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ABSTRACT
The data collected from personal devices is intrinsically private

and should be collected through a privacy-guaranteed mechanism.

Local differential privacy solves privacy problems by collecting

randomized responses from each user, and it does not need to

rely on a trusted data aggregator/curator. The proposed approach

utilizes the randomized response technique in a novel manner: it

guarantees privacy to users during the data collection and simulta-

neously preserves the high utility of the analysis. It can be seen as a

case of synthetic data generation by producing contingency tables

(marginals) in a privacy-preserving mechanism. This article de-

scribes the proposed randomized response technique and discusses

the motivating applications domains. It justifies why it satisfies the

property of differential privacy and utility guarantees theoretically

and through experimental analysis with excellent results.
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1 INTRODUCTION
Data collected from smart devices have become invaluable assets

for product designers and application developers. Companies and

research centers collect data from end-users and use them to update

their knowledge and tailor their products and services.

The problem with massive data collection is that collecting sensi-

tive personal data poses a significant risk to people’s privacy rights.

To get accurate information from the individuals, the data collection

process should enforce robust privacy-preservation mechanisms

ACM ISBN 979-8-4007-0243-3/24/04.
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and consider at the same time the collected data utility. We intro-

duce a novel data collection protocol with randomized responses

to achieve data collection with privacy guarantees. The protocol is

client-server and occurs in a network/cloud environment where the

client represents an end-user or a partner with private data and the

server is the data aggregator/curator which is honest-but-curious: it

correctly performs the protocol for data exchange and aggregation

but might want to know the clients’ private data. The risk is of

privacy leakage and could occur after an attack with adversarial

knowledge or a differential attack. Our proposed method provides

strong privacy guarantees combined with a high data utility, as

this work shows. We adopt a local differential privacy (LDP) ap-

proach rather than the weaker global differential privacy (GDP)

approach, where aggregators store the actual data and are a single

point of failure and a target for attacks. LDP is stronger because

even if adversaries had access to the personal responses, they would

still not be able to learn about individuals since the responses are

randomized.

Our privacy-preservation randomized response is built on the

idea of randomized response proposed by Warner in 1965 [26], a

data collection technique on sensitive data, where the respondent

hesitates to provide a true answer. In Section 1.1 we introduce

the principles of the randomized protocol. As discussed in Sec-

tion 2, surveys generated using randomized responses allow easy

computations of correct population statistics while protecting the

privacy of the individual and preventing reconstruction attacks.

This technique can be used to inject random noise into the an-

swers or the output of a function. Random noise injection protects

from the differential attack and is one of the key components of

the differential privacy model, the standard de-facto reference for

privacy-preserving query answering [8].

Unfortunately, the level of privacy provided by the randomized

response [26] degrades if the survey is repeated by the same respon-

dent and does not work for multivariate answers. So, to maintain a

strong privacy guarantee with a high utility, we need a better data

collection mechanism, as we present in this work.

Finally, we show that the data collected at the aggregator pro-

vides a high utility value. The proposed solution gives guarantees,

at certain confidence levels, that the statistical dependencies ob-

served in the reconstructed data correspond to the true ones. The

proposed solution relies on a combination of sophisticated machine

learning modeling and numerical optimization with hypothesis

tests, as we show in Section 6.

In Section 2 we compare the randomized response protocol with

the related work. We present two improved versions of the ran-

domized protocol and discuss its properties in Section 4 and in

Section 5 we discuss its convergence. In Section 6 we present its

robustness in preserving statistical associations among variables.
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Figure 1: The flow of the randomized protocol and two flips
of coins, with a binary attribute Att𝑖

In Section 7 we show the excellent experimental results on three

real use cases in comparison with Laplace noise and 2-step MLE

MonteCarlo simulation.

1.1 The principle of the randomised response
protocol

The survey respondent is asked to flip two fair coins in secret; if

the first coin is "Head", the respondent is asked to flip a second

coin whose outcome will determine if the answer is "Yes" or "No".

Figure 1 shows the flow of the randomization protocol. It is sim-

ple to see that in a situation where both "Yes" and "No" answers

can be denied (flipping two fair coins), the true number of "Yes"

answers can be accurately estimated by 2(𝑞 − 0.25), where 𝑞 is

the proportion of "Yes" responses. The unknown probability of a

successful event studied on a population, represented by a ran-

dom variable, is correctly and even more efficiently inferred by

the randomized protocol in Figure 1 if parameter 𝑞 is close to the

true probability of the successful event. This observation led to our

proposal that the parameter 𝑞 be adjusted to its true value as the

protocol evolves. The natural and more general setting is where

each client has multiple attributes, and the server is interested in

learning their joint distribution after observing only a sample of

the population. Knowledge of the joint distribution opens the way

to powerful descriptive and predictive analytical models, such as

statistical inference models and Bayesian networks. In the adopted

local differential privacy (LDP) approach, in the proposed proto-

col, a respondent’s private data is generated (possibly modified by

the randomised protocol itself) after selecting subsets of attributes.

These values are communicated to one or more aggregators in a

distributed environment. As a final step, the aggregator receiving

the randomised data has the task of calculating contingency tables

(CTs) with the frequencies of the observed values.

Thanks to the protocol properties, we demonstrate that it is

possible to reconstruct the true joint probability of the attributes

from the possibly noisy values communicated by the individuals.

The transmitted values do not need to correspond to the true ones

for each individual, in virtue of the deniability property of the

protocol. Moreover, the randomization is local to the individual

users, and there is no need for a different, trusted organization to

perform the randomizer or add a verified amount of noise.

Often, Machine Learning algorithms rely on low-order marginals

as a building block and compute accurate approximations by the

Maximum Likelihood principle and vine-copulas [4, 17]. Our pro-

posed method generates low-dimensional tables on m attributes

(m-way). We can generate even lower-dimensional CTs, with 𝑘 < 𝑚

from these m-dimensional ones by further marginalizations. We

call these further CTs higher-level. We propose to apply linear pro-

gramming to the m-way CTs to make consistent the marginals of

the higher level ones (k-way). This approach is also followed by [2].

2 RELATEDWORK
Privacy-preserving data statistics are often considered in a central-

ized setting in which the data is perturbed by adding random noise

from Laplace distribution or applying the Exponential mechanism.

These perturbation techniques reduce the risk for an individual to

be identified [9, 11]. However, in this classical approach, with true

data in the database, individual privacy is still not guaranteed from

external attacks or internal adversaries (e.g., eavesdropping). Our

approach is based instead on the decentralized setting with local

differential privacy. Each client randomizes its true values using

a local randomization mechanism. The noisy values are then sent

on the network to the aggregator without the need to be protected

and then aggregated to produce the desired statistics.

A multitude of approaches exist: they combine randomized re-

sponse techniques [26] to create sophisticated noise addition mech-

anisms [10, 12, 18, 21, 24]. Google RAPPOR [10] collects users’

data in a private setting, where the responses are mapped to a

Bloom filter using a hash function. RAPPOR implements a two-step

randomization technique: first, by mapping the user string onto a

Bloom filter using a hash function, and second by flipping each bit

in the Bloom filter with given probabilities.

Apple implements privacy in their iOS to collect user statistics

through users sketching [3, 24]. Microsoft collects users’ app sta-

tistics privately using rounding and memorization techniques [7].

Wang et al [25] proposed an optimization technique with asymmet-

ric randomization response and hashing function. Kairouz et al [14]
propose the optimal generalizations of randomized responses to

estimate the frequency of a single categorical attribute.

3 PRELIMINARIES
We consider a setting where each client owns a set of attributes. The

centralized server collects these attributes in a privacy-preserving

manner and releases the joint distribution of their values.

3.1 Notations
We consider a dataset𝐷 with 𝑑 attributes𝑋 = (𝐴1, 𝐴2, · · · , 𝐴𝑑 ). We

useV𝑖 to denote the domain of the values of𝐴𝑖 and 𝑣𝑖 𝑗 to represent

a possible value in V𝑖 . A subset of attributes in 𝑋 is denoted by

𝑆𝑖 . A contingency table (CT) involving the attributes in 𝑆𝑖 is called

𝑇𝑆𝑖 . We use 𝑇𝑟,𝑐 to represent the attributes values (entry points) in

a CT with the values for a subset of attributes 𝑟 in 𝑆𝑖 as rows and

another subset 𝑐 as columns in the CT. We use 𝑇𝑟,𝑐 [𝑣] to represent

the cell value of that CT at those entry points. |𝑇𝑆𝑖 | denotes the
cardinality of the CT. The probability of an attribute value 𝑣𝑖 𝑗 is

denoted by 𝑝 (𝑣𝑖 𝑗 ). Each row in 𝐷 represents a single user or client

𝑢. The notations are summarized in Table 2.

Example 3.1. Database𝐷 in Table 1a has six attributes:A = {adult,

old}; R = {big, small}; E = {high, uni}; O = {emp, self}; S = {M, F}; and

T = {car, train, other}., It is aggregated with count function applied
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(a) Dataset consists of 6 attributes (Age, Region, Education, Occupa-
tion, Sex, Transportation)

A R E O S T
1 adult big high emp M car

2 adult big high emp F train

3 adult small high emp F other

4 adult small high self F car

5 old big uni emp F train

6 old small uni self M other

7 old small uni self M train

8 old small high self M train

(b) CT with 2 attributes𝑇AT

𝑉 𝑇RE [𝑣]
(big, high) 2

(big, uni) 1

(small, high) 3

(small, uni) 2

(c) Marginal table for Re-
gion

𝑉 𝑇R [𝑣]
(big, ∗) 3

(small,∗) 5

Table 1: Example of a dataset, CT, and the marginals

Meaning Notation
Attribute name 𝐴𝑖

single value of 𝐴𝑖 𝑣𝑖 𝑗

attribute set 𝑆𝑖

contingency table on 𝑆𝑖 𝑇𝑆𝑖
contingency table entry point 𝑇𝑟,𝑐

contingency table cell value 𝑇𝑟,𝑐 [𝑣]
Table 2: Summary of notations

to subsets of their values. Table 1b shows a CT over a set of two

attributes. Table 1c shows a marginalization.

3.2 Differential Privacy
The current de facto standard of privacy protection is differential

Privacy [8, 9]. It is interpreted as a statistical property that com-

pares the output of a query on the database when the individual is

included in the database with the alternative without the individual.

To protect the individual’s privacy, noise is added either on the

data or in the query mechanism (M) that answers requests on the

data. The privacy guarantee of the randomization mechanism is

quantified by the parameter of the privacy budget 𝜖 that controls

how different are the probabilities that the query returns the same

output in the two databases, differing for a single individual.

Definition 3.2. (Differential Privacy [9]) A randomization mech-

anismM is 𝜖− differentially private if for any two neighbouring

databases 𝐷1 ∈ N |𝑋 | and 𝐷2 ∈ N |𝑋 | that differ for a single entry,
and any subset R of the output ofM,

𝑃 [M(𝐷1) ∈ R]
𝑃 [M(𝐷2) ∈ R]

≤ exp
𝜖

(1)

where the probability is taken over the randomness ofM. In our

case, the mechanism (or query)M(𝐷) is represented with a collec-

tion of CTs 𝑇𝑆𝑖 returned by the randomized response protocol on

𝐷 , with 𝑆𝑖 one of the subsets of attributes in 𝑋 .

3.2.1 Utility Goal of Our Randomization Method. The utility of our
randomization protocol stems from the possibility of reconstructing

k-way CTs whose values are close to the true ones 𝑇𝑆𝑖 . Given a

reconstructed noisy k-way CT𝑇 ′
𝑆𝑖
, we consider three error measures

to evaluate the performance of the proposed randomization method

(the lower the better).

In our first experiment, we calculate the 𝜒2 independence testing

between the true and the noisy CT.

The second is the ℓ2 distance between 𝑇
′
𝑆𝑖

and 𝑇𝑆𝑖 , in which the

CTs are viewed as vectors of 2
𝑘
elements. In the context of the

randomization method, the error distance can be regarded as a

random variable due to its dependency on the noise introduced

by the method itself. Expected Squared Error (ESE) is the expected
value of the square of the error distance, an aggregation of squared

errors across individual cells. ESE is frequently employed to assess

the utility of a given method.

The third method is the Jensen-Shannon divergence between

𝑇 ′
𝑆𝑖

and 𝑇𝑆𝑖 , both normalized by dividing each cell value with the

sum of the cells (so that the probability mass is 1). It is natural

to apply Kullback-Leibler divergence between 𝑇 ′
𝑆𝑖

and 𝑇𝑆𝑖 , since

𝐷𝐾𝐿 (𝑇𝑆𝑖 | |𝑇 ′𝑆𝑖 ) measures the information lost when 𝑇 ′
𝑆𝑖

is used to

approximate 𝑇𝑆𝑖 . However, 𝐷𝐾𝐿 (𝑇𝑆𝑖 | |𝑇 ′𝑆𝑖 ) can be undefined when

𝑇𝑆𝑖 [𝑣𝑖 ] = 0 or𝑇𝑆𝑖 [𝑣𝑖 ] ≠ 0 for some 𝑣𝑖 . Thus, we use Jensen-Shannon

divergence [19], which is a symmetrized and smoothed version,

given as:

𝐷 𝐽 𝑆 (𝑇𝑆𝑖 | |𝑇
′
𝑆𝑖
) = 1

2

𝐷𝐾𝐿 (𝑇𝑆𝑖 | |𝑄) +
1

2

(𝑇 ′𝑆𝑖 | |𝑄) (2)

where 𝑄 =
𝑇𝑆𝑖 +𝑇

′
𝑆𝑖

2
and 𝐷𝐾𝐿 (𝑇𝑆𝑖 | |𝑇 ′𝑆𝑖 ) =

∑
𝑖 𝑗 𝑙𝑜𝑔

(
𝑇𝑆𝑖 [𝑣 ]
𝑇 ′
𝑆𝑖
[𝑣 ]

)
𝑇𝑆𝑖 [𝑣]

4 RANDOMIZED RESPONSE BLOCK
AGGREGATION

This section presents the proposedmethodRandomizedResponse
Block Aggregation (RRBA).

Before querying the end-users, the aggregator generates disjoint

subsets 𝑆𝑖 of 𝑘 attributes taken from the original set of 𝑑 attributes

to form a certain number of size-𝑘 CTs called views V. The sub-

sets V form separate views on the sample population. The union

of the subsets in views should be as large as possible. The aggre-

gator arbitrarily selects a combination of views from the possible

ones for querying the single client whose attribute values could

be randomized in his/her response. This arbitrary selection that

changes for each client provides an extra layer of protection in the

randomization protocol. These views privately publish a synop-

sis of the entire dataset. Successively, the server reconstructs any

higher-order marginals from these views. To show how to assign

attributes into views, we show a running example with the number

of attributes 𝑑 = 6 and attributes: {𝐴, 𝑅, 𝐸,𝑂, 𝑆,𝑇 }. With 𝑘 = 2, we

have three combinations of 2 distinct attributes per view. This is

the list of the alternative views for each individual.
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𝑉1 = {𝐴𝑅, 𝐸𝑂, 𝑆𝑇 },𝑉2 = {𝐴𝐸, 𝑅𝑆,𝑂𝑇 },𝑉3 = {𝐴𝑇, 𝑅𝐸,𝑂𝑆},
𝑉4 = {𝐴𝑂, 𝑅𝑇, 𝐸𝑆},𝑉5 = {𝐴𝑆, 𝑅𝑂, 𝐸𝑇 }

We have a total of five views (𝑉1,𝑉2, · · · ,𝑉5) to cover all the possible
combinations of attributes. Now suppose we have 𝑑 = 5 then,

𝑉1 = {𝐴𝑅, 𝐸𝑂},𝑉2 = {𝑅𝐸,𝑂𝑆},𝑉3 = {𝐴𝐸, 𝑅𝑆},
𝑉4 = {𝐴𝑂, 𝐸𝑆},𝑉5 = {𝐴𝑆, 𝑅𝑂}

For the first view 𝑉1, we left out the attribute 𝑆 , for the second

one 𝐴, and so on. Just a single one because it could not be paired

with another one without allowing repetition of one attribute in

the same view. If the first alternative is selected, the view is formed

by the two combinations of attributes {𝐴𝑅} and {𝐸𝑂}. Both com-

binations are considered for the same individual. The attributes

in any combination are randomized together, thus keeping intact

possible statistical dependencies between them.

This step is necessary because the randomization protocol must

not generate multiple times randomized values of the same attribute

from the same individual. Indeed, if an eavesdropper observed the

multiple outcomes of the same attribute, even if combined with

others, it would observe with higher probability the true values,

thus distinguishing them from the randomized ones. An alternative

solution would be to maintain the value generated for each attribute

in the internal memory of the clients’ devices. However, this solu-

tion is not always possible for all devices and would require a large

memory size for data sets with many attributes. Observe that any

pair of attributes is assigned in at least one view. Since independent

noise is added through these views, marginalizing two different

CTs from these views to obtain the same marginals would likely

give different results. To make consistent the marginalisations gen-

erated from these views, we perform the constraint optimization

technique discussed in Section 4.3.

We have two different versions of our protocol. In the first ver-

sion, the aggregator selects arbitrary combinations from a view

𝑉𝑖 ∈ V. The aggregator sends this combination as a question, such

as: "What is your age and which region do you belong to". Clients’

responses are collected in the randomizedmechanism to ensure that

either randomly selected responses or true responses are collected

by the aggregator. In the second version, we divide the clients into

groups called blocks 𝐵. We then perform randomized data aggrega-

tion in parallel within the blocks. Once all responses are collected,

the aggregator moves to the next block. Before the next block is

processed, the probability distribution used to generate random

responses is updated to be closer to the true one. This is done by

updating the probability distribution with the responses collected

in the previous block.

4.1 Fundamentals of the Randomized Response
Block Aggregation Method

Given a set of views V, the aggregator arbitrarily selects a view

𝑉𝑖 ∈ V comprised of multiple combinations of attributes. On all

these combinations of attributes, the responses are collected from

the client in the 𝜖−LDP setting. The aggregator initializes for each

combination of attributes in𝑉𝑖 the joint distribution by a CT whose

cell values are initialized with the uniform distribution, i.e.,
1

|𝑇𝑟,𝑐 | .

Figure 2: Overview of communication between data aggrega-
tor and mobile clients to generate noisy CT on views 𝑉𝑖

Algorithm 1: Randomized response on single client

Input: Set of attributes 𝑋 , probability (first coin is head) 𝑝

Output: Noisy table 𝑇 ′𝑟,𝑐
1 Function Aggregator(𝑋):
2 make views 𝑉 = 𝑉1,𝑉2, · · · ,𝑉𝑑 ;

3 randomly generate the views and check that the

combinations of attributes are not repeated in the

views ;

4 generate uniform distribution in 𝑇𝐶𝑖
of all views;

5 while exists a client that has not yet communicated do
6 select arbitrary view 𝑉𝑖 ∈ V ;

7 o← 𝐶𝑙𝑖𝑒𝑛𝑡 (T𝑟,𝑐 , query(𝑟, 𝑐)) ; /* Call client

procedure */

8 reconstruct 𝑇 ′𝑟,𝑐 from 𝑜 and 𝑇𝑟,𝑐 using equation 4 ;

9 update: 𝑇𝑟,𝑐 ← 𝑇 ′𝑟,𝑐
10 end
11 Function Client(𝑇𝑟,𝑐 , 𝑞𝑢𝑒𝑟𝑦 (𝑟, 𝑐)):
12 Sample a Bernoulli variable B ;

13 if B = "Head" then
14 Respond true value 𝑣 ∈ 𝑇𝑟,𝑐
15 end
16 else
17 Respond a fake value using equation 3, with a

random probability 𝑞 drawn between [0, 1] ;
18 end

Upon receiving a question from the aggregator on each set of at-

tributes in a view𝑉𝑖 , the client responds according to the outcomes
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of the random variables, drawn with the predefined probabilities 𝑝

and 𝑞. Probability 𝑝 is tunable to adjust the privacy and utility of

the responses. Probability 𝑞 is randomly drawn between 0 and 1: it

represents the value of the cumulative joint probability function

of the attributes values. It makes each combination of categorical

attribute values represented in the multivariate CT correspond to

a continuous probability value that these categorical values are

observed. Monte Carlo sampling exploits it to draw first the prob-

ability value and then returns the corresponding combination of

attribute categorical values.

The random variable 𝑝 is implemented by drawing a random

value, between 0 and 1, uniformly distributed. This random variable

controls if the user communicates the true values of the combina-

tion of queried attributes. If the random value is above 𝑝 , ”fake”

values are communicated to the aggregator, according to the second

random variable 𝑞, drawn between [0, 1]. The outcome of this latter

random variable corresponds to one of the cells (denoted by 𝑣) in

the CT by their probability. In turn, each cell corresponds to some

combinations of the categories of the attributes. The variable 𝑞 for

emitting a ”fake” value is a type of Monte Carlo sampling from the

given discrete joint distribution 𝑇𝑟,𝑐 , such that:∑︁
𝑗

𝑇𝑟,𝑐 [𝑣 𝑗 ] = 1

and 0 ≤ 𝑞 ≤ 1 then

Figure 3: The intervals of the cumulative probability distribu-
tion function that make each probability interval correspond
to a cell 𝑙 of the CT 𝑇𝐶𝑖

𝑙−1∑︁
𝑗=1

𝑇𝑟,𝑐 [𝑣 𝑗 ] ≤ 𝑞 <

𝑙∑︁
𝑗=1

𝑇𝑟,𝑐 [𝑣 𝑗 ] (3)

This "fake" response is emitted in such a way as to disclose a

"controlled" amount of information about the client’s true attribute

values. Hence, limiting the aggregator’s ability to learn with confi-

dence the true values of the client, Monte Carlo sampling improves

the utility of our protocol by emitting combinations of values based

on their probability as stored in the CT.

Once the aggregator receives a response from the client, it re-

constructs a noisy CT 𝑇 ′𝑟,𝑐 using the CT 𝑇𝑟,𝑐 used for the previous

client. For the reconstruction it applies equation 4:

𝑇 ′𝑟,𝑐 [𝑣] =
(𝑜𝑙
𝑛
−𝑇𝑟,𝑐 [𝑣] · (1 − 𝑝)

)
· 1
𝑝

(4)

where 𝑜𝑙 is the observed number of clients who communicated

those attributes values represented by 𝑣 and 𝑛 is the total number

of clients. The above equation is justified by the fact that 𝑜𝑙 is the

number of observed responses corresponding to the same cell 𝑙

in CT 𝑇𝑟,𝑐 [𝑣] and the responses come from the execution of the

randomization protocol: they are outcomes of the true probability

distribution with probability 𝑝 (the first coin gives "Head") and are

random outcomes controlled by the probability distribution in 𝑇𝑟,𝑐
(the first coin is "Tail" with probability (1 − 𝑝)).

The aggregator updates its table 𝑇𝑟,𝑐 = 𝑇 ′𝑟,𝑐 and sends this up-

dated table 𝑇𝑟,𝑐 to the next client 𝑢𝑖+1 for the next randomized

response. The next client now uses the updated probabilities𝑇𝑟,𝑐 in

the Monte Carlo sampling.

Observe that the aggregator has no access to the client’s true

values. Thus, the proposed mechanism ensures local differential

privacy. Algorithm 1 outlines the complete working of our protocol,

including both client-side and aggregator procedures.

4.1.1 The improved version of the protocol. The second improved

version of the randomized response data aggregation works sim-

ilarly to the first version, except now, the clients are divided into

groups called blocks 𝐵. The aggregator now executes the collection

of responses from each client in parallel within the blocks. The

aggregator aggregates the responses from the blocks and updates

the CT using equation 4, where now𝑛 is the block size. When all the

responses are collected, the aggregator publishes the noisy CT 𝑇𝑟,𝑐
to the server. The overview of our proposed randomized responses

protocol and the communication between the aggregator and its

end-users is shown in Figure 2. It shows that multiple combinations

of attributes {𝑆𝑖 } contained within a view 𝑉𝑖 are sent to clients

together with the corresponding noisy CTs 𝑇𝑆𝑖 for the execution

of the randomized protocol. The server receives the responses and

aggregates them. The block size 𝑛 is defined by the data aggrega-

tor/curator. With the algorithm of Section 5 and the experiments

in Section 7.1, we demonstrate the selection of the optimal block

size, which leads to the convergence of the estimated probabilities

in the CTs to the true probabilities.

4.2 Differential Privacy of Randomized
Response Block Aggregation

The proposed mechanism aims to minimize the risk of disclosure

to ensure a strong privacy guarantee while satisfying the strict

concept of 𝜖−LDP. It promises strong privacy despite the amount of

background knowledge of an adversary. Hence, with a substantial

amount of auxiliary information, an adversary could not confidently

identify the true responses from the clients. Since a single report

from the client contributes to the count measure of a single cell 𝑣 in

𝑇𝑆 = 𝑇𝑟,𝑐 , the privacy level 𝜖 is independent of the number of cells

in 𝑇𝑟,𝑐 . Hence, we need to prove the satisfaction of 𝜖−differential
privacy for only a single CT cell.

Theorem 4.1. The proposed randomized response protocol satisfies

𝜖− differential privacy, with: 𝜖 ≥ 𝑙𝑛

(
1

1−𝑝

)
where 𝑝 is the probability

that the first coin gives "Head".

Proof. Let us consider two CTs𝑇 1

𝑟,𝑐 ∈ and𝑇 2

𝑟,𝑐 ∈, realizations of
the CT𝑇𝑆 on the attribute subset 𝑆 , that come respectively from two

databases 𝐷1 and 𝐷2 that differ for a single record. Let 𝑇𝑟,𝑐 be the

reported combination of attribute values returned by the proposed

randomization protocol from the record 𝑢𝑖 that differs in the two

databases. It corresponds to the cell of the CT 𝑇𝑟,𝑐 [𝑣]. According
to the definition of differential privacy [9] we need to consider

when the proposed randomization protocol works as a randomized

mechanism and transforms the input databases 𝐷1 and 𝐷2 into

the same CT 𝑇𝑆 , regardless of having in input the database 𝐷1 or

𝐷2. Let us assume that 𝑞 is the probability that a combination of
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attribute categorical values corresponding to the cell𝑇𝑟,𝑐 [𝑣] occurs
in the database. According to the proposed randomized protocol,

these attribute values are reported if the first coin draws "Head"

and if they are the true values: this occurs with probability 𝑝𝑞. In

addition, the first coin could give instead "Tail", but the emitted

values are drawn as a consequence of the second random event:

this overall event occurs with probability (1 − 𝑝)𝑞. On the other

database, with a different record 𝑢′
𝑖
, the only possibility that the

randomized protocol returns the same value as above is that the

first coin gives "Tail" and the second random event returns those

values corresponding to cell𝑇𝑟,𝑐 [𝑣], and this occurs with probability
(1 − 𝑝)𝑞. Mathematically, we obtain:

𝑃 [M(𝐷1) = 𝑇𝑆 ]
𝑃 [M(𝐷2) = 𝑇𝑆 ]

≤ exp
𝜖

𝑃 [M(𝑢𝑖 ) = 𝑇𝑟,𝑐 ]
𝑃 [M(𝑢′

𝑖
) = 𝑇𝑟,𝑐 ]

≤ exp
𝜖

𝑝𝑞 + (1 − 𝑝)𝑞
(1 − 𝑝)𝑞 ≤ exp

𝜖

⇒ 𝜖 ≥ 𝑙𝑛

(
1

1 − 𝑝

)
(5)

From the opposite side, when 𝐷1 does not contain 𝑢𝑖 but 𝐷2 does,

we obtain 𝜖 ≥ 𝑙𝑛 (1 − 𝑝) that is always satisfied with 0 ≥ 𝑝 ≥ 1. □

The equation 5 shows the relationship between the parameter

𝜖 (the privacy budget that controls the privacy amount) and the

parameter 𝑝 of the randomized response protocol (the fraction of

times clients respond trustfully). Notice that it does not depend on

𝑞, the probability of the emitted value; thus, it is valid regardless of

the response.

Decreasing 𝑝 makes 𝜖 arbitrarily low, the desired situation since

it allows the randomized protocol to make stronger privacy preser-

vation. As a drawback, with low 𝑝 the convergence of the recon-

struction of the true probability distribution from the observed

responses becomes slower, as we will see from the experimental

results. On the opposite side, as 𝑝 grows, it increases the risk that

true values are emitted too frequently, and 𝜖 cannot be reduced to

small values. The relationship between 𝜖 and 𝑝 is shown in Figure 4.

Figure 4: Graph of the relationship between the protocol
parameter 𝑝 of the first coin "Head" and the privacy budget 𝜖

We drive the values of 𝑝 using the Equation 6:

𝑒𝜖 ≥ 1

1 − 𝑝 ⇒ 𝜖 ≥ ln( 1

1 − 𝑝 ) ⇒ 𝑝 ≤ 1 − 𝑒−𝜖 (6)

and identify at what value of 𝑝 we see convergence in the observed

values from the randomization protocol, using a given block size. In

the experiments of Section 7.2 we discussed the effect of different

values of 𝑝 on the convergence at different block sizes.

4.3 Consistency between Noisy Tables
Given a set of noisy views, the server wishes to release marginals of

some attributes with a privacy guarantee. Since independent noise

is added in each attribute combination within a view, aggregating

marginals from the different views will create inconsistencies in

the marginals of the common attributes.

Suppose we have 𝑇𝑆 , where 𝑆 ′ ⊆ 𝑆 ⊆ 𝑋 are subsets of the

attributes. We use the symbol T𝑆 ′←𝑆 [𝑣 ] to denote the marginal over

𝑆 ′ calculated from 𝑇𝑆 by aggregating the corresponding entries.

Consistency between views. We consider the marginal CTs T1
𝑆

and T2
𝑆
with a common attribute 𝐴 coming from two noisy views

𝐴 ∈ 𝑉𝑖 and 𝐴 ∈ 𝑉𝑗 . The two marginal CTs T1
𝑆
and T2

𝑆
are consistent

if and only if the marginal table over the common attributes in

𝑉𝑖 ∩ 𝑉𝑗 reconstructed from view 𝑉𝑖 is the same as reconstructed

from view 𝑉𝑗 .

Given a set of views inV and a set of attributes 𝑆 , we can compute

𝑘-way marginals T𝑆 . When at least one view 𝑉𝑖 ∈ V includes all

the attributes in 𝑆 , i.e 𝑆 ⊆ 𝑉𝑖 , we can reconstruct T𝑆 by summing

over the corresponding entries of 𝑇𝑆 in 𝑇𝑉𝑖 , that is using T𝑆←𝑉𝑖 .
However, when we have multiple views 𝑉𝑖 such that 𝑆 ⊆ 𝑉𝑖 , we

need to perform a linear optimization technique to return consistent

marginals from all the views 𝑉𝑖 that cover all the attributes in

𝑆 . When 𝑆 ∩ 𝑉𝑖 contains 𝑗 attributes, then 𝑇𝑆𝑖 provides exactly

2
𝑗
constraints on the cells for 𝑇𝑆 . We can extract all these linear

constraints from all the views to generate an under-specified system

of equations.

One can utilize the ℓ1−norm optimization technique discussed

in [2] to reconstruct the marginals in 𝑇𝑆 . This technique does not

create a unique solution, and linear programming has no preference

among different solutions. So we employ another constraint opti-

mization technique ℓ2−norm (least square solution). We will follow

the quadratic programming approach similar to the work in [20]

to solve the under-specified system of equations as a minimizing

problem:

min

𝑣

∑︁
𝑣∈𝑇𝑆

T𝑆 [𝑣]2

s.t.,
𝑣∈T𝑆

T𝑆 [𝑣] ⩾ 0

𝑉𝑖 ∈V 𝑣′∈𝑆∩𝑉𝑖
𝑇𝑆 [𝑣] = T𝑆 [𝑣 ′]

It has been shown that this is a quadratic optimization problem,

and we solved it with convex optimization approaches [6].

5 CONVERGENCE AND BLOCK SIZE
ESTIMATION

We show that the probabilities generated from 𝑇𝑟,𝑐 converge to

the true probabilities after we used the protocol aggregating the

observations sent from the individuals in a certain number of blocks

of size 𝑛. The value 𝑇𝑟,𝑐 [𝑣]𝐵𝑘 allows to compute the probability of

a cell of the CT𝑇𝑟,𝑐 created by running the randomized protocol on

the users of block 𝐵𝑘 , where we use the superscript 𝐵𝑘 to denote
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the block number. The estimated probability at round 𝑘 sending

outcomes from block 𝐵𝑘 is done with 𝑇𝑟,𝑐 [𝑣]𝐵𝑘 . The estimation

of the probabilities, done by the protocol, converges to the true

probabilities by oscillating around the true value within a tolerance

interval related to the error in observing a Bernoulli variable. The

tolerance interval is given by the width of the confidence interval

of the Bernoulli variable, with the success probability equal to the

true but unknown value 𝑣 , and the interval width is estimated as

follows.

If the approximation of the Bernoulli distribution with the Nor-

mal distribution holds (i.e., if 𝑣 > 5, with 𝑣 = 𝑇𝑟,𝑐 [𝑣] and 𝑣/𝑛 the

probability estimation), we can use a symmetrical interval, where

the confidence interval size can be estimated by 2𝑧
1−𝛼/2𝜎 with

𝜎 =

√︃
(𝑣/𝑛· (1−𝑣/𝑛) )

𝑛 the standard deviation of the Bernoulli distri-

bution. Otherwise, maximum likelihood confidence intervals must

be used with the log odds. We set the 𝛼 confidence level equal to

the standard values, e.g., 0.05 or 0.01. This latter means that the esti-

mated probability value will remain within the confidence interval

with a probability equal to 1 − 𝛼 .
The convergence algorithm proceeds as follows:

(1) Initialization with 𝑘 = 0: 𝑇𝑟,𝑐 [𝑣]𝐵0 = 1

|𝑇𝑟,𝑐 |
(2) At iteration 𝑘 = 𝑘 + 1: run the RRBA protocol and estimate

𝑇𝑟,𝑐 [𝑣]𝐵𝑘 from equation 4

(3) Repeat: step 2 until convergence, i.e.��𝑇𝑟,𝑐 [𝑣]𝐵𝑘 −𝑇𝑟,𝑐 [𝑣]𝐵𝑘−1 �� < 𝛿∗, for some 𝛿∗ > 0

(4) Return:
𝑇𝑟,𝑐 [𝑣] = 𝑇𝑟,𝑐 [𝑣 ]𝐵𝑘 +𝑇𝑟,𝑐 [𝑣 ]𝐵𝑘−1

2

which is the average between the two consecutive observed

values in consecutive blocks.

where 𝛿∗ is the size of the confidence interval.

6 TESTING FOR ASSOCIATION
One of the first questions posed while dealing with categorical at-

tributes is whether they are independent. The test of independence

𝜒2 [1] is one of the most common statistical tests with categorical

attributes that mainly compares the observed frequencies of the

combined attribute values with the estimated frequencies, assuming

the attribute are independent. This latter estimation is obtained by

theMaximum Likelihood Estimation, denoted by𝑚𝑖, 𝑗 for cell

(𝑖, 𝑗) in the CT𝑇𝑟,𝑐 . To perform a similar test of independence for a

noisy version of the table, we need to determine an estimation for

𝑚 where we do not have access to the true cell counts in the CT.

Suppose we only have access to the noisy cell values in 𝑇𝑟,𝑐 , where

noise is added in each cell independently, for instance, using our

randomization protocol. To find the best estimates for𝑚 given the

noisy cells we perform a two-step MLE calculation similar to the

work of [15, 16].

In a two-step MLE procedure, we first find the most likely CT

𝑇𝑟,𝑐 given the noisy table 𝑇𝑟,𝑐 , and in the second step, we calculate

MLE given a table of counts 𝑇𝑟,𝑐 . For the first step, we need to

minimize




𝑇𝑟,𝑐 −𝑇𝑟,𝑐


 subject to ∑
𝑗 𝑇𝑟,𝑐 [𝑣] = 𝑛 and 𝑇𝑟,𝑐 [𝑣] ⩾ 0.

Note that if we add independent noise in each cell of a table 𝑇𝑟,𝑐 ,

the above optimization problem gives multiple solutions. The ℓ1
norm in our objective function in Equation 7 is not strongly convex,

Datasets Records Attributes Categories

Survey 500 6 14

Alarm 10,000 37 103

Child 10,000 20 60

Table 3: Summary of the selected datasets

which means it has an optimal solution but may not be unique and

sensitive to an initial guess. To overcome this problem, we add a

strongly convex function in the objective function:

minimize

𝑇𝑟,𝑐

𝛾




𝑇𝑟,𝑐 −𝑇𝑟,𝑐



1

+ (1 − 𝛾)



𝑇𝑟,𝑐 −𝑇𝑟,𝑐


2

2

subject to

∑︁
𝑖 𝑗

𝑇𝑟,𝑐 [𝑣] = 𝑛,

𝑇𝑟,𝑐 [𝑣] ⩾ 0.

(7)

where 𝛾 is a mixing parameter in the range [0, 1]. The above ob-
jective function is in the form of elastic net regularize [27] function
proposed by [16]. The solution of this objective function converges

to the solution provided by the ℓ1 norm when 𝛾 is sufficiently large.

For the test of independence, in the two-stepMLE calculation, if

any cell value in 𝑇𝑟,𝑐 [𝑣] < 5, we follow the commonly chosen rule

of thumb to Accept 𝐻0.

7 EXPERIMENTS
For experimental reproducibility, we use three publicly available

datasets (for Bayesian networks)
1
: Survey [22], Alarm [5], and

Child [23]. They vary in the number of instances and attributes as

described in the overview of Table 3. All attributes are discrete.

7.1 Monte Carlo simulation: Convergence of the
randomization protocol

To perform a test of convergence of the second version of the pro-

posed randomized response protocol, we test with any of the values

of the attributes whose probability of occurrence is in

{
0.0285, 0.072,

0.116, 0.224, 0.356, 0.446, 0.524, and 0.732
}
and let vary the block

size 𝑠 = {18, 50, 150, and 250}. We perform 40 trials on 200 blocks

on each probability value and block size. We average the number

of tuples emitted when the condition holds

��𝑇𝑟,𝑐 [𝑣]𝐵𝑘 −𝑇𝑟𝑐 [𝑣]𝐵𝑘−1 ��
< 𝛿∗, and remains valid throughout the blocks.

7.2 Convergence Results
We perform the test of convergence in the datasets (Survey, Alarm,
and Child). We plot the results of the experiments in Figure 5,

where the x-axis represents the block size, and the y-axis shows the

number of tuples emitted when the convergence is reached. The

behavior of convergence of the proposed randomized method is

similar in all three datasets. A smaller block size makes it easier to

achieve early convergence at both low and high probability values.

Hence, it is sufficient to have a block size equal to the dimension of

the CT.

1
Available at https://www.bnlearn.com/bnrepository/
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(a) Survey dataset
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(b) Alarm dataset
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(c) Child dataset

Figure 5: Convergence in probabilities 𝑃 (𝐴𝑖 = 𝑣𝑖 𝑗 ) = {0.072, 0.116, 0.224, 0.356, 0.446, 0.524, 0.732} and block size 𝑠 = {18, 50, 150, 250}
on Survey, Alarm and Child

We perform similar experiments on convergence with different

values of 𝑝 (the probability the first coin is "Head"). Due to the com-

putational limitations, we focused on a few probability values to an-

alyze convergence on the varying value of 𝑝 . The selected probabil-

ities of the true attribute values 𝑃 (𝑣𝑖 𝑗 ) = {0.072, 0.116, 0.356, 0.446},
block size 𝑠 = {18, 50, 150, 250} and the probability of the first coin

"Head" 𝑝 = {0.009, 0.048, 0.095, 0.139, 0.221}.
At 𝑝 = {0.009, 0.0480, 0.095} none of the processes of reconstruc-

tion of the probabilities converges at given block size 𝑠 . Instead,

at 𝑝 = 0.1390, the reconstruction process of the higher probability

values 𝑃 (𝑣𝑖 𝑗 ) (set at 0.356 and 0.446) converges with higher block

sizes, i.e., 150 and 250. At 𝑝 = 0.221, the reconstruction process of

all the probability values converges with the higher block sizes, as

shown in the graph of Figure 6. In the graph, there is no conver-

gence for all the probability values when the block size is 18 and 50.

If we increase the block size, the reconstruction processes converge

for all the probabilities 𝑃 (𝑣𝑖 𝑗 ). A similar behavior is observed at

𝑝 = 0.295. The results of Figure 6 show that if we have a smaller

value of 𝑝 we must select a larger block size so that the reconstruc-

tion process of the probabilities converges; if we select a higher

value of 𝑝 we see the convergence at smaller block sizes, as shown

in Figure 5.

7.3 Monte Carlo Simulation: Test of
Independence

We want to test if the addition of noise destroys independence

(null hypothesis rejected). We generate a 𝑘−way noisy CT 𝑇𝑟,𝑐
using the proposed randomization technique. We calculated the

estimations 𝑚𝑖, 𝑗 of the cells using the two-step MLE procedure.

Using these estimates, we sample 𝑙 > 1/𝛼 many CTs (where 𝛼 is the

significance level, 0.05). We then add noise to these sampled tables

using the randomized response protocol. Using the same two-step

MLE calculation, we obtain 𝑙 different 𝜒2 values from these sampled

noisy tables. We rank these statistics by choosing ⌈(𝑙 + 1) (1 − 𝛼)⌉
as threshold 𝜗𝛼 . If 𝜒2 > 𝜗𝛼 we Reject 𝐻0 else, we Accept 𝐻0. If at

any point the two-step MLE calculation outputs any cell count < 5

then we Accept 𝐻0.

7.3.1 Significance Results. We show how the tests of Independence

perform on real-world data when 𝐻0 is both rejected or accepted.
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Figure 6: Convergence in probabilities 𝑃 (𝑣𝑖 𝑗 ) =

{0.072, 0.116, 0.224, 0.356, 0.446, 0.524, 0.732} and block size
𝑠 = {18, 50, 150, 250} at probability 𝑝 (first coin is Head) =
{0.009, 0.048, 0.095, 0.139, 0.221}

We set 𝛼 = 0.05 (significance level), 𝛾 = 0.01 as the parameter in

the two-step MLE, and the privacy budget 𝜖 = 0.25 in all our tests.

We perform the independence testing on 2−way, 3−way, and
4−way CTs with binary attributes. Note that the independence tests
can also be performed on arbitrary 𝑟 × 𝑐 noisy CTs generated by

the proposed method. Notice that as soon as the number of values

increases, the proposed protocol is more robust than the others and

succeeds in the tests a higher number of times.

In the above experiments with Laplace distribution, since it does

not provide critical values, we used the true values of the attributes

as the values for the comparison with noisy data (they are known

in advance). If this was not possible, one could also find the critical

values of simulated data using R package "CompQuadForm".

Table 4 compares the performance of the proposed method with

state-of-the-art competitors (Laplace noise and MCIndep [13]) us-

ing a confusion matrix. We perform 100 trials for 𝐻0 rejected and

100 trials for 𝐻0 accepted with CTs generated parametrically. The

accuracy of the proposedmethod is excellent (96.5%, 94%, and 93.5%)

in all 𝑘−way CTs. These results are better than both Laplace and

MCIndep methods. Further, our block randomization protocol is
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Table 4: Comparison of independence tests on 𝑘−way CTs (𝑘 = 2, 3, and 4) with Laplace noise, MCIndep (Monte Carlo indepen-
dence testing), RRBA on 100 trials with 𝛼 = 0.05, 𝑝 = 0.5, 𝜖 = 0.25

2-way 3-way 4-way

Reject 𝐻0 Accept 𝐻0 Reject 𝐻0 Accept 𝐻0 Reject 𝐻0 Accept 𝐻0

Laplace noise Reject 𝐻0 68 32 55 45 50 50

Accept 𝐻0 35 65 41 59 41 59

Accuracy 66.5% 57% 54.5%

MCIndep [13] Reject 𝐻0 94 6 94 6 92 8

Accept 𝐻0 5 95 7 93 9 91

Accuracy 94.5% 93.5% 91.5%

RRBR Reject 𝐻0 96 4 94 6 93 7

Accept 𝐻0 3 97 6 94 6 94
Accuracy 96.5% 94% 93.5%

Table 5: Comparison of ℓ2 and Jensen-Shannon distance be-
tween noisy and original CTs (Survey and Alarm); noise is
added using randomization protocol and Laplace noise with
parameters 𝑝 = 0.4, 𝜖 = 0.35, 𝑛 = 8000, and Block size 𝐵 = 250

ℓ2 distance
Survey Alarm

2-way 3-way 4-way 2-way 3-way 4-way
RRBA 68.27 123.89 140.10 90.36
Laplace 59.58 307.588 715.05 117.42

Jensen-Shannon distance
Survey Alarm

2-way 3-way 4-way 2-way 3-way 4-way
RRBA 0.0104 0.0142 0.0577 0.0073
Laplace 0.0142 0.1025 0.1434 0.0153

robust even in sparse data, where contingency cells often have very

low or zero count values. On the contrary, Laplace and MCIndep

do not produce valid results in these extreme situations, which can

be a killer application.

7.4 Performance using ℓ2 norm and
Jensen-Shannon distance

We evaluate the performance of the proposed randomization proto-

col using ℓ2 norm. For evaluation purposes, we use the noisy 2, 3, 4-

way CTs that are compared with the ground truth. The Laplace

noise is drawn from 𝐿𝑎𝑝 (0, 𝑏) with zero mean and a scale that

depends on the privacy budget 𝑏 =
2 |𝑇𝑟,𝑐 |
𝜖 . We performed 100 trials

on Survey and Alarm datasets and reported the average perfor-

mance in Table 5 and Table 6. Figure 7 shows the distribution of

the performance metrics.

From Table 5 and Table 6, the proposed randomization protocol

has the lowest average ℓ2 distance on Survey and Child datasets. The

proposed protocol has the lowest average distance on higher dimen-

sional tables when the noise variance is large 𝜖 = 0.35 and 𝑝 = 0.4.

When 𝜖 = 0.5 and 𝑝 = 0.5 our protocol wins on all CTs. These tables

Table 6: Comparison of ℓ2 and Jensen-Shannon distance be-
tween noisy and original CTs (Survey and Alarm); noise is
added using the randomization protocol and Laplace noise
with parameters: 𝑝 = 0.5, 𝜖 = 0.5, 𝑛 = 8000, and Block size
𝐵 = 250.

ℓ2 distance
Survey Alarm

2-way 3-way 4-way 2-way 3-way 4-way
RRBA 71.81 100.70 111.26 59.58 102.22 111.15
Laplace 109.60 154.02 372.63 61.69 162.62 427.98

Jensen-Shannon distance
Survey Alarm

2-way 3-way 4-way 2-way 3-way 4-way
RRBA 0.0107 0.0129 0.0304 0.0074 0.0156 0.0380
Laplace 0.0142 0.0582 0.1417 0.0118 0.0633 0.1580

also conclude that our proposed randomization model compared

with Laplace noise has a lower distance on the Jensen-Shannon dis-

tance scale (a lower scale means the noisy distribution is similar to

the ground truth). The results from the experiments (performance

metric using independence test, ℓ2 distance, and Jensen-Shannon

divergences) show that the proposed randomization method wins

over Laplace noise. The proposed privacy protocol maximizes utility

in the released CTs while ensuring 𝜖-differential privacy.

8 CONCLUSION
In this work, we systematically explore the problem of collecting

and analyzing data from smart devices under 𝜖−local differential
privacy, in which the aggregator/server is honest-but-curious, has

access to randomized responses from users, and reconstructs statis-

tical models based on perturbed data. The server computes accurate

statistics from the released joint distributions.With the experiments,

we showed that our protocol achieves high utility in reconstructing

the probabilities of attribute values, committing a low error bound.

In future work, we will use the hash function to store CTs to reduce

computation and communication overheads.
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(a) ℓ2 distance on Survey dataset using 𝜖 = 0.35, 𝑝 = 0.4
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(b) Jensen-Shannon distance on Survey dataset using 𝜖 = 0.35, 𝑝 = 0.4
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(c) ℓ2 distance on Survey dataset using 𝜖 = 0.5, 𝑝 = 0.5
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(d) Jensen-Shannon distance on Survey dataset using 𝜖 = 0.5, 𝑝 = 0.5
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(e) ℓ2 distance on Alarm dataset using 𝜖 = 0.5, 𝑝 = 0.5
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(f) Jensen-Shannon distance on Alarm dataset using 𝜖 = 0.5, 𝑝 = 0.5

Figure 7: Randomization and Laplace noise performance
histograms on the noisy 2−way table (left), 3−way (middle),
4−way (right) with ℓ2 and Jensen-Shannon distance. The aver-
age performance is in Table 5 and Table 6. Block size 𝐵 = 250,
records 𝑛 = 8000
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