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Abstract
We introduce a neural network inspired by Google’s Inception model to compute the Hodge
number h1,1 of complete intersection Calabi–Yau (CICY) 3-folds. This architecture improves
largely the accuracy of the predictions over existing results, giving already 97% of accuracy with
just 30% of the data for training. Accuracy climbs to 99% when using 80% of the data for training.
This proves that neural networks are a valuable resource to study geometric aspects in both pure
mathematics and string theory.

1. Introduction

The last few years have witnessed the uprising of deep learning as a very efficient method to elaborate, process
and learn patterns in data [1]. While the underlying ideas behind neural networks are not recent [2, 3], larger
databases, and computational capabilities together with new techniques have led to deep learning pervading
most fields of scientific research and industrial development.

Understanding geometrical structures is an emerging application of machine learning, referred to as
geometric deep learning [4, 5] when neural networks are used. This is an important problem for different
fields: for example in the industry (e.g. for 3dmodelling of objects), computer science (e.g. for gradient
optimisation [6]), pure mathematics, and theoretical physics. For this reason it is crucial to adapt existing
techniques or to design new ones if needed.

In this paper we focus on the computation of the Hodge number h1,1 for complete intersection
Calabi–Yau (CICY) 3-folds [7]. This is a challenging mathematical problem per se because traditional
methods from algebraic topology lead to complicated algorithms, without closed-form expressions in most
cases. Machine learning techniques give the possibility to speed up computations and to obtain hints to
better understand the mathematical structures. Moreover, Calabi–Yau manifolds, beyond being important
mathematical objects, also have a distinguished role in string theory as they are needed to describe the
compactified dimensions [8]. In particular the general properties of the four-dimensional effective field
theory are completely determined by the topology. Given the complexity of the space of string vacua,
developing faster and efficient computational techniques is essential in the search of the Standard Model (or
an extension compatible with experiments) within string theory at low energy. Finally, this type of objects is
quite remote from typical data considered in machine learning, which calls for an evaluation of existing
techniques in this context and, if they are not sufficient, the development of new approaches.

The CICY 3-folds are appropriate for this task: since they have been completely classified [9–11], they
provide a simple playground where it is possible to test different machine learning techniques. The goal of
this paper is to continue the study started in [12, 13], which used machine learning techniques to compute
h1,1 (see also [14–16] for other papers on CICY 3-folds). Related applications on the study of cohomology
groups are [17–19]. For an introduction to machine learning and its applications to string theory, we refer to
the excellent review [20].

Most breakthroughs in AI and industrial applications of deep learning usually followed the discovery of a
new network model. This is particularly true in computer vision where convolutional, Inception and residual
networks [3, 21–24] have been major cornerstones. In this work we introduce an alternative version of
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Figure 1. Accuracy reached by different models. The percentage in parenthesis indicates the ratio of training data. ‘He’ refers
to [12], ‘Bull et al’ to [13]. Each model except the Inception one keeps outliers in the training set (the effects is marginal in linear
regression and support-vector machines).

Google’s Inception network [21–23] (see [20] for a review) to predict h1,1 from the configuration matrix of
CICY 3-folds. Using 30% of training data, we reach close to 97% accuracy on the predictions, improving by a
large measure previous results [12, 13] with much less training data and parameters (≈234 000). Using 80%
for the data for training we obtain 99% accuracy.

This must be compared with the following accuracies: 37% (regression, fully connected network,
≈280 000 parameters, 63% training data) in [12], 75% (regression, fully connected network,≈1 580 000
parameters, 70% training data) and 85% (classification, convolutional network, 70% training data) in [13]
(figure 1). More generally, we found that the Inception-like network performs much better than any other
machine learning algorithm, even after feature engineering [25]: the best algorithm after neural networks is a
support-vector machine (SVM) with a radial basis function (RBF) kernel, which reaches 68% accuracy with
80% of training data [13, 25]. This shows that neural networks are able to make accurate predictions for
Hodge numbers, as long as the correct architecture is found. This opens the door to new applications to
theoretical physics and mathematics which may lead to even further progress.

The code is written in Python and relies on the following packages: scikit-learn [26],
tensorflow [27] (and its high level API, keras [28]) and the scipy ecosystem for visualisation and
computations [29].

2. General setup

The dataset [9, 10] is made of 7890 CICY 3-folds, described by their configuration matrices and their
topological properties, including the Hodge numbers h1,1 and h2,1. We focus on predicting the Hodge
number h1,1 ∈ N, which lies in the closed interval [0, 19] with 18 distinct values (with h1,1 = 17, 18 not
present), from the configuration matrix: Pn1 a11 · · · a1k

...
...

. . .
...

Pnm am1 · · · amk

 , arα ∈ N −→ h1,1 ∈ N. (1)

The configuration matrix describes the CICY as the intersection of k hypersurfaces, characterised by a system
of homogeneous polynomial equations, inside the ambient space Pn1 × ·· ·×Pnm , wherem denotes the
number of complex projective spaces. The coefficients arα of the matrix denote the power of the coordinates
of each projective space entering each polynomial equation. This data is sufficient to characterise the
topology. For more information on CICY we refer the reader to the literature [9, 10, 30–33].

We consider the problem as a regression task and not as a classification task even if the outputs are
integers. Indeed the latter requires knowledge of all possible Hodge numbers which can appear and prevents
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Figure 2.Whisker plot for the distribution of h1,1 before (full) and after (clean) removing the outliers. The coloured boxes
highlight the interval between the first and third quartiles while the internal horizontal line represents the median value. The
‘whiskers’ delimit the interquartile range, while isolated points mark the remaining outliers.

any extrapolation, which is not desirable in the current context. Since regression algorithms output a real
number, it is necessary to map predictions to integers before comparing with the real values.

The dataset is split into three subsets: one for training (used to learn the optimal model weights with
gradient descent), one for validation (hyperparameter tuning and early stopping in neural networks), and
one for testing.

In the following section we discuss a few properties of the dataset which play an important role in the
training of the neural network introduced in the next section.

2.1. Exploratory data analysis
The first step before writing the neural network is to better understand the data. Displaying the distribution
of the Hodge numbers in the whisker plot in the left side of figure 2, one finds the presence of outliers at
small and high Hodge numbers. Outliers can strongly impede the learning process of most algorithms and
they must be handled with care. In this paper we obtained the best accuracy by simply removing them from
the training data (but keeping them in the test set).

The outliers fall into two classes. First, the product spaces are recognisable by having vanishing Hodge
numbers h1,1 = h2,1 = 0 and a block-diagonal configuration matrix.3 Second we deal with manifolds with
high Hodge numbers. We keep only manifolds such that h1,1∈[1, 16] and h2,1∈[15, 86] in the training data.
Over the full dataset only 39 samples are excluded, or 0.49%. Hence training samples are taken as a subset of
the distribution given in the right side of figure 2. We expect systematical errors on test samples among
outliers but they are too few to drastically impact the accuracy.

2.2. Baseline
It is important to design a simple baseline model to quantify the gain of using a neural network. Here we
consider a linear regression with ℓ1 regularisation with parameter 2× 10−4 and without intercept. Integers
are obtained by flooring the predictions to the next lower integers. We obtain 47%–51% accuracy using
20%–80% of the data for training.

Moreover a simple analysis [25] shows that the number of projective spacesm (number of rows of the
matrix) is an important feature. Performing a linear regression with ℓ1 weight of 1.0, we obtain 63% of
accuracy. This is related to a known mathematical result [32] stating that the so-called favourable matrices
have h1,1 =m (in the dataset from [9, 10], there are 4874 favourable matrices). If it had not been known, the
linear regression could have led to conjecture that this formula—indeed, conjecture generation is another
distinguished use of machine learning techniques for theoretical physics [34, 19]. Note that SVM with RBF

3Note that h1,1 = 0 is not the actual value of h1,1 but indicates merely that the CICY is factorisable into products of tori and K3 surfaces.

3



Mach. Learn.: Sci. Technol. 2 (2021) 02LT03

Figure 3. Schematic figure of the Inception model used to predict h1,1 from configuration matrices.

kernel is the best ML algorithm outside neural networks but improves only marginally over linear regression
(figure 1) [25].

3. Inception neural network

In this section we introduce a new deep learning architecture capable of predicting accurately h1,1 from the
configuration matrix of the CICY manifolds. Though different both in purpose and in definition, the model
is inspired by Google’s Inception network [21–23]. This deep neural network uses Inception modules
performing different concurrent convolutional operations to enhance, process, and rearrange its input
(in Google’s case, images to be classified over 1000 classes in the ImageNet repository). This architecture
encountered great success as it obtained results much better than any other machine learning algorithm until
then. Modifications of the original model brought even higher accuracy and enhancement of computer
vision capabilities. We refer the reader to [20] for a review of Inception networks.

We arrived at this network by going through neural network architectures used in computer vision.
Indeed, the configuration matrix being a matrix of integers, it resembles an image with one channel. Since a
sequential convolutional network does not reach a sufficient accuracy and needs a lot of training data, the
Inception is the next natural step. Its structure has been guided by the form of the configuration matrix
(see subsection 3.4 for more details).

Adapting this network to our problem, we obtain close to 100% accuracy already by training with only
30% of the data, which is much higher than existing results [12, 13]. A more general machine learning
analysis of this problem will appear in [25].

3.1. Architecture
The architecture is schematically depicted in figure 3: it is divided into three Inceptionmodules followed by
an output layer with a single unit for the prediction of the Hodge number.

The first layer takes the configuration matrices as input, which are represented as tensors of shape
(12, 15, 1) (matrices with a single channel). Next two parallel convolutions (shown in red in figure 3) are
performed: one over the rows (12× 1 kernel, processing each projective space at a time) and one over the
columns (1× 15 kernel, processing each equation of the polynomial system at a time). The outputs of both
layers are concatenated together over the channel dimension. These two steps form an Inception module,
which is repeated three times in total, with respectively 32, 64, and 32 filters. All convolutional layers and the
final layer are followed by a ReLU activation function and each concatenation by a batch normalisation with
momentum 0.99. A dropout layer with a rate 0.2 after the last Inception module and before flattening the
results, to connect it to the final output layer. Finally all layers have ℓ1 and ℓ2 regularisation, respectively, with
weights 10−4 and 10−3. The network has≈234 000 parameters, which is less than previous
proposals [12, 13]. This is achieved by using only convolutional layers with relatively small kernels.
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Figure 4. On the left we show the evolution of the loss evaluated on the training (blue curve) and evaluation (red curve) sets
during training with 80% training data (the coloured area denotes the 1σ region). On the right we present the distribution of the
real and predicted values for the Inception network (80% training data).

Note that there are no pooling layers. Convolutions use same as padding value which allows us to keep
the same size (12, 15) as the input. The output layer is followed by a ReLU activation function which forces
the result to be positive, as it should be for Hodge numbers.

This architecture has two evident advantages over a fully connected (FC) network or even a more classical
convolutional structure. First the network concurrently learns different representations and automatically
combines them in more complex representations. Second the number of parameters is extremely restricted.

3.2. Training and validation strategy
We use a holdout validation strategy: the dataset is divided into three subsets for training (gradient descent to
optimise the neural network’s weights), validation (early stopping, and hyperparameter tuning) and testing
purposes (final assessment of our model). We retain respectively 80% of all samples for training, 10% for
validation, and 10% for testing.

Before feeding the configuration matrix to the neural network, we first remove the outliers as discussed
previously. We have tried to rescale the matrix by dividing by the highest entry (5), but this does not bring
any significant improvement.

We did not use any data augmentation. Adding matrices with permutations of rows and columns seem to
decrease the performance of the neural network: one possible explanation is that matrix components are
ordered lexicographically [9]. Moreover, we did not generated more matrices using mathematical
equivalences [9] since the final accuracy is high enough.

Hyperparameter tuning (number of Inception modules and filters, dropout rate, etc) has been performed
by hand by evaluating several models on the validation set. After finding the appropriate architecture,
described in the previous subsection, we have also evaluated the accuracy by training with 30% and 50% of
the data (keeping always 10% for the validation set, necessary for early stopping).

The neural network is trained using the Adam [35] optimiser with default parameters, initial learning
rate 10−3 and a batch size of 32. We use the mean squared error of the predictions as a loss function. The
learning rate is reduced by a factor of 0.3 when the validation loss does not decrease during 75 epochs. We
also use early stopping: the network is trained until the validation loss does not decrease for 200 epochs,
restoring the weights associated with the lowest validation loss.

Predictions are obtained by averaging the results of five neural networks (bagging), which allows us to
reduce the variance and obtain the standard deviation of the results. Since predictions are real numbers at this
point, they are rounded to the closest integers before comparing them with the real value. The performance
of the model is measured by the accuracy, which is the ratio of predictions matching exactly the real values.

Finally we will also provide learning curves for the neural network described in the previous section. For
this we split the dataset into training and validation subsets with different relative ratios and we compute the
accuracy on both sets after training. In each case we keep 10% of the training data for early stopping.
Exception made for this, the rest of the setup is the same.

3.3. Results
In figure 4, we show the evolution of the training and validation loss (mean squared error) during training.
Curiously the mean absolute error is smaller for the validation set.

The agreement between the predictions and real values is excellent on the test fold. The distributions are
displayed in figure 4. The results at different ratios of training data are given in table 1, where we also display
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Table 1. Accuracy for the Inception neural network for different sizes of the training dataset, with standard deviations between 0.1% and
0.5%. Results obtained for other models are added for comparison: fully connected network [13] (read from figure 4), convolutional
network [25]. See also figure 1.

Training data Fully connected Convolution Inception

80% ≈77% 92.5% 98.7%
50% ≈74% 84.9% 98.3%
30% ≈68% 78.5% 97.6%

Figure 5. Difference between the true values of h1,1 and their predictions seen as a univariate distribution (on the left) and as a
function of the predicted value (on the right): the histogram shows the distribution and extension in values of the difference
between true values and predictions, while the scatter plot exhibits the constant variance of the residual error (the network
performs equally well over the entire range of h1,1).

Figure 6. Learning curve of the Inception network. The coloured area denotes the 1σ region.

the accuracy for other regression models: the fully connected network from [13] and an improved sequential
convolutional network described in [25] (see also the introduction for more details). Even though the
sequential model can already achieve very high accuracy, the Inception network performs even better with
fewer parameters and much less training data. The learning curve is given in figure 6: it does not show signs
of overfitting and clearly demonstrates the quick convergence to almost 100% accuracy.

As presented in figure 5, the network performs equally well over the entire range of h1,1 both in the
validation and test sets: the variance of the difference between the observed values of the Hodge number and
its predictions (i.e. the residuals) is constant as shown by the scatter plot. Moreover, the histogram of the
residuals shows that the distribution is peaked around 0 and very few predictions lie far from the central
value: the variance is in fact very small.
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Figure 7. Comparison of accuracy for different properties. The label ‘no outliers’ means that outliers are excluded from the
training and validation set. The labels 1d and 2d refer respectively to the kernels (12× 1, 1× 15) and (3× 3, 5× 5).

3.4. Ablation study
We can now study in detail the relative impact of each improvement introduced in our paper. The three
points of comparison are (a) parallel vs sequential convolution layers, (b) using 1d kernels 12× 1 and 1× 15
or 2d kernels 3× 3 and 5× 5 (without changing the number of layers), and (c) including or removing
outliers from the training data. A comparison of the accuracy achieved by different models is displayed in
figure 7.

First we want to measure the benefit of using parallel instead of sequential convolutions. In [25] we have
built a convolutional network (convnet in figure 7) made of four layers with 180, 100, 40 and 20 units, all
with a 5× 5 kernel and ℓ1 and ℓ2 regularisation 10−4 and 10−3 (≈580 000 parameters). The accuracies of this
network at a few training ratios are given in table 1 and we refer the reader to [25] for more details. While
this network performs better than earlier models (compare figures 1 and 7), its accuracy is below the
Inception model.

Second we wish to uncover the effect of using 1d kernels 12× 1 and 1× 15 instead of 2d kernels. For this,
we have trained a new version of the Inception model with the 1d kernels replaced by concurrent 3× 3 and
5× 5 kernels (typical in computer vision tasks), leaving all other hyperparameters identical (≈290 000
parameters). From figure 7, we find that this network performs even less well than the sequential
convolutional network. One possible explanation is that the two 1d convolutional windows process
separately the information of each single projective spaces (columns) or polynomial equation (rows),
scanning all of them one after the other. This could explain why it is necessary to have two 1d kernels: one for
the projective spaces, one for the equations.

Third we have argued that removing outliers from the training and validation sets helps the network to
learn better. The effect is not as important as the previous two points, but still noticeable (figure 7).

Finally we compared the difference between regression and classification. We have one-hot encoded the
Hodge numbers, replaced the last layer of the network described in subsection 3.1 by a softmax, and used the
cross-entropy loss for optimisation. We find that classification is less efficient than regression (figure 7).
Adding two additional Inception modules brings the accuracy to 96%, still below the result from the
regression network.

In conclusion we see that convolutional layers working in parallel are responsible for a large part of the
performance boost. That convolution is useful for CICY may seem counter-intuitive [13] since the
configuration matrices are not rotation nor translation invariant but only permutation invariant. However
we first note that convolution alone is only equivariant to global translation: it is not invariant to rotation
nor translation (even locally), both of which require the addition of pooling layers (which we do not
have) [1]. Moreover convolution layers can be understood more generally as a way to spot different patterns
in data by sharing weights, storing them in multiple channels, and recombining them in more complicated
representations in subsequent layers. For instance the original Inception models [21–23] include layers with
1× 1 kernel, which clearly do not exploit invariance properties. Another motivation for using convolution
layers is parameter sharing: the same operations are applied at different locations of the input. Parameter
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sharing with the 1d shape of the kernels implies that the same formulas are applied to each equation and each
projective space, as can be expected for a geometric object.

4. Conclusion

We have introduced a new type of neural network to compute the Hodge number h1,1 of complete
intersection Calabi–Yau 3-folds. This neural network inspired by Google’s Inception model gets near-perfect
accuracy, using fewer data and parameters than existing models. This improves largely the prediction power
of the network and proves that deep learning is perfectly adapted for computations in algebraic topology.
Hence this network should definitely be explored at length to exploit its potential, which seems to be as
promising for theoretical physics and mathematics as it has been in computer vision.

The next step consists in predicting also the Hodge number h2,1. A preliminary analysis shows that the
task is harder and the Inception network reaches only 50% accuracy—but it is higher than all other models,
the best of which reach at most 35% (for SVM with Gaussian kernel and sequential convolutional
network) [25]. One solution is to use a better representation of the data. A first possibility is to use the
favourable representation from [11], but this does not help [25]. Another more promising avenue is to use
the graph representation introduced in [16]. It will also be interesting to extend our analysis to other
topological objects useful for string theory. A last open question is to understand what the neural network
learned and if it is possible to extract any interesting information from the weights. We leave these questions
for the future.
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