 
also need to consider, for all inclusions 𝐓(𝐶𝑖) ⊑ 𝐷𝑖,ℎ ∈ 𝐶𝑖

, the degree of membership of 𝑥 in 𝐷𝑖,ℎ. Furthermore, in comparing the 
weight of domain elements with respect to <𝐶𝑖

, we want to give higher preference to the domain elements having a membership 
degree in 𝐶𝑖 greater than 0, with respect to those elements whose degree of membership in 𝐶𝑖 is 0.

For each domain element 𝑥 ∈Δ and distinguished concept 𝐶𝑖, the weight 𝑊𝑖(𝑥) of 𝑥 wrt 𝐶𝑖 in the 𝐅𝐓 interpretation 𝐼 = ⟨Δ, ⋅𝐼 ⟩
is defined as follows:

𝑊𝑖(𝑥) =

{∑
ℎ 𝑤

𝑖
ℎ
𝐷𝐼

𝑖,ℎ
(𝑥) if 𝐶𝐼

𝑖
(𝑥) > 0

−∞ otherwise
(3)

where −∞ is added at the bottom of all real values.

The value of 𝑊𝑖(𝑥) is −∞ when 𝑥 is not a 𝐶-element (i.e., 𝐶𝐼
𝑖
(𝑥) = 0). Otherwise, 𝐶𝐼

𝑖
(𝑥) > 0 and the higher is the sum 𝑊𝑖(𝑥), the 

more typical is the element 𝑥 relative to concept 𝐶𝑖. How much 𝑥 satisfies a typicality property 𝐓(𝐶𝑖) ⊑𝐷𝑖,ℎ depends on the value of 
𝐷𝐼

𝑖,ℎ
(𝑥) ∈ [0, 1], which is weighted by 𝑤𝑖

ℎ
in the sum. In the two-valued case, 𝐷𝐼

𝑖,ℎ
(𝑥) ∈ {0, 1}, and 𝑊𝑖(𝑥) is the sum of the weights of 

the typicality inclusions for 𝐶 satisfied by 𝑥, if 𝑥 is a 𝐶-element, and is −∞, otherwise.

Example 4. Let us continue Example 3. In the 𝐅𝐓 interpretation 𝐼 , it holds that: FlyI(reddyI ) = (∃has_Wings.⊤)I (reddyI ) = 
(∃has_Feathering. ⊤)I (reddyI ) = RedI(reddyI ) = 1, i.e., Reddy flies, has wings and feathers and is red (and hence BlackI(reddyI ) = 0). 
For Opus it holds that: FlyI (opusI ) = 0, BlackI(opusI ) = 0.8 and (∃has_Wings.⊤)I (opusI ) = (∃has_Feathering. ⊤)I (opusI ) = 1, i.e., Opus does 
not fly, is black with degree 0.8, it has wings and feathers.

Let us further assume that BirdI (reddyI ) = 1 and BirdI (opusI ) = 0.8. Considering the weights of the typicality inclusions for Bird:

WBird(reddyI ) = 20 + 50 + 50 = 120

WBird(opusI ) = 0 + 50 + 50 = 100

which suggests that Reddy should be more typical as a bird than Opus.

On the other hand, if we suppose PenguinI (reddyI ) = 0.2 and PenguinI (opusI ) = 0.8, we have:

WPenguin(reddy) = 100 − 70 + 0 = 30

WPenguin(opus) = 0.8 × 100 − 0 + 0.8 × 50 = 120.

This suggests that Reddy should be less typical as a penguin than Opus.

We have seen in Section 3 that each fuzzy interpretation 𝐼 induces a preference relation for each concept and, in particular, it 
induces a preference <𝐶𝑖

for each distinguished concept 𝐶𝑖. We further require that, if 𝑥 <𝐶𝑖
𝑦, then 𝑥 must be more typical than 𝑦 wrt 
8

𝐶𝑖, that is, the weight 𝑊𝑖(𝑥) of 𝑥 wrt 𝐶𝑖 should be higher than the weight 𝑊𝑖(𝑦) of 𝑦 wrt 𝐶𝑖 (and 𝑥 should satisfy more properties or 
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more plausible properties of typical 𝐶𝑖-elements with respect to 𝑦). This leads to the following definition of faithful multi-preferential 
model of a weighted a 𝐅𝐓 knowledge base.

Definition 4 (Faithful (fuzzy) multi-preferential model of 𝐾). Let 𝐾 = ⟨𝑓 , 𝐶1
, …, 𝐶𝑘

, 𝑓 ⟩ be a weighted 𝐅𝐓 knowledge base over 
. A faithful (fuzzy) multi-preferential model (fm-model) of 𝐾 is a fuzzy 𝐅𝐓 interpretation 𝐼 = ⟨Δ, ⋅𝐼 ⟩ s.t.:

• 𝐼 satisfies the fuzzy inclusions in 𝑓 and the fuzzy assertions in 𝑓 ;

• for all 𝐶𝑖 ∈ , the preference <𝐶𝑖
is faithful to 𝐶𝑖

, that is:

𝑥 <𝐶𝑖
𝑦⇒𝑊𝑖(𝑥) >𝑊𝑖(𝑦) (4)

Example 5. Referring to Example 4 above, clearly, 𝑟𝑒𝑑𝑑𝑦 <𝐵𝑖𝑟𝑑 𝑜𝑝𝑢𝑠, as BirdI(reddy) = 1 and BirdI (opus) = 0.8, while 𝑜𝑝𝑢𝑠 <𝑃𝑒𝑛𝑔𝑢𝑖𝑛

𝑟𝑒𝑑𝑑𝑦, as PenguinI(reddy) = 0.2 and PenguinI (opus) = 0.8. For the interpretation 𝐼 to be faithful, it is necessary that the conditions 
WBird(reddy) > WBird(opus) and WPenguin (opus) > WPenguin(reddy) hold with respect to interpretation 𝐼 . This is true, as we have seen 
in Example 4. On the contrary, if we had PenguinI (reddy) = 0.9, the interpretation 𝐼 would not be faithful (as it assigns to reddy a 
membership degree in concept Penguin higher than the one for opus).

Let us now consider two alternative closure constructions, by introducing the notions of coherent and of 𝜑-coherent models.

The notion of coherent (fuzzy) multi-preferential model of 𝐾 , can be defined as in Definition 4 above, but replacing the faithfulness 
condition (4), with the following stronger coherence condition:

𝑥 <𝐶𝑖
𝑦 iff 𝑊𝑖(𝑥) >𝑊𝑖(𝑦) (5)

This is a reformulation of the notion of coherent (fuzzy) multi-preferential model from [33], but here we do not restrict to a crisp 
interpretation of typicality concepts 𝐓(𝐶).

The weaker notion of faithfulness determines a larger class of fuzzy multi-preferential models of a weighted knowledge base, 
compared to the class of coherent models. As we will see in Section 6, this also allows a larger class of monotone non-decreasing 
activation functions in neural network models to be captured.

The notion of 𝜑-coherence of a fuzzy interpretation 𝐼 wrt a KB, first introduced in [35], exploits a function 𝜑 from ℝ to the interval 
[0, 1], i.e., 𝜑 ∶ℝ → [0, 1]. We actually allow for possibly different functions 𝜑𝑖 ∶ℝ → [0, 1], one for each concept 𝐶𝑖 ∈ . As we will see, 
𝜑 or the 𝜑𝑖 are intended to represent the activation function(s) for units in a neural network  .

Definition 5 (𝜑-coherence). Let 𝐾 = ⟨𝑓 , 𝐶1
, …, 𝐶𝑘

, 𝑓 ⟩ be a weighted 𝐅𝐓 knowledge base, and 𝜑 a collection of functions 
𝜑𝑖 ∶ℝ → [0, 1], for 𝑖 = 1, … , 𝑘. A fuzzy 𝐅𝐓 interpretation 𝐼 = ⟨Δ, ⋅𝐼 ⟩ is 𝜑-coherent if, for all concepts 𝐶𝑖 ∈  and 𝑥 ∈Δ,

𝐶𝐼
𝑖
(𝑥) = 𝜑𝑖(

∑
ℎ

𝑤𝑖
ℎ
𝐷𝐼

𝑖,ℎ
(𝑥)) (6)

where 𝐶𝑖
= {(𝐓(𝐶𝑖) ⊑𝐷𝑖,ℎ, 𝑤𝑖

ℎ
)} is the set of weighted conditionals for 𝐶𝑖 .

Observe that, for all 𝑥 such that 𝐶𝑖(𝑥) > 0, condition (6) above corresponds to condition 𝐶𝐼
𝑖
(𝑥) = 𝜑𝑖(𝑊𝑖(𝑥)), for all distinguished 

concepts 𝐶𝑖 ∈ . While in coherent and faithful models the notion of weight 𝑊𝑖(𝑥) considers, as a special case, the case 𝐶𝑖(𝑥) = 0, 
condition (6) imposes the same constraint to all domain elements 𝑥.

Coherent (resp., 𝜑-coherent) multi-preferential models of a knowledge base 𝐾 , can be defined similarly to faithful models in Defini-

tion 4. We provide explicitly the definition of 𝜑-coherent model of 𝐾 .

Definition 6 (𝜑-coherent (fuzzy) multi-preferential model of 𝐾). Let 𝐾 = ⟨𝑓 , 𝐶1
, …, 𝐶𝑘

, 𝑓 ⟩ be a weighted 𝐅𝐓 knowledge base 
over . A 𝜑-coherent (fuzzy) multi-preferential model (or, simply, 𝜑-coherent model) of 𝐾 is a fuzzy 𝐅𝐓 interpretation 𝐼 = ⟨Δ, ⋅𝐼 ⟩
s.t.:

• 𝐼 satisfies the fuzzy inclusions in 𝑓 and the fuzzy assertions in 𝑓 ;

• for all the distinguished concepts 𝐶𝑖 ∈ , for all 𝑥 ∈Δ,

𝐶𝐼
𝑖
(𝑥) = 𝜑𝑖(

∑
ℎ

𝑤𝑖
ℎ
𝐷𝐼

𝑖,ℎ
(𝑥))

where 𝐶𝑖
= {(𝐓(𝐶𝑖) ⊑𝐷𝑖,ℎ, 𝑤𝑖

ℎ
)} is the set of all the weighted conditionals for 𝐶𝑖 .

The following proposition establishes the relationships between 𝜑-coherent, faithful and coherent fuzzy multi-preferential models 
of a weighted conditional knowledge base 𝐾 .

Proposition 1. Let 𝐾 be a weighted conditional 𝐅𝐓 knowledge base and let 𝜑𝑖 ∶ℝ → [0, 1], for all 𝑖 = 1, … , 𝑘. The following statements 
9

hold:
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(1) Any coherent model of 𝐾 is a faithful model of 𝐾 ;

(2) If the 𝜑𝑖 are monotonically non-decreasing functions, a 𝜑-coherent multi-preferential model 𝐼 of 𝐾 is also a faithful model of 𝐾 ;

(3) If the 𝜑𝑖 are monotonically increasing functions, a 𝜑-coherent multi-preferential model 𝐼 of 𝐾 is also a coherent-model of 𝐾 .

Proof. Item (1) directly follows from the definition, as the coherence condition (5) is stronger than the faithfulness condition (4).

For item (2), let us assume that the 𝜑𝑖 are monotonically non-decreasing functions and that 𝐼 = ⟨Δ, ⋅𝐼 ⟩ is a 𝜑-coherent fuzzy multi-

preferential model of 𝐾 . In particular, for all distinguished concepts 𝐶𝑖 and 𝑧 ∈Δ, s.t. 𝐶𝐼
𝑖
(𝑧) > 0, 𝐶𝐼

𝑖
(𝑧) = 𝜑𝑖(𝑊𝑖(𝑧)). To prove condition 

(4), i.e., that 𝑥 <𝐶𝑖
𝑦 ⇒𝑊𝑖(𝑥) >𝑊𝑖(𝑦) holds, let us assume that, for some 𝑥, 𝑦 ∈ Δ, 𝑥 <𝐶𝑖

𝑦 holds, i.e., 𝐶𝐼
𝑖
(𝑥) > 𝐶𝐼

𝑖
(𝑦). This also implies 

𝐶𝐼
𝑖
(𝑥) > 0. If 𝐶𝐼

𝑖
(𝑦) = 0, 𝑊𝑖(𝑦) = −∞, and the thesis follows. If 𝐶𝐼

𝑖
(𝑦) > 0, both the equalities 𝐶𝐼

𝑖
(𝑥) = 𝜑𝑖(𝑊𝑖(𝑥)) and 𝐶𝐼

𝑖
(𝑦) = 𝜑𝑖(𝑊𝑖(𝑦))

hold. Suppose that 𝑊𝑖(𝑥) >𝑊𝑖(𝑦) does not hold, i.e., that 𝑊𝑖(𝑥) ≤𝑊𝑖(𝑦). As 𝜑𝑖 is monotonically non-decreasing, 𝜑𝑖(𝑊𝑖(𝑥)) ≤ 𝜑𝑖(𝑊𝑖(𝑦)). 
Hence, by the equalities above, 𝐶𝐼

𝑖
(𝑥) ≤ 𝐶𝐼

𝑖
(𝑦), which contradicts the assumption that 𝐶𝐼

𝑖
(𝑥) > 𝐶𝐼

𝑖
(𝑦).

For item (3), assume that the 𝜑𝑖 are monotonically increasing functions and that 𝐼 = ⟨Δ, ⋅𝐼 ⟩ is a 𝜑-coherent multi-preferential 
model of 𝐾 . Then, equality (6) holds. In particular, for all distinguished concept 𝐶𝑖 and 𝑧 ∈Δ, s.t. 𝐶𝐼

𝑖
(𝑧) > 0, 𝐶𝐼

𝑖
(𝑧) = 𝜑𝑖(𝑊𝑖(𝑧)).

We have to prove that condition (5) holds, i.e., that 𝑥 <𝐶𝑖
𝑦 iff 𝑊𝑖(𝑥) >𝑊𝑖(𝑦). The “only if” direction holds with the same proof 

as for item (2), as 𝜑𝑖 is as well monotonically non-decreasing. To prove the “if” direction, assume that 𝑊𝑖(𝑥) > 𝑊𝑖(𝑦) holds, for 
some 𝑥, 𝑦 ∈ Δ. If 𝑊𝑖(𝑦) = −∞, it must be that 𝐶𝐼

𝑖
(𝑦) = 0 and 𝐶𝐼

𝑖
(𝑥) > 0, and hence 𝐶𝐼 (𝑥) > 𝐶𝐼 (𝑦) follows. If 𝑊𝑖(𝑦) ≠ −∞, 𝐶𝐼

𝑖
(𝑦) > 0 and 

𝐶𝐼
𝑖
(𝑥) > 0. From 𝑊𝑖(𝑥) >𝑊𝑖(𝑦), as 𝜑𝑖 is monotonically increasing, 𝜑𝑖(𝑊𝑖(𝑥)) > 𝜑𝑖(𝑊𝑖(𝑦)). Hence, 𝐶𝐼

𝑖
(𝑥) > 𝐶𝐼

𝑖
(𝑦). □

The notions of faithful/coherent/𝜑-coherent multi-preferential entailment from a weighted 𝐅𝐓 knowledge base 𝐾 can be defined 
as expected.

Definition 7 (Faithful/coherent/𝜑-coherent entailment). A fuzzy axiom 𝐸 is faithfully entailed (resp., coherently/𝜑-coherently entailed) 
from a fuzzy weighted knowledge base 𝐾 (for short 𝐾 ⊧𝑓𝑚∕𝑐𝑚∕𝜑 𝐸) if, for all faithful models (resp., coherent/𝜑-coherent-models) 
𝐼 = ⟨Δ, ⋅𝐼 ⟩ of 𝐾 , 𝐼 satisfies 𝐸.

As usual in preferential semantics, a stronger notion of entailment can be obtained by restricting to a specific subset of models, 
namely, to canonical models, which are large enough to contain all the relevant domain elements. More precisely, in the two-valued 
case, a canonical model contains a domain element for each possible valuation of concepts which is present in some model of K 
[18,23]. The notion of canonical model can be extended to the many-valued case.

Definition 8. Given a weighted knowledge base 𝐾 = ⟨𝑓 , 𝐶1
, … , 𝐶𝑘

, 𝑓 ⟩ a faithful/coherent/𝜑-coherent 𝐅𝐓 model 𝐼 = ⟨Δ, ⋅⟩
of 𝐾 is canonical if, for each faithful/coherent/𝜑-coherent model 𝐼 ′ = ⟨Δ′, ⋅′ ⟩ of 𝐾 , and for each 𝑥 ∈ Δ′, there is an element 𝑦 ∈ Δ
such that 𝐴𝐼 (𝑦) =𝐴𝐼 ′ (𝑥), for all concept names 𝐴 occurring in 𝐾 .

That is, a canonical faithful/coherent/𝜑-coherent model for 𝐾 contains a domain element 𝑦 corresponding to each domain element 
𝑥 in any faithful/ coherent/𝜑-coherent interpretation 𝐼 ′ of 𝐾 , and 𝑦 has the same membership degree as 𝑥 in all named concepts 𝐴
occurring in 𝐾 . Note that, as in the two-valued case for defeasible  [22] (and similarly for  with typicality [18]), also in 
the many-valued case two 𝐅𝐓 models of the knowledge base can be combined by taking the disjoint union of their domains, to 
construct a new (larger) model of the KB (and the proof is similar to the one in the two-valued case [22]). This property guarantees 
that, if a faithful/coherent/𝜑-coherent 𝐅𝐓 model of a knowledge base 𝐾 exists, a canonical faithful/coherent/𝜑-coherent 𝐅𝐓
model of 𝐾 also exists.

A notion of canonical faithful/coherent/𝜑-coherent entailment can be defined. In the following, we assume that axiom 𝐸 only 
contains concept names occurring in the knowledge base 𝐾 .

Definition 9 (Canonical entailment). Given a weighted 𝐅𝐓 knowledge base 𝐾 , a fuzzy axiom 𝐸 is canonically entailed from 𝐾 in 
the faithful/ coherent/𝜑-coherent semantics if, for all canonical faithful/coherent/

𝜑-coherent models 𝐼 = ⟨Δ, ⋅𝐼 ⟩ of 𝐾 , 𝐼 satisfies 𝐸.

In Sections 5 and 6 we study the KLM properties of 𝐅𝐓 and its relationships with MLPs, under the different closure construc-

tions.

5. The KLM properties of 
𝐅𝐓 and its closures

In this section we investigate whether the KLM postulates of a preferential consequence relation [4,6] are satisfied by entailment 
in 𝐅𝐓 as well as in the coherent and faithful semantics.

The satisfiability of KLM postulates of rational or preferential consequence relations [4,6] has been studied for  with de-

feasible inclusions and typicality inclusions in the two-valued case [14,15,55]. The KLM postulates of a preferential consequence 
relation (namely, Reflexivity, Left Logical Equivalence, Right Weakening, And, Or, Cautious Monotonicity) can be reformulated for 
 with typicality, by considering that a typicality inclusion 𝐓(𝐶) ⊑𝐷 stands for a conditional 𝐶 ∣∼𝐷 in KLM preferential logics, by 
10

the following properties, expressed as inference rules:
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(𝑅𝐸𝐹𝐿) 𝐓(𝐶) ⊑ 𝐶

(𝐿𝐿𝐸) If ⊧ 𝐴 ≡ 𝐵 and 𝐓(𝐴) ⊑ 𝐶 , then 𝐓(𝐵) ⊑ 𝐶

(𝑅𝑊 ) If ⊧ 𝐶 ⊑𝐷 and 𝐓(𝐴) ⊑ 𝐶 , then 𝐓(𝐴) ⊑𝐷

(𝐴𝑁𝐷) If 𝐓(𝐴) ⊑ 𝐶 and 𝐓(𝐴) ⊑𝐷, then 𝐓(𝐴) ⊑ 𝐶 ⊓𝐷

(𝑂𝑅) If 𝐓(𝐴) ⊑ 𝐶 and 𝐓(𝐵) ⊑ 𝐶 , then 𝐓(𝐴 ⊔ 𝐵) ⊑ 𝐶

(𝐶𝑀) If 𝐓(𝐴) ⊑𝐷 and 𝐓(𝐴) ⊑ 𝐶 , then 𝐓(𝐴 ⊓𝐷) ⊑ 𝐶

where ⊧ 𝐴 ≡ 𝐵 is interpreted as equivalence of concepts 𝐴 and 𝐵 in the underlying description logic  (i.e., 𝐴𝐼 = 𝐵𝐼 in all 

interpretations 𝐼), while ⊧ 𝐶 ⊑𝐷 is interpreted as validity of the inclusion 𝐶 ⊑𝐷 in  (i.e., 𝐴𝐼 ⊆ 𝐵𝐼 for all  interpretations 𝐼).

The interpretation of the postulates is that, given a knowledge base 𝐾 in  extended with typicality inclusions, the logical 
consequences of 𝐾 satisfy the properties above. For instance, reflexivity (𝑅𝐸𝐹𝐿) requires that 𝐓(𝐶) ⊑ 𝐶 is a logical consequence of 
𝐾 ; for Left Logical Equivalence (𝐿𝐿𝐸), if 𝐴 and 𝐵 are logically equivalent in  and 𝐓(𝐴) ⊑ 𝐶 is a logical consequence of 𝐾 , then 
𝐓(𝐵) ⊑ 𝐶 must be as well a logical consequence of 𝐾 ; and so on.

In the following we reformulate these postulates for the fuzzy case and, specifically for 𝐅𝐓. We reinterpret ⊧ 𝐶 ⊑ 𝐷 as the 
requirement that the fuzzy inclusion 𝐶 ⊑𝐷 ≥ 1 is valid in fuzzy  (that is, 𝐶 ⊑𝐷 ≥ 1 is satisfied in all fuzzy  interpretations), 
and ⊧ 𝐴 ≡ 𝐵 as the requirement that the fuzzy inclusions 𝐴 ⊑ 𝐵 ≥ 1 and 𝐵 ⊑ 𝐴 ≥ 1 are valid in fuzzy . Interpreting inclusions of 
the form 𝐓(𝐴) ⊑ 𝐶 as fuzzy inclusions 𝐓(𝐴) ⊑ 𝐶 ≥ 1, we reformulate the KLM postulates for 1-entailment:

(REFL′) 𝐓(𝐶) ⊑ 𝐶 ≥ 1
(LLE′) If ⊧ 𝐴 ≡ 𝐵 and 𝐓(𝐴) ⊑ 𝐶 ≥ 1, then 𝐓(𝐵) ⊑ 𝐶 ≥ 1
(RW′) If ⊧ 𝐶 ⊑𝐷 and 𝐓(𝐴) ⊑ 𝐶 ≥ 1, then 𝐓(𝐴) ⊑𝐷 ≥ 1
(AND′) If 𝐓(𝐴) ⊑ 𝐶 ≥ 1 and 𝐓(𝐴) ⊑𝐷 ≥ 1,

then 𝐓(𝐴) ⊑ 𝐶 ⊓𝐷 ≥ 1
(OR′) If 𝐓(𝐴) ⊑ 𝐶 ≥ 1 and 𝐓(𝐵) ⊑ 𝐶 ≥ 1,

then 𝐓(𝐴 ⊔ 𝐵) ⊑ 𝐶 ≥ 1
(CM′) If 𝐓(𝐴) ⊑𝐷 ≥ 1 and 𝐓(𝐴) ⊑ 𝐶 ≥ 1,

then 𝐓(𝐴 ⊓𝐷) ⊑ 𝐶 ≥ 1

As an example, the meaning of right weakening (RW′) is that, if it holds that ⊧ 𝐶 ⊑ 𝐷 (i.e., 𝐶 ⊑ 𝐷 ≥ 1 is valid in fuzzy ), and 
𝐓(𝐴) ⊑ 𝐶 ≥ 1 is entailed from a weighted knowledge base 𝐾 , then 𝐓(𝐴) ⊑𝐷 ≥ 1 is also entailed by 𝐾 .

To prove that all the postulates above hold for the choice of combination functions as in Gödel logic, we prove that each postulate 
is satisfied in any 𝐅𝐓 interpretation. For instance, for (RW′) this means that, if it holds that ⊧ 𝐶 ⊑ 𝐷 (i.e., 𝐶 ⊑ 𝐷 ≥ 1 is valid in 
fuzzy ), then in any 𝐅𝐓 interpretation 𝐼 , if 𝐓(𝐴) ⊑ 𝐶 ≥ 1 is satisfied in 𝐼 , then 𝐓(𝐴) ⊑𝐷 ≥ 1 is also satisfied in 𝐼 .

Proposition 2. Under the choice of combination functions as in Gödel logic, any 𝐅𝐓 interpretation 𝐼 = ⟨Δ, ⋅𝐼 ⟩ satisfies the postulates 
(REFL′), (LLE′), (RW′), (AND′), (OR′) and (CM′).

The proof of Proposition 2 can be found in the Appendix. As a simple consequence, the following corollary states that, for the choice 
of combination functions as in Gödel logic, 1-entailment in 𝐅𝐓 satisfies the KLM postulates (REFL′), (LLE′), (RW′), (AND′), (OR′)
and (CM′).

Corollary 1. For the choice of combination functions as in Gödel logic, 1-entailment in 𝐅𝐓 satisfies the KLM postulates (REFL′), (LLE′), 
(RW′), (AND′), (OR′) and (CM′).

Proof (Sketch). Consider, for instance, postulate (AND′). Assume 𝐓(𝐴) ⊑ 𝐶 ≥ 1 and 𝐓(𝐴) ⊑𝐷 ≥ 1 are entailed from a knowledge base 
𝐾 in 𝐅𝐓. Then they are satisfied in all 𝐅𝐓 models 𝐼 of 𝐾 . Hence, by Proposition 2, 𝐓(𝐴) ⊑ 𝐶 ⊓𝐷 ≥ 1 is also satisfied in all 
the models 𝐼 of 𝐾 , i.e., 𝐓(𝐴) ⊑ 𝐶 ⊓𝐷 ≥ 1 is entailed by 𝐾 . The proof of all other properties is similar. □

Corollary 1 tells us that, for the choice of combination functions as in Gödel logic, 1-entailment in 𝐅𝐓 satisfies the properties of 
a preferential consequence relation. Observe that this result does not depend on the choice of the negation combination function as 
negation does not occur in the postulates we have considered; in particular, the result holds as well for Gödel logic with standard 
involutive negation. On the other hand, 1-entailment in 𝐅𝐓 does not satisfy the Rational Monotonicity postulate, so it does not 
satisfy all postulates of a rational consequence relation. Let us reformulate the property of Rational Monotonicity in the fuzzy case 
as follows:

(RM′) If 𝐓(𝐴) ⊑ 𝐶 ≥ 1 and not 𝐓(𝐴) ⊑ ¬𝐵 ≥ 1, then 𝐓(𝐴 ⊓ 𝐵) ⊑ 𝐶 ≥ 1

Proposition 3. For the choice of combination functions as in Gödel logic, (RM′) does not hold in 𝐅𝐓 (and the same for Gödel logic with 
standard involutive negation).

The proof of the proposition in the Appendix provides a counterexample to Rational Monotonicity for a knowledge base without 
11

weighted inclusions.
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The postulates for 1-entailment considered above may be violated by other choices of combination functions. For instance, the 
choice of combination functions as in Product logic or as in Łukasiewicz logics fails to satisfy both postulates (AND′) and (OR′). The 
postulates (REFL′), (LLE′), (RW′), (AND′), (OR′) and (CM′) can as well be formulated for 𝑘-entailment, by replacing the occurrences of 
typicality inclusions 𝐓(𝐴) ⊑ 𝐶 ≥ 1 with 𝐓(𝐴) ⊑ 𝐶 ≥ 𝑘. For combination functions as in Gödel logic, all the postulates for 𝑘-entailment 
hold (with a proof similar to the one for 1-entailment), except for Cautious Monotonicity (CM), which does not hold.

For faithful, coherent and 𝜑-coherent entailment, the next corollary also follows from Proposition 2 as a simple consequence, by 
observing that all faithful, coherent and 𝜑-coherent models of a knowledge base 𝐾 are 𝐅𝐓 models of 𝐾 .

Corollary 2. For the choice of combination functions as in Gödel logic, faithful, coherent and 𝜑-coherent entailment in 𝐅𝐓 satisfy 
postulates (REFL′), (LLE′), (RW′), (AND′), (OR′) and (CM′) of 1-entailment.

The results above improve over the previous results in [34], which have been proven for a crisp interpretation of the typicality 
concept. When the interpretation of 𝐓(𝐶) is either 0 or 1, 1-entailment in 𝐅𝐓 fails to satisfy the Reflexivity postulate (𝑅𝐸𝐹𝐿′).

Some further properties of typicality can be obtained by reformulating for the fuzzy case the semantic properties of  + 𝑇 in 
[15]. We name the properties (𝑓𝑇 − 1), … , (𝑓𝑇 − 5) after [15]:

(𝑓𝑇 − 1) 𝐓(𝐶) ⊑ 𝐶 ≥ 1
(𝑓𝑇 − 2) if 𝐓(𝐶) ≡ ⊥, then 𝐶 ≡ ⊥

(𝑓𝑇 − 3) If 𝐓(𝐴) ⊑𝐷 ≥ 1, then 𝐓(𝐴) ≡ 𝐓(𝐴 ⊓𝐷)
(𝑓𝑇 − 4) 𝐓(𝐴 ⊔ 𝐵) ⊑ 𝐓(𝐴) ⊔𝐓(𝐵) ≥ 1
(𝑓𝑇 − 5) 𝐓(𝐴) ⊓𝐓(𝐵) ⊑ 𝐓(𝐴 ⊔𝐵) ≥ 1,

where, for two 𝐅𝐓 concepts, 𝐶 ≡𝐷, stands for (𝐶 ⊑𝐷 ≥ 1) ⊓ (𝐷 ⊑𝐶 ≥ 1).
Note that (𝑓𝑇 −1) is (REFL′); (𝑓𝑇 −2) is a consequence of well-foundedness of the preference relations; (𝑓𝑇 −3) implies (CM); and 

(𝑓𝑇 − 4) is a reformulation of (OR). It can be proven that properties (𝑓𝑇 − 1), … , (𝑓𝑇 − 5) are satisfied in all 𝐅𝐓 interpretations.

Proposition 4. Under the choice of combination functions as in Gödel logic, any 𝐅𝐓 interpretation satisfies the postulates (𝑓𝑇 −
1), … , (𝑓𝑇 − 5).

The proof is similar to the proof of Proposition 2. To conclude this section let us informally describe how fuzzy multi-preferential 
entailment deals with irrelevance and avoids inheritance blocking, properties which have been considered as desiderata for prefer-

ential logics of defeasible reasoning [54,32].

Concerning “irrelevance”, let us consider again previous Example 3: if typical birds fly, we would like to conclude that typical 
yellow birds also fly, as the property of being yellow is irrelevant with respect to flying. Observe, that in Example 4, we can conclude 
that Reddy is more typical than Opus as a bird (reddy <Bird opus), as Opus does not fly, while Reddy flies. The relative typicality of 
Reddy and Opus wrt Bird does not depend on their color (the weighted TBox 𝐵𝑖𝑟𝑑 does not refer to a color) and we would obtain 
the same relative preferences if Reddy were yellow rather than red.

The fuzzy multi-preferential entailment is not subject to the problem called by Pearl the “blockage of property inheritance” 
problem [5], and by Benferhat et al. the “drowning problem” [7]. This problem affects the rational closure and system Z [5], as 
well as the rational closure refinements. Roughly speaking, the problem is that property inheritance from classes to subclasses is 
not guaranteed. If a subclass is exceptional with respect to a superclass for a given property, it does not inherit from that superclass 
any other property. For instance, referring to the typicality inclusions in Example 4, in the rational closure, typical penguins would 
not inherit the property of typical birds of having wings, being exceptional to birds concerning flying. On the contrary, in fuzzy 
multi-preferential models, considering again Example 4, the degree of membership of a domain element 𝑥 in concept Bird, i.e., 
BirdI (x), is used to determine the weight of 𝑥 with respect to Penguin. As the weight of typicality inclusion (𝑑4) is positive, the higher 
is the value of BirdI (x), the higher the value of WPenguin(x). Hence, provided the relevant properties of penguins (such as non-flying) 
remain unaltered, the more typical is 𝑥 as a bird, the more typical is 𝑥 as a Penguin. Notice also that the weight WBird(x) of a domain 
element 𝑥 with respect to Bird is related to the interpretation of 𝐵𝑖𝑟𝑑 in 𝐼 by the faithfulness condition or by a coherence condition 
(depending on the semantic construction).

6. A multi-preferential fuzzy interpretation of multilayer perceptrons

In this section, we first shortly introduce multilayer perceptrons. Then we develop a fuzzy multi-preferential interpretation of a 
neural network, which can be used for post-hoc explanation, based on a model checking approach.

6.1. Multilayer perceptrons

Let us first recall from [36] the model of a neuron as an information-processing unit in an artificial neural network. The basic 
elements are the following:

• a set of synapses or connecting links, each one characterized by a weight; we let 𝑥𝑗 be the signal at the input of synapse 𝑗 connected 
12

to neuron 𝑘, and 𝑤𝑘𝑗 the related synaptic weight;
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• the adder for summing the input signals to the neuron, weighted by the respective synapses weights: ∑𝑛

𝑗=1𝑤𝑘𝑗𝑥𝑗 ;

• an activation function for limiting the amplitude of the output of the neuron (typically, to the interval [0, 1] or [−1, +1]).

The logistic, threshold and hyperbolic-tangent functions are examples of activation functions. A neuron 𝑘 can be described by the 
following pair of equations: 𝑢𝑘 =

∑𝑛

𝑗=1𝑤𝑘𝑗𝑥𝑗 , and 𝑦𝑘 = 𝜑(𝑢𝑘 + 𝑏𝑘), where 𝑥1, … , 𝑥𝑛 are the input signals and 𝑤𝑘1, …, 𝑤𝑘𝑛 are the 
weights of neuron 𝑘; 𝑏𝑘 is the bias, 𝜑 the activation function, and 𝑦𝑘 is the output signal of neuron 𝑘. By adding a new synapse with 
input 𝑥0 = +1 and synaptic weight 𝑤𝑘0 = 𝑏𝑘, one can write:

𝑢𝑘 =
𝑛∑

𝑗=0
𝑤𝑘𝑗𝑥𝑗 𝑦𝑘 = 𝜑(𝑢𝑘), (7)

where 𝑢𝑘 is called the induced local field of the neuron.

A neural network can then be seen as “a directed graph consisting of nodes with interconnecting synaptic and activation links” 
[36]: nodes in the graph are the neurons (the processing units) and the weight 𝑤𝑖𝑗 on the edge from node 𝑗 to node 𝑖 represents 
“the strength of the connection [..] by which unit 𝑗 transmits information to unit 𝑖” [56]. Source nodes (i.e., nodes without incoming 
edges) produce the input signals to the graph. Neural network models are classified by their synaptic connection topology. In a 
feedforward network the architectural graph is acyclic, while in a recurrent network it contains cycles. In a feedforward network 
neurons are organized in layers. In a single-layer network there is an input layer of source nodes and an output layer of computation 
nodes. In a multilayer feedforward network there are one or more hidden layers, whose computation nodes are called hidden neurons

(or hidden units). The source nodes in the input layer supply the activation pattern (input vector) providing the input signals for the 
first layer computation units. In turn, the output signals of first layer computation units provide the input signals for the second layer 
computation units, and so on, up to the final output layer of the network, which provides the overall response of the network to the 
activation pattern. In a recurrent network at least one feedback exists, so that “the output of a node in the system influences in part 
the input applied to that particular element” [36]. In the following, we do not put restrictions on the topology the network, even 
though in Section 8 we only report experiments on feedforward networks.

“A major task for a neural network is to learn a model of the world” [36]. In supervised learning, a set of input/output pairs, 
input signals and corresponding desired response, referred as training data, or training sample, is used to train the network to learn. 
In particular, the network learns by changing the synaptic weights, through the exposition to the training samples. After the training 
phase, in the generalization phase, the network is tested with data not seen before. “Thus the neural network not only provides the 
implicit model of the environment in which it is embedded, but also performs the information-processing function of interest” [36]. 
In the next section, we aim to make this model explicit as a multi-preferential model.

6.2. A multi-preferential interpretation of MLPs and property verification by model checking

In this section, we show that a fuzzy multi-preferential interpretation (an 𝐅𝐓 interpretation) can be associated to a multilayer 
network  , based on the activity of the network over a set of input stimuli Δ. Fuzzy and typicality properties of the network can 
then be verified by model checking over such an interpretation, and used for post-hoc explanation.

Assume that the network  has been trained and the synaptic weights 𝑤𝑘𝑗 have been learned. We associate a concept name 
𝐶𝑖 ∈𝑁𝐶 to the units 𝑖 of interest in  , which may include input, output or hidden units. They are the units we are interested in, for 
property verification.

We construct a multi-preferential interpretation over a (finite) domain Δ of input stimuli; for instance, the input vectors considered 
so far, for training and generalization, or a subset of it (e.g., the test set). In case the network is not feedforward, we assume that, for 
each input vector 𝑣 in Δ, the network reaches a stationary state [36], in which 𝑦𝑘(𝑣) is the activity level of unit 𝑘, and equations (7)

hold, for all units 𝑘. We also assume the activation of units to be in the interval [0, 1].
Let Δ be a finite (non-empty) set of input vectors. We can associate to  a fuzzy multi-preferential interpretation over Δ, in the 

boolean fragment of 𝐅𝐓, which contains no roles (i.e., 𝑁𝑅 = ∅) and no individual names (i.e., 𝑁𝐼 = ∅). We refer to the definition 
of an 𝐅𝐓 interpretation (Definition 3).

Definition 10. The fuzzy multi-preferential interpretation of a network  over a non-empty domain Δ, is the 𝐅𝐓 interpretation 
𝐼Δ


= ⟨Δ, ⋅𝐼 ⟩ where: the interpretation function ⋅𝐼 satisfies the condition that, for all concept names 𝐶𝑘 ∈𝑁𝐶 and for all 𝑥 ∈Δ,

𝐶𝐼
𝑘
(𝑥) = 𝑦𝑘(𝑥)

where 𝑦𝑘(𝑥) is the output signal of neuron 𝑘, for input vector 𝑥.

As we have seen in section 3, the 𝐅𝐓 interpretation 𝐼Δ


is a multi-preferential interpretation, as the fuzzy interpretation of 
concepts induces a preference relation associated to each concept. Here, the preferences associated with concepts are those associated 
with units, and based on the unit activations for the different inputs. More precisely, the preference relation <𝐶𝑘

associated to concept 
𝐶𝑘 (and to unit 𝑘), induced by the interpretation 𝐼Δ


, is determined by the activity of unit 𝑘 as follows: for 𝑥, 𝑥′ ∈ Δ,
13

𝑥 <𝐶𝑘
𝑥′ iff 𝑦𝑘(𝑥) > 𝑦𝑘(𝑥′). (8)
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This allows the set of typical instances of a concept 𝐶𝑘 to be identified according to the definition of typicality concepts in Equation 
(2), by selecting the input stimuli 𝑥 ∈Δ with the highest activity value 𝑦𝑘(𝑥).

This model provides a multi-preferential interpretation of the network  , based on the input stimuli considered in Δ. For instance, 
in case the neural network is used for categorization and an output neuron is associated to each category, each concept 𝐶ℎ associated 
to an output unit ℎ corresponds to a learned category. If 𝐶ℎ ∈ 𝑁𝐶 , the preference relation <𝐶ℎ

determines the relative typicality 
of input stimuli with respect to category 𝐶𝑖. This allows to verify typicality properties concerning categories, such as 𝐓(𝐶ℎ) ⊑ 𝐷 ≥ 𝛼

(where 𝐷 is a boolean concept built from the named concepts in 𝑁𝐶 ), by model checking on the model 𝐼Δ


. According to the semantics 
of typicality concepts, this would require to identify typical 𝐶ℎ-elements and checking whether they are instances of concept 𝐷 with 
a degree greater than 𝛼.

For instance, in Section 8 we consider some example neural networks, trained to recognize emotions (surprise, fear, happiness, 
anger) in images of human faces. In that case, we will be interested in understanding which properties have been learned by the 
network, concerning the relationships between some learned category (e.g., happiness) and some specific features of the image (in the 
example, facial muscle contractions). To this purpose, we will check properties such as, for instance, 𝐓(ℎ𝑎𝑝𝑝𝑖𝑛𝑒𝑠𝑠) ⊑ au12 ≥ 𝛼 (where 
𝑎𝑢12 is the activation of the lip corner puller muscle used for smiling), to verify whether the images recognized by the network as 
typical instances of happy faces correspond to smiling faces, to some degree.

In general, fuzzy typicality inclusions of the form 𝐓(𝐶) ⊑𝐷𝜃𝛼, with 𝐶 and 𝐷 boolean concepts, can be verified on the model 𝐼Δ


in polynomial time in the size of the model 𝐼Δ


and in the size of the formula.

Consider, for instance, the verification of 𝐓(𝐶) ⊑𝐷 ≥ 𝛼 under the choice of combination functions as in Gödel logic. The verifica-

tion amounts to check that inf𝑥∈Δ 𝐓(𝐶)𝐼
Δ
 (𝑥) ⊳𝐷

𝐼Δ
 (𝑥) ≥ 𝛼, i.e., that for all 𝑥 ∈Δ, 𝐓(𝐶)𝐼

Δ
 (𝑥) ⊳𝐷

𝐼Δ
 (𝑥) ≥ 𝛼 holds. When 𝐓(𝐶)𝐼

Δ
 (𝑥) = 0, 

that is, 𝑥 is not a typical 𝐶-element, 𝐓(𝐶)𝐼
Δ
 (𝑥) ⊳𝐷

𝐼Δ
 (𝑥) ≥ 𝛼 holds trivially.

The identification of typical 𝐶-elements in Δ requires: computing the values of 𝐶𝐼Δ
 (𝑥), for all input stimuli 𝑥 ∈ Δ and selecting 

those 𝑦 such that the value 𝐶𝐼Δ
 (𝑦) is maximal among the values of 𝐶𝐼Δ

 (𝑥), for all 𝑥 ∈Δ. Then, for all typical 𝐶-elements 𝑥, one has 
to verify that 𝐶𝐼Δ

 (𝑥) ⊳𝐷
𝐼Δ
 (𝑥) ≥ 𝛼 holds, which requires to verify that 𝐶𝐼Δ

 (𝑥) ≤𝐷
𝐼Δ
 (𝑥) or 𝐷𝐼Δ

 (𝑥) ≥ 𝛼 hold. In turn, this requires the 
value of 𝐷𝐼Δ

 (𝑥) to be computed, for all typical 𝐶-elements 𝑥.

Overall, the verification requires a polynomial number of steps in the size of the model 𝐼Δ


and in the size of the formula 
𝐓(𝐶) ⊑𝐷. Note that, as 𝐶 and 𝐷 only contain a polynomial number of subformulas, the values of 𝐶(𝑥) and 𝐷(𝑥), for some 𝑥 ∈Δ can 
be computed in polynomial time. But the evaluation has to be repeated for all elements 𝑥 ∈ Δ, and the domain Δ can be very large.

It is easy to see that similar polynomial algorithms can be developed for the verification of inclusions of the form 𝐓(𝐶) ⊑ 𝐷 ≤ 𝛼

(which require the verification that there is an element 𝑥 ∈ Δ, such that 𝐓(𝐶)𝐼
Δ
 (𝑥) ⊳𝐷

𝐼Δ
 (𝑥) ≤ 𝛼 holds), and for the verification of 

strict inclusions 𝐶 ⊑ 𝐷𝜃𝛼, according to the choice of the t-norm, s-norm, negation and implication functions. In general, inclusion 
axioms of the form 𝐶 ⊑𝐷𝜃𝛼 may be considered, where 𝐶 and 𝐷 contain (non-nested) occurrences of the typicality operator 𝐓.

Proposition 5. Whether an axiom 𝐶 ⊑ 𝐷𝜃𝛼 is satisfied in a multi-preferential interpretation 𝐼Δ


, can be decided in polynomial time in the 
size of 𝐼Δ


and in the size of 𝐶 ⊑𝐷.

The size of model 𝐼Δ


is 𝑂(|𝑁𝐶 | × |Δ|): it depends on the number |𝑁𝐶 | of the units in the network that we are considering for 
property verification, and on the size of the set of input stimuli Δ, which can be very large. Observe, however, that to prove an 
inclusion 𝐓(𝐶) ⊑ 𝐷𝜃𝛼 (or 𝐶 ⊑ 𝐷𝜃𝛼) we do not need to consider and build the entire model 𝐼Δ


, but it is sufficient to consider the 

restriction of the model over the concept names in 𝐶 and in 𝐷, as only the interpretation of the subconcepts occurring in 𝐶 and in 𝐷
are needed in the verification.

In Section 8 we report results of the model checking approach in the verification of typicality properties of a multilayer networks, 
trained to recognize emotions from input features, exploiting a Datalog encoding of the model checking problem developed in [40]

for the finite-valued case.

6.3. Multilayer perceptrons as weighted conditional knowledge bases

Another possible approach for reasoning about the properties of a neural network consists in exploiting entailment in the defea-

sible logic, based on the idea that the neural network  can be regarded as a defeasible knowledge base 𝐾 . In this section, we 
explore this approach.

Let us introduce a concept name 𝐶𝑖 ∈𝑁𝐶 for each unit 𝑖 in the network  and let  = {𝐶1, … , 𝐶𝑛} be a subset of 𝑁𝐶 , namely 
the set of all concept names 𝐶𝑖 ∈ 𝑁𝐶 such that there is at least a synaptic connection between some unit 𝑗 and unit 𝑖. Given the 
fuzzy multi-preferential interpretation 𝐼Δ


= ⟨Δ, ⋅𝐼 ⟩ as defined in Section 6.2, we aim at proving that 𝐼Δ


is indeed a model of the neural 

network  in a logical sense.

A weighted conditional knowledge base 𝐾 can be defined from the neural network  as follows. For each unit 𝑘 with incoming 
edges, we consider all the units 𝑗1, … , 𝑗𝑚 whose output signals are the input signals of unit 𝑘, with synaptic weights 𝑤𝑘,𝑗1

, … , 𝑤𝑘,𝑗𝑚
. 

Let 𝐶𝑘 be the concept name associated to unit 𝑘 and 𝐶𝑗1
, … , 𝐶𝑗𝑚

be the concept names associated to units 𝑗1, … , 𝑗𝑚, respectively. We 
14

define for each concept 𝐶𝑘 ∈  a set 𝐶𝑘
of typicality inclusions, with their associated weights, as follows:
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𝐓(𝐶𝑘) ⊑ 𝐶𝑗1
with 𝑤𝑘,𝑗1

,

…,

𝐓(𝐶𝑘) ⊑ 𝐶𝑗𝑚
with 𝑤𝑘,𝑗𝑚

The knowledge base constructed from network  is defined, from the above set  of distinguished concepts, as the tuple: 𝐾 =⟨𝑓 , 𝐶1
, …, 𝐶𝑛

, 𝑓 ⟩, where 𝑓 = ∅, 𝑓 = ∅ and, for each 𝐶𝑘 ∈ , 𝐶𝑘
is the set of weighted typicality inclusions associated to neuron 

𝑘 as defined above.

𝐾 is a weighted knowledge base over the set of distinguished concepts  = {𝐶1, … , 𝐶𝑛}. For multilayer feedforward networks, 
𝐾 corresponds to an acyclic conditional knowledge base, and defines a (defeasible) subsumption hierarchy among concepts. In the 
more general case, when the network may contain cycles, our characterization is intended to capture the properties of stationary 
states of the network [36]. We prove that, when a concept name 𝐶𝑘 is introduced for each unit 𝑘 in the network  , the multi-

preferential interpretation 𝐼Δ


, defined in Section 6.2, is a 𝜑-coherent multi-preferential model of the weighted knowledge base 
𝐾 .

Let us refer to the network  above, in which the output signals of units 𝑗1, … , 𝑗𝑚 are the input signals of unit 𝑘 with synaptic 
weights 𝑤𝑘,𝑗1

, … , 𝑤𝑘,𝑗𝑚
, respectively. The intuition is that, as concept name 𝐶𝑘 is associated to unit 𝑘 in  and concept names 𝐶𝑗ℎ

are associated to each unit 𝑗ℎ, the following holds: 𝐶𝐼
𝑘
(𝑥) corresponds to the activation 𝑦𝑘 of unit 𝑘 for a given input stimulus 𝑥, while 

𝐶𝐼
𝑗ℎ
(𝑥) corresponds to the activation 𝑦𝑗ℎ of unit 𝑗ℎ for the same stimulus. Hence, the sum ∑𝑚

ℎ=0𝑤𝑘,𝑗ℎ
𝐶𝐼
𝑗ℎ
(𝑥) corresponds to the induced 

local field 𝑢𝑘 of neuron 𝑘, and equation 𝑦𝑘 = 𝜑(𝑢𝑘) in (7) (which holds for a stationary state, in non-feedforward networks), enforces 
the 𝜑-coherence condition 𝐶𝐼

𝑘
(𝑥) = 𝜑(𝑊𝑘(𝑥)), where 𝜑 is the activation function of unit 𝑘.

Let 𝐼Δ


= ⟨Δ, ⋅𝐼 ⟩ be the fuzzy multi-preferential interpretation of network  over a domain Δ of input stimuli, as defined in 
Section 6.2. Assume that 𝑁𝐶 contains a concept name 𝐶𝑖 for each unit 𝑖 in the network. We can prove the following proposition.

Proposition 6. 𝐼Δ


is a 𝜑-coherent multi-preferential model of the weighted knowledge base 𝐾 .

Proof. Let  be network such that 𝜑𝑖 is the activation function of unit 𝑖 in  . Let 𝐾 be the weighted knowledge base over the 
set of distinguished concepts  = {𝐶1, … , 𝐶𝑛}, associated to  as in the construction above.

Let the fuzzy multi-preferential interpretation 𝐼Δ


= ⟨Δ, ⋅𝐼 ⟩ of  over a domain Δ be defined according to Definition 10, in 
Section 6.2, but assuming that 𝑁𝐶 contains a concept name 𝐶𝑖 for each unit 𝑖 in the network.

Given the set 𝐶𝑘
of weighted typicality inclusions for 𝐶𝑘 ∈  in 𝐾 :

𝐓(𝐶𝑘) ⊑ 𝐶𝑗1
with 𝑤𝑘,𝑗1

,

…,

𝐓(𝐶𝑘) ⊑ 𝐶𝑗𝑚
with 𝑤𝑘,𝑗𝑚

by construction, there are units 𝑘, 𝑗1, … , 𝑗𝑚 in  , such that the output signals of units 𝑗1, … , 𝑗𝑚 are the input signals of unit 𝑘 with 
synaptic weights 𝑤𝑘,𝑗1

, … , 𝑤𝑘,𝑗𝑚
.

By construction of the fuzzy interpretation 𝐼Δ


, for all 𝑥 ∈Δ and 𝐶𝑘 ∈𝑁𝐶 , 𝐶
𝐼Δ


𝑘
(𝑥) = 𝑦𝑘(𝑥), i.e., 𝐶

𝐼Δ


𝑘
(𝑥) corresponds to the activation 

𝑦𝑘(𝑥) of neuron 𝑘 for the stimulus 𝑥. We have to prove that 𝐼Δ


satisfies the 𝜑-coherence condition.

Note that, in the construction of 𝐼Δ


, in case the network is not feedforward, we have assumed that, for any input stimulus 𝑥 in 
Δ, the network reaches a stationary state, in which (for all 𝑘) 𝑦𝑘(𝑥) is the activity level of unit 𝑘. Then, equations (7) holds for unit 
𝑘, i.e.:

𝑢𝑘 =
𝑚∑

ℎ=0
𝑤𝑘,𝑗ℎ

𝑦𝑗ℎ
𝑦𝑘 = 𝜑𝑘(𝑢𝑘),

where 𝜑𝑘 is the activation function of unit 𝑘. Making input 𝑥 explicit, it must hold that: 𝑦𝑘(𝑥) = 𝜑𝑘(
∑𝑚

ℎ=0𝑤𝑘,𝑗ℎ
𝑦𝑗ℎ

(𝑥)), that is to say:

𝐶𝐼
𝑘
(𝑥) = 𝜑𝑘(

𝑚∑
ℎ=0

𝑤𝑘,𝑗ℎ
𝐶𝐼
𝑗ℎ
(𝑥))

As the equation above holds for all concepts 𝐶𝑘 ∈ , and each domain element 𝑥 ∈Δ, the interpretation 𝐼Δ


satisfies the 𝜑-coherence 
condition and is a 𝜑-coherent model of 𝐾 . □

The next corollaries follow from Proposition 6 and Proposition 1, under the assumptions of Proposition 6, that is: 𝐼Δ


is a fuzzy 
multi-preferential interpretation of a network  built over a domain Δ of input stimuli, as defined in Section 6.2, and 𝑁𝐶 contains 
a concept name 𝐶𝑖 for each unit 𝑖 in  .

Corollary 3. 𝐼Δ


is a faithful multi-preferential model of the weighted knowledge base 𝐾 , provided the activation functions 𝜑𝑘 of all units 
15

are monotone non-decreasing.
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Corollary 4. 𝐼Δ


is a coherent multi-preferential model of the weighted knowledge base 𝐾 , provided the activation functions 𝜑𝑘 of all units 
are monotonically increasing.

Corollary 4 simplifies the formulation of Proposition 1 in [33]. Unlike in [33], here we are considering a non-crisp interpretation 
for typicality concepts.

By Proposition 6 the interpretation 𝐼Δ


constructed from the network  , by considering the activations of units over the input 
stimuli in Δ, is a model of the network in a logical sense, as it is a 𝜑-coherent model of the conditional knowledge base 𝐾 associated 
to the network.

We can prove that, under the 𝜑-coherent semantics, the knowledge base 𝐾 provides a logical characterization of the neural 
network  , as the following also holds: given any 𝜑-coherent model 𝐼 = ⟨Δ, ⋅𝐼 ⟩ of the knowledge base 𝐾 , each domain element 
𝑥 ∈ Δ corresponds to a stationary state of the network  , that is, equations (7) are satisfied when the activity level 𝑦𝑘 of unit 𝑘 is 
taken to be the value 𝐶𝐼

𝑘
(𝑥), for each 𝑘.

Proposition 7. Let 𝐾 be the weighted knowledge base associated to a multilayer network  . Let 𝐼 = ⟨Δ, ⋅𝐼 ⟩ be any 𝜑-coherent model of 
𝐾 . For all 𝑥 ∈Δ, let 𝑦𝑗 = 𝐶𝐼

𝑗
(𝑥) be the output signal of unit 𝑗, for each unit 𝑗. Then, equations (7) hold for any unit 𝑘 with incoming edges.

Proof. Consider an element 𝑥 ∈ Δ, and let 𝑘 be a unit with incoming edges such that the output signals of units 𝑗1, … , 𝑗𝑚 are the 
input signals of unit 𝑘 with synaptic weights 𝑤𝑘,𝑗1

, … , 𝑤𝑘,𝑗𝑚
.

By construction of 𝐾 , from the 𝜑-coherence condition, it must hold that:

𝐶𝐼
𝑘
(𝑥) = 𝜑𝑘(

𝑚∑
ℎ=0

𝑤𝑘,𝑗ℎ
𝐶𝐼
𝑗ℎ
(𝑥)).

Hence, 𝐶𝐼
𝑘
(𝑥) = 𝜑𝑘(𝑢𝑘), and 𝑢𝑘 =

∑𝑚

ℎ=0𝑤𝑘,𝑗ℎ
𝐶𝐼
𝑗ℎ
(𝑥).

As from the hypothesis 𝑦𝑘 = 𝐶𝐼
𝑘
(𝑥) and, for all ℎ, 𝑦𝑗ℎ = 𝐶𝐼

𝑗ℎ
(𝑥) it holds:

𝑢𝑘 =
𝑚∑

ℎ=0
𝑤𝑘,𝑗ℎ

𝑦𝑗ℎ
𝑦𝑘 = 𝜑𝑘(𝑢𝑘).

That is, equations (7) are satisfied. □

Let us observe that any canonical 𝜑-coherent model of 𝐾 contains all the stationary states of the network  . For feedforward 
networks, a canonical model describes the activity of all units in the network for all the (possibly infinitely many) input stimuli.

Proof methods for reasoning in the 𝜑-coherent multi-preferential semantics have been developed in [38,39], for the fragment 
 of  without roles and role restrictions, based on the finitely many-valued Gödel description logic or Łukasiewicz description 
logic, extended with typicality. More precisely, an Answer Set Programming encoding of an approximation of 𝜑-coherent entailment 
(called 𝜑𝑛-coherent entailment) has been developed for the boolean fragment 𝑛𝐓 of  plus typicality, over the truth space 
{0, 1

𝑛
, … , 𝑛−1

𝑛
, 𝑛
𝑛
}, for an integer 𝑛 ≥ 1. The study of the finitely-valued case, is indeed motivated by the undecidability results for fuzzy 

description logics with general inclusion axioms [37,30].

In the next section, we prove that, under suitable conditions, the 𝜑-coherent semantics in the finitely-valued case is indeed an 
approximation of the 𝜑-coherent semantics in the fuzzy case.

7. Approximating 𝝋-coherent models in the finitely-valued case

While in Sections 3 and 4 we have defined a fuzzy  with typicality and its closure constructions, in a similar way, one 
can define a finitely many-valued  with typicality, 𝑛𝐓, by building on the finitely-valued description logic 𝑛, and taking 
𝑛 = {0, 1

𝑛
, …, 𝑛−1

𝑛
, 𝑛
𝑛
} (for 𝑛 ≥ 1) as the truth value space.

The idea is that of approximating function 𝜑 with a function 𝜑𝑛 over the truth space 𝑛, by developing a 𝜑𝑛-coherent semantics, 
which is indeed an approximation of the 𝜑-coherent semantics (under some conditions). In the following, for simplicity, we consider 
a single function 𝜑, rather than a different function 𝜑𝑖 for each unit 𝑖, but the results generalize to the case of multiple functions.

Let us assume that 𝜑 is continuous function 𝜑 ∶ℝ → [0, 1], and that the chosen t-norm, s-norm and negation function in 𝐅𝐓 are 
continuous as well. We define the 𝜑𝑛-coherent semantics as follows.

Values 𝑣 ∈ [0, 1] are approximated to the nearest value in 𝑛:

[𝑣]𝑛 =
⎧⎪⎨⎪⎩
0 if 𝑣 ≤ 1

2𝑛
𝑖

𝑛
if 2𝑖−1

2𝑛 < 𝑣 ≤
2𝑖+1
2𝑛 , for 0 < 𝑖 < 𝑛

1 if 2𝑛−1
2𝑛 < 𝑣

(9)

For an integer 𝑛 ≥ 1, let 𝜑𝑛 ∶ℝ → 𝑛 be defined as:
16

𝜑𝑛(𝑧) = [𝜑(𝑧)]𝑛,
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for all 𝑧 ∈ℝ. The notions of 𝜑𝑛-coherent model and 𝜑𝑛-coherent entailment can be defined similarly to 𝜑-coherent model and 𝜑-coherent 
entailment, by replacing 𝜑 with 𝜑𝑛 in Definitions 6 and 7.

Observe that the sequence of functions (𝜑𝑛)𝑛∈ℕ uniformly converges to function 𝜑, i.e., for all 𝜀 > 0 there is an 𝑛0 ∈ ℕ such that, 
for all 𝑛 ≥ 𝑛0,

∣ 𝜑𝑛(𝑧) −𝜑(𝑧) ∣< 𝜀, ∀𝑧 ∈ℝ (10)

Indeed, from the definition of 𝜑𝑛, |𝜑𝑛(𝑧) −𝜑(𝑧)| ≤ 1
2𝑛 . We can get |𝜑𝑛(𝑧) −𝜑(𝑧)| ≤ 1

2𝑛 < 𝜀, by choosing 𝑛0 = ⌈ 1
2𝜀 ⌉ + 1.

For any 𝑣 ∈ ℝ, 𝑙𝑖𝑚𝑛→∞[𝑣]𝑛 = 𝑣. Hence, for any concept name 𝐴 ∈ 𝑁𝐶 , fuzzy 𝐅𝐓 interpretation 𝐼 = ⟨Δ, ⋅𝐼 ⟩ and 𝑥 ∈ Δ, 
𝑙𝑖𝑚𝑛→∞[𝐴𝐼 (𝑥)]𝑛 = 𝐴𝐼 (𝑥). As we are considering continuous combination functions, for any concept 𝐷𝑗 , 𝑙𝑖𝑚𝑛→∞[𝐷𝐼

𝑗
(𝑥)]𝑛 = 𝐷𝐼

𝑗
(𝑥). 

Let 𝑊 𝐼
𝑖
(𝑥) =∑

ℎ 𝑤
𝑖
ℎ
𝐷𝐼

𝑖,ℎ
(𝑥) and let 𝑊 𝐼,𝑛

𝑖
(𝑥) =∑

ℎ 𝑤
𝑖
ℎ
[𝐷𝐼

𝑖,ℎ
(𝑥)]𝑛. As 𝑊 𝐼,𝑛

𝑖
(𝑥) is continuous in [𝐷𝐼

𝑖,1(𝑥)]
𝑛, … , [𝐷𝐼

𝑖,𝑘
(𝑥)]𝑛, and 𝜑 is as well 

continuous, their composition is a continuous function, and:

𝑙𝑖𝑚𝑛→∞𝜑(𝑊 𝐼,𝑛

𝑖
(𝑥)) = 𝜑(𝑊 𝐼

𝑖
(𝑥)) (11)

that is, for all 𝜀 > 0 there is an 𝑚0 ∈ℕ such that, for all 𝑛 ≥𝑚0,

∣ 𝜑(𝑊 𝐼,𝑛

𝑖
(𝑥)) −𝜑(𝑊 𝐼

𝑖
(𝑥)) ∣< 𝜀.

Therefore the following lemma holds.

Lemma 1. Given a continuous function 𝜑 ∶ℝ → [0, 1], and an 𝐅𝐓 interpretation 𝐼 , 𝑙𝑖𝑚𝑛→∞𝜑𝑛(𝑊
𝐼,𝑛

𝑖
(𝑥)) = 𝜑(𝑊 𝐼

𝑖
(𝑥)), for all 𝑖 = 1, … , 𝑘.

Given an 𝐅𝐓 interpretation 𝐼 = ⟨Δ, ⋅𝐼 ⟩, we can define an 𝐅
𝑛
𝐓 interpretation 𝐼𝑛 = ⟨Δ, ⋅𝐼𝑛 ⟩ over the value space 𝑛 by letting: 

𝐶𝐼𝑛 (𝑥) = [𝐶𝐼 (𝑥)]𝑛, for all concepts 𝐶 , and 𝑎𝐼𝑛 = 𝑎𝐼 , for all 𝑎 ∈𝑁𝐼 .

We can then prove the following proposition.

Proposition 8. Let 𝐾 = ⟨ , 𝐶1
, …, 𝐶𝑘

, ⟩ be a weighted 𝐅𝐓 knowledge base, and 𝜑 ∶ℝ → [0, 1] a continuous function.

(i) If 𝐶𝐼
𝑖
(𝑥) = 𝜑(

∑
ℎ 𝑤

𝑖
ℎ
𝐷𝐼

𝑖,ℎ
(𝑥)), then, for all 𝜀 > 0, there is a 𝑘0 ∈ℕ such that for all 𝑛 ≥ 𝑘0, |𝐶𝐼𝑛

𝑖
(𝑥) −𝜑𝑛(

∑
ℎ 𝑤

𝑖
ℎ
𝐷

𝐼𝑛
𝑖,ℎ
(𝑥))| < 𝜀.

(ii) If 𝐶𝐼
𝑖
(𝑥) ≠ 𝜑(

∑
ℎ 𝑤

𝑖
ℎ
𝐷𝐼

𝑖,ℎ
(𝑥)), then there exist an 𝜀 > 0 and a 𝑘0 ∈ℕ such that for all 𝑛 ≥ 𝑘0, |𝐶𝐼𝑛

𝑖
(𝑥) −𝜑𝑛(

∑
ℎ 𝑤

𝑖
ℎ
𝐷

𝐼𝑛
𝑖,ℎ
(𝑥))| > 𝜀.

Proof. For item (i), assume condition 𝐶𝐼
𝑖
(𝑥) = 𝜑(

∑
ℎ 𝑤

𝑖
ℎ
𝐷𝐼

𝑖,ℎ
(𝑥)) holds. As 𝐶𝐼𝑛

𝑖
(𝑥) converges to 𝐶𝐼

𝑖
(𝑥), and, by Lemma 1, 

𝜑𝑛(
∑

ℎ 𝑤
𝑖
ℎ
𝐷

𝐼𝑛
𝑖,ℎ
(𝑥)) converges to 𝜑(∑ℎ 𝑤

𝑖
ℎ
𝐷𝐼

𝑖,ℎ
(𝑥)), the thesis follows.

For item (ii), assume 𝐶𝐼
𝑖
(𝑥) ≠ 𝜑(

∑
ℎ 𝑤

𝑖
ℎ
𝐷𝐼

𝑖,ℎ
(𝑥)), and let 𝑑 = |𝐶𝐼

𝑖
(𝑥) −𝜑(

∑
ℎ 𝑤

𝑖
ℎ
𝐷𝐼

𝑖,ℎ
(𝑥))|. Let 𝜀 = 𝑑∕3.

As 𝐶𝐼𝑛
𝑖
(𝑥) converges to 𝐶𝐼

𝑖
(𝑥), there is an 𝑛0 ∈ℕ such that for all 𝑛 ≥ 𝑛0, |𝐶𝐼𝑛

𝑖
(𝑥) −𝐶𝐼

𝑖
(𝑥)| < 𝜀 = 𝑑∕3. By Lemma 1, there is an 𝑚0 ∈ℕ

such that for all 𝑛 ≥𝑚0, |𝜑𝑛(
∑

ℎ 𝑤
𝑖
ℎ
𝐷

𝐼𝑛
𝑖,ℎ
(𝑥)) −𝜑(

∑
ℎ 𝑤

𝑖
ℎ
𝐷𝐼

𝑖,ℎ
(𝑥))| < 𝜀 = 𝑑∕3.

Let 𝑘0 =𝑚𝑎𝑥{𝑛0, 𝑚0}. Then,

|𝐶𝐼𝑛
𝑖
(𝑥) −𝜑𝑛(

∑
ℎ

𝑤𝑖
ℎ
𝐷

𝐼𝑛
𝑖,ℎ
(𝑥)| ≥ 𝑑∕3 = 𝜀

for all 𝑛 ≥ 𝑘0. □

Note that the notion of 𝜑𝑛-coherence may fail to characterize all the stationary states of a network as, although for some 𝑥 ∈ Δ
it may hold that 𝐶𝐼

𝑖
(𝑥) = 𝜑(

∑
ℎ 𝑤

𝑖
ℎ
𝐷𝐼

𝑖,ℎ
(𝑥)), for all concepts 𝐶𝑖, there is no guarantee that some 𝑛0 exists such that, for all 𝑛 > 𝑛0, 

𝐶
𝐼𝑛
𝑖
(𝑥) = 𝜑𝑛(

∑
ℎ 𝑤

𝑖
ℎ
𝐷

𝐼𝑛
𝑖,ℎ
(𝑥)). Nevertheless, by item (𝑖), at the limit the distance between 𝐶𝐼,𝑛

𝑖
(𝑥) and 𝜑𝑛(

∑
ℎ 𝑤

𝑖
ℎ
𝐷

𝐼,𝑛

𝑖,ℎ
(𝑥)) converges to 0.

On the other hand, it may be the case that 𝐶𝐼𝑛
𝑖
(𝑥) = 𝜑𝑛(

∑
ℎ 𝑤

𝑖
ℎ
𝐷

𝐼𝑛
𝑖,ℎ
(𝑥)) holds for some 𝑛, due to the approximation, while 𝐶𝐼

𝑖
(𝑥) =

𝜑(
∑

ℎ 𝑤
𝑖
ℎ
𝐷𝐼

𝑖,ℎ
(𝑥)) does not hold. In such a case, by item (𝑖𝑖), there must be a 𝑘0 such that for all values of 𝑛 ≥ 𝑘0, the first equality will 

not hold.

In the following section we exploit the proof methods developed in [39,40] in the verification of the properties of some trained 
feedforward networks under the 𝜑𝑛-coherent semantics.

8. An experimentation: model checking and entailment for the verification of facial emotion recognition

While a neural network, once trained, can quickly classify new stimuli (i.e., perform instance checking), other reasoning services 
such as satisfiability, entailment and model-checking are missing. Such reasoning tasks are useful for validating knowledge that has 
been learned, including proving whether the network satisfies some (strict or conditional) properties.

In the finitely-valued case, Datalog with weakly stratified negation has been used for developing a model-checking approach 
for verifying multilayer networks [40]. Still in the finitely-valued case, an ASP-based approach can be exploited for reasoning with 
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weighted conditional KBs under 𝜑𝑛-coherent entailment [38,39].
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Table 3

Results for checking formulae on the test set. The number of counterexamples for 𝐓(𝐸) ⊑ 𝐹 ≥ 𝑘∕𝑛
is provided for 𝑘 = 1, … , 4, as well as the total number of instances of 𝐓(𝐸).

E F k=1 k=2 k=3 k=4 #T(E)

surprise au1 ⊔ au2 ⊔ au5 54 66 79 140 294

surprise au1 ⊔ au5 ⊔ au15 ⊔ au20 ⊔ au26 2 3 6 59 294

fear au1 ⊔ au2 ⊔ au4 ⊔ au5 7 9 10 21 45

fear au1 ⊔ au2 ⊔ au4 ⊔ au5 ⊔ au20 ⊔ au26 0 0 2 9 45

happiness au1 ⊔ au6 ⊔ au12 ⊔ au14 0 0 0 22 255

happiness au6 ⊔ au12 0 0 1 32 255

happiness au6 ⊓ au12 6 15 23 98 255

happiness au12 0 0 1 35 255

anger au4 ⊔ au5 ⊔ au7 ⊔ au23 5 6 7 44 212

Both the entailment and the model-checking approaches have been experimented in the verification of properties of some trained 
feedforward networks and, in the following, we report some results.

We concentrate, in particular, on the verification of formulae of the form 𝐓(𝐸) ⊑ 𝐹 ≥ 𝛼 where 𝐸 is an output class (i.e. one of the 
possible outputs of classification, or a single output class the network is trained to recognize), and 𝐹 is a boolean combination of 
input classes.

The interest for such formulae lies in the fact that a property 𝐓(𝐸) ⊑ 𝐹 ≥ 𝛼 tells something about the stimuli that are classified as 
𝐸𝑠 with high membership (highest in 𝑛), and could then be seen as describing what the network intends as a prototypical 𝐸.

It might of course be the case that 𝐓(𝐸) ⊑ 𝐹 ≥ 𝛼 holds, and the corresponding strict version 𝐸 ⊑ 𝐹 ≥ 𝛼 does not. Similar consider-

ations apply to inclusions of the form 𝐹 ⊑ 𝐓(𝐸) and 𝐹 ⊑ 𝐸.

8.1. Model checking

Based on the general idea of using model checking for verifying the properties of a neural network, as described in Section 6, in 
[40] we have developed a Datalog-based approach which builds a multi-valued preferential interpretation of a trained feedforward 
network  and, then, verifies the properties of the network for post-hoc explanation.

The Datalog encoding uses weakly stratified negation and contains a component Π( , Δ, 𝑛) which is intended to build a (single) 
many-valued, preferential interpretation 𝐼Δ


with truth degrees in 𝑛, and a component associated to the formulae to be checked.

The model checking approach has been experimented in the verification of properties of neural networks for the recognition of 
basic emotions using the Facial Action Coding System (FACS) [57]. The RAF-DB [58] data set contains almost 30000 images labeled 
with basic emotions or combinations of two emotions. It was used as input to OpenFace 2.0 [59], which detects a subset of the Action 
Units (AUs) in [57], i.e., facial muscle contractions. The relations between such AUs and emotions, studied by psychologists [60], 
can be used as a reference for formulae to be verified on neural networks trained to learn such relations.

From the original dataset, the images labeled with a single emotion in the set {surprise, fear,happiness,anger} were selected. The 
dataset, with 4 283 images, was highly unbalanced, then the data was preprocessed by subsampling the larger classes and augmenting 
the minority ones using standard data augmentation techniques. The processed dataset contains 5 975 images. The images were input 
to OpenFace 2.0; the output intensities were rescaled in order to make their distribution conformant to the expected one in case AUs 
are recognized by humans [57]. The resulting 17 AUs were used as input to a neural network trained to classify its input as an 
instance of the four emotions. The neural network model used is a fully connected feed forward neural network with three hidden 
layers having 1 800, 1 200, and 600 nodes (all hidden layers use ReLU activation functions, while the softmax function is used in the 
output layer); the F1 score of the trained network is 0.744 (the data quality was not very high; other emotions were not considered, 
in order to achieve a reasonable accuracy).

The model checking approach in [40] was easily adapted to the non-crisp notion of typicality we consider in this paper, and 
applied, using the Clingo ASP solver as Datalog engine, taking as set of input stimuli Δ the test set, containing 1 194 images, and 
𝑛 = 5, given that AU intensities, when assigned by humans, are on a scale of five values (plus absence). Table 3 reports some results 
for the verification of typicality inclusions 𝐓(𝐸) ⊑ 𝐹 ≥ 𝑘∕𝑛 in the finitely-valued Gödel description logic with involutive negation plus 
typicality 𝐺𝑛𝐓, with the number of typical individuals for the emotion 𝐸, and the number of counterexamples for different values 
of 𝑘.3

For example, the inclusion axiom 𝐓(happiness) ⊑ au12 ≥ 3∕5 (where 𝑎𝑢12 is the activation of the lip corner puller muscle used for 
smiling) does not hold in the interpretation 𝐼Δ


, since it has 1 counterexample out of 255 instances of 𝐓(happiness), in fact, there is 

an instance 𝑥 such that (𝐓(happiness))𝐼
Δ
 (𝑥) ⊳ 𝑎𝑢12𝐼

Δ
 (𝑥) < 3∕5, given that (𝐓(happiness))𝐼

Δ
 (𝑥) = 1 and 𝑎𝑢12𝐼

Δ
 (𝑥) = 2∕5. The property 

holds for 2∕5, i.e., 𝐓(happiness) ⊑ au12 ≥ 2∕5 holds. The formula 𝐓(happiness) ⊑ au1 ⊔ au6 ⊔ au12 ⊔ au14 ≥ 3∕5 also holds; the other 
action units involved are the activations of the inner brow raiser, cheek raiser, and dimpler.

3 In [40] conditional probabilities of fuzzy events are also considered, namely 𝑝(𝐹∕𝐓(𝐸)) of concept 𝐹 given concept 𝐓(𝐸), based on Zadeh’s probability of fuzzy 
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events [61].
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The corresponding strict inclusions, happiness ⊑ au12 ≥ 𝑘∕5 and happiness ⊑ au1 ⊔ au6 ⊔ au12 ⊔ au14 ≥ 𝑘∕5, do not hold even for 
𝑘 = 1.

8.2. Entailment

Based on the approximation of the 𝜑-coherence semantics considered in section 7, Answer Set Programming (ASP) has been 
shown to be suitable for addressing defeasible reasoning in the finitely many-valued case with truth space 𝑛 = {0, 1

𝑛
, … , 𝑛−1

𝑛
, 𝑛
𝑛
} [38]. 

A PNP[LOG]-completeness result for canonical 𝜑𝑛-coherent entailment has been proven in [39] and some ASP encodings that deal with 
weighted knowledge bases with large search spaces have been developed.

The entailment of a typicality inclusion such as 𝐓(𝐶) ⊑𝐷𝜃𝛼 from a weighted knowledge base 𝐾 is considered in the finitely-valued 
Gödel description logic with involutive negation plus typicality 𝐺𝑛𝐓, introduced in [38] for the boolean fragment  of . The 
verification can be formulated as a problem of computing preferred answer sets of an ASP program, considering a single distinguished 
individual, intended to represent a typical 𝐶-element, and selecting, as preferred answer sets, the ones maximizing the membership 
of the individual in concept 𝐶 . For the entailment problem, the upper bound in [38] has been improved to PNP[LOG] by showing 
an algorithm running in polynomial time and performing parallel queries to an NP oracle (P||NP) [39]. The problem has also been 
shown to be PNP[LOG]-complete and the proof-of-concept ASP encoding has been redesigned so to obtain the desired multi-preferential 
semantics by taking advantage of weak constraints. The scalability of the different ASP encodings has been assessed empirically.

The entailment approach has been experimented on the same domain as the model checking approach, for a binary classification 
task, for the class happiness vs other emotions. A set of 8 835 images was used (no augmentation was needed in this case for balancing). 
The images were input, as in the previous case, to OpenFace 2.0, and 17 resulting AUs were used as input to a fully connected feed 
forward neural network, with two hidden layers of 50 and 25 nodes, using the logistic activation function for all layers. The F1 score 
of the trained network is 0.831.

Also in this case the truth space 5 was used. This means that, with 17 AUs as inputs, the size of the search space for a solver 
is 617, i.e., more than 1013. The weighted conditional knowledge base associated to the network contains 2 201 weighted typicality 
inclusions. The version of the solver in [39] based on weight constraints and order encoding was used. The scalability results in [39]

for synthetic knowledge bases are consistent with the theoretical complexity results, showing that there are solved problem instances 
as well as unsolved ones (within a 30 minutes timeout) for search spaces with sizes from 107 to 1080, and KBs containing 500 to 
40 000 weighted inclusions.

Consider the formulae:

𝐓(happiness) ⊑ au1 ⊔ au6 ⊔ au12 ⊔ au14 ≥ 𝑘∕5 (12)

𝐓(happiness) ⊑ au6 ⊔ au12 ≥ 𝑘∕5 (13)

Model checking, applied to the test set for this case (2 651 individuals with 390 instances of 𝐓(happiness)), finds that both formulae 
hold for 𝑘 = 3 and do not hold for 𝑘 = 4. As regards entailment:

• For (12), the solver finds in seconds that it does not hold for 𝑘 = 4, and in minutes that it holds for 𝑘 = 1, while for 𝑘 = 2, 3, it 
does not provide a result in hours.

• On a variant of the experiment, with the same network structure, but using as inputs AU intensities that are not rescaled (so that 
the AU values are generally lower wrt the previous case), the solver finds in seconds that (12) does not hold for 𝑘 = 2, and in 
minutes that it holds for 𝑘 = 1. I.e., in this case the exact separation can be found; note that, in the previous case, the largest 𝑘
for which the property holds is presumably 𝑘 = 2 or 𝑘 = 3, where the search space for a counterexample is much less constrained 
wrt the case 𝑘 = 1; such a search space is relevant both for showing that the property does not hold, if a counterexample is found, 
and that it does hold, if the non-existence of a counterexample can be inferred.

• for (13), the property is found to hold for 𝑘 = 1 and not to hold for 𝑘 = 3, i.e., for such a value, a counterexample is found by 
entailment, whose search space includes all possible combinations of input vectors, while it is not found by model checking on 
the (limited) test set.

The network structure for this experiment was chosen to lie in the range considered in the experiments in [39], even though a 
much smaller network with a single hidden layer of 8 nodes (half of the input nodes) is enough to achieve a similar accuracy for 
the classification problem; for the resulting knowledge base (with about 150 inclusions) the formulae above can be checked in a few 
seconds even with a search space of size 617.

8.3. Further considerations

The entailment approach is definitely more challenging, from the computational point of view, than the model-checking one; for 
the latter, the verification problem is polynomial in time in the size of the domain Δ and in the size of the formula to be verified.

The two approaches can be combined, as suggested before, with model checking providing a guess for the largest value of 𝑘 such 
that a formula 𝐓(𝐸) ⊑ 𝐹 ≥ 𝑘∕𝑛 is entailed.

The entailment approach has been developed for general weighted conditional knowledge bases, which are not required to be 
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acyclic, while in the experimentation we have considered feedforward networks. A multilayer network can be seen as a set of 
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weighted defeasible inclusions in a simple description logic (only including boolean concepts). However, a weighted conditional 
knowledge base can be more general. It can be defined for several DLs including roles (as it has been done, for instance, for ⊥

[33], and for  in this paper), and it allows for general inclusions axioms and assertions. The combination of defeasible inclusions 
with strict (or fuzzy) inclusions and assertions in a weighted KB allows for the combination of the knowledge acquired from the 
network and symbolic knowledge in the same formalism. In the entailment based approach this can be exploited, e.g., by adding 
constraints on the possible inputs through ABox and TBox axioms, e.g., to exclude combinations of input values. For example, 
au9 ⊔ au10 ⊔ au17 ⊑ ⊥ ≥ 1, i.e., imposing that the three AUs have value 0, can be added, assuming that they are not compatible with 
happiness. In this case, the properties 𝐓(happiness) ⊑ au1⊔ au6⊔ au12⊔ au14 ≥ 3∕5 and 𝐓(happiness) ⊑ au6⊔ au12 ≥ 2∕5 (see section 8.2) 
can indeed be proved in the example (even though hours of computation are needed).

Model checking and entailment are complementary also in the sense that the limited set of stimuli used for model checking is 
expected to be a good sample of the real world, while entailment considers all possible stimuli in the discretized input space, i.e. 
(unless constraints on inputs are used, as described above), it uniformly explores the input space, even though not the whole space 
of real numbers. Depending on the purpose of verification, a user may be satisfied with the fact that a formula is verified to hold by 
model checking, even though counterexamples could be found by entailment.

9. Conclusions and related work

The paper investigates the relationships between a logic of commonsense reasoning in knowledge representation and multilayer 
perceptrons. It develops a fuzzy semantics for weighted knowledge bases with typicality, in which, differently from previous work 
[33,34], the typicality operator has a non-crisp interpretation. For the logic 𝐅𝐓 we have considered three different closure 
constructions, thus defining a faithful, a coherent and a 𝜑-coherent semantics and studied the properties of defeasible entailment, 
proving that the logic satisfies the KLM properties of a preferential consequence relation [6,3] for some choices of fuzzy combination 
functions. We have also considered a finitely many-valued version of the 𝜑-coherent semantics, the 𝜑𝑛-coherent semantics [38], and 
proven that it is indeed an approximation of the fuzzy 𝜑-coherent semantics. ASP based proof methods for the 𝜑𝑛-coherent entailment 
[39] have been exploited in our experimentation.

We have seen that a (fuzzy) multi-preferential interpretation of a trained network can be built from a domain containing a set of 
input stimuli, and using the activity level of neurons for the stimuli. We have proven that such an interpretation is a model of the 
conditional knowledge base which can be associated to the network, corresponding to a set of weighted defeasible inclusions in a 
fuzzy description logic. The logical interpretation of a multilayer network can be used in the verification of properties of the network 
based on a model checking approach and an entailment-based approach, as experimented on networks recognizing emotions from 
facial features.

Our semantics builds on fuzzy Description Logics [26,62,63], and we have used fuzzy concepts within a multi-preferential se-

mantics based on semantic closure constructions which have been developed in the line of Lehmann’s semantics for lexicographic 
closure [31] and of Kern-Isberner’s c-representations [9,32]. A fuzzy extension of preferential logics has been first studied by Casini 
and Straccia [64] for Gödel logic, based on the Rational closure construction.

The idea of having different preference relations, associated to different typicality operators, has been first explored by Gil [65]

to define a multipreference formulation of the description logic  + 𝐓𝑚𝑖𝑛, a typicality DL with a minimal model preferential 
semantics. A multi-preferential extension of the rational closure for  and some refinements has been developed by Gliozzi et al. 
[66,21]. The concept-wise multipreference semantics (introduced first in the two-valued case for ranked DL knowledge bases [23]) 
follows a different route concerning both the definition of preferences, which are associated with concepts, and the way of combining 
them. In particular, as we have seen in Section 3, in 𝐅𝐓 the fuzzy interpretation of concepts induces a preference relation over 
domain elements for each concept, based on the fuzzy combination functions. An extension of DLs with multiple preferences has also 
been developed by Britz and Varzinczak [67,68] to define defeasible role quantifiers and defeasible role inclusions, by associating 
multiple preference relations with roles. A related semantics with multiple preferences has also been proposed in a first-order logic 
setting by Delgrande and Rantsaudis [49].

When the preferences associated to concepts are induced by the fuzzy interpretation of concepts, the fuzzy combination functions 
also provide a notion of preference combination. A related problem of commonsense concept combination has been addressed in a 
probabilistic extension of the typicality description logic  + 𝐓R by Lieto and Pozzato [69]. In the two valued case, alternative 
notions of preference combinations have been considered to define a global preference relation < from the preferences with respect 
to single aspects. For instance, the multi-preferential semantics for ranked +

⊥
knowledge bases [23] exploits one of the strategies 

studied in Brewka’s framework of basic preference descriptions [53], while an algebraic framework for preference combination in 
Multi-Relational Contextual Hierarchies has been developed by Bozzato et al. [70].

In the two valued case, in description logics threshold concepts have been introduced by Baader et al. [71]. Graded membership 
functions 𝑚 in the semantics assign to a domain element 𝑑 and a concept 𝐶 a membership degree 𝑚(𝑑, 𝐶) in [0, 1]. The logic is 
two-valued and the interpretation of concepts and roles is crisp. For instance, a threshold concept 𝐶>0.8 is interpreted as the set of 
domain elements having a membership degree in 𝐶 greater than 0.8. Weighted Threshold Operators have as well been introduced 
in description logics by Porello et al. [72]. They are n-ary operators 𝑊 𝑡(𝐶1 ∶ 𝑤1, … , 𝐶𝑛 ∶ 𝑤𝑛), where the 𝐶𝑖 are concepts and the 
𝑤𝑖 ∈ℝ are weights, which compute a weighted sum of their arguments and verify whether it reaches a certain threshold 𝑡. They are 
also called perceptron connectives. In [73] an operator 𝑊 𝑚𝑎𝑥(𝐶1 ∶𝑤1, … , 𝐶𝑛 ∶𝑤𝑛) is also introduced, which selects the set of entities 
that maximally satisfy a combination of concepts 𝐶1, … , 𝐶𝑚. It is proven that the operator can be defined in terms of the universal 
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modality (in a monotonic DL). While the logic 𝐅𝐓 is monotonic, the notions of faithful, coherent and 𝜑-coherent entailment 
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are nonmonotonic, and cannot be encoded in a monotonic description logic (and this is also true for the two-valued case, under the 
faithful semantics [74]).

Our semantics, which stems from the combination of (many-valued and fuzzy) DLs semantics [27,28,30], and the semantics of 
preferential logics of commonsense reasoning [1–9], has also some relations with Freund’s ordered models for concept representation

[75]. Under some respects, our approach can be regarded as a simplification of the ordered model approach (in a many-valued case), 
as we regard features as concepts and we consider a single (rather than two) preference relation <𝐶 for a concept 𝐶 , which is used 
for evaluating the degree of typicality of domain elements with respect to 𝐶 , and which is induced by the degree of membership 
of domain elements in 𝐶 . Under these assumptions, simple multi-preferential structures can be defined and, as we have seen, can 
be used for providing a semantic interpretation to multilayer networks. A two-valued version of the concept-wise multi-preferential 
semantics has also been considered, e.g., for ranked +

⊥
knowledge bases [23], for weighted DL knowledge bases [33,74], and for 

SOMs [76]. Freund’s assumption that the features can be weighted on a finite scale is mitigated in our semantics, by assuming that 
preferences are well-founded (as usual in the KLM approach [6]). However, as we have seen, restricting to finite values provides an 
approximation of the fuzzy case.

The correspondence between neural network models and fuzzy systems has been first investigated by Kosko in his seminal work 
[77]. In his view, “at each instant the n-vector of neuronal outputs defines a fuzzy unit or a fit vector. Each fit value indicates 
the degree to which the neuron or element belongs to the n-dimensional fuzzy set.” In our approach, in a fuzzy interpretation of a 
multilayer network, each concept (representing a learned category, or simply a unit) is regarded as a fuzzy set over a domain (i.e., 
a set of input stimuli) which is the usual way of viewing concepts in fuzzy description logics [26,62,63], and we have used fuzzy 
concepts within a multi-preferential semantics based on some semantic closure constructions. The problem of learning fuzzy rules 
has been as well investigated in the context of fuzzy description logics [78,79] based on different machine learning approaches.

Much work has been devoted to the combination of neural networks and symbolic reasoning (e.g., the work by d’Avila Garcez 
et al. [80–82] and Setzu et al. [83]), as well as to the definition of new computational models [84–87], and to extensions of logic 
programming languages with neural predicates [88,89]. Among the earliest systems combining logical reasoning and neural learning 
are the Knowledge-Based Artificial Neural Network (KBANN) [90], the Connectionist Inductive Learning and Logic Programming 
(CILP) [91] systems, and Penalty Logic [92], a non-monotonic reasoning formalism used to establish a correspondence with symmet-

ric connectionist networks. The relationships between normal logic programs and connectionist network have been investigated by 
Garcez and Gabbay [91,80] and by Hitzler et al. [93]. None of these approaches provides a semantics of neural networks in terms of 
concept-wise multi-preferential interpretations with typicality.

The work presented in this paper opens to the possibility of adopting conditional logics as a basis for neuro-symbolic integration, 
e.g., by learning the weights of a conditional knowledge base from empirical data, and combining the defeasible inclusions extracted 
from a neural network with other defeasible or strict inclusions for inference.

Using a multi-preferential logic for the verification of typicality properties of a neural network by model-checking is a general 
(model agnostic) approach. It can be used for SOMs, as in [76], by exploiting a notion of distance of a stimulus from a category to 
define a preferential structure, as well as for MLPs, by exploiting units activity to build a fuzzy preferential interpretation. Given the 
simplicity of the approach, a similar construction can be adapted to other neural network models and learning approaches.

Both the model-checking approach and the entailment-based approach are global approaches to explanation for neural networks 
(see, e.g., [83] for the notions of local and global approaches), as they consider the behavior of the network over a set Δ of input 
stimuli. Indeed, the evaluation of typicality inclusions considers all the individuals in the domain to establish preference relations 
among them, with respect to different aspects. However, properties of single individuals can as well be verified (by instance checking, 
in DL terminology). Whether this approach can as well be considered for counterfactual reasoning has still to be investigated.

The model-checking approach does not require to consider the activity of all units, but only of the units involved in the property 
to be verified. In the entailment-based approach, on the other hand, all units and network parameters are considered, which limits 
the scalability of the approach, consistently with the complexity results. Whether it is possible to extend the logical encoding of MLPs 
as weighted KBs to other neural network models is a subject for future investigation. The development of a temporal extension of 
this formalism to capture the transient behavior of MLPs is also an interesting direction to extend this work.
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Appendix A. Proofs of Propositions 2 and 3

Proposition 2. Under the choice of combination functions as in Gödel logic, any 𝐅𝐓 interpretation 𝐼 = ⟨Δ, ⋅𝐼 ⟩ satisfies the postulates 
(REFL′), (LLE′), (RW′), (AND′), (OR′) and (CM′).

Proof. Let 𝐼 = ⟨Δ, ⋅𝐼 ⟩ be an 𝐅𝐓 interpretation, where the t-norm, s-norm, implication function and negation functions are as in 
Gödel logic. To prove that 𝐼 satisfies the properties (𝑅𝐸𝐹𝐿′), (𝐿𝐿𝐸′), (𝑅𝑊 ′), (𝐴𝑁𝐷′), (𝑂𝑅′) and (𝐶𝑀 ′), when the t-norm, s-norm 
and implication function are as in Gödel logic, while for negation we adopt standard involutive negation, we proceed by cases.

−(𝐑𝐄𝐅𝐋′) to prove that 𝐓(𝐶) ⊑ 𝐶 ≥ 1 is satisfied in 𝐼 , we have to prove that inf𝑥∈Δ(𝐓(𝐶))𝐼 (𝑥) ⊳𝐶𝐼 (𝑥) ≥ 1.

Let us prove that for all 𝑥 ∈Δ, (𝐓(𝐶))𝐼 (𝑥) ⊳𝐶𝐼 (𝑥) ≥ 1.

We consider two cases: (𝐓(𝐶))𝐼 (𝑥) = 0 (i.e., 𝑥 is not a typical 𝐶-element) and (𝐓(𝐶))𝐼 (𝑥) > 0 (i.e., 𝑥 is a typical 𝐶-element).

If (𝐓(𝐶))𝐼 (𝑥) = 0, (𝐓(𝐶))𝐼 (𝑥) ⊳𝐶𝐼 (𝑥) = 0 ⊳𝐶𝐼 (𝑥) = 1, and the thesis holds trivially.

If (𝐓(𝐶))𝐼 (𝑥) > 0, by definition (𝐓(𝐶))𝐼 (𝑥) = 𝐶𝐼 (𝑥). Again, (𝐓(𝐶))𝐼 (𝑥) ⊳𝐶𝐼 (𝑥) = 1, and the thesis holds.

−(𝐋𝐋𝐄′) Assume that ⊧ 𝐴 ≡ 𝐵, i.e., axioms 𝐴 ⊑ 𝐵 ≥ 1, 𝐵 ⊑ 𝐴 ≥ 1 are valid in fuzzy  and that 𝐓(𝐴) ⊑ 𝐶 ≥ 𝑘 is satisfied in 𝐼 . We 
prove that 𝐓(𝐵) ⊑ 𝐶 ≥ 1 is satisfied in 𝐼 , that is (𝐓(𝐵) ⊑ 𝐶)𝐼 ≥ 1.

From the validity of 𝐴 ⊑ 𝐵 ≥ 1 and 𝐵 ⊑𝐴 ≥ 1, inf𝑥∈Δ𝐴𝐼 (𝑥) ⊳𝐵𝐼 (𝑥) ≥ 1 and inf𝑥∈Δ𝐵𝐼 (𝑥) ⊳𝐴𝐼 (𝑥) ≥ 1. Hence,

for all 𝑥 ∈Δ, 𝐴𝐼 (𝑥)⊳𝐵𝐼 (𝑥) ≥ 1 and 𝐵𝐼 (𝑥)⊳𝐴𝐼 (𝑥) ≥ 1 (A.1)

This implies that: for all 𝑥 ∈ Δ, 𝐴𝐼 (𝑥) ≤ 𝐵𝐼 (𝑥) and 𝐵𝐼 (𝑥) ≤ 𝐴𝐼 (𝑥), i.e., 𝐴𝐼 (𝑥) = 𝐵𝐼 (𝑥) for all 𝑥 ∈ Δ. Therefore, the preference relations 
<𝐴 and <𝐵 must be the same and also 𝐴𝐼

>0 = 𝐵𝐼
>0. Hence, 𝐓(𝐴)𝐼 (𝑥) = 𝐓(𝐵)𝐼 (𝑥) for all 𝑥 ∈ Δ, and from (𝐓(𝐴) ⊑ 𝐶)𝐼 ≥ 1, it follows that 

(𝐓(𝐵) ⊑ 𝐶)𝐼 ≥ 1, that is, 𝐓(𝐵) ⊑ 𝐶 ≥ 1 is satisfied in 𝐼 .

−(𝐑𝐖′) Assume that axiom 𝐶 ⊑𝐷 ≥ 1 is valid in fuzzy . Hence, it holds that inf𝑥∈Δ 𝐶𝐼 (𝑥) ⊳𝐷𝐼 (𝑥) ≥ 1 and for all 𝑥 ∈ Δ, 𝐶𝐼 (𝑥) ⊳
𝐷𝐼 (𝑥) ≥ 1.

As we have seen above, this implies that: for all 𝑥 ∈ Δ, 𝐶𝐼 (𝑥) ≤𝐷𝐼 (𝑥).
Let us assume that 𝐓(𝐴) ⊑ 𝐶 ≥ 1 is satisfied in 𝐼 , i.e., inf𝑥∈Δ(𝐓(𝐴))𝐼 (𝑥) ⊳𝐶𝐼 (𝑥) ≥ 1 and, for all 𝑥 ∈Δ, (𝐓(𝐴))𝐼 (𝑥) ⊳𝐶𝐼 (𝑥) ≥ 1.

By monotonicity of ⊳, 1 ≤ (𝐓(𝐴))𝐼 (𝑥) ⊳𝐶𝐼 (𝑥) ≤ (𝐓(𝐴))𝐼 (𝑥) ⊳𝐷𝐼 (𝑥). Hence, for all 𝑥 ∈Δ, (𝐓(𝐴))𝐼 (𝑥) ⊳𝐷𝐼 (𝑥) ≥ 1, so that 𝐓(𝐴) ⊑𝐷 ≥ 1
is satisfied in 𝐼 .

−(𝐀𝐍𝐃′) Let us assume that 𝐓(𝐴) ⊑ 𝐶 ≥ 1 and 𝐓(𝐴) ⊑𝐷 ≥ 1 are satisfied in 𝐼 , i.e., inf𝑥∈Δ(𝐓(𝐴))𝐼 (𝑥) ⊳𝐶𝐼 (𝑥) ≥ 1 and inf𝑥∈Δ(𝐓(𝐴))𝐼 (𝑥) ⊳
𝐷𝐼 (𝑥) ≥ 1. Then, for all 𝑥 ∈Δ, (𝐓(𝐴))𝐼 (𝑥) ⊳𝐶𝐼 (𝑥) ≥ 1 and (𝐓(𝐴))𝐼 (𝑥) ⊳𝐷𝐼 (𝑥) ≥ 1.

We prove that 𝑥 ∈Δ, (𝐓(𝐴))𝐼 (𝑥) ⊳ (𝐶 ⊓𝐷)𝐼 (𝑥) ≥ 1, from which (𝐓(𝐴) ⊑ 𝐶 ⊓𝐷)𝐼 ≥ 1 follows.

If (𝐓(𝐴))𝐼 (𝑥) ⊳ 𝐶𝐼 (𝑥) ≥ 1 holds, then (a) (𝐓(𝐴))𝐼 (𝑥) ≤ 𝐶𝐼 (𝑥) or (b) 𝐶𝐼 (𝑥) ≥ 1. Note that, if (b) holds, (a) must hold as well. Hence, 
if (𝐓(𝐴))𝐼 (𝑥) ⊳𝐶𝐼 (𝑥) ≥ 1 holds, (𝐓(𝐴))𝐼 (𝑥) ≤ 𝐶𝐼 (𝑥) also holds.

Similarly, from (𝐓(𝐴))𝐼 (𝑥) ⊳𝐷𝐼 (𝑥) ≥ 1, it follows that (𝐓(𝐴))𝐼 (𝑥) ≤𝐷𝐼 (𝑥) holds.

Therefore, for any 𝑥 ∈ Δ, both (𝐓(𝐴))𝐼 (𝑥) ≤ 𝐶𝐼 (𝑥) and (𝐓(𝐴))𝐼 (𝑥) ≤ 𝐷𝐼 (𝑥) hold. It follows that (𝐓(𝐴))𝐼 (𝑥) ≤ 𝑚𝑖𝑛{𝐶𝐼 (𝑥), 𝐷𝐼 (𝑥)} =
(𝐶 ⊓𝐷)𝐼 (𝑥) holds and, hence, (𝐓(𝐴))𝐼 (𝑥) ⊳ (𝐶 ⊓𝐷)𝐼 (𝑥) ≥ 1 holds.

−(𝐎𝐑′) Assume 𝐓(𝐴) ⊑ 𝐶 ≥ 1 and that 𝐓(𝐵) ⊑ 𝐶 ≥ 1 are satisfied in 𝐼 . Then, inf𝑥∈Δ(𝐓(𝐴))𝐼 (𝑥) ⊳𝐶𝐼 (𝑥) ≥ 1 and inf𝑥∈Δ(𝐓(𝐵))𝐼 (𝑥) ⊳𝐶𝐼 (𝑥) ≥
1. Hence, for all 𝑥 ∈Δ, (𝐓(𝐴))𝐼 (𝑥) ⊳𝐶𝐼 (𝑥) ≥ 1 and (𝐓(𝐵))𝐼 (𝑥) ⊳𝐶𝐼 (𝑥) ≥ 1.

To prove that 𝐓(𝐴 ⊔ 𝐵) ⊑ 𝐶 ≥ 1, we prove that, for all 𝑥 ∈Δ, (𝐓(𝐴 ⊔𝐵))𝐼 (𝑥) ⊳𝐶𝐼 (𝑥) ≥ 1.

If (𝐓(𝐴 ⊔ 𝐵)𝐼 (𝑥) = 0, the thesis follows trivially.

If (𝐓(𝐴 ⊔ 𝐵))𝐼 (𝑥) > 0, 𝑥 is a typical 𝐴 ⊔𝐵-element. Then there is no 𝑦 ∈ Δ such that (𝐴 ⊔ 𝐵)𝐼 (𝑦) > (𝐴 ⊔𝐵)𝐼 (𝑥).
It can be proven that, when 𝑥 is a typical 𝐴 ⊔𝐵-element, 𝑥 is also a typical 𝐴-element or a typical 𝐵-element.

Given that (𝐓(𝐴 ⊔ 𝐵))𝐼 (𝑥) = (𝐴 ⊔ 𝐵)𝐼 (𝑥) = 𝑚𝑎𝑥{𝐴𝐼 (𝑥), 𝐵𝐼 (𝑥)}, let us assume 𝑚𝑎𝑥{𝐴𝐼 (𝑥), 𝐵𝐼 (𝑥)} = 𝐵𝐼 (𝑥). Then, for all 𝑦 ∈ Δ, 
𝑚𝑎𝑥{𝐴𝐼 (𝑦), 𝐵𝐼 (𝑦)} ≤ 𝐵𝐼 (𝑥), and 𝐵𝐼 (𝑦) ≤ 𝐵𝐼 (𝑥). Hence, there is no 𝑦 ∈ Δ such that 𝐵𝐼 (𝑦) > 𝐵𝐼 (𝑥), and 𝑥 is a typical 𝐵 element. 
Furthermore, (𝐓(𝐵))𝐼 (𝑥) = 𝐵𝐼 (𝑥) = (𝐓(𝐴 ⊔ 𝐵))𝐼 (𝑥)).

From the hypothesis, we know that (𝐓(𝐵))𝐼 (𝑥) ⊳𝐶𝐼 (𝑥) ≥ 1; hence, (𝐓(𝐵))𝐼 (𝑥) ≤ 𝐶𝐼 (𝑥). It follows that (𝐓(𝐴 ⊔ 𝐵))𝐼 (𝑥) = (𝐓(𝐵))𝐼 (𝑥) ≤
𝐶𝐼 (𝑥), and then (𝐓(𝐴 ⊔ 𝐵))𝐼 (𝑥) ⊳𝐶𝐼 (𝑥) ≥ 1.

The case where 𝑚𝑎𝑥{𝐴𝐼 (𝑥), 𝐵𝐼 (𝑥)} =𝐴(𝑥) is similar.

−(𝐂𝐌′) Assume 𝐓(𝐴) ⊑ 𝐷 ≥ 1 and that 𝐓(𝐴) ⊑ 𝐶 ≥ 1 are satisfied in 𝐼 . Then, inf𝑥∈Δ(𝐓(𝐴))𝐼 (𝑥) ⊳ 𝐷𝐼 (𝑥) ≥ 1 and inf𝑥∈Δ(𝐓(𝐴))𝐼 (𝑥) ⊳
𝐶𝐼 (𝑥) ≥ 1. Hence, for all 𝑥 ∈Δ, (𝐓(𝐴))𝐼 (𝑥) ⊳𝐷𝐼 (𝑥) ≥ 1 and (𝐓(𝐴))𝐼 (𝑥) ⊳𝐶𝐼 (𝑥) ≥ 1.

To prove that 𝐓(𝐴 ⊓𝐷) ⊑ 𝐶 ≥ 1 is satisfied in 𝐼 , we prove that, for all 𝑥 ∈Δ, (𝐓(𝐴 ⊓𝐷))𝐼 (𝑥) ⊳𝐶𝐼 (𝑥) ≥ 1.

If (𝐓(𝐴 ⊓𝐷))𝐼 (𝑥) = 0 the thesis holds trivially.

If (𝐓(𝐴 ⊓𝐷))𝐼 (𝑥) > 0, 𝑥 is a typical 𝐴 ⊓𝐷-element. Then, (𝐓(𝐴 ⊓𝐷))𝐼 (𝑥) = (𝐴 ⊓𝐷)𝐼 (𝑥) = 𝑚𝑖𝑛{𝐴𝐼 (𝑥), 𝐷𝐼 (𝑥)} > 0. Also, 𝐴𝐼 (𝑥) > 0 and 
𝐷𝐼 (𝑥) > 0.

We prove that 𝑥 is a typical 𝐴-element. By contradiction, if 𝑥 is not a typical 𝐴-element, there is a 𝑦 ∈ Δ such that 𝑦 is a typical 
𝐴-element and 𝐴𝐼 (𝑦) > 𝐴𝐼 (𝑥). As 𝐓(𝐴) ⊑ 𝐷 ≥ 1, (𝐓(𝐴))𝐼 (𝑦) ⊳𝐷𝐼 (𝑦) ≥ 1, and then (𝐓(𝐴))𝐼 (𝑦) ≤𝐷𝐼 (𝑦). But (𝐓(𝐴))𝐼 (𝑦) = 𝐴𝐼 (𝑦) (as 𝑦 is a 
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typical 𝐴-element), hence 𝐴𝐼 (𝑦) ≤𝐷𝐼 (𝑦).
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Therefore, 𝑚𝑖𝑛{𝐴𝐼 (𝑦), 𝐷𝐼 (𝑦)} =𝐴𝐼 (𝑦) >𝐴𝐼 (𝑥) ≥𝑚𝑖𝑛{𝐴𝐼 (𝑥), 𝐷𝐼 (𝑥)}. Then, (𝐴 ⊓𝐷)𝐼 (𝑦) > (𝐴 ⊓𝐷)𝐼 (𝑥), which contradicts the hypothesis 
that 𝑥 is a typical 𝐴 ⊓𝐷-element. Therefore, 𝑥 must be a typical 𝐴-element.

As 𝐓(𝐴) ⊑ 𝐶 ≥ 1 and 𝐓(𝐴) ⊑ 𝐷 ≥ 1, (𝐓(𝐴))𝐼 (𝑥) ≤ 𝐶𝐼 (𝑥) and (𝐓(𝐴))𝐼 (𝑥) ≤ 𝐷𝐼 (𝑥) hold. Furthermore, as (𝐓(𝐴))𝐼 (𝑥) = 𝐴𝐼 (𝑥), 𝐴𝐼 (𝑥) ≤
𝐶𝐼 (𝑥) and 𝐴𝐼 (𝑥) ≤𝐷𝐼 (𝑥) hold. Then, (𝐴 ⊓𝐷)𝐼 (𝑥) =𝑚𝑖𝑛{𝐴𝐼 (𝑥), 𝐷𝐼 (𝑥)} =𝐴𝐼 (𝑥). Thus, (𝐓(𝐴 ⊓𝐷))𝐼 (𝑥) = (𝐴 ⊓𝐷)𝐼 (𝑥) =𝐴𝐼 (𝑥) ≤ 𝐶𝐼 (𝑥), and 
the thesis follows. □

Proposition 3. For the choice of combination functions as in Gödel logic, (RM′) does not hold in 𝐅𝐓 (and the same with standard 
involutive negation.

Proof. Consider a KB 𝐾 such that the ABox  contains the following assertions:

𝐴(𝑎) ≤ 0.8, 𝐴(𝑎) ≥ 0.8 𝐵(𝑎) ≤ 0.3, 𝐵(𝑎) ≥ 0.3, 𝐶(𝑎) ≤ 0.9, 𝐶(𝑎) ≥ 0.9;

𝐴(𝑏) ≤ 0.5, 𝐴(𝑏) ≥ 0.5, 𝐵(𝑏) ≤ 0.6, 𝐵(𝑏) ≥ 0.6, 𝐶(𝑏) ≤ 0.4, 𝐶(𝑏) ≥ 0.4

and the TBox  contain the axiom 𝐓(𝐴) ⊑ 𝐶 ≥ 1.

Clearly 𝐾 entails 𝐓(𝐴) ⊑ 𝐶 ≥ 1. We show that 𝐾 does not entail 𝐓(𝐴) ⊑ ¬𝐵 ≥ 1. We define an 𝐅𝐓 interpretation 𝐼 = ⟨Δ, ⋅𝐼 ⟩
which is a model of 𝐾 , but falsifies 𝐓(𝐴) ⊑ ¬𝐵 ≥ 1.

Let 𝐼 = ⟨Δ, ⋅𝐼 ⟩ be such that Δ = {𝑥, 𝑧} and, for concept names 𝐴, 𝐵, 𝐶 ,

𝐴𝐼 (𝑥) = 0.8, 𝐵𝐼 (𝑥) = 0.3, 𝐶𝐼 (𝑥) = 0.9

𝐴𝐼 (𝑧) = 0.5, 𝐵𝐼 (𝑧) = 0.6, 𝐶𝐼 (𝑧) = 0.4

Hence, 𝑥 is a typical 𝐴 element, and the only one. 𝐓(𝐴)𝐼 (𝑥) = 0.8 and 𝐓(𝐴)𝐼 (𝑥) ⊳ 𝐶𝐼 (𝑥) = 1. Hence, 𝐓(𝐴) ⊑ 𝐶 ≥ 1 is satisfied in 𝐼 . 
Clearly, all the assertions in ABox  are also satisfied in 𝐼 , by letting 𝑎𝐼 = 𝑥 and 𝑏𝐼 = 𝑧. 𝐼 is an 𝐅𝐓 model of 𝐾 .

𝐓(𝐴) ⊑ ¬𝐵 ≥ 1 is not satisfied in 𝐼 , as 𝐓(𝐴)𝐼 (𝑥) = 0.8 and (¬𝐵)𝐼 (𝑥) = 0 (using the negation function in Gödel logic), and 𝐓(𝐴)𝐼 (𝑥) ⊳
(¬𝐵)𝐼 (𝑥) = 0. Therefore, 𝐓(𝐴) ⊑ ¬𝐵 ≥ 1 is not entailed from 𝐾 .4

By (RM’) we would conclude that 𝐓(𝐴 ⊓ 𝐵) ⊑ 𝐶 ≥ 1 should be entailed from 𝐾 , but this is not true, as the model 𝐼 of 𝐾 falsifies 
𝐓(𝐴 ⊓𝐵) ⊑ 𝐶 ≥ 1. In fact 𝑧 is the only typical 𝐓(𝐴 ⊓𝐵) element in 𝐼 and 𝐓(𝐴 ⊓𝐵)𝐼 (𝑧) = 0.5. However, 𝐓(𝐴 ⊓𝐵)𝐼 (𝑧) ⊳𝐶𝐼 (𝑧) = 0.4 < 1. □
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