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1 - Introduction 

1.1 Aim and rationale of the study 

Vaccination is one of the greatest achievements of modern medicine and consists of 

the injection of a biological preparation capable to induce active acquired immunity 

to a particular infectious disease1. Vaccine efficacy varies as a function of many 

variables, including the type of vaccine (e.g. live-attenuated or subunit vaccines), the 

adjuvant that is introduced into a vaccine to boost immune response, population 

demographic and geographic attributes. The ultimate vaccination outcome is 

represented by the degree of protection from the disease it can elicit. Our 

understanding of the immune mechanisms underlying vaccine’s efficacy is still 

limited and we do not know why vaccines sometimes fail to protect a certain 

percentage of the recipient population.2,3 Moreover, vaccines efficacy is known to 

vary considerably in the human population depending on several environmental 

factors and genetic predisposition. 

For most vaccines, the most reliable correlate of efficacy is represented by the 

magnitude of antigen-specific antibody titers in blood after vaccination.3,4 However, 

protection against organisms displaying a high level of antigenic variation, such as 

the HIV virus, or complex host-pathogen interaction biology, such as Plasmodium 

falciparum, requires the activation of multiple arms of the immune response and in 

these cases, the production of neutralizing serum antibodies may not be a suitable 

correlate of protection.5,6 The lack of well-defined correlates of protection, which 

could unravel the mode of action of protective vaccines, has been in many cases a 

major impediment to the successful development of new and improved vaccines. 

This was primarily due to the low throughput of conventional analytical approaches 

that have been applied for profiling immunological responses to vaccination.  

Recent years have seen the rising of system biology approaches initially using gene 

expression analysis of whole blood in vaccinated subjects.7–9 Advances in DNA 

sequencing technology were developed to analyze immunoglobulin (Ig) and T-cell 

receptor (TCR) repertoires responding to vaccines. Such approaches hold the 

potential to discover new correlates of protection. Systems biology offers the unique 

possibility to analyze the complex network of immunological events after 



 
 

vaccination. Single-cell approaches can be used to study immune response induced 

by vaccination and compare effects induced by different adjuvants. 

Evaluation of the expression kinetics of key genes can predict the outcome of a 

vaccination. Thus, it is possible that the level of immune competency can be 

evaluated based on the profiling of immune-related molecules, cells and tissues. Such 

information before vaccination could be used to select the type and dosage of the 

vaccine, and information generated after vaccination would allow for the 

measurement of the T cell response and would enable us to predict whether a long-

lasting memory T cell response is achievable and also to avoid unfruitful or even 

harmful consequences of vaccination.2,10 

This thesis focused on the transcriptome profiling, for a selection of genes, of CD8+ 

T cells responses to heterologous vaccinations using the BioMark Fluidigm HD 

System. Subcellular visualization of RNA turnover can aid in gaining new insight 

into gene expression regulation. Expression of specific combinations of biomarkers 

gives the opportunity to identify new correlates of immunogenicity and further 

understanding the immune cellular mechanism of action following vaccination. 

These new single-cell approaches will redefine our cellular classification schemes, 

potentially revealing new and functionally distinct subsets of cells.  

1.2 Vaccinology and vaccine science 

Development of immune resistance to any infection is based on proper priming of 

immune cells after infection or after vaccination. Vaccines represent one of the most 

cost-effective interventions to prevent a primary infection and are administered to 

millions of people every year. Vaccines function by inducing protective cellular and 

humoral immune responses against the targeted pathogen and come in different 

forms, including live viruses, inactivated bacteria, polysaccharide and subunit 

vaccines. Vaccination results in a precisely synchronized perturbation of the immune 

system and, as such, represents a convenient mean to probe the human immune 

system. After vaccination cells are stimulated and activated in such a way to decrease 

subsequent infections form the targeted pathogen or to at least reduce the severity of 

the disease.2,11–13 

 

 



 
 

1.2.1 Vaccines and correlates of protection 
 

A central goal of vaccine research is to prospectively identify whether vaccination is 

able to confer protection from infection or disease. Correlates of protections can be 

used to develop and refine vaccines design and for predicting vaccine efficacy. 

In order to be effective, a vaccine should be activated multiple arms of the immune 

system, including innate immunity (antigen presentation, the establishment of the 

immune-competent environment), adaptive immunity (activation of antigen specific 

T- and B- lymphocytes) and immune memory (long-lived memory B cells). In 

addition, antibodies can target the invading pathogen by either mediating 

complement attack or antibody‐dependent cellular cytotoxicity. Ideally, a vaccine 

should also promote the generation of memory cytotoxic T lymphocytes, which in 

turn can limit the spread of infection by recognizing and killing infected cells or 

secreting specific antiviral cytokines. Vaccination should also elicit an immune 

memory, including the production of memory CD4+ T cells, which participate in the 

reduction, control and clearance of pathogens by producing cytokines that support 

activation and differentiation of B cells and CTL, while limiting the 

recruitment/expansion of regulatory T lymphocytes (Treg), which can suppress the 

activation of the immune response against vaccine’s antigens. Finally, elicitation of 

long‐term immune memory is also desirable.2,4,5 

A limitation is represented by the fact that traditional methods used to measure 

vaccine immunogenicity are not the best option to predict vaccine efficacy. Tools to 

measure immune responses to a pathogen were represented by in vitro assays such as 

ELISA, neutralization and interferon γ release assays. These map in fine details the 

antigen recognized. However, response to a particular antigen does not always have a 

primary role in protection. Conversely, an antigen that is critical for activating a 

protective response may be not detected by the aforementioned in vitro assays. 

New methods have emerged to assess vaccine‐induced immune responses. One of the 

main interests has been the identification of molecular and cellular markers able to 

correlate and predict vaccine‐induced protection. The primary surrogate of vaccine 

efficacy has traditionally been the antibody titer to vaccine antigens or the 

measurement of antibody function such as antiviral neutralizing activity. Moreover, 

the measurement of T‐cell functionality, with or without antibody measurements, has 



 
 

been used to assess vaccine efficacy (e.g. simultaneous measurement of intracellular 

cytokine production and cell phenotype using flow cytometry, binding of tetramers 

to cell surface receptors, measurement of epitope immunoreactivity using the 

ELISPOT). There is the need of new biomarkers that can evaluate T‐cell functions 

(e.g. memory, helper, effector), as well as T‐cell interactions with other cells of the 

immune system. It is important to develop methods that assess vaccine efficacy at the 

individual immune cell level rather than measuring the total immune response. To 

this end, a deeper knowledge on the molecular mechanisms of immune responses, 

the availability of high throughput genomic and proteomic technologies and the 

development of integrative computational analysis offer new approaches for 

modeling vaccine‐induced immune responses and open the possibility to establish 

predictive signatures of effective responses.6,7,14 

 

1.2.2 CD8+ T cells mediated immunity 

T lymphocytes are key players of adaptive immune response. There are two main 

populations of T cells, defined by the expression of membrane glycoprotein CD4 

(CD4+ T cells) and CD8 (CD8+ T cells).  

CD8+ T cells play a key role in adaptive immune response. After infection, antigen 

presenting cells activate CD8+ T cells by presenting pathogen-derived peptides 

bound to major histocompatibility complex class I (MHC-I). CD8+ T cells 

proliferate and develop cytolytic functions and capacity for rapid cytokine 

production. Cytotoxic CD8+ T cells have important roles in the clearance of 

intracellular pathogens and tumors.15–17 

  



 
 

  
Figure 1: CD8+ T cells kinetics 

A. Kinetics of CD8+ T cells responses after viral infection. B.Antigen presenting 

cells (APC) present antigens to CD8+ T cells. Cells undergo on clonal expansion and 

differentiateinto effector CD8+ T cells capable of lineage-specific effector functions, 

including the ability to secrete pro-inflammatory (TNF-α, IFN-γ) and cytotoxic 

(perforin, granzyme) molecules. Following viral clearance, the CD8+ T cells undergo 

an extensive contraction phase, mediated by programed cell death. The remaining 

memory CD8+ T cells can persist in the host for years.  

Source A,B: adapted from6 

  



 
 

Three phases can be distinguished in CD8+ T cells response: expansion, contraction 

and memory phases. Antigen-presenting cells, such as dendritic cells, will present 

those antigens to naïve CD8+ T cells leading to their activation, differentiation, and 

expansion. Many of those pathogen specific CD8+ T cells will then enter the blood 

and migrate to sites of infection. Following the elimination of the pathogen, CD8+ T 

cells will undergo a massive contraction. Most effector CD8+ T cells will die and 

only a small percentage (~5–10 %) will survive and form the memory CD8+ T cell 

pool that will protect the individual from a secondary infection. Memory CD8+ T 

cells can provide long time protection, fast immune response and viral clearance in 

case of secondary infections (Fig 1). After stimulation, effector antigen-specific 

CD8+ T cells will expand and migrate to the site of infection, where they kill virus-

infected cells expressing MHC-I/peptide complexes. Upon antigen-specific 

recognition, CD8+ T cells release cytotoxic molecules at the site of cell contact and 

kill cells blocking further spread of the intracellular pathogens.18 

Cytotoxic effector CD8+ T cells are an essential component of immune response and 

are characterized by the production of cytotoxic molecules perforin and granzymes, 

as well as cytokines such as IFNγ, TNFα and IL2. High level of some transcriptional 

factors such as T-bet, Blimp-1, Id2, Gf-1 and XBP promote effector CD8+ T cells 

terminal differentiation that give rise to short lived effector cells (SLEC) that express 

KLRG1 receptor. Effector cells that express markers of terminal differentiation but 

are able to survive to memory transition tend to maintain higher expression of 

cytotoxic molecules longer after pathogen clearance and can be considered effector 

memory (Tem) cells.19–21 

After resolution of acute infection, most antigen-specific specific CD8+ T cells 

undergo apoptosis while a small percentage of cells survive and give rise to a 

memory population. In general, memory CD8+ T cells are long-lived populations and 

persist in the absence of antigen but maintain a distinct phenotype and elevated 

precursor frequency which is one way to distinguish them from the naïve CD8+ T 

cell population. Memory T cells stimulated by pathogen reencounter respond 

consistently preventing host sickness. Memory T cells circulate in the blood or are 

found in tissues. A specific homing to the bone marrow have been described as a 

reservoir of antigen specific CD8+  T cells.22,23 

Two main subsets of memory CD8+ T cells have been described. Central memory T 

cells (Tcm) defined as IL7rhigh CD62Lhigh CCR7high which have a high and robust 



 
 

recall rate with production of IL2 and effector memory T cells (Tem) IL7rlow 

CD62Llow CCR7high considered to be fast producer of cytotoxic proteins. Tcm have a 

much higher proliferative potential than Tem.  24 

 

1.2.3 Current Influenza Vaccines 

Influenza is a viral infection that affects mainly nose, throat, bronchi and, 

occasionally, lungs. In young and elderly population, and non-immunocompetent 

people, infection can lead to severe complications, including pneumonia and death. 

Vaccination represents on of the most effective interventions against influenza 

infection.25,26 

Human influenza viruses (IVs) are enveloped virus, with a lipid bilayer 

encompassing an 8-stranded negative sense RNA genome that encode 12 distinct 

proteins. They comprise three distinct families: A, B and C. Influenza C viruses 

(ICV) generally cause a mild infection and are not considered a significant risk to 

population health. Influenza A (IAV) and B (IBV) are responsible for seasonal 

epidemics. IAV causes major infections and is the only subtype associated with 

pandemics. IAV are categorized based on their surface Haemagglutinin (HA) and 

Neuraminidase (NA) glycoproteins, which are embedded within the lipid bilayer 

envelope and coat the entire surface of the virion. The specific combination of HA 

and NA glycoproteins determines the subtype of a particular IAV. There are 18 

distinct HA and 11 distinct NA glycoproteins.  Accumulation of mutations in HA 

and NA glycoproteins can mediate evasion of pre-existing immunity. Pandemics may 

occur when a novel IAV strain or subtype typically generated by antigenic shift gains 

capacity to transmit in humans. IAV, influenza A virus is major cause of worldwide 

morbidity and mortality. T cells immunity is a key factor in limiting severity of 

disease particularly when antibody activity is ineffective.11  

 

Many licensed influenza vaccines are available today (live attenuate, inactivated, 

subunit) with new vaccine candidate under development such as vectored, DNA or 

RNA vaccines.27,28 Licensed inactivated influenza vaccines (IIV) include the 

hemagglutinin (HA) viral surface protein inducing strain specific antibody response 

that protect against closely related viruses. Seasonal influenza vaccines target each 

year three to four influenza virus strains, typically two influenza A (H1N1 and 

H3N2) and one or two influenza B strains (Victoria or Tamagata lineages). These are 



 
 

delivered as inactivated split/subunit or live attenuated influenza vaccines.29 Most 

adults have already an immunological memory against influenza antigens, meaning 

that the existing pool of memory T cells are able to expand appropriately against 

influenza infection or vaccine. However, adjuvants such as MF59 TM are licensed to 

improve immunogenicity in the elderly and in infants, who do not develop a strong 

enough immune response against seasonal influenza vaccine30–32. MF59 TM is an oil 

water emulsion that interacts with the antigens through electrostatic charges, and 

stimulates an immunogenic favorable environment for the easier uptake of the 

antigens at the site of injection33.  MF59 TM has been reported to increase the immune 

response against the seasonal and pandemic influenza vaccines. there are cases, 

however, where even adjuvanted vaccines are not capable of inducing a protective 

response.26  

Despite the fact that production of neutralizing Ab, in response to vaccination, is 

critical to reduce the rate of infection, also the stimulation of a robust T cells 

response is important for viral clearance after infection.34–36 It has been shown, both 

in humans and in animal models, that natural influenza virus infection confers 

protection through CD4 and CD8 T cells mediated immunity. Conversely, 

inactivated influenza vaccines induce antibody targeting the HA protein, while live-

attenuated influenza vaccines (LAIV) was reported to rely more on cellular and 

mucosal immunity.   

Adjuvanted IIV promote a strong HA-specific CD4 T cell helper response, which 

provide an helper function for the subsequent HA-specific antibody response. In 

addition, memory CD4 T cells also exert a direct effector function through the 

production of IFN-gamma and perforin. 

These current vaccines suffer for some limitations. Firstly, traditionally available 

egg-based influenza vaccines follow a complex manufacturing process and might 

induce allergic response among some individuals. Vaccines need to be updated every 

year and they are delivered in the fall –winter period in the north hemisphere.30,33,37   

 

1.2.4 T cells and influenza 

Current IAV (Influenza A virus) vaccines elicit humoral immunity directed toward 

the surface HA and NA glycoproteins and are highly effective in the control of IAV 

infection. The antigenic drift causes rapid mutation of surface glycoproteins so 



 
 

humoral immunity established against one IAV strain does not protect against 

subsequent infection caused by heterologous strains. 

CD8+ T cells rapidly recognize the more conserved internal proteins of IAV and thus 

have the potential to be strain-cross protective.27,38 

Natural influenza infection confers protection against virus through CD4+ and CD8+ 

T cells mediated immunity. However, protective immunity induced by most 

inactivated vaccines (IIV) has been correlated with antibodies. Adjuvanted IIVs 

promote a strong HA-specific CD4+ helper T cell response, which improves the 

cross-neutralization activity of HA-specific antibodies through the expansion of 

naïve B-cells. Memory CD4+ T cells may also exert a direct effector function 

through the production of IFN gamma and perforin and the activation of innate 

response. Activated CD4+ T cells play a pivotal role in supporting germinal center 

formation that results in affinity maturation and isotope switching. CD4+ T cells 

provide help to B cells and CD8+ T cells, IAV specific CD4+ T cells also have the 

capacity to target directly IAV-infected cells, thereby contributing to the control and 

elimination of IAV infection. 34 

CD8+ T cells kill virus-infected cells and they are important in IAV infection as they 

have the potential to protect against strains different than those included in the 

vaccine. While CD4+ T cells provide secondary signals to optimize the mechanism of 

action, CD8+ T cells express a range of effector genes, such as granzymes and 

perforins, which mediate their cytotoxic properties. In addition to cytotoxic 

mediators, CD8+ T cells effector functions also consist in the production of a variety 

of pro- inflammatory cytokines.34 

Activated CD4+ T cells are also key cells in supporting germinal center formation 

that results in affinity maturation and isotope switching. CD4 + T cells provide help 

to B cells and CD8 + T cells, IAV specific CD4 + T cells have also the ability to 

target directly IAV-infected cells and contribute to the control and elimination of 

IAV infection. CD4 + regulatory T cells (Treg) have been shown to limit effector 

CD8 + T cells and prevent tissue damage caused by prolonged CD8 + T cells 

response at later stage of infection.34 

 

1.2.5 Self-amplifying messenger (SAM) vaccine platform 

Messenger RNA-based vaccines have been investigated extensively in animal 

models of infectious and non-infectious disease. Like viral vectors and DNA 



 
 

vaccines, mRNA vaccines induce both humoral and cellular immunity. In addition, 

antigen expression is transient avoiding T cells exhaustion that may occur with 

persistent antigen exposure.39 

A novel RNA-based vaccine platform, called self-amplifying messenger (SAM), is 

based on a synthetic self-amplifying mRNA delivered by a lipid nanoparticle (LNP). 

The delivered messanger RNA replicons-based is processed by hosts cells and 

vaccine antigen is expressed without generating virus particles. SAM-based vaccines 

are able to elicit potent immune responses. They have been shown to be 

immunogenic in mice at low doses and to elicit antibody responses comparable to 

those induced by a licensed influenza vaccine.25 

SAM main advantages include a completely synthetic process that do not require cell 

culture and can be automatized, a robust and generic process to generate vaccines 

against any influenza strain and a rapid progression from gene sequence to vaccine 

product.40 

mRNA vaccines elicit both innate and adaptive immunity. Host’s intracellular 

machinery interacts with mRNA delivered at multiple levels, as suggested by studies 

reporting that both mRNA and encoded antigen are detectable at inoculation site and 

in draining lymph nodes, shortly after immunization.39 

Nucleic acids are formulated with two different delivery systems. A cationic nano-

emulsion (CNE), consisting of hydrophobic/hydrophilic surfactant composed with 

squalene and DOTAP, a cationic lipid substance that allows the nucleic acid binding 

to the formulation. This formulation prevents RNAse mediated degradation and helps 

delivering the replicons to the target cell. mRNA is first transported to the cytoplasm 

by endocytosis. Replicons then engage the ribosomes in translation of the encoded 

antigen and replication of the replicon. This technology elicite broad, potent and 

protective immune response that are comparable to the viral delivery technology, but 

without the need of viral vectors. 25,40,41 

Ferrets immunized with SAM encoding H1 (SAM(H1)) vaccine showed a better 

response profile compared to animals immunized with HA alone or MF59 + HA. In 

addition, SAM(H1) immunization of BALB/c mice resulted in cytokine CD4 cells T-

helper (Th1) phenotype (IFN-γ, TNF, IL-2), while protein and protein+MF59 

induced cytokine CD4 cells with a Th2 phenotypes. Only SAM(H1) vaccinated mice 

induced cytotoxic CD8 T cells (CD107, IFN-γ, TNF, IL-2). 25 



 
 

SAM platform enhances a very potent and broad-based immune response due to 

antigen expression in host cells and to their intrinsic innate immune stimulating 

capabilities.41 

1.3 Single-cell analysis approaches 

1.3.1 Heterogeneity in biology 

Traditionally biological experiments are performed on “bulk” samples containing 

populations of thousands of cells. Bulk samples average differences and, as a result, 

they cannot distinguish among different cell subtypes. It is known that a biological 

system is represented by different cell types that have different roles and functions. 

In recent years, it has become evident that cells are structured in a continuum state 

rather than strictly defined sub-populations. Even a well-defined population of cells 

consists of multiple subpopulations that work together in a complex landscape of 

conditions. Single-cell level analysis allows the characterization of various single cell 

state connected to each other through a landscape of cells in transition from a state to 

another. 42,43 

Single-cell diversity is driven by unequal distribution of cellular content during 

division, epigenetic modification of DNA, fluctuation of transcription and alternative 

splicing at protein level. 

Heterogeneity allows cells to specialize in performing different functions with higher 

efficiency and the immune system is a remarkable example of this aspect. In fact, 

immune cells exist in a continuum of differentiation and activations’ states rather 

than in distinct subsets. .43 

Single-cell technologies provide the means to dissect heterogeneity. Both the huge 

cell-to-cell variability and the amount of data these new technologies have brought to 

light, constitute a great resource and at the same time a challenge for scientists. The 

parallel development of more sophisticated algorithms, faster computational 

approaches and new data visualization methods has already allowed scientists to gain 

new insights into immune system diversity.44–46 

One of the first immunological studies focusing on single-cell analysis was published 

by Newell et al. in 201247. The authors have shown that CD8+ T cells could be 

classified into more than 200 types by single-cell mass cytometry analysis (CyTOF 

technology) and their data have been used to make the general hypothesis that 



 
 

combinatorial diversity in functional capacity gives each CD8+ T cell a whole 

immune potential.  Newell et al have shown that an unsupervised simultaneous 

analysis of 25 phenotypic and functional properties of human CD8+ lymphocytes 

generally agrees with previous classification schemes but also shows how these 

subsets represent nodes on a continuum of T cell phenotypes. These analyses also 

describe a memory cell phenotypic progression involving progressive gains and 

losses of surface markers and phenotypic capacities and they concluded that was 

important for defining the degree of T cell differentiation and exhaustion. In 

conclusion, these data showed that cytokine expression were not confined to specific 

subsets of CD8 T cells but it is much more combinatorial, allowing great flexibility 

in orchestrating an effective pathogen response.47 

 

1.3.2 RNA at single cell level 

One of the most important determinants of heterogeneity is represented by RNA. The 

transcriptome at single cell level is greatly informative both for cell function and 

phenotype. The transcription process in eukaryotic cells is characterized by short 

burst of activity followed by a period of quiescence in which the level of mRNA 

decays48. Gene expression in individual cells is not synchronized and gene 

expression noise is the results of cell-to-cell variation given by temporal fluctuations 

of mRNA numbers. Majority of genes is represented by very little mRNA transcripts, 

which increases the impact of stochastic events. Moreover, bursting kinetics appear 

to be gene specific and these random pulses of transcriptional activity contribute to 

the considerable heterogeneity of single cell. 49 

Small copy number and short life time of mRNA led to a great stochasticity and 

noise at single cell level determine the phenotype of the cell. Expression noise can be 

a disadvantage by affecting the precision of biological function but is also an 

advantage by enabling heterogeneous stress-response programs to environmental 

changes.50 

Transcription at single cell level was previously studied using the bacteriophage coat 

proteins (MS2) that bind to specific RNA sequences. Single mRNA copies were 

visualized by mRNA-MS2-GFP complexes. This method revealed that the 

intermittent production of transcripts. In fact, short bursts (6 min) were observed 

followed by long periods (37 min) of inactivity49. Distribution of mRNA copies 

within a cell can be modeled by Poisson statistics, where the mean is equal to 



 
 

variance.  This model is based on the assumption that a gene can exist in two states: 

one where is OFF (activity is negligible) and one where is ON (certain probability of 

activation). The second state is where the transcription occurs (bimodal distribution). 

Additionally, probabilities of transcription initiation change at different phases of the 

cell cycle.49,51 

 

 

 
Figure 2: mRNA at single-cell level 

Single-cell expression levels of ActB mRNA follow an approximate Gaussian 

distribution on a log scale (Left). A similar representation, in which the X axis has a 

linear scale, reveals a highly skewed distribution (Right). The dotted, vertical line 

corresponds to the mean expression level, illustrating that the mean expression level 

does not correlate well with the expression in the majority of the cells. Source: 

adapted from48. 

 

 

 

In steady state the probability distribution of mRNA molecules can be describes by a 

Poisson distribution.52 A simple stochastic model that is widely used in analyzing 

bursting in gene expression is the random telegraph model that takes into account the 

switching of promoter between transcriptionally active (ON) and inactive (OFF) 

states.52,53 This model considers the arrival of bursts as a Poisson process. 

Correspondingly, the waiting-time distribution between arrival of mRNA bursts is 

assumed to be exponential. 54 



 
 

Profiling the low amounts of mRNA contained within individual cell typically 

requires more than a million-fold amplification, which leads to severe non-linear 

distortions of relative transcript abundance and accumulation of nonspecific 

byproducts. Low starting amount also makes it more likely that a transcript will be 

“missed” during the initial reverse transcription step, and consequently not detected 

during next processing55. Moreover, a gene can be detected as medium/high 

expression in one cell but not detected in another cell. This phenomenon is called 

“drop-out” events and it was previously seen in single cell qPCR data by McDavid at 

al56. To overcome this problem, authors proposed a statistical model accounting for 

the fact that genes at the single-cell level can be on (and a continuous expression 

measure is recorded) or dichotomously off (and the recorded expression is zero). 

Based on this model, they derive a combined likelihood ratio test for differential 

expression that incorporates both the discrete and continuous components. Using an 

experiment that examines treatment-specific changes in expression, they have shown 

that their combined test is more powerful than either the continuous or dichotomous 

component alone, or a t-test on the zero-inflated data56.  

 

1.3.3 Overview of single-cell technologies 

Single-cell approaches have a great potential for biological studies. The advent of 

single-cell genomics is an important turning point in the field of cell biology. This 

could lead to a big shift of experimental design in next years, with the potential to 

analyze the expression of every gene in the genome across thousands of single cells 

in a single experiment. Moreover, multi-omics profiling allows to dissect complex 

tissue and cellular lineage hierarchies in a data-driven manner, which complement 

the classical approaches.57,58 

In the next paragraphs I will briefly introduce the most important current 

technologies.  

 

Single- cell DNA sequencing 

Single-cell sequencing will provide new understanding by studying genomes at 

single-cell level. 59,60 

Efficient isolation of single cells and genome amplification able to reach sufficient 

material are crucial step for high-quality sequencing data. Another crucial point is the 

data interpretation taking in account bias and errors that could have been introduced. 



 
 

Single cell DNA sequencing requires three fundamental techniques that have been 

dramatically improved: (1) isolate a single cell, (2) amplify its genome efficiently 

and accurately, and (3) sequence the DNA.  

Several studies sequenced and dissected cancer genomes to single-cell resolution, 

with the aim of understanding tumor development and progression of the disease. 

This revealed various chromosomal rearrangements, followed by distinct phases of 

clonal expansion during tumor evolution and metastasis61. Subsequent single-cell 

exome sequencing studies provided a detailed characterization of base mutations in 

specific genes in bladder62, kidney63, and hematopoietic neoplasms64 . Interestingly, 

by sequencing daughter cells of a single mitotic division, the acquisition of new 

structure variations could be demonstrated for a breast cancer cell line65. 

Single-cell genome sequencing basically provide new insights into genomic 

instability and it will lead to a better understanding of the acquisition of genetic 

changes and the dissection of genetic content in individual cells.61,65 

 

Single-cell transcriptomics methods 

Assaying gene expression at the single-cell level represents a powerful, high-

resolution tool for biological discovery. There are many biological questions that 

bulk experiments could not resolve. For instance, during early development there is 

only a small number of cells, each of them potentially having distinct functions and 

roles.66,67 Moreover, bulk approaches may not provide insight into whether 

differences in expression between samples are driven by changes in the cellular 

composition or changes in the cellular phenotype. 

Single-cell transcriptomics experiment allow a high-throughput profiling of gene 

expression that can potentially answer many biologically relevant questions and lead 

to unprecedented new discoveries in important areas of biology.68–72 

The most important available methods for single-cell transcriptomic analysis are 

single-cell RNAseq, RNA-FISH and qPCR. 

 

 

Single-cell RNA-Seq (scRNA-seq)  

Single-cell RNA-Seq (scRNA-seq) provides the possibility to identify and 

characterize distinct cellular populations revealing heterogeneity in a specific tissue. 

Quantification of all transcripts expressed in a single cell revealing heterogeneity 



 
 

given by the presence of masked rare subpopulations of cells. One of the major 

challenge in analysis of single cell sequencing data is represented by the noise due to 

the nature of single-cell transcriptomics.73 

The aim of single-cell RNA-seq approaches is to study cell states at high resolution 

potentially revealing cell subtypes or gene expression dynamics that are masked in 

bulk population-averaged measurements. Currently published scRNA_seq protocols 

follow the same general workflow: single cells are isolated, lysed, RNA is captured 

for reverse transcription in cDNA, cDNA is pre-amplified and then used to prepare 

libraries for sequencing and downstream analysis. cDNA pre-amplification causes 

bias that limits the quantitative accuracy of scRNA-seq.  Additionally, unique 

molecular identifiers can be used to barcode individual RNA molecules during the 

reverse transcription step, allowing direct transcript counting. Alternatively, 

exogenous RNA standards can be spiked in with cellular RNA to allow relative and 

absolute transcript counts.60,74–76 

Existing scRNA-seq methods have low capture efficiency. Only a small fraction of 

each cells transcript is represented in the final sequencing libraries (approximately 

10%) so it is unable to reliably detect low-abundance transcripts. Low amount of 

input material also leads to high levels of technical noise, which complicates data 

analysis and can mask underlying biological variation75. 

Quality control analysis is an important step that includes filtering for read quality 

and eliminating cells with overall low library size. Spike in can be used to model 

technical variability and examine relative variability in cell size for a unique 

molecular identifier. One important challenge is asses a proper normalization of the 

data.76,77 

The applications of scRNA-seq are extensive and a proper data analysis approach is 

essential. Computational analysis of scRNA-seq data is a big challenge. Many tools 

for quantifying gene expression report the amount of reads that are associated to a 

gene by normalizing. After the preprocessing analysis, batch effect, dropout effect 

and amplifications bias are peformed. Furthermore, dimensionality reduction 

algorithms were used to globally visualize data, reveal cells subpopulations and infer 

their trajectory.60,78 Clustering methods can be used directly on single-cell expression 

data to group cells by transcriptome similarity and to detect the underlying 

population structure in an unsupervised manner. Cell subgroups identified from such 

analysis can often been matched to known cell types via previously established 



 
 

marker genes. Furthermore, structural analysis of single-cell data has also led to the 

discovery of novel cells subtypes and to the identification of new marker genes for 

known cell types60. Already, scRNA-seq has been applied for the characterization of 

intra-tumoral heterogeneity79 , the detection of variation among cell states within a 

homogeneous population (such as differences in cell cycle stage or differential 

signaling responses to an outside stimulus)80,  the study of cellular transitions 

between different states by inferring cells trajectories43,44  

 

Single-cell RNA FISH 

Counting RNA molecules is always been performed by fluorescence in situ 

hybridization (FISH) in which a fluorescent nucleic acid probe is hybridized to fixed, 

lysed cells on a specific support. Fluorescence is detected via high-resolution 

microscopy. The amount of probe hybridized is determined by comparison to a 

standard dilution series of probes. This allows total count mRNA molecules per 

cell.49 FISH provides an orthogonal methods of quantifying transcript levels and is 

often used to validate results from scRNA-seq data. Single-cell FISH preserves the 

spatial context of transcript and can localize molecules at subcellular resolution. 

Single-cell RNA FISH could supplement the global transcriptomic snapshot of 

scRNA-seq with information on the spatial dynamics of selected transcripts. A 

limitation is done by overlap between fluorophores that limits the number of 

transcript that could be simultaneously assayed. 42 

 

Single-cell qPCR – Microfluidic System (Biomark-Fluidigm) 

BioMark has been released by Fluidigm Corporation81. It is a multiplexed RT-qPCR 

technique that provide a high-throughput multiplexing by a microfluidic architecture 

that combine samples and prime-probe sets into 9216 PCR reactions.81 Different 

sample types and probing chemistry (TaqMan, EvaGreen) can been chosen for many 

applications. The platform is fast with an automated workflow and can be used as a 

validation technique or fast throughput screening. The single microfluidic device is 

based on PCR reactions in nanoliter volumes and a small amount of sample is 

required. Samples are load on a dynamic array together with the primer probe system 

and by using integrated fluidics circuit (IFC) they are mixed on a chip controlled by 

pressurized valves.18 



 
 

Two main chemistry systems can be used: EvaGreen and Taqman. EvaGreen is a 

DNA-binding dye flexible and inexpensive. Drawbacks are represented by 

intercalation of all double stranded DNA and this could be led to false positive 

detection (primer-dimers, wrong amplicon) and a proper melting curve analysis is 

required. Taqman probing system is expensive with highly sensitive and gene-

specific. Taqman probes are labeled with fluorescent reporter dye on the 5’ and no-

fluorescent quencher (NFQ) on the 3’. They are flanked by upstream and 

downstream primer pair that generates PCR products and hybridize to a 

complementary region of cDNA. Intensity of fluorescence expression is proportional 

to the number of molecules. The fluorescence is converted by software into 

Quantification cycles (Cq) and can be further analyzed. 81 

The Biomark microfluidic system was applied in different biological fields in the 

past years.  

One of the first papers based on Biomark technology applied to single cell gene 

expression analysis was the one published by Guo et all in 2010 in Developmental 

Cell. In their study, the authors analyzed the expression dynamics of 48 genes on 

hundreds of cells to monitor the development 8-cell stage to 64-cell stage in mouse.  

The analysis was focused on transcription factors which are drivers of cellular fate. 

This approach has provided a rich dataset and subsequent analyses have focused on 

genes differentially expressed between cells. Key observation of their work is that 

there is an inner cell-specific upregulation of Sox2 and that temporal differences in 

Sox2 create differences in inner cells formations and, consequently, a high degree of 

heterogeneity. Finally, the authors highlighted if differential expression of transcript 

in single cells were the result of the presence of different subpopulations or caused 

by stochastic noise.82 

To understand key factors that characterize iPCS (induced pluripotent stem cells) 

differentiation Bugamin et al. in 2012 performed single-cell microfluidic qPCR 

analysis to profile the expression of 48 genes in single cells from early, intermediate 

and fully programmed iPSCS demonstrating that cells at different stages can be 

separated in two defined populations with high variation of genes. In conclusion, the 

authors have shown that differential expression of genes at single cell level reveal 

heterogeneity between sister cells during early phase of the reprogramming 

process.83 



 
 

In 2011 Flatz et al. applied single CD8+ T cells gene expression profiling to 

understand qualitatively differences between cells elicited by different prime boost 

vaccine regimens combinations. Antigen specific CD8 T cells stimulated by three 

prime-boost vector combinations encoding HIV env antigen were compared at single 

cell transcriptional level. Authors defined by single-cell gene expression profiling 

specific subset of CM and EM CD8 T cell differentially induced by different 

vaccine. Authors performed also a microarray analysis to validate single cell gene 

expression data. 

Flatz et al. used this approach to better understand how different vaccines induce 

cells in different way and to find new approaches that can be used to discriminate 

immune cells.   

The authors identified he smallest set of genes that could allow classification of cells 

elicited by different vaccine. Frequency of central memory T cells Eomes+ vary 

between different vaccines. Flatz at al concluded that a single-cell transcriptional 

approach is able to resolve heterogeneity within cells population that a bulk approach 

cannot. Finally, they concluded that this approach could facilitate the design and 

evaluation of vaccines and enable a better understanding of protective immunity.70 

Arsenio et al. in 2014 traced CD8 T cells during infection with the aim to discover 

gene that give early signal to cells to follow different fates. Tracing individual 

lymphocytes give them the possibility to discover genes that have effect on cells 

path.  

Single CD8 T cells has been collected at different time points after infection with 

recombinant Listeria Monocytogenes. CD8+ T cells subsets were isolated at various 

time points post-infection: division1, days 3, 5 and 7 post-infection, short lived 

effector cells (TSLE), memory precursor cell (Tmp), day 45 central memory cells 

(Tcm/Cd62l hi) and day 45 effector memory cells (Tem / Cd62l low). A fundamental 

point that authors highlight was that this experimental approach would not be 

possible by bulk analysis. Using a classifier, they discovered genes which early 

expression decided different fates. Finally, authors concluded that the differential 

expression of Il2ra may reflect one of the earliest molecular determinants influencing 

memory vs effector cells fate71 

In 2015 McHeyzer-Williams et al. applied single-cells qPCR analysis for mapping 

GC B cell fate within the clonal progeny of memory B cells. They developed a high 

resolution molecular strategy for monitoring antigen-specific differentiation in vivo. 



 
 

Authors have shown that the vaccine boost elicited robust secondary germinal center 

reactions in a large cohort of switched memory B cells. PCA of single-cell gene 

expression segregate a subset of GC-associated activities in putative LZ (light zone) 

and DZ (dark zone) sub compartments. Analysis reveal that Cd83 and Pol segregates 

the secondary germinal center transcriptional program in 4 cyclic stages of GC 

activity.  Changes in the expression of Cd83 and Polh at a single-cell level may 

distinguish an evolutionary mechanism that can rapidly reinitiate GC-specific 

transcriptional program and can rapidly remodel antibody repertoires of preexisting 

memory B cells.72 

 

Single-cell proteomic methods 

A variety of single cell proteomic tools have been developed. These tools can be 

distinguished into two main categories: large number of parameters measured across 

thousands of single cells at a given time point and monitoring some parameters in the 

same cells over time. One of the best methods for single cells proteomic analysis is 

represented by CyTOF. CyTOF (Cytometry Time of Flight) is a single-cell mass 

spectrometry-flow cytometry hybrid instrument that replaces fluorophores with 

stable mass reporters. Each antibody is tagged with a unique stable metal isotope, 

such as lanthanide, and the read out for each antibody can be correlated of level of 

antigen associated with individual cell. The mass cytometry technology is 

characterized by minimal background and consequently less spread around zero. 47 

The experimental workflow in CyTOF analysis is represented by cells labeled with 

mass-tagged antibodies are nebulized into droplets, ionized, and atomized by argon 

plasma. The resulting ion cloud passes through a mass filter where transition metal 

reporters are quantified by a time-of-flight mass spectrometry.84 This platform offers 

an increased signal resolution with the use of many isotopes.  

A typical single cell proteomic dataset can be formularized as a table where each row 

denotes a single-cell measurement and each column denotes a measured protein level 

across the single cells. Data are transformed into inverse hyperbolic sine function to 

compress values around zero, resulting in a more coherent negative population when 

marker of interest are not detected. 

The distribution of a protein level as tabulated across many single cells is termed 

fluctuation of that protein that reveals the inherent heterogeneity of the cell 



 
 

population. The biaxial plot of two proteins (right) can be used to identify specific 

subpopulations or extract protein–protein correlations.84,85 

One of the first algorithms developed to analyze mass cytometry data was spanning 

tree progression analysis of density normalized events (SPADE). This algorithm uses 

hierarchical, agglomerative clustering after performing density-dependent down 

sampling. The resulting clusters can be displayed into a spanning tree or connected 

graphs. SPADE analysis identified distinct population clusters in each sample 86,87 

viSNE is another tool for cytometry data analysis that employees t-stochastic 

neighbor embedding (t-SNE) in mapping individual cells. viSNE provide a 2D view 

of the cells that are arranged in a way that approximates high-dimensional 

phenotypic similarity. Cells are grouped based on variability of the markers 

considered in the analysis. Markers that are highly variables between cells polarize 

cellular subsets. Data analysis in cytometry remains largely manual, supervised and 

focused on large change in magnitude of expression.88,89 

 

Single-cell epigenomic methods 

Analysis of the epigenome at single-cell level allow the understanding of mechanism 

of epigenetic regulation by filling the gap between microscopy examination and 

modern bulk genomics. Single cells need to be isolated with high precision and 

minimal epigenetic perturbation. Then chromosomal and DNA templated must be 

profiled with high recovery rate and minimal loss of material. This approach can 

provide valuable insight into the dynamics of DNA methylation and into 

identification of subpopulations with distinct methylation patterns.90 

One of the most used single-cell DNA methylation profile is bisulfite sequencing that 

can be applied to small populations of cells or niches. Applications to bigger 

populations are feasible but require increase sequencing throughput. Alternatively 

approaches for characterizing DNA methylation are represented by single-cell 

restriction analysis of methylation (SCRAM), methylation-sensitive restriction 

analysis and single-cell quantitative PCR that are combined to facilitate profiling of 

methylation sates across cells. 91 

Single-cell epigenomics can allow flexible classification of cells based on prior 

knowledge or de novo identifications of subpopulations. This can also be used for 

studying correlation between the epigenetic state of unlinked loci. Single-cell 

epigenomics can improve understanding of epigenetic mechanism and their intricate 



 
 

relationships with gene regulation, such as the causality between gene expression and 

epigenetic mechanism and their intricate relationship with gene regulation.92 

1.4 Overview on single-cell transcriptomics data analysis 

Single-cell genomics approach need the application of statistical and computational 

methods to extract meaningful information. Each cell can be represented as a point in 

a high-dimensional expression space. Classical approach is represented by the 

measure the distances between all pairs of cells, then grouping them into 

neighborhoods based on mutual proximity. Given that distance between points 

become more and more similar as the dimension of the space they reside within 

increases cells become equidistant and it is difficult to cluster them.42 

Principal components analysis is the most widely used approach, and it has already 

proven effective in a number of single-cell genomics studies82,83,93,94 .By projecting 

cells down to the first two principal components, each cell it is represented by a point 

in two dimensions instead of higher number. Reducing dimensionality might enable 

grouping the cells by type, which might be required for the other downstream 

analyses. The problem is that two dimensions are not sufficient to capture valuable 

information in single-cell experiments. In fact, a cell-state transition typically 

involves changes in hundreds or even thousands of genes. Inferring regulatory 

networks from single cell genomics allow the identification of master regulator of the 

transition44.  

Unfortunately, computational methods for inferring regulatory networks have been 

hamstrung by two major issues. The first is due to dimensionality: because there are 

so many possible gene-gene interactions, even large-scale experiments lack enough 

data to reliably predict which gene interact. The second arises due to averaging, 

which destroys the crucial source of variation that any algorithm needs to accurately 

reconstruct gene regulatory network for expression data. A big challenge is 

represented by the fact that single-cell experiment generate more data than the 

conventional RNA-seq or microarray study generate, and thus far more information 

than any existing network algorithm has ever been provided.42,44 

Several algorithm and analysis frameworks were developed in the last years. Here, I 

will summarize an overview of the most important ones. 

 



 
 

● MIMOSA (Mixture Models for Single Cells Assays), was developed by 

Finak at al. 95 to identify biomarker (or combination of biomarker)  differentially 

expressed between two biological condition in single cell assays. 

MIMOSA is based on mixtures of beta-binomials and rigorously analyzes count data 

derived from ICS assays but was mainly developed for univariate analysis of cell 

subsets, such as cells expressing a single function or a specified combination of 

functions. Cell counts were modeled by a binomial (or multinomial in multivariate 

case) distribution, and information is shared across samples through a prior 

distribution on the proportions. MIMOSA use dichotomized data (cells are positive 

or negative) After thresholding, a Boolean matrix of N cells x K biomarkers was 

obtained and 2k putative cells subsets were formed. When k is large there is a 

combinatorial explosion of the number of subsets, and many of these might be small 

or even empty.96 

A common statistical problem is to identify subjects for whom the proportion of cells 

expressing a specific combination is significantly different, between two 

experimental conditions. Samples were tested separately; no information is shared 

across samples. In order to discriminate between responders and no-responders a 

priori is written as a mixture of two beta distributions.  

MIMOSA can be applied also to Biomark’s data. In the case of qPCR based single 

cell gene expression technology, gene are recorded as expressed or not at single cell 

level.   

 

● HURDLE MODEL was applied by McDavid at all to improve the detection 

of changes in single cell gene expression by testing both the frequency of expression 

and mean over the cell expressing the gene. Data analyzed were obtained from 

profiling 333 genes in 930 cells across three different cells line. 97The dichotomous 

characteristic of the data prevented the use of typical tools for linear modeling and 

analysis of variance and the computational framework that they developed overcome 

this problem. Application of Hurdle model allowed the observation of a bimodality 

in single-cell gene expression wherein the expression of abundant genes is either 

positive or undetectable within individual cells. Hurdle model framework improves 

the detection of cell-cycle genes by identification of phase-dependent patterns even if 

G2 an M phases were clearly distinct. This framework also can be used to estimate 

single cells co-expression networks.  



 
 

 

● LRT is a statistical framework published by McDavid et al 98for single-cell 

qPCR analysis (microfluidic platform). The likelihood ratio test (LRT) is a statistical 

test of the goodness-of-fit between two models. LRT accounts for the fact that genes 

at single-cell level can be on (and continuous expression is measured). Mc David at 

al proposed a discrete/continuous model for single-cell expression data based on a 

mixture of a point mass at zero and a log-normal distribution. In details, three 

parameters characterize the expression distribution: the mean and the standard 

deviation (for the continuous part) and the Bernoulli probability of expression (for 

the discrete part). Using this model, they derived a likelihood ratio test (LRT) that 

can simultaneously test for changes in mean expression (conditional on the gene 

being expressed) and in the percentage of expressed cells and dichotomously off (and 

the recorded expression is zero). This model can be applied to various experimental 

questions. 

 

● MONOCLE it is an unsupervised algorithm for pseudo temporal ordering of 

cells published by Trapnell at all 44. Monocle was applied to a skeletal muscle 

differentiation model and unveiled dynamics and novel regulatory factors. The 

algorithm project the expression profile of each cells as a point in a Euclidean space, 

with one dimension for each gene. Then reduce dimensionality of this space using 

Independent Component Analysis.  Third, construct a minimum spanning tree (MST) 

on the cells. Fourth, it founds the longest path through the MST that correspond to 

the longest sequence of transcriptionally similar cells. Finally, Monocle uses this 

sequence to produce a trajectory of an individual cell during differentiation. As cell 

progress, they may diverge along two or more separate paths. Monocle order cells by 

progress through differentiation and can reconstruct branched of biological process. 

Monocle decomposed myoblast differentiation into a two-phase trajectory and 

isolated a branch of non-differentiating cells. The first phase was composed by cells 

that proliferate actively (CDK1 positives) while the second mainly consisted of cells 

positive for markers of cells differentiations (MYOG). This pseudo-time ordering 

events are masked in bulk experiments. 44 



 
 

1.5 Common application of single cell transcriptomic analysis 

1.5.1 Deconvolution of heterogeneous cell populations  

Clustering by single-cell can reveal subpopulations structure and identification of 

cell subtypes and rare cell species.60 Single-cell transcriptomics has been found to be 

very effective in provide discovery of novel cells subtypes. Examples were 

represented by some interesting work in which novel CD4 T cells subpopulations 

were discovered.99–101 

 

1.5.2 Trajectory analysis of cell states transitions  

Single-cell RNA sequencing can be applied to time-series experiments and cell 

developmental trajectories can be found. Dynamic processes analyzed could be 

represented by differentiations or signaling responses to external stimulus. In recent 

years, some computational suite such as Monocle were developed to enable 

branching, enable identification of lineage-specific gene expression and key genes 

that drive branching trajectories. Previous work reconstructed iPCS to iCM 

differentiation trajectory by measuring 96 genes by single-cell qPCR in 1900 cells 

obtained during 6 first days of differentiation. It was found that at day 2 a major 

lineage branching took place and after that cells were committed to a specific 

lineage. Cells fate decision can be reduced to HAND1-SOX17 transcriptional circuit 

and cKIT distribution. 42,60,102            

 

1.5.3 Dissecting transcription mechanism 

Single-cell gene expression profiles can be compared to study transcriptional 

bursting and to model the kinetics of stochastic gene expression. The final aim is to 

understand which are the mechanisms that modulate burst size and frequency of 

mRNA transcription. 60,78,103 

 

1.5.4 Network inference 

Variability between cells can be used to infer regulatory networks. Genes can be 

clustered by expression profile to identify modules of co-regulated genes, and 

information about gene-gene relationships can be used to infer gene regulatory 

networks or subnetworks. RNA-seq data are very noisy and separation of biological 

variation from background remains a problem. Another limitation is given by the fact 



 
 

that the number of parameters (genes and gene interactions) exceeds the number of 

samples (cells). So, it becomes necessary simplifying model on the basis of prior 

knowledges.60,79,104. Comparative co-expression analysis between single-cells and 

bulk samples reflect distinct co-regulatory networks. The co-expressed genes in bulk 

analysis tend to have the same biological functions, whereas interchromosomal and 

protein-protein interactions are highly enriched in single-cell samples.105

 
 

Figure 3: Application single-cell analysis 

A. Deconvolution of heterogeneous cells population. B. Trajectory analysis of cell 

states transitions. C. Dissecting transcription mechanism. D. Network inference. 

Source A,B,C,D: adapted from Liu et al. 60  



 
 

1.6 Overview on single-cell transcriptomic studies 

Single-cell approaches have been applied to different fields with the aim to dissect 

heterogeneity in immune response, tumor evolution and stem cell differentiation. 

 

1.6.1 Heterogeneity in immune response  

Single-cell transcriptomics studies have been applied to different immune cells 

populations. Innate and adaptive immune response depends on the proper utilization 

and regulation of cellular heterogeneity. Heterogeneity reflects the extreme 

flexibility and plasticity of immune system. In fact, evolution has selected a way to 

recognize a multitude of pathogens through genomic diversity of cells.58,106 

Single-cell transcriptomics data must be visualized in a biologically meaningful way 

remaining robust to the high level of noise that is present in single-cell data. 

Single-cell sequencing applied to CD4 T cells revealed the existence of a 

subpopulation of Th2 that is distinct from the rest of population by the expression of 

a specific enzyme (Cyp11a1) that is at the basis of steroid biosynthesis. Data 

obtained by single-cell transcriptomics profiling were validated by purifications of 

these cells by antibody directed to these new markers.101,107  

 

1.6.2 Cancer evolution  

Tumor is formed from a heterogeneous mass of cells with different somatic 

mutations and different differentiated states. Heterogeneity could be a consequence 

of somatic mutations and may it be itself an important or even essential contributor 

to tumor evolution. Single cell analysis is necessary to understand the role that 

heterogeneity play in cancer evolution. 108 

Single-cell sequencing is likely to profoundly impact cancer diagnostics and 

prognosis through the detection of rare tumor cell or through the monitoring of 

circulating tumor cells. Single-cell analysis could also investigate tumor 

subpopulations and delineate differences between primary and metastatic tumor. 

A final goal of the deep understanding of cancer heterogeneity  will be the 

contribution to develop therapeutic decisions.108 It has been shown that human colon 

cancer multi-lineage differentiation represent a key source of cancer cell 

heterogeneity94.  Single-cell transcriptomics approach in mouse model of leukemia 

identified two different sub-populations of leukemic cells, each characterized by 



 
 

different co-expressed genes109. Another study using single-cell RNA-seq analysis in 

five primary glioblastomas revealed that established subtypes classifiers are variably 

expressed across cells within a tumor suggesting prognostic use of intratumoral 

heterogeneity 110 

 

1.6.3 Stem cells differentiation 

Pluripotent stem cells (PSCs) are characterized by unlimited capacity of self-renew 

and the potential to differentiate into all three germ layers of the developing embryo.  

Single-cell transcriptomics on PSCs has provided new understanding in cellular 

variation and subpopulation structures. A great number of computational approaches 

have been designed to infer cell-cycle stages, reconstruct gene regulatory networks, 

characterize transcriptional stage, differentiate trajectories and understand sources of 

transcriptional heterogeneity. 83,111 

Single-cell RNA-seq analysis applied to mouse embryonic stem cells demonstrated 

that they exist in a dynamic equilibrium between states that show different 

differentiation fates. In particular, a model applied to these data confirmed kinetics of 

RNA polymerase II binding and chromatin modifications. This different chromatin 

state of genes affects transcriptional bursting.78 

Analysis of induced pluripotent stem cells reveals considerable variation in gene 

expression between early versus later time points. Single-cell gene expression 

profiling has been used to distinguish cells into two groups that follow different fates 

in the pluripotent circuitry.94 Single-cell transcriptomics applied to neural stem cells 

(NSCs) isolated from adult mice identified rare intermediate cells in the continuum 

of NCS lineage and machine learning approach reveled subpopulations that were 

experimental validated.93 

1.7 Single-cell approach in vaccine research 

The ability of single cell studies to evaluate population heterogeneity can be used to 

study the response to new vaccines and compare the effect of vaccines adjuvants. 

Moreover, single-cell analysis is useful when seeking insight into how unique 

subsets of cells may correlate with outcomes and when a small group of cells are 

essential for conferring protection (i.e antigen-specific CD8 T cells or B cells). 

Single-cell technologies will allow the analysis of such rare subsets of cells that 



 
 

contribute in minor component of the total measurement and the implicit averaging 

of parameters in these measurements also masks the specific phenotypic state of 

these cells. Single-cell heterogeneity is informative. However, this information is 

generally lost in assays that measure cell mixtures. In vaccine research, there is a 

need to assess immunogenicity of a vaccine and single-cell approaches give the 

possibility to do that10. Upon vaccination, antigen present in the vaccine is taken up 

and presented to CD4 or CD8 T cells via antigen presenting cells. T cells that 

recognize antigen become activated, produce cytokines that potentiate the immune 

response and proliferate and persist in the immune system providing memory that 

can more rapidly recognize the same antigen in the future. This vaccine memory 

subsets it’s analyzed by measuring antigen specific cytokine production in response 

to stimulation (ICS). Antigen-specific subpopulations represent a small fraction of 

the total number of CD4 and CD8 T-cells and a large number of cells must be 

collected (50000-100000 T cells) to ensure that they can be reliable detected. Then 

each cell is classified as positive or negative for each cytokine based on fixed 

threshold. Cell counts are compared between antigen-stimulated and unstimulated 

samples from a subject to identify differences. Responders are subjects whose T cells 

respond to stimulations and the response in vaccines is defined specific if it raised 

after vaccination and it was not present at pre-vaccine time point.4,7,17,23 

MIMOSA (Mixture Model for Single Cell Assays)95, one of the first framework for 

single-cell analysis developed to overcome a common problem in the analysis of 

vaccine research data that is represented by the identification biomarkers (or 

combinations) that are differentially expressed before/after vaccination, where 

expression is defined as the proportion of cells expressing the biomarker or 

combination in the cell subset of interest. MIMOSA application showed that multiple 

subsets can be modeled simultaneously and small biological could be detected.95 

One of the first work of single-cell gene expression analysis applied on CD8 T cells 

elicited by different vaccines regimes, proved that this approach could allow the 

discovery of new subpopulations of cells differentially elicited by different 

immunizations.70 Authors have shown that single cell gene expression analysis is a 

great additional value compared to bulk analysis. Their approach allowed the 

qualitative discrimination of CD8 T-cell responses from three vaccines that could not 

be resolved using conventional assays.  



 
 

1.8 Significance of the study and main objectives 

The aim of this thesis was to perform single-cell gene and protein expression 

profiling of antigen specific CD8 + T cells elicited by two different vaccine 

platforms (RNA- and adjuvanted protein-based vaccines) to characterize different 

sub-populations uniquely regulated in each vaccine. 

CD8 T cells play a key role in response after vaccination. The quality rather than 

magnitude of T cells response is important for determining the outcome of infection 

or response to vaccination. Our attempts to design and evaluate CD8-T-cell vaccines 

are confounded by our inability to resolve major qualitative differences between T 

cells elicited by different vaccines. Being able to resolve differences between T cells 

elicited by different vaccines is therefore critically important. 

Recent advances in high-throughput single-cell gene expression profiling enabled 

their utilization in diverse research fields such as immunology, stem cell 

reprogramming, neuronal development and cancer biology. These advances, coupled 

with computational modeling approaches, enabled us to investigate, on a level of 

molecular detail not previously possible.60,71,72,105,106,112,113 

This approach allowed us to analyze the qualitative differences of CD8 T-cell 

responses elicited by the two vaccine formulations with a resolution that was 

precluded by more conventional assays.  Two different vaccine formulations (RNA-

based and protein adjuvanted - based) were used to immunize BALB/c mice in 

different prime-boost combinations. Single antigen specific CD8 + T cells were 

sorted and analyzed for the simultaneous expression of 96 markers by microfluidic 

single-cell qPCR and 32 markers by single-cell mass cytometry. Single cell gene 

expression data were acquired by BioMark microfluidic qPCR platform and 

expression data from 1,300 single cells were retained for in-depth analyses.  

Here we describe a strategy that we used to explore the molecular identities of 

individual single cells and dissect transcriptional heterogeneity. We applied an 

analysis workflow given by the combination of principal component analysis, 

differential expression analysis and genes co-expression analysis. The goal of this 

analysis was to find consistent transcriptional patterns and reveal distinct subsets of 

cells. We identified previously unrecognized subsets of antigen specific CD8 + T 

cells based upon analysis of gene-expression patterns within single cells and show 

that they were differentially induced by the two vaccines.  



 
 

We also identified profiles of vaccine induced CD8 T cell response that provide 

insight into molecular basis of immunological memory following vaccination and 

identify potential biomarkers for prediction of vaccine efficacy. The next goal will be 

mapping this specific subset of cells at protein level by mass cytometry data analysis. 

In this study, the analysis of gene transcription within single immune cells has 

allowed the qualitative discrimination of CD8+ T-cell responses from three vaccines 

that could not be resolved using conventional assays. These new single cell 

approaches will undoubtedly refine our cellular classification schemes, revealing 

new and functionally distinct subset of cells. 

Overall, our observations provide a compelling argument for the integration of 

single-cell approaches into future studies of immune cell fate specification.   



 
 

2 – Methodology 

2.1 Characterization and single-cell sorting of antigen specific 

CD8 T cells 

This study focused on the analysis of HA533-541-specific CD8 T cells induced by two 

different influenza vaccine platforms. Seasonal MF59-adjuvanted Monovalent 

Influenza Vaccine (aMIV) (A/California/07/2009/(H1N1)) – corresponding to the 7th 

isolate of an H1N1 subtype virus isolated in human in California in 2009) and RNA-

based SAM encoding H1 from the same virus and formulated with CNE56 were 

compared. 

 

2.1.1 Formulation of MF59-adjuvanted H1N1 and CNE56-adjuvanted SAM  

H1N1/MF59 formulation 

Monovalent H1N1 subunit and MF59 adjuvant were for laboratory use only and 

were not final commercial products intended for human use. MF59 is a trade mark 

for Novartis, used under license by GSK group. Production of Influenza 

A/California/7/2009 (H1N1) monovalent vaccine was performed as follow: virions 

were chemically inactivated and disrupted by detergent; subunit H1N1 proteins were 

purified and were prepared alone (MIV) or with 50% (vol:vol) of oil-in-water MF59 

nano-emulsion (aMIV) per mouse dose. 

MF59 nano emulsion was composed by polysorbate 80 (Tween), sorbitan trioleate 85 

(Span) and squalene. The vaccine formulation was prepared by mixing each 

component (water for injection, PBS, MF59, antigen) in sequential order.   

 

RNA/CNE56 formulation 

RNA was prepared as previously reported.33 Briefly, the H1 gene was amplified from 

cDNA of influenza virus A/California/7/2009 (H1N1) and cloned into an optimized 

replicon construct. DNA plasmid encoding H1 replicon was amplified in Escherichia 

Coli and purified. DNA was linearized immediately downstream of the 3’ end of the 

SAM sequence by endonuclease restriction digestion. The linearized DNA templates 

were purified and transcribed into RNA using MEGAscript T7 Kit (Life 

Technologies). RNA was capped, purified and suspended in nuclease-free water. 

RNA was formulated with CNE56 (Tween80 (0,5%), Span85 (0,5%), DoTap (0,4%), 



 
 

squalene (4,3%)), added in equal volume. RNA/CNE56 formulations were prepared 

fresh for each immunization.  

 

2.1.2 BALB/c immunization and preparation of spleens 

Female BALB/c mice, age, 6-8 weeks, were immunized at day 0 and 56 

intramuscular in the quadriceps muscle of each hind leg with 50 μl of vaccine 

formulation per leg with PBS, aMIV and SAM(H1). On experimental day 10 post 

first immunization (d10p1), week 5 post first immunization (w5p1), day 10 post 

second immunization (d10p2) and week 6 post second immunization (w6p1), 1-6 

mice were sacrificed, and spleen harvested in optimized medium (Fig 4). 

Spleens were processed to a single-cell suspension by dissociation through a 70 μm 

mesh filter. 

Ethical statement: all mouse studies were performed at GSK Vaccines S.r.l. Animal 

Research Center in compliance with all the current Italian laws on the care and use of 

animals in experimentation (Legislative decree 116/92), and with the Company 

Animal Welfare Policy and Standards. Protocols were approved by the Italian 

Ministry of Health (authorizations 249/2011-B and 22/2015-PR). 

 

 
Figure 4: Immunization scheme.  

 

 

 



 
 

2.1.3 Ex vivo MHC-I HA533-541-pentamer staining and sorting of single cell for 

RT-qPCR 

For the detection, HA533-541-specific CD8 T cells were stained with a recombinant H-

2kd restricted MHC-I pentamer loaded with HA533-541 peptide and bound to a 

phycoerythrin (PE) –labeled streptavidin targeting the TCR of HA533-541-specific 

CD8 T cells.14   

 

MHC-HA533-541-pentamer titration 

MHC-HA533-541-pentamers were tested at different dosages on splenocytes of naïve 

and SAM(H1) vaccinated mice at d10p2. Cells were stained in PBS, washed and 

incubated with H-2Kd restricted MHC-I  HA-pentamer  (HA533-541(IYSTVASSL)) or 

the control H-2Kd  HIV gag pentamer (HIV gag 199-207 (AMQMLKETI)). Anti CD8 

allophycocyanin (APC) (BD Bioscences), anti-CD14 (FITC), anti-CD19 (FITC), 

anti-CD335 (FITC) and anti-F4/80 (FITC) (eBiosciences) were further added. After 

wash, sample were run on a LSR-II special order FACS analyzer (BD Bioscience). 

HA533-541-pentamer+ CD8 T cells were identified by applying the following gating 

strategy: live cells, morphology, singlets, lineage markers (CD14-, CD19-, CD335-, 

F4/80-), CD8+ and HA533-541-pentamer+ or HIV gag 199-207-pentamer+. Samples were 

analyzed using FlowJo (software version 9.8.3). 

 

Single-cell sorting 

Single-cell sorting was performed using FACSAria II flow cytometer. Single-cell 

sorting was performed on HA533-541-pentamer+ CD8 T cells in splenocytes from PBS, 

aMIV or SAM(H1)-vaccinated BALB/c mice at different time point after 

immunization. Single-cells were sorted using a 70 μm ceramic nozzle (BD 

Bioscience) and an acquisition rate of 8000 events per second.  

The sorting plate layout was designed in order that cells were sorted into 96-well 

plate in the middle of the well. HA533-541-pentamer+ CD8 T from vaccinated mice 

were single cell sorted as lineage marker negative (CD14-, CD19-, CD335-, F4/80-), 

CD8+ and HA533-541-pentamer+, while CD8+ cells from PBS-treated mice were 

single-cell sorted as lineage marker negative (CD14-, CD19-, CD335-, F4/80-), and 

CD8+. Cells were deposited into a 96-well sorting plate (1cell/well) containing 5 μl 

of nuclease-free water with 1mg/ml BSA (Life Technologies) and 1 U/well RNasin 

(Frementas) per well. Each plate contained one single cell well with no cell as 



 
 

negative control. Two plates for each vaccine groups were single-cell sorted at each 

time point and were immediately centrifuged, freeze-dried and stored at -80°Cnuntil 

multiplexing qPCR was performed. Flow cytometry-based experiments were 

analyzed with FlowJow (version 9.8.3) and GraphPad Prism (version 6.05). 

   

2.1.4 Multiplexing RT-qPCR of HA533-541-pentamer+ CD8 T 

Transcript abundance relative to 96 genes was assessed from individual antigen-

specific CD8 T cells using the IFC qPCR Fluidigm System. For genes detection, a 

TaqMan based system was applied.  TaqMan probes consist of a fluorophore(FAM) 

covalently attached to the 5’-end of the oligonucleotide probe and a quencher (MGB-

NFQ) at the 3’-end. The quencher molecule quenches the fluorescence emitted by the 

fluorophore when excited by the cycler’s light source via FRET (Förster Resonance 

Energy Transfer). As long as the fluorophore and the quencher are in proximity, 

quenching inhibits any fluorescence signals. 

TaqMan probes are designed such that they anneal within a DNA region amplified 

by a specific set of primers. As the Taq polymerase extends the primer and 

synthesizes the nascent strand (again, on a single-strand template, but in the direction 

opposite to that shown in the diagram, i.e. from 3' to 5' of the complementary strand), 

the 5' to 3' exonuclease activity of the Taq polymerase degrades the probe that has 

annealed to the template. Degradation of the probe releases the fluorophore from it 

and breaks the close proximity to the quencher, thus relieving the quenching effect 

and allowing fluorescence of the fluorophore. Hence, fluorescence detected in the 

quantitative PCR thermal cycler is directly proportional to the fluorophore released 

and the amount of DNA template present in the PCR. cDNA from mRNA templates 

were prepared by adding 2 μl per well of oligo(dT) primers (25ng/μl final), random 

hexamers (50ng/μl final), dNTPs (1mM final) and nuclease-free water. Plates were 

placed in thermocycler (Biometra) and cDNA was synthetized following protocol. 

Wells were analyzed for the presence of CD3 cDNA to check cell sorting quality. 

Only wells positive for CD3 were further retain for subsequent analysis. 

One of the challenges in single-cell transcriptomics is given by the low quantity of 

the mRNA per single-cell. To mitigate this problem cDNAs samples were pre-

amplified in order to increase amount of starting material. Gene-specific primers 

were used in a multiplex reaction following manufacturer instructions. BioMark 

Real-Time PCR system (Fluidigm) was used to perform single-cell gene expression 



 
 

profiling. The 96.96 Dynamic Arrays were loaded into the IFC controller HX for 

priming. Microfluidic architecture does the work of combining sample and primer-

probe sets. Pre-amplified cDNA and TaqMan gene assays were loaded in separate 

wells and then mixed in the IFC. 

2.2 Single-cell gene expression analysis workflow 

2.2.1 Pre-processing 

Pre-processing of single-cell RT-qPCR data involved multiple steps including data 

arrangement, false positives elimination, missing and off scale data corrections and 

linear transformation of relative quantities of the transcripts.  

The design of the chip generates each combination of the 96 genes and 96 enriched 

cDNA libraries producing 9216 separate PCR reactions. After each cycle, the 

fluorescence is read. The cycle (or interpolated fraction thereof) at which the 

fluorescence crosses a pre-determined threshold is recorded, defined as the ‘ct’ value.  

The fluorescence reporter signal was normalized to the signal from the passive 

reference ROX based on the background signals is collected before the onset of the 

experiment. In the standard BioMark protocol the background signal was collected at 

ambient temperature. ROX is negatively uncharged at neutral ph that does not 

interact with DNA.  

The Curve Quality Treshold is a qualitative tool designed by Fluidigm which provide 

a measure of the quality of each amplification curve for DNA binding dye qPCR 

detection chemistry. In this analysis, each individual amplification curve is compared 

to a mathematically ideal exponential curve and given a quality score between 0 and 

1 (0 is a flat line and 1 is a perfect sigmoidal curve). The algorithm also takes in 

account the linearity of the baseline, the delta Rn of the final product (Rn=emitted 

fluorescence/ROX) (delta Rn is the normalization of Rn obtained by subtracting the 

baseline obtained in the initial cycle of PCR where there is a little change in 

fluorescence signal), the actual level of fluorescence, the slope of the amplification 

plot, and the return to linearity after exponential curve growth. 

 

Baseline= y-intercept + slope X (amplification cycle) 

 



 
 

The curve quality threshold is a qualitative tool designed by Fluidigm which provide 

a measure of the quality of each amplification curve for DNA biding dye.114 

Amplification curves with atypical shapes are not processed correctly and they also 

indicate sample specific problem such as enzymatic inhibition. Wells that present 

this kind of problem were removed from analysis. 

Raw data that passed Fluidigm software quality control were used for subsequent 

analysis. The resulting single-cell qPCR data (Cq values) were exported as csv files 

and subsequently organized in Microsoft Excel spreadsheets with single-cell samples 

in rows and genes in columns. The amplification curves of all PCR reactions were 

first manually analyzed to remove anomalous curves and false positives.  

Because of lognormal distribution of transcripts among cells, even high expressed 

genes will have rather few transcripts in most cells. When single cells analysis is 

performed, it is important to use a workflow that minimizes losses.  

Data should not be normalized given that frequently used normalization schemes are 

not directly applicable in single-cell gene expression experiments. Indeed, the 

individual cell is the atomic unit of normalization and the amount of starting material 

naturally measured in number of cells per reaction. The dichotomous nature of 

single-cell expression does not  allow direct application of traditional normalization 

approaches98. 

Fast most intuitive way to compare expression data for single cells is compared data 

as measured. It has been suggested to do not normalize to any kind of housekeeping 

genes or presumed reference genes given that the mRNA burst kinetics enhanced 

uncorrelated variations between randomly selected genes. An option could be 

performing global normalization i.e. normalize the mean of expression of all genes, 

but it could introduce bias.  

If cells studied are of the same type and expected to express common markers failure 

to record a Cq value in those cases is probably due to failure in that particular 

reaction chamber. Profiling is initially performed for all genes many of which will be 

not responsive. Removing nonresponsive marker will improve separation in 

multivariate analysis115,116. 
 

 

 

 



 
 

Missing data handling 

A typical goal of gene expression experiments is to search for differential expression 

across groups. The zero-inflation of expression in Biomark’s experiments introduces 

problems for testing differential representation of cell subsets characterized by 

expression patterns, as well.  

Missing data are common in scientific experiments data analysis and are a classical 

problem in statistics. Missing data (NA) were caused for two differently reasons: the 

reaction chamber contains mRNA molecules, but the reaction failed or there is no 

template in the reaction well. these two cases should be handled differently. It’s 

difficult understand whether missing data are due to technical failures or expression 

levels below to limit of detection. Variability in mRNA content at single cell level 

complicated the handling of missing value. Single-cell gene expression profiling is 

performed without replicates to maximize the number of cells analyzed. Moreover, 

protocols are optimized to reduce risk for technical failures. A pragmatic approach is 

to assume that all missing data are due to few molecules and high frequency of 

missing data is expected due to low expression levels and fluctuations over time. 

Missing data were considered as transcript expression below limit of detection and a 

0 value was added in each case on NA detection.115,117 

 

False positives detection 

A supervised pre-processing of raw data obtained from BioMark system was 

performed. Firstly, cells that “failed” the quality control of the software reading were 

filtered out. Cells where no cd8a/cd3 signal was detected were removed from the 

analysis, as well as cells were positive signal for cd4/cd19 was detected. Gene assays 

where no positive signals were observed in any sample were filtered out. Moreover, 

an empirical cut off was set to cell sample expressing at least 10% of genes.  

 

Cqcutoff determination and outlier detection  

Very high Cq values are not reliable even if a correct PCR product is formed. It 

could be caused by failed amplifications of single molecules targets in the initial 

cycles, delayed amplification due to competing reactions or enzymatic inhibition. 

High Cq values should be discarded. A useful approach is to delete all Cq-values 

above a certain threshold Cqcutoff which will be the same for all assays. A reasonable 

Cqcutoff can be chosen by inspecting control charts such as box and whisker plot 



 
 

provides an overview of the spread of the genes’ expressions. Potential and extreme 

outliers have expression levels outside 1.5⁄IQR and 3⁄IQR, respectively (IQR = 

Quartile 3–1). Quartile 1 and 3 represent the bottom and top of the box and are the 

25th and 75th percentile of the gene expression values.116 

Control charts are expected to be symmetric because of the lognormal distribution of 

transcript among individual cells. Asymmetry in control charts may indicates that 

copy number of a given transcript is too low to be reliably detected. However, genes 

should not be eliminated due to their expression characteristics. Control charts can be 

calculated and inspected for different Cqcutoff values guiding for the selection of 

appropriate cutoff. A pratical approach is to set all missing data to -1 in log scale, 

corresponding to 0.5 molecules in RQ.  For example, a Cqcutoff=27 was applied and 

and data converted into RQ. Remaining missing data were assigned RQ=0.5 Low 

abundance genes were identified, for which missing values were reassigned a Cq 

value of 40. Any gene whose average expression was within a cutoff of 3SD of the 

mean Cq value for the two chosen genes was included. All cells expressing less than 

half of these genes were excluded. Another method is data exclusion based on 

median standard deviation cutoff all missing data values were initially set to Cq 40, 

and the mean Ct and number of missing data points were calculated for all genes. 

The second and third highest expressed genes in the data set were selected and their 

mean Ct and standard deviation calculated. The limit of detection was set to Cq 37. 

All data above LOD (also 999 value) were replaced with 37. The LOD Ct values was 

subtracted from all other Ct according to the Log2EX method (Log2EX=LOD Ct-

Ct).115,116,118 

After inspection of quality control charts, we noticed that dataset didn’t show Cq 

values higher than 29. Given that, we calculated cutoff as mean of all max Cq values 

recorded for genes measured as previously reported. We set Cqcutoff=26. 

 

Statistical considerations 

Single-cell transcriptomic analysis can be used to characterize variation in gene 

expression levels at high resolution. However, the sources of experimental noise are 

not yet well understood 

To get an overview of the data, it common to calculate some basic statistics for all 

genes studied, including the number or fraction of cells expressing each gene, and the 

mean and standard deviation of all the genes expression.   



 
 

Mean and standard deviation could be calculated in logarithmic scale since the 

underlying distribution is lognormal.  

It is a good idea to visualize the distributions of the different transcripts among the 

cells either as frequency histograms or violin plot. 48,116,118 

 

Expression index computation 

The standard assumptions of qPCR-based assays apply to the Fluidigm technology, 

consider that the cycle threshold (cq) is inversely proportional to the log of 

fluorescence. The fluorescence is directly proportional to the starting concentration 

of mRNA. 119 The Fluidigm instrument returns the cycle threshold (cq); previous 

work have shown that it more useful to work with the complement of cq 71,98. 

 

logEg,c = Cqcutoff - Cqg,c 

 

Where Cqcutoff is the maximum Cq, 26 in our case. Assuming that all reactions are in 

the exponential amplification phase, this quantity should be directly proportional to 

the log-abundance of mRNA, plus an intercept term corresponding to the number of 

cycles it takes for the minimally detectable quantity of mRNA to cross threshold. If 

the fluorescence does not cross the threshold after 40 cycles, then the Fluidigm 

instrument records a value of N/A, and we say that the gene is not detected. We 

considered undetected genes as unexpressed genes. This assumption is supported by 

the idea that transcription of mRNA is thought to occur in bursts of activity followed 

by quiescence.49,54 As a consequence, we treated the undetected genes as 

unexpressed genes, and we set the corresponding Cq value to - ∞ corresponding Cq 

value to - ∞ so that the mRNA abundance is zero (i.e. 2−𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑐𝑐=0). The log 

expression of each gene g was computed as follows: logEg,c = 40 - Cqg,c where c is 

the cell and Cqg,c is the Cq value obtained from the BioMark (Fluidigm). 

The expression index (EI) quantification of gene expression was computed as the 

product of the proportion of cells expressing a given gene times the average gene 

expression value in these cells. Finally, differences in the proportion of cells 

expressing a given gene, across different groups or conditions, were tested for 

statistical significance using a Fisher’s exact test followed by correction for multiple 

testing using Benjamini-Hochberg Procedure.70–72 



 
 

 

Autoscaling and mean centering 

It was previously demonstrated that giving to all genes the same weight in the 

analysis, makes them equally important in the data processing120. In fact, multivariate 

methods (PCA, Hierarchical clustering) consider the expression levels of all genes 

and if no scaling is applied the more expressed genes will have higher weights in the 

analysis and it will dominate the analysis. Data autoscaling gives to all genes the 

same weight. This is done by calculating z score for each gene by subtracting the 

mean expression and divide by its SD (a Z score of 2 indicates that a gene in a 

particular sample is overexpressed by two SD to its mean expression in all 

samples.116,118 

Problem in autoscaling arise when panel includes genes that are not responsive, and 

their expression show only random variation. If the number of non-responsive genes 

is large the data quality may be compromised by auto scaling. An option is only 

mean centering the data. Mean centering data is performed by subtracting the 

average expression of each gene, but not dividing by standard deviation. 115 
 

Preprocessing steps not suitable for single cell analysis 

Some steps of classical qPCR analysis are not used for single cell transcriptomic 

data. In this case we don’t use reference genes, given that any gene has constant 

steady state level of transcripts. Global normalization based on averaged expression 

of all transcript can be performed (or mean center data) but this could cause some 

complications because the rather small number of genes typically analyzed per cell 

and the ambivalence in the handling of missing data.116 

 

 

2.2.2 Principal component analysis 

Principal component analysis is a technique that reduces dimensionality of the data, 

by maintaining most of the variation in the dataset121. The reduction is performed by 

the identification of the directions (called principal components) that explain the 

maximal variation in the dataset.122 Plotting the samples allow the visualization of 

similarities and differences between them by the identification of different groups in 

which they are separated. 123  



 
 

In the principal component analysis, the original variables are transformed by linear 

combination in new variables which are correlated with each other displaying 

significant patterns in the data122. The first principal component is the direction along 

which the samples show the largest variation. The second one is the direction, 

orthogonal to the first component, along which the samples show the second largest 

variation. 123 

The input for principal component analysis is a data matrix X in which column 

represent variables and rows correspond to the samples. The final number of 

principal components correspond to the number of variables.122 

PCA is mathematically defined as an orthogonal linear transformation that 

transforms the data to a new coordinate system. The method creates a new set of 

variables called principal components which are calculated by the linear combination 

of the original variables.122,124  

The principal components are stored in the “PCA loading matrix” which can be 

interpreted as a rotation matrix.125 Geometrically, PCA is equivalent to a rotation of 

the original data space in which the new axes are represented by the principal 

components. The first component, PC 1, represent the direction of highest variance. 

The second component, PC 2, is the direction that maximizes the remaining variance 

in the orthogonal subspace complementary to the first component. The first and 

second components together explain the two-dimensional plane of highest 

variance.126 PCA transforms the data into a new lower-dimensional subspace in the 

new coordinate system the first axis corresponds to the first principal component, 

which is the component that explains the greatest amount of the variance in the data. 

The second principal component must be orthogonal to the first principal component, 

it does its best to capture the variance in the data that is not captured by the first 

principal component.83 

 

The main step of PCA is the computation of the weighted coefficients that are used 

for the linear combination of the variables.122 The classical way is to calculate the 

eigenvectors of  covariance matrix between variables, covij= 1
𝑛𝑛−1

∑𝑛𝑛
𝑚𝑚=1 (x𝑖𝑖𝑖𝑖 −

 𝑥̅𝑥𝑖𝑖)�x𝑗𝑗𝑗𝑗 −  𝑥̅𝑥𝑗𝑗�  where  𝑥̅𝑥 is the mean of all variables, n is the number of samples,  

x𝑖𝑖𝑖𝑖 is the value of variable i in object m and ,  x𝑗𝑗𝑗𝑗 is the value of variable j in object 



 
 

m . The eigenvectors are sorted by their corresponding eigenvalues and are 

orthogonal to each other.124,126  

In detail, PCA transform a d-dimensional sample vector x=(x1,x2,…,xd)T into a 

usually lower dimensional vector y=(y1, y2, …yk)T, where d is the number of variables 

and k is the number of selected components. The transformation is defined by the k x 

d matrix V, such that 

y = Vx 

Each row-vector of matrix y contains scores of a new variable yj defined as principal 

component (PC). The principal component j is a linear combination of all original 

variables, weighted by the elements of the corresponding transformation vector vj = 

(vj1,vj2,...,vjd)  

 𝑦𝑦𝑗𝑗 = �𝑣𝑣ji𝑥𝑥𝑥𝑥 = 𝑣𝑣𝑣𝑣1𝑥𝑥1 + 𝑣𝑣𝑣𝑣2𝑥𝑥2 + ⋯+ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣
𝑑𝑑

𝑖𝑖=1

 

n is the number of samples and d is the number of original variables. The weights vji 

described  the contribution of all original variables xi to the j component.124,126 

Geometrically, PCA is equivalent to a rotation of the original data space. The new 

axes are the principal components. The vector vj gives the direction of the jth 

principal component (PC j) in the original data space. The first component, PC 1, 

represented by the variable y1, is in the direction of highest variance. The second 

component, PC 2, is the direction that maximizes the remaining variance in the 

orthogonal subspace complementary to the first component. The first and second 

components together explain the two-dimensional plane of highest variance. 122,123,125 

To globally visualize the data, we used principal component analysis. As previously 

reported60,71,82, PCA was applied to reduce dimensionality of the data by finding 

linear combinations of the original data ranked by their importance. The data are 

represented by a gene expression space is n dimensions, where n is the number of 

genes analyzed and each point is a cell.42 

Because PCA components consist of contribution from all gene it is possible to 

identify the genes that give the highest contribution in projecting cells in the space.82  

The length of an eigenvector represents the largest variance for each gene in the 

correlation coefficients and the distance between genes in the correlation coefficients 

was illustrated by the angle formed between the gene eigenvectors.122 The ordering 

of the eigenvectors is based on the distance between genes in terms of Pearson's 



 
 

coefficients. Gene eigenvectors placed close to each other were more similar in the 

expression patterns and hence were more positively correlated71,127. The pattern of 

samples revealed by PCA can be visualized together with genes having the largest 

weight for the showed principal components that characterized a specific group of 

samples.123 

 

2.2.3 Silhouette index – clustering score 

Silhouette index was used as internal measure to assess quality of clustering 

(separation of different groups in the PCA PC1/PC2 space). It is a measure of 

tightness and separation of clusters, which is used to assess the degree of clusters 

separation. For a given cluster Xj (j=1,…..,c), this method assigns each sample Xj a 

quality measure, s(i) (i=1,…,m), known as the Silhouette width. The Silhouette width 

is a confidence indicator of the membership of the i th sample in cluster Xj The 

Silhouette width for the i th sample in cluster Xj is defined as: 

 

𝑠𝑠(𝑖𝑖) =
𝑏𝑏(𝑖𝑖) − a(i)

max{𝑎𝑎(𝑖𝑖),𝑏𝑏(𝑖𝑖)} 

  

where a(i) is the average distance between the i th object and all of objects included 

in Xj, and b(i) is the minimum average distance between the i th sample and all of the 

sample clustered in Xk (k=1,…,c;k≠j), and this formula follows that -1 ≤ s(i) ≥ 1. s(i) 

closing to 1 indicates that the i th object has been well clustered, i.e. it was assigned 

to an appropriate cluster. s(i) closing to zero suggests that the i th sample could be 

assigned to the neighboring cluster. If s(i) is close to -1, the object is misclassified. 
128 

The extent of separation of cell clusters in the PCA space was quantifies using the 

clustering silhouette approach. The clustering score provided by this analysis is a 

measure of how tightly grouped all the data in the cluster are.  

 

 

2.2.4 Fisher’s Exact Test 

Fisher’s exact test is a statistical significance test for categorical data (Fisher, 1922, 

1925). It is based on a 2 × 2 contingency table which measures the association 



 
 

between two variables. Fisher's exact test can be used when you have two nominal 

variables, to know whether the proportions for one variable are different among 

values of the other variable. We used Fisher’s exact test to measure the statistical 

significance of change in number of cells expressing genes between two groups.   

Fisher's exact test is more accurate than the chi-square or G-test of independence 

when the expected numbers are small. Fisher's exact test is generally used when the 

total sample size is less than 1000, and chi-square or G–test for larger sample sizes.  

The null hypothesis is that the relative proportions of one variable are independent of 

the second variable; in other words, the proportions at one variable are the same for 

different values of the second variable. 

Unlike most statistical tests, Fisher's exact test does not use a mathematical function 

that estimates the probability of a value of a test statistic; instead, you calculate the 

probability of getting the observed data, and all data sets with more extreme 

deviations, under the null hypothesis that the proportions are the same.  

Fisher's exact test, like other tests of independence, assumes that the individual 

observations are independent. Unlike other tests of independence, Fisher's exact test 

assumes that the row and column totals are fixed, or "conditioned." 

An approach used by the fisher.test function in R is to compute the p-value by 

summing the probabilities for all tables with probabilities less than or equal to that of 

the observed table. In the example here, the 2-sided p-value is twice the 1-sided 

value; but in general, these can differ substantially for tables with small counts, 

unlike the case with test statistics that have a symmetric sampling distribution. 129,130 

  



 
 

Chapter 3 – Results 

3.1 Overview 

In the present study, we implemented an experimental setup for analyzing single-cell 

transcriptome responses of antigen specific CD8+ T cells following administration of 

two alternative influenza vaccine formulations. Details of the procedure are 

presented in Fig 4.1.  

 

 

 
Figure 4.1: Overview on single-cell analysis workflow 

 

Animals were immunized according to the experimental design shown in Fig 4. To 

understand which cells were activated and their phenotypic properties, a single-cell 

characterization was performed. To obtain single HA533-541-pentamer+CD8+ T 

cells, splenocytes from BALB/c mice were stained with H-2Kd-restricted HA533-

541-pentamer or a control HIV199-207-pentamer. Cells were single cell sorted based 

on the binding to and expression of MHC-I monomer. To determine the 

transcriptional state of HA533-541-pentamer+CD8+ T cells, RT-qPCR was applied by 



 
 

preparation of cDNA. Genes were detected by using TaqMan primer and a 

fluorescence probing system in a Fluidigm 96.96 dynamic array chip. 

96 genes were selected based on known functions in T- cell differentiation, tissue 

homing, survival, activation, cytotoxicity and regulation of immune 

response16,19,70,71,131–133 (Table 1). 

After pre-processing steps, genes with no signal detected were filtered out, providing 

a dataset of 86 genes for further analyses. Overall, expression data from 1,152 single 

cells were collected and used for subsequent analyses. 

 

Class Gene 

Apoptosis Bim, FasL, PD-1 

Cytokine/Chemokine receptors 
Ccr4, Ccr5, Ccr6, Ccr7, Ccr10, Cx3cr1, 

Cxcr3, Cxcr4, Cxcr5, Cxcr6 

Interleukin receptor 
Il-1R-1, Il-2R-a, Il-2R-g, Il-7R-a, Il-10R-a, Il-

12R-b1, Il-21R 

Cytokines/Chemokines/Interleukins Ccl4, Il-2, Il-4, Il-5, Il-9, Il-10, Il-13, Il-21, Il-

22, Ifn-γ, Tgf-b1, Tnf, Trail 

Killer cell lectins Klrd1, Klrc1, Klrk1, Klrg1 

Secreted proteins/Granzyme 
Cd70, Cd40l, Gzma, Gzmb, 

Gzmk,Mmp2,Mmp9, Prf1 

Signaling/Proliferation/Self-

renewal  

Cd44, Cd8a, Cd69, Cd62l, Spi6, Lfa1, Cd19, 

Cd27, Cd28, Vla-4b, Cd69, Itgae, Lamp1, 

Ox40, 41bb, Ctla4, Cd160 

Transcription factors 

Ahr, Bcl3, Bcl6 ,Bcl11b ,Blimp1, CamkIV, 

Eomes, Foxo3a, Foxp3, Gata3, Irf4, Mki67, 

Nfkb1, Relb, Rorc, Stat5a, Tbet 

 

Table 1: 96 selected gene targets grouped by function. 

 

 



 
 

3.2 CD8+ T-cell populations elicited by the two vaccine 

formulations reveal substantial heterogeneity 

Principal component analysis was applied to globally visualize data. Data were 

projected into the first two principal components (PC1 and PC2), which account for 

the largest amount of data covariance.  

 

 
Figure 5: PCA reveals substantial heterogeneity between cells  

Data from 1152 single cells were used for subsequent analyses, divided into the two 

vaccine groups at four time points. PCA performed on transcriptome profiles of 

antigen-specific CD8+ T cells. aMIV (yellow) and SAM(H1) (red). Clustering score 

(CS) and loadings plot for the 10 most informative genes are also reported. 

PCA reveals extensive overlap between vaccines that could be explained by 

transcriptional similarity across cells (Fig 5). The first two components captured 

from 17% to 36% of the variance in our dataset, slightly low compared to similar 

independent studies.65 This is probably a reflection of transcriptional pattern that are 

shared from two CD8+ T cells populations.  

Gene expression space has 86 dimensions because of 86 genes and each data point is 

a cell. The coordinate in each dimension is the level of expression for a given gene in 

that cell. Each component has a contribution of all 96 genes since the component cut 

 



 
 

across 86D space. A projection of the expression patterns onto PC1 and PC2 

revealed cells overlap and weak cluster separation. 

A silhouette analysis was used to assess quality of clustering. This method provides 

both a coefficient representing the tightness and separation of clusters, and a 

representation of how well the data fits into the clusters. Clustering scores close to 0 

indicate that there is no substantial separation between the two clusters. Generally, 

clusters were not well separated. D10p2 showed a CS of 0,22 (Fig 5), indicating a 

weak but existing structure. This is confirmed also by the highest percentage of 

variance explained by the two PC components. It was assumed that best CS of d10p2 

was given by well-defined cellular fates and it was reasoned that could be utilized to 

extrapolate cellular subsets and map them to other time point and looking for 

differences in molecular insight.  

Because PCA components consist of contribution of all 86 genes most information 

rich genes were identified in classifying cells. Loadings were represented by arrows 

with gene name. From the selected set of genes, Cd62l contributed clearly to the 

clustering of aMIV vaccinated cells on the PC1 and interestingly is among most 

informative genes of PCA of all time points. Cd62l is a key trafficking gene that 

distinguish naïve from effector cells. Cd62l expression in CD8+ T cells at single-cell 

level distinguished   naïve from short lived effector T cells (TSLE). The two vaccines 

didn’t show any significant difference in level of expression of Cd62l mRNA among 

time point in each vaccine group. If we consider percentage of cells expressing 

Cd62l, we observed differences between SAM(H1) and aMIV (Fig 6B). SAM(H1) 

vaccinated cells were characterized by a higher number of Cd62l_neg cells mostly at 

later time points. aMIV elicited cells displayed a balance between Cd62l_neg vs 

Cd62l_pos cells. The majority of SAM(H1) elicited CD8 T cells lack in the 

expression of Cd62l. 
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Figure 6: Cd62l mRNA expression in CD8+ T cells 

A. Level of expression (Ctcutoff-Ct) of Cd62l at all time points (x axis), aMIV 

(orange), SAM(H1) (red) B. Frequency of cells expressing Cd62l in both vaccine 

groups, aMIV_Cd62l_neg (light green), aMIV_Cd62l_pos (dark green), 

SAM(H1)_Cd62l_neg (light blue), SAM(H1)_Cd62l_pos (dark blue). 

 

 

 

To investigate if Cd62l_neg and Cd62l_pos were characterized by distinct 

transcriptional patterns, PCA was performed on the Cd62l-defined subpopulations 



 
 

within and between vaccines at d10p2 (Fig 7). Cd62l_neg and Cd62l_pos cells 

segregated into distinct clusters both in aMIV and SAM(H1) groups. We 

hypothesized that this could be explained by different transcriptional patterns.  

Cd62l_pos cells elicited by the two vaccines were transcriptionally similar whereas 

Cd62l_neg cells formed distinct clusters. Overall, collected findings suggest that 

Cd62l_neg populations were transcriptional different (FIG. 7). 

 

 

 

 
 

Figure 7: PCA on d10p2 Cd62l_neg and Cd62l_ pos populations highlighted 

defined clusters 

PCA performed at d10p2 on aMIV_Cd62l_neg (light green), aMIV_Cd62l_pos (dark 

green), SAM(H1)_Cd62l_neg (light blue) and SAM(H1)_Cd62l_pos (dark blue) 

compartments, with indicated 10 most informative genes. 

  



 
 

3.3 SAM(H1) and aMIV induce distinct transcriptional programs 

in Cd62l_neg CD8+ T cells 

Loadings from Cd62l_neg populations PCA highlighted a group of six genes that we 

hypothesized form a distinct group that was prevalent in SAM(H1)_Cd62l_neg cells 

clustering on PC1. Expression profiles of Cx3cr1, Cxcr6, Gzma, Gzmb, Klrc1 and 

Klrd1 were examined in both Cd62l_neg and Cd62l_pos populations in both 

vaccines in all time points (Fig 8). Interestingly, Gzma, Gzmb and Cx3cr1 were 

uniquely expressed in SAM(H1)_Cd62l_neg populations in all time points. Klrd1 

was expressed without any substantial difference in all time points with a peak of 

expression in SAM(H1)_d10p2_Cd62l_neg group. Klrc1 expression was specific to 

SAM(H1) in both groups (Cd62l_neg and Cd62l_pos) at every time point, always 

upregulated in Cd62l_neg populations. Cxcr6 didn’t show appreciable differences. 



 
 

 

 

 
 

Figure 8: Cytotoxic/inflammation genes characterize SAM(H1)_Cd62l_neg 

populations 

Expression of Cx3cr1, Cxcr6, Gzmb, Gzma, Klrc1, Klrd1 in aMIV_Cd62l_neg (light 

green), aMIV_Cd62l_pos (dark green), SAM(H1)_Cd62l_neg (light blue) and 

SAM(H1)_Cd62l_pos (dark blue) compartments. Expression is calculated as 

expression index (E.I.) = “percentage of positive cells” x “mean of expression of 

positive cells”. Fisher exact test *=p<0,05, ** p=0,01 (Benjamini-Hochberg 

threshold 0.05). 

  



 
 

3.4 SAM(H1)-induced Cd62l_neg CD8+ T cells are characterized 

by an effector-cytotoxic phenotype 

Gzma, Gzmb, Cx3cr1, Cxcr6, Klrc1 and Klrd1 markers are clustered together on the 

Cd62l_neg PCA loadings plot, suggesting that they have a similar co-expression 

pattern (i.e. they are co-expressed in the same cell) (Fig 7 bottom-right panel). 27% 

of SAM(H1) vaccinated cells co-expressed Gzma, Gzmb, Cx3cr1, Cxcr6, Klrc1 and 

Klrd1 (Fig 9). Interestingly, these genes were not co-expressed or at very low level 

(2-7%) in SAM(H1)_Cd62l_neg populations in other time points (d10p1, w5p1, 

w6p2) (Fig 9B). This finding may underlie the high effector-cytotoxic transcriptional 

profile at d10p2. Next, we wondered which the most frequent combinations of were 

5, 4 and 3 genes. Gzma, Gzmb and Cxcr6 are the 3 genes most co-expressed in 

d10p2 (57% of cells) (Fig 9B). Frequency of cells co-expressing these genes 

decreased at other time points. After prime percentage of co-expressed genes varied 

between 20% at d10 to 27% at w5. Six weeks after the second immunization, most of 

the co-expression was lost, with only 9% of cells showing Gzma, Gzmb and Cxcr6 

co-expression. Levels of expression of these genes (EI) showed a strong decrease of 

Gzmb and Gzma expression at w6p2, while Cxcr6 abundance remained high at each 

time point (Fig 9C). 

We hypothesized that different expression combination of Cxcr6, Gzma and Gzmb 

could characterized different SAM(H1)_Cd62l_neg group at different time points. 

Co-expression of Gzma and Gzmb is higher in d10p2 population (66,14% of cells) 

and drop at other time points (from 24,1% to 33,6%). However, the percentage of 

cells that were negative for both markers was 62 % at w6p2 and only 20% of cells 

were Gzma- and Gzmb-negative at d10p2. The same trend was found for Gzmb and 

Cxcr6 co-expression (Fig 10). 

  



 
 

 
 

Figure 9: Characterization of Cd62l_neg expression profiles 

A. Scatterplots show comparison between aMIV_Cd62l_neg and SAM_Cd62l_neg 

cells at d10p2 for the frequency of cells expressing the genes analyzed. Genes 

outside dashed lines are expressed from >15% of cells.B. Bar plots show co-

expression of the six clustered genes at d10p2 in the SAM(H1)_Cd62l_neg 

compartment: 6 markers (Klrc1, Gzma, Cx3cr1, Cxcr6, Gzmb and Klrd1), 5 markers 

(Klrc1, Gzma, Cxcr6, Gzmb and Klrd1), 4 markers (Klrc1, Gzma, Cxcr6 and Gzmb) 

and 3 markers (Gzma,, Cxcr6 and Gzmb). D10p1 (pink), w5p1 (blue,) d10p2 (red) 

and w6p2 (green). C. Bar plots show expression index of Cxcr6, Cx3cr1, Gzma, 

Gzmb, Klrc1, Klrd1 in D10p1 (pink), W5p1 (blue,) D10p2 (red) and W6p2 (green). 

  



 
 

 
 

Figure 10: SAM(H1) d10p2_Cd62l_neg populations show highest co-expression 

of granzymes and Cxcr6 

Table (A) and bar plot (B) show frequencies of cells that co-express various 

combination of couple of genes in SAM(H1) Cd62l_neg populations in d10p1 (pink), 

w5p1 (blue,) d10p2 (red) and w6p2 (green). 

  



 
 

3.5 SAM(H1)-induced Cd62l_neg CD8+ T cells are characterized 

by a terminal effector profile. 

The balance between T-bet and Eomes has been shown to determine effector and 

memory cell fate in CD8+ T cells20,134. T-bet and Eomes have a crucial role in the 

formation and function of effector and memory T cells SAM(H1)_Cd62l_neg 

populations expressed higher level of Tbet than Cd62l_pos cells(Fig 11A). In 

contrast, Eomes is preferentially expressed in Cd62l_pos populations except for 

d10p1 time point in which Eomes is expressed in both populations (Fig 11B). It was 

observed that SAM_Cd62l_neg populations exhibited a positive Tbet/Eomes ratio 

(Fig 11C). Interestingly, after prime, the Tbet/Eomes ratio increased at 5w, whereas 

after boost, the Tbet/Eomes ratio performed an opposite trend, with higher ratio at 

d10 and decrease at 6w.  

In both SAM(H1)- and aMIV-elicited cells, Tbet was expressed preferentially in 

Cd62l_neg cells. Eomes was preferentially expressed in Cd62l_pos cells. aMIV 

vaccinated cells presented a lower expression index compared to SAM(H1) 

vaccinated cells (Fig 11D). It was hypothesized that in SAM(H1)-indiced cells, boost 

could induce a strong cytotoxic response at earlier time point which would disappear 

after 6 weeks, caused by possible exhaustion of cells. After prime at d10, 

transcriptional cytotoxic response is moderate and increased in late time point 

showing that cells seemed to continue transcriptional cytotoxic activity also after 

weeks post prime. 

It was reported that expression of Eomes and Cd62l promotes the expression of Tbet 

and Cx3cr1. Additionally, blimp and Tbet expression induces short-lived effector T 

cells (Tsle) differentiation of CD8+ T cells, while Klrg1 is a marker of Tsle phenotype. 

SAM(H1)_Cd62l_neg cells were characterized by a transcriptional profile consistent 

with that of Tsle differentiation (Fig 12). Tsle cells have a significantly shorter lifespan 

and reduced proliferative capacity. Interestingly, d10p2 exhibited expression of Il2ra. 

Il2ra is a marker for terminal Teff. It was shown that at single cell level CD8+ T cells 

exhibit a pronounced asymmetric distribution in cells that were preparing for 

division. Cells that receive a prolonged il2 signals acquire terminal Teff 

characteristic (increased capacity for INF and Gzmb production). 

Expression index of Klrg1, Blimp1 and Il2ra (Fig 12) confirmed the effector pattern 

in Cd62l_neg compartments and showed the presence of cells with terminal effector 



 
 

phenotype in SAM(H1)-induced cells at d10p2; Klrg1 was found to be uniquely 

expressed in SAM(H1)_Cd62l_neg cell population.  

In early activated CD8+ T cells, Blimp1, Klrg1 and Il2ra cooperate through partially 

redundant activity to induce cytotoxic T cells inducing INF, GZMB, Perforin and 

CXCR3. 16,19,20,36 

Taken together, these results demonstrate that gene expression pattern in 

SAM(H1)_Cd62l_neg cells is characterized by a strong cytotoxic profile supported 

by the high ratio Tbet/Eomes. Changes in the percentage of co-expressed genes 

follow the trend of Tbet/Eomes. SAM(H1)_Cd62l_neg population expressed Klrg1 

and blimp at all time points (Fig 12). Blimp is part of transcriptional program that 

increase the formation of Klrg1hi Il7ralow terminal effector cells and enhance 

functions, such as migration to site of inflammation and the expression of INF and 

GZMB.16,21 
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Figure 11: Tbet and Eomes expression in different compartments 

A. CD8 + T cell differentiation model. Adapted from “Transcriptional control of 

effector and memory CD8+ T cell differentiation” Kaech & Cui, Nature Review, 

2012 B. Expression of Tbet and Eomes expression in SAM(H1)_Cd62l_neg (light 

blue) and SAM(H1)_Cd62l_pos (dark blue) compartments in different time points. 

C. Ratio between expression of Tbet/Eomes in SAM(H1)_Cd62l_neg cells and 

Eomes/Tbet in SAM(H1)_Cd62l_pos cells. D. Expression of Tbet and Eomes 

expression in aMIV_Cd62l_neg (light green), aMIV_Cd62l_pos (dark green), 

SAM(H1)_Cd62l_neg (light blue) and SAM(H1)_Cd62l_pos (dark blue) 

compartments. 

  



 
 

 

 
 

Figure 12: SAM(H1)_Cd62l_neg population at d10p2 is characterized by a 

terminal effector  profile 

Expression of Klrg1, Blimp1 or Il2ra in aMIV_Cd62l_neg (light green), 

aMIV_Cd62l_pos (dark green), SAM(H1)_Cd62l_neg (light blue) and 

SAM(H1)_Cd62l_pos (dark blue) compartments. Expression is calculated as 

expression index (E.I.) = “percentage of positive cells” x “mean of expression of 

positive cells”. Fisher exact test *=p<0,05, ** p=0,01 (Benjamini-Hochberg 

threshold 0.05). 

 

  



 
 

3.6 Cd62l_neg CD8+ T cells shows consistent transcriptional 

differences between SAM(H1) and aMIV 

Cd62l_neg CD8 T cell subsets induced by the two vaccine formulations were 

characterized by distinct transcriptional patterns at all analyzed time points. 

SAM(H1) Cd62l_neg populations were represented by a subset of cells characterized 

by the expression of multiple cytotoxic genes (Fig 13). Interestingly none of the 

aMIV-induced cells were transcriptionally similar to these. aMIV Cd62l_neg cells 

were transcriptionally less active than their SAM(H1) counterparts. Separation 

between clusters was driven by the expression of Il7ra, Cd27, Cxcr3 and Gata3 genes 

(Fig 13). 

Scatter plots exhibited comparison in frequency of cells expressing genes in 

Cd62l_neg populations at all time points (Fig 14). The most relevant difference is 

given by the presence of higher number of cells in SAM(H1) groups that express 

cytotoxic/inflammation genes. A greater frequency of aMIV_Cd62l_neg cells from 

all time points than SAM(H1)_Cd62l_neg cells expressed genes encoding molecules 

that have inhibitory (Pd1), regulatory  (Cd40l) or activation of CD8 + T cells through 

TNFSF pathway (gitr). Mainly gitr can be found higher expressed in 

aMIV_Cd62l_neg populations in all time points. 

  



 
 

 
 

Figure 13: Cd62l_neg groups were transcriptionally different at all time points. 

PCA performed at d10p2 on aMIV_Cd62l_neg (light green), SAM(H1)_Cd62l_neg 

(light blue). 

  



 
 

 

 

 
Figure 14: Cd62l_neg groups were transcriptional different in all time points 

Scatter plots show comparisons between A. aMIV_Cd62l_neg and aMIV_Cd62l_pos 

cells or B. SAM(H1)_Cd62l_neg and SAM(H1)_Cd62l_pos cells for the frequency 

of cells expressing the genes analyzed. Genes outside dashed lines are expressed 

from >15% of cells 

  



 
 

3.7 Cd62l_pos cells exhibit transcriptional similarity between 

vaccines 

A comparison between Cd62l_pos population and Cd62l_neg population were 

performed for both vaccines, to gain further insight into transcriptional patterns in the 

Cd62l_pos populations (Fig 5A+B). Cd62l_pos populations were generally 

characterized by a decreased percentage of transcriptionally active cells. 

aMIV_Cd62l_pos population is characterized by an increased number of cells 

expressing Ccr7, Cxcr4, Il7ra compared to Cd62l_neg population (Fig 15A). 

Similarly, in SAM(H1)-induced cells, an increase in Ccr7, Btla, Eomes, Cxcr4 and 

Cd27 expression was more evident in Cd62l_pos cells than Cd62l_neg (Fig 15B). In 

both vaccine groups Cd62l_pos populations revealed fewer transcriptional 

differences compared to related Cd62l_neg populations. Specifically, Ccr7 and 

Cxcr4 were shared by both vaccine groups (Fig 15A+B), where Ccr7 was mainly 

expressed by Cd62l_pos populations in both vaccines at all time points (Fig 4C). 

Differently, Cxcr4 was observed in Cd62l_pos population in both vaccines at early 

time points but not at later time points, where differences were not evident (Fig 4D). 

Expression of both CCR7 with CD62L has been shown to characterize murine 

memory cells. This is well characterized at protein level30, where CXCR4 has been 

shown to have a critical role on CD8+ T cells homing to the bone marrow and in 

maintaining CD8 + T-cell memory pool31. Results suggest that presence/absence of 

Cd62l mRNA identified two cellular subsets: a Cd62l_pos memory like 

subpopulation and a Cd62l_neg effector like subpopulation.  

  



 
 

 
 

 

Figure 15: Cd62l_pos cells exhibit transcriptional similarity between vaccines 

Scatterplots show comparisons between A. aMIV_Cd62l_neg and aMIV_Cd62l_pos 

cells or B. SAM(H1)_Cd62l_neg and SAM(H1)_Cd62l_pos cells for the frequency 

of cells expressing the genes analyzed. Genes outside dashed lines are expressed 

from >15% of cells. Bar plots show expression of C. Ccr7 gene and D. Cxcr4 gene 

across aMIV_Cd62l_neg (light green), aMIV_Cd62l_pos (dark green), 

SAM(H1)_Cd62l_neg (light blue) and SAM(H1)_Cd62l_pos (dark blue) 

compartments. Fisher exact test *=p<0,05, ** p=0,01 (Benjamini-Hochberg 

threshold 0.05).  



 
 

3.8 Klf2 may act as a master regulator of Cd62l_pos CD8+ T cells 

Ccr7 in preferentially expressed in Cd62l_pos populations. (Fig. 15 C). We 

hypothesized that this could be explained with the common transcription factor Klf2 

that regulate the expression of both. To investigate this hypothesis, we look the 

behavior of another gene co-regulated by the same transcription factor S1p1. Klf2 

regulates expression of Cd62l, S1p1, Ccr7 and Cxcr3. 83,135 S1p1 is expressed in all 

compartments (slightly upregulated in Cd62l_neg groups). Cxcr3 is downregulated 

in Cd62l_neg in aMIV but we didn’t find appreciable differences in SAM cd62_neg 

versus cd62_pos compartments. Klf2 is highly expressed in naïve and memory T 

cells but only expressed at low levels in effector T cells such as CTL. 

Klf2 expression in T cells is dynamic and determined by both the strength and 

duration of antigen receptor or cytokine signaling. Klf2 expression is controlled by 

FoxO.136,137 Klf2 in naïve T cells control expression of Cd62l, an adhesion receptor 

essential for T cell transmigration from the blood into secondary lymphoid tissue. 

Transcriptional profiling reveals that the loss of Klf2 is essential for T cells to 

acquire the full effector profile (Klf expressed upregulation of IFN gamma and 

perforin). Klf can upregulate the expression of Spi6. Klf2 expression also controls T 

cells trafficking by maintaining expression of Cd62l and S1p1; key molecules that 

control T cell entry and positioning in secondary lymphoid tissue. 

CD8 T cells that maintain Klf2 failed to express the inflammatory chemokine 

receptor Cxcr3 and did not acquire the ability to migrate to his ligand CXCL10. 

Reacquisition of Cd62l and Ccr7 (after rapamycin treatment that induce expression 

of Klf2) and loss of Cxcr3.135,136 

Ccr7-S1p1 tend to be co-expressed in Cd62l_pos populations mainly in aMIV at 

early time points (Fig 16). SAM(H1) was characterized by this trend but with lower 

percentage of cells that co-expressed this genes in Cd62l_pos populations. The 

transcriptomic profiling at single-cell level seemed to confirm that cells expressing 

Cd62l, also expressed Ccr7 and S1p1, genes regulated by Klf2.  

  



 
 

 

 
 

Figure 16: Ccr7-S1p1 co-expression 

S1p1-Ccr7 co-expression across aMIV_Cd62l_neg (light green), aMIV_Cd62l_pos 

(dark green), SAM(H1)_Cd62l_neg (light blue) and SAM(H1)_Cd62l_pos (dark 

blue) compartments at all time points (d10p1, w5p1, d10p2, w6p2) 

  



 
 

3.9 Transcriptional differences between aMIV Cd62l_pos vs 

aMIV Cd62l_neg at all time points 

Cd62l_pos population showed different transcriptional patterns compared with 

Cd62l_neg populations in all time points. This confirm that the status of Cd62l 

expression led to two different transcriptional patterns.  aMIV neg populations 

exhibited an increased number of cells expressing Vla-4a, Vla-4b in all time points, 

compared to Cd62l_neg population (Fig 17B). In aMIV_pos populations higher 

frequencies of cells express Ccr7 in all time points, Cxcr4 only in early time points. 

(Fig 17B). Interestingly Cxcr3 was among most informative gene in all time points, 

showing a contribute of this gene in clustering aMIV_Cd62l_neg populations in PCA 

plot. (Fig 17A). 
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Figure 17: aMIV Cd62l_neg vs Cd62l_pos groups were transcriptional different 

in all time point 

A. PCA performed on aMIV_Cd62l_neg (light green), aMIV_Cd62l_pos (darkgreen) 

compartments, in all time points, with indicated 10 most informative genes. B. 

Scatter plots show comparisons between aMIV_Cd62l_neg and aMIV_Cd62l_pos 

cells in all time points for the frequency of cells expressing the genes analyzed. 

Genes outside dashed lines are expressed from >15% of cells. 

 

  



 
 

3.10 Transcriptional differences between SAM(H1) Cd62l_pos 

vs Cd62l_neg at all time points 

Cd62l_pos population exhibited different transcriptional patterns compared with 

Cd62l_neg populations in all time points. This confirms that the status of Cd62l 

expression led to two different transcriptional patterns. Most informative genes (Fig 

18A) that distinguished SAM(H1)_Cd62l_neg populations highlighted higher 

frequencies of cells expressing cytolytic, cytotoxic, inflammatory genes, confirming 

the effector cytotoxic pattern found at d10p2 that is strongly diminished at w6p2. 

W6p2 PCA revealed a weak structure, due to the low number of positive cells. 

Interestingly, loading plots highlighted that Cd62l is opposite to Gzma, confirming 

the found that Gzma was not expressed in Cd62l_pos population. 

SAM(H1) neg populations showed an increased number of cells expressing 

granzymes. Cxcr6, Klr genes, compared to Cd62l_neg population (Fig 18B). In 

aMIV_pos populations higher frequencies of cells express Ccr7 in all time points. 

(Fig 18B). 
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Figure 18: SAM(H1)_Cd62l_neg vs Cd62l_pos groups were transcriptional 

different in all time points 

A. PCA performed on SAM(H1)_Cd62l_neg (light blue), SAM(H1)_Cd62l_pos 

(dark blue) compartments, in all time points, with indicated 10 most informative 

genes. B. Scatter plots show comparisons between SAM(H1)_Cd62l_neg and 

SAM(H1)_Cd62l_pos cells in all time points for the frequency of cells expressing 

the genes analyzed. Genes outside dashed lines are expressed from >15% of cells. 

  



 
 

3.11 Cd62l and Il7ra combinations define distinct 

subpopulations 

Mouse analysis of surface proteins such as IL7R and CD62L allowed the definition 

of three differentiation states: effector Teff (IL7R-, CD62L-), effector memory 

Tem(IL7R+, CD62L-) and central memory Tcm (IL7R+, CD62L+), characterized by a 

gradient of proliferative and cytotoxic potential. Previous studies on single CD8+ T-

cell transcriptomic profiles have shown different set of genes expressed in Tcm and 

Tem elicited by different vaccine regimes.113 It was hypothesized that sub-sampling 

cells in Teff, Tem and Tcm cells based on the presence or absence of mRNA for Cd62l 

and il7r might provide useful insights to capture differences between vaccines PCA 

revealed that Teff, Tem and Tcm cells clustered distinctly and a similar trajectory in 

both groups were found, which supports the gradient of cytotoxic and proliferative 

potential (Tcm< Tem < Teff) (Fig 19B).  

Our analysis was focused on the comparison of each subpopulation between 

vaccines. PCA highlighted a great overlap in Tcm populations, indicating 

transcriptional similarity between vaccines (Fig 19C). Differently, PCA on Teff and 

Tem revealed separation between cell clusters, highlighting different transcriptional 

patterns activated by the two vaccine formulations (Fig 19B). Higher proportions of 

cells within SAM(H1)_Tem compartment expressed cytotoxic and pro-inflammatory 

genes; confirming the cytotoxic profile of CD8+ T cells elicited by SAM(H1) (Fig 

5C). Interestingly, aMIV_Tem population showed higher proportion of cells 

expressing Pd1, Cd40l and Gitr compared to SAM(H1)_Tem populations (Fig 20A). 

Proportion of cells expressing these genes increased in aMIV_Teff population (Fig 

20B). Moreover, a trend of higher number of cells expressing genes that belong to 

TNFR (Gitr, Cd27, Trail) and CD28 family (Pd1, Icos) was observed. Members of 

the CD28 family provide co-stimulation to CD8+ T cells whereas, members of 

TNFR family have being implicated in the survival and maintenance of activated 

CD8 T cells.138–140 

These results suggest that CD8+ T cells elicited by the aMIV vaccine contain a 

subpopulation of activated cells characterized by a regulatory and exhausted profile. 

It was observed that Pd1 is expressed mainly in aMIV_Cd62l_neg populations (Fig 

20C). It was hypothesized that the expression Pd1 at d10p2 inhibited the effector 

function in aMIV CD8+ T cells and they switched through a regulatory/helper 



 
 

profile. It is possible that Gitr expression may have some critical immune-regulatory 

role that could compensate for the missing cytotoxic activity. Finally, a small subset 

of aMIV elicited cells expressed Cd40l (Fig.20). We hypothesized that aMIV induces 

a particular CD8+CD40L+ T cell sub-population, which have been characterized in 

various immune responses as a subset of CD8+ memory/effector T cells.141,142 
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Figure 19: Cd62l and Il7ra combinations highlight distinct subpopulations 



 
 

A. Pie charts show frequencies of Teff, Tem, Tcm cells in different vaccines in all 

time points. B. PCA of aMIV effector TEFF (IL7R-, CD62L-) (orange), effector 

memory TEM (IL7R+, CD62L-) (blue) and central memory TCM (IL7R+, CD62L+) 

(light orange) and SAM(H1) TEFF (pink), TEM (grey) and TCM (purple) cells at d10p2. 

C. PCA comparison between vaccines in the TEFF, TEM, and TCM compartments.   
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Figure 20: Tcm and Teff subpopulations showed distinct transcriptional 

patterns. 

Bar plots show frequencies of cells expressing genes in TEM (A) and TEFF (B) cells at 

d10p2. C. Bar plots showing expression of Pd1, gitr or Cd40l across 



 
 

aMIV_Cd62l_neg (light green), aMIV_Cd62l_pos (dark green), 

SAM(H1)_Cd62l_neg (light blue) and SAM(H1)_Cd62l_pos (dark blue) 

compartments. Expression is calculated as expression index (E.I.) = “percentage of 

positive cells” x “mean of expression of positive cells”. Fisher exact test * = p < 

0,05; ** p = 0,01 (Benjamini-Hochberg threshold 0.05). 

  



 
 

4 – Discussion and Conclusions 

4.1 Discussion 

In recent years single-cell transcriptomic analysis has been applied to dissect 

heterogeneity and understand molecular mechanism in immune responses70–72. It has 

been shown that information on heterogeneity of single-cell gene expression cannot 

be appreciated using conventional bulk approaches71. Gene expression analysis at 

single-cell level is a powerful method that could help gaining a deeper understanding 

of the biological processes involved in the response to vaccination. Single-cell 

approach can refine our cellular classification schemes and enable the direct 

assessment of molecular mechanisms that have been obscured in bulk samples where 

cells of a family (eg CD8+ T lymphocytes) were considered identical. Understanding 

new mechanisms of actions following vaccination and revealing new and 

functionally distinct subsets of immune cells will provide the opportunity to improve 

and develop better cross-protective vaccines. 

Protein-based influenza vaccines have been commercially available for a long time 

and continue to be the most successful strategy to reduce disease burden and 

economical costs associated with this particular virus infection.27,29,30 Currently, the 

efficacy of licensed vaccines depends on the match between the annual vaccines and 

circulating strains and better cross-reactive vaccines need to be developed. In order 

to overcome this problem, the nature of the immune response needs to be 

investigated and exactly understood to direct the vaccine to target both humoral and 

cellular immunity. 

In this study, we focused on the characterization of transcriptome responses of 

HA533-541-pentamer+ CD8 T cells at single cell level. For this purpose, a mouse 

model of influenza was used in which mice were immunized with RNA_based 

SAM(H1) or MF59-adjuvanted subunit H1N1 aMIV. These two vaccine 

formulations were previously shown to induce similar protection rates in mice after 

infection.25,26,40 Moreover, both vaccines stimulated antigen-specific CD4 T cells, but 

only SAM(H1) induced a robust CD4 TH1 cell response, detected in splenocytes after 

in vitro stimulation with HA peptides. Such antigen specific responses were 

characterized by using a combination of five cytokines (IL2, IL4/Il3, TNF-α, IFN-γ). 

In addition, SAM(H1) but not aMIV, induced cytokine-producing CD8 T Th1 cells25.  



 
 

For a deeper characterization of antigen-specific CD8+ T cells after vaccination, 

BALB/c restricted MHC-I HA533-541-pentamers were used ex vivo to identify the 

population of interest143,144. Both aMIV and SAM(H1) immunization induced 

pentamer+ CD8 T cells, despite the common belief that protein vaccines, like aMIV, 

only induce humoral and cellular CD4+ T cells responses, and not CD8+ T cells.25 

In vitro stimulation is currently the most common way for measuring antigen-

specific T cells. While this type of analysis fit for identification of already known 

cellular populations, it cannot properly describe the complex and heterogeneous 

immune response landscape induced after vaccination and new methods for 

characterization of CD8 T cells need to be developed. 

In this study, single-cell transcriptomic analysis was applied to antigen-specific 

CD8+ T cells elicited by two different influenza vaccine formulations to assess 

differences within cellular immunity. This provided a new analytical approach to 

characterize and study CD8+ T-cell responses to vaccination. This new approach 

could help CD8 T cells characterization given that the magnitude of CD8+ T cells 

alone is usually not a reliable correlate of protection70.  

In the past, several studies of influenza vaccine-induced transcriptome responses 

have been focused on samples derived from peripheral whole-blood of vaccinated 

individuals.8,11,140,145 These studies allowed for the identification of several different 

metabolic pathways related to T cell activity and differentiation. Single-cell 

transcriptomic studies, on the other end, were able to go deeper revealing consistent 

heterogeneity in the transcriptional response of activated T lymphocytes and allowed 

the characterization distinct subpopulations that were precursor of specific T cells 

lineages. 15,71 

Using single-cell high throughput RT-qPCR analysis, it was possible to capture 

differences in the transcriptome response of CD8+ T cells elicited by the two vaccine 

formulations tested in this study. After immunization, CD8 T cells go through a 

transition state from quiescent, poor effector cells to metabolically active, 

proliferating cells with cytolytic functions16,17,27,146,147.  

Cd62l has been identified as a key gene in distinguish transcriptionally different 

CD8+ T cell subpopulations. Specifically, SAM(H1)-induced Cd62l_neg cells were 

characterized by an effector/cytotoxic expression profile, in agreement with previous 

findings71. Differently, aMIV-induced Cd62l_neg cells were transcriptionally less 

active than their SAM(H1) counterparts. Instead, Cd62l_pos populations showed 



 
 

fewer transcriptional differences between vaccines and were generally characterized 

by a memory-like phenotype, characterized by the expression of Ccr7, Cxcr4 and 

Il7ra markers. (Fig. 15) 

We next focused on the identification of gene co-expression patterns and the 

characterization of vaccine-induced transcriptional states. Single-cell gene 

expression analysis allowed us to perform this kind of analysis given the higher 

power of analysis resolution. In particular, 27% of the assessed 

SAM(H1)_Cd62l_neg T cells co-expressed Cx3cr1, Cxcr6, Gzma, Gzmb, Klrc1 and 

Klrd1 (data relative to the d10p2 time point), indicating a cytotoxic effector 

phenotype (Fig. 9 B). This same co-expression pattern was not found at other time 

points. It was also investigated which were the most co-expressed 6, 5, 4 or 3 genes 

and a similar trend was observed (Fig 9 B). The three most co-expressed genes were 

Cxcr6, Gzma and Gzmb, occurring in 57% of cells in d10p2. This percentage 

dropped at w6p2. Interestingly, after prime, the percentage ranged between 20% at 

d10 and 27% at w5. In SAM(H1)_Cd62l_neg cells an upregulation of Blimp, Klrg1 

and a group of cells expressing Il2ra was observed. Klrg1 has been previously 

characterized as a marker of terminal differentiation in CD8+ T cells21. In addition, 

Blimp and Il2ra cooperate for short-lived effector cells (TSLE) formation131,148. We 

hypothesized that after boost, CD8+ T cells elicited by SAM(H1) received very high 

transcriptional activation with a strong co-expression of cytotoxic and inflammation 

genes to enhance a strong effector profile.  

It was previously reported that CD8+ T cell effector molecules share several 

regulatory elements and it was proposed that once an individual cell would acquire 

some of these components de novo expressed gene would be expressed preferentially 

in that cell.16,149 This could explain the trend of co-expression of cytotoxic-effector 

genes that we described (Fig. 9 and Fig 10). 

The trend of co-expression that we have shown it is supported by a previous study in 

which two putatively different CD8 memory T cells populations were characterized 

in response Listeria monocytogenes OVA infection150. The authors isolated 

individual cells at the different points of immune reaction and in each cell, they 

evaluated the simultaneously expression of 14 T-cell effector genes. The authors 

highlighted that different effector genes were induced at different time points of the 

response and transcribed during different time periods. Moreover, CD8 T cells tend 



 
 

to co-express Gzms, Infg, Fasl and Prf1 and they are characterized by the loss of co-

expression of killer molecules in the effector–memory transition.150 

It has been previously suggested that the balance between Tbet and Eomes determine 

effector cell fate in CD8+ T cells21,36,148. Given that our results highlighted a strong 

effector/cytotoxic transcription profile related to SAM(H1)_Cd62l_neg populations 

we investigated the level of expression of Tbet and Eomes in the different CD8_ 

Cd62l negative and positive populations. Transcript abundance analysis of the 

SAM(H1) induced cells revealed that Tbet is expressed preferentially in Cd62l_neg 

cells, whereas Eomes was mostly expressed in Cd62l_pos population (Fig 11B). 

Ratio between Tbet and Eomes in Cd62l_neg populations at all time points exhibited 

an opposite trend between prime and boost. Ratio increased from d10 to w5 after 

prime. Conversely, after boost the highest ratio was found at d10 followed by a 

decrease at w6 (Fig 11C). Positive Tbet/Eomes ratio would support the hypothesis 

that SAM(H1)_Cd62l_neg subpopulation activated a transcriptional effector profile 

that follows two opposite trends after prime and boost.  

Cd62l_pos cells exhibited great overlap between cellular response elicited by two 

vaccines, explained by similar transcriptional pattern. Increased number of cells in 

the Cd62l_pos population, for both vaccines, expressed Ccr7 and Cxcr4. Ccr7 and 

Cd62l have been characterized in murine CD8+ T cells as marker of Tcm 

population151. This finding supports our hypothesis that Cd62l mRNA presence and 

absence define two transcriptional states that can be defined as memory and effector 

like. 

Surface expression of IL7R and CD62L markers can be used to define three T cell 

differentiation states, generally referred to as effector cells (IL7RLOW, CD62LLOW), 

effector memory (IL7RHIGH, CD62LLOW), and central memory (IL7RHIGH, 

CD62LHIGH) 24,70,113. The memory compartment consists of T cells that can rapidly 

acquire effector functions to kill infected cells and/or secrete inflammatory cytokines 

that inhibit replication of the pathogens. The memory compartment is important for 

long-lived immunological protection and cells express a pattern of surface proteins 

that are involved in cells adhesion and chemotaxis. 16,149 

The question was if it was possible to combine Cd62l and il7r also as mRNA 

expression? In a previous work, a global transcriptional profile of distinct CD8 T 

cells subsets (Tnaive, Teff, Tem, Tcm) study was performed113. CD8 T cells were induced 

by three distinct prime-boost vaccine regimens and microarray profiling was 



 
 

performed. Authors have shown that transcriptional profiles were similar between the 

same population from distinct vaccines but when subsets were compared in the order 

Tnaive> Tcm> Tem> Teff high number of genes up- and down- regulated raised. 

Microarray profiling showed downregulation of Sell (encoding CD62L) specifically 

in TEM and TEFF and downregulation of Il7r expression in TEFF cells alone, consistent 

with sorting strategy. Moreover, changes in the expression of individual genes 

between distinct CD8+ T-cell subsets were similar between all three vaccination 

protocols.113 

Starting from these results, Teff, Tem and Tcm were selected based on 

presence/absence of Cd62l and Il7ra mRNA. PCA on selected sub-population 

revealed a structure that highlight a continuum from Tcm > Tem> Teff transition that 

confirmed previous findings113. By comparing cells in distinct subsets between 

vaccines, it was observed that Tcm cells appeared to be transcriptionally similar. 

However, Tem and Teff are characterized by major differences (Fig 19C). 

SAM(H1)_Tem and SAM(H1)_Teff confirmed the cytotoxic and inflammatory 

transcription pattern related to Cd62l_neg population.(Fig 20 A and B). Interestingly, 

higher percentage of aMIV_Tem cells expressed Pd1, Gitr and Cd40l (Fig 20C). PD1 

biomarker is a regulatory receptor in the CD28 superfamily and has been found to 

serve as an important regulator of T-cell function. Exhausted CD8+ T cells express 

high levels of PD1, and some studies have found a high PD1 expression to inhibit 

CD8+ T-cell function139,152. Exhausted T cells progressively lose their ability to kill 

other cells and produce cytokines139. GITR belongs to TNFR superfamily member 

and positively regulate survival. It is expressed on T-regulatory cells and the 

expression of GITR is maintained in effector cells. It regulates functional balance 

between regulatory and effector T cells, while enhances IL2R, IL-2 and INF-gamma 

expression138. CD40L contribute to the activation of CD8+ T cells. Key helper 

molecule CD8+CD40L+ T cells were previously characterized, and these cells were 

present in various immune response and they have a cytokine expression signature 

resembling conventional CD4+ helper T cells rather than cytotoxic T cells141.  

A previous study, focused on how multiple antigen encounters impact memory CD8+ 

T cell, demonstrated that every additional antigen stimulation (primary to quaternary) 

leads to an increase in the number of differentially regulated genes and thus to 

further differentiation of memory CD8+ T cells and  repeated antigen stimulation 

results in memory CD8+ T cell populations that possess a unique repertoire of 



 
 

regulated genes and phenotypic peculiarities153. According to these results, we have 

shown that CD8 T cells elicited by SAM(H1), increased effector cytotoxic profile 

after boost at early time point (Fig 9 and Fig 13). This transcriptional specialization 

was associated with no expression of Cd62l. Conversely, specialization into a 

memory-like phenotype was associated with expression of Cd62l (Fig 15). Overall, 

these findings confirm previously reported data, according to which Cd62l 

expression within cells may influence the transcriptional profile of CD8 T cells.71 

In conclusion, we have established an analysis procedure for the isolation and 

transcriptional profiling of vaccine-induced individual CD8+ T-cell responses. 

Analysis of the collected transcriptome information allowed getting new insights into 

cellular and molecular basis of CD8+ T cell responses to protein- and mRNA-based 

vaccines. Our findings revealed that antigen-specific CD8+ T cells elicited by 

SAM(H1) exhibited a cytotoxic-effector phenotype, which was confirmed by a 

cytotoxicity killing assay (data not shown) as well as independent studies25,26. For the 

first time ever, we have detected and characterized aMIV-elicited CD8+ T cells, 

which exhibited an inhibitory/regulatory profile, defined by the presence of Pd1 and 

Cd40l mRNAs molecules (Fig. 20C). 

Overall, we proofed that single-cell transcriptome profiling is a valuable analytical 

tool, which allows for a high resolution analysis of the cellular events triggered by 

vaccination and holds the potential to unravel biological dynamics that are not 

captured by conventional bulk-approaches. 
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