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1 Abstract
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Metabolic studies provided and provide, the most complete qualitative and quantitative picture of specific cellular

pathways, so far. Before the advent of genomic high-throughput studies, which provided a terrific advancement in

the study of gene regulation and fostered the discovery and comprehension of transcriptional networks, metabolic

pathways were already text-book knowledge, described at the stoichiometric level.

In order to obtain a better understanding on the role of cellular metabolism in cancer progression, we focused our

attention on TCGA cohort, which represents one of the widest repository of genomic and clinical data, publicly

available.

Unsupervised classification of patients based on their metabolic gene expression profile creates the so called

“metabolic clusters”. Expression levels of genes involved in metabolic pathways have been used as “proxy” for the

metabolic status of the tumors due to the lack of data derived from large comparative metabolomic studies of

di�erent tumor types.

Afterwards these clusters were correlated to clinical and genomic data. As previously reported, a potent association

exists between metabolic genes and prognosis. Interestingly we found that di�erent tumours show a di�erent

correlation strength between metabolism and prognosis, as well as that some metabolisms are more prone to be

associated to prognosis than other.

We then focused our attention on the molecular characterization of the clusters. Notably, specific metabolisms

correlate with CNA, methylation levels, molecular classification (e.g. PAM50, St. Gallen), RPPA data, miRNAs

expression levels and mutation data.

This study represents the widest, so far, quantification of the associations between metabolism and both clinical

and molecular features, in more than 11000 samples derived from more than 30 di�erent human tumor types.

The results obtained could be relevant for basic research, i.e. the identification of novel mechanisms linking

meatbolic rewiring to specific genomic lesions, and possibly also for clinical practice, allowing the identification of

both novel oncometabolites as well as new therapeutic targets.
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2.1 Normal And Cancer Cell Metabolism At A Glance

“Both the body and its parts are in a continuous state of dissolution and nourishment, so they are inevitably

undergoing permanent change” Ibn al-Nafis, The Treatise of Kamil on the Prophet’s Biography (XIII century)

Metabolism (µ‘·–—o⁄÷, metabole, “change”) is the term, in cell biology, used to describe the set of chemical

reactions occurring in living systems. The classification of those reactions, based on the biochemical nature of

their products, gives rise to the distinction between catabolism (Ÿ–·Ê-kato, “downward” and —–⁄⁄‘ÿ‹-ballein, “to

throw”); the processes which extracts energy and small compounds from higher level compounds, a.k.a degradation,

e.g. from a protein to amino acids and anabolism (–‹–-ana, “upward” and —–⁄⁄‘ÿ‹-ballein, “to throw”); the

processes that foster the transformation of energy and low level compounds into higher level compound, a.k.a.

synthesis, e.g. from hydrocarbons to membrane phospholipids. Anabolic and catabolic pathways define the

best described network of chemical reactions occurring in living systems, containing thousands of reactions.

The reconstruction of this complex network led to the creation of models in order to computationally study

its dynamic behaviour (Thiele et al. 2013). The proper balance between this sets of reactions allows the cell

to maintain its entropy under control, allowing its existence as an highly organized and ordered system. For

what concerns multicellular organisms, cell metabolism has direct consequences on the cell itself, the tissue

which it forms and on the organism that contains it. As long as metabolic reactions are taking place, the cell

avoid the thermodynamic equilibrium, even apoptosis (–fi–-apo, “separation” and fi·Ê‡ÿ’-ptosis, “falling o�”),

the programmed cell death processus, preserve the enhancement of entropy of the surrounding tissue. The

metabolism has a central role in both physiological and pathologic conditions and the capability of the cell to

adapt its metabolism to face evolving environmental conditions is the key to cell survival itself.

Cancer is a pathologic state characterized by a massive cell fate reprogramming, a.k.a. neoplastic transformation,

to detriment to the nearby tissue homoeostasis and definitely organism survival. In this pathology, the cancer

cell avoids growth and immune control and is able not only to foster its own replication rate but also to further

modify the surrounding environment to its own advantage. Indeed the peculiar chemical and physical conditions,

such as O2 levels, low pH and nutrients disposability, of tumor microenvironment could partially explain the

deregulation of cellular energetics, proper of cancer cells. Even if metabolic alterations have been recognised

as an hallmark of cancer in 2011 (Hanahan and Weinberg 2011), cancer metabolism studies predates oncogene

and tumor suppressor revolution by some 50 years. Indeed first evidences of the relevance of metabolic rewiring
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during tumorigenesis were found by Otto Warburg in 1924 (Otto Warburg, Negelein, and Posener 1924, and

@Warburg1956, reviewed in Hsu and Sabatini (2008) and Vander Heiden, Cantley, and Thompson (2009)). Briefly

This phenomenon involves the propensity for proliferating cells ((Curi, Newsholme, and Newsholme 1988) and

(Colombo et al. 2010)), including cancer cells, to take up glucose and produce lactate even when oxygen is

present, the so called Warburg e�ect a.k.a. aerobic glycolysis. This process results far less e�cient (~18-fold)

in terms of net ATP production per molecule of glucose compared to mitochondrial oxidative phosphorylation,

however it provides substrates for biosynthetic pathways. In tandem with glucose, glutamine has been found to

be an additionally critical nutrient that foster proliferation (Cantor and Sabatini 2012), both by means of energy

production and its ability to fuel biosinthetic pathways. Moreover glutamine has an key role in the generation

of cellular antioxidant glutathione, which in turn is a master bu�er of reactive oxygen species ((Eagle 1955),

(Kvamme and Svenneby 1960), (Matés et al. 2002) and (Heyland et al. 2013)). As reviewed in (Vander Heiden

and DeBerardinis 2017), during the course of the disease, the metabolic rewiring always occurs, but with di�erent

impacts on tumorigenesis: 1) it can or it can’t be the leading cause of the pathology i.e. when the transforming

cause is the mutation of a metabolic gene e.g. IDH1 and IDH2 mutations in acute myeloid leukemia and low grade

gliomas, 2) it can be consequent to specific pathways iper-activation i.e. oncogene addiction e.g. BRAFV600E in

melanoma and in turn it can be the natural adaptation to the stressing tumor microenvironment as reviewed in

(Hsu and Sabatini 2008).

In the first case, dramatic consequences occur at the epigenetic level, resuting in a block of cellular di�erentiation

(Dang, Yen, and Attar 2016). In the second case the oncogenic drivers impose an enhancement of anabolic

metabolism ((Vander Heiden, Cantley, and Thompson 2009) and (Haq et al. 2013)).

Indeed metabolic enzymes are finely tuned by post translational modifications such as phosphorylation. Phospho-

rylation is a quite energetically expensive tool in protein activity regulation since it requires ~ 11 Kcal/mol per

phosphorylation site, the amount of energy produced by ATP hydrolysis. Acetylation is the second mechanism of

protein regulation in terms of energy consumption (~ 7Kcal/mol per acetylation site, due to the consumption of

a molecule of Acetyl-CoA). It is worth noticing that usually in cell signalling pathways, phosphorylation induced,

protein sterical rearrangements usually foster protein activation, e.g. receptor tyrosine kinase (RTK); conversely

two key hubs of the glycolytic pathway, the phospshofructokinase (PFK2) and the pyruvate kinase (PK) are

inactivated by phosphorylation (Berg, Tymoczko, and Stryer 2002), in a fascinating energy saving and monitoring

fashion. However, due to the reduced availability of metabolomics data, such as direct metabolites measurements,

8



metabolic gene expression profile has been used as a proxy for metabolic pathway activity.

Since the development of high throughput methods for studying gene expression, the abundance of publicly

available, transcriptomic data dramatically increased. Moreover, for what concerns cancer biology, the project of

the Cancer Genome Atlas (TCGA) consortium, represents, so far, one of the widest repository of transcriptional,

genomic and clinical data, publicly available of human tumor samples. For this reason we decided to use TCGA

transcriptional data for the creation of the “metabolic clusters” and their subsequent further genomic and clinical

classification. Clustering approach represents one of the oldest and, so far, widely used mathematical approaches

in order to identify, in an unsupervised fashion, gene signatures, and molecular subtypes of human tumors starting

from transcriptomic data.

Bottom line, in order to identify metabolic di�erences between cancer samples, we took advantage of metabolic

gene signatures. In turn, this allowed us to use transcriptomic data, instead of direct metabolic data, in order to

identify di�erences in metabolic profiles among di�erent samples. This goal has been achieved by means of a

clustering algorithm and finally, by means of statistical methods adapted to each type of genomic and clinical

feature of interest, we have been able to discover a large number of strong and sometimes unexpected correlations

between metabolism and molecular and phenotypic features of human tumors.
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3 Experimental Approach

In order to exploit transcriptome profiling to identify metabolic di�erences in cancer samples, for each metabolic

gene set and each tumor type, the sample cohort has been analysed by means of a partitioning around medoids

(PAM) approach (L. Kaufman and Rousseeuw 1987), on metabolic genes expression levels.

This analysis allowed the identification of clusters of patients characterized by di�erences in the expression profile

of metabolism related genes. In contrast to the k-means clustering algorithm, which uses centroids (clusters

mean values), PAM uses k representative objects (medoids that respects to centroids are always member of the

data set) making it a more robust approach (Arbin et al. 2015), as not a�ected by outliers. The unsupervised

learning algorithm is then coupled with the clusters silhouette analysis in order to allow a (almost) completely

unsupervised choice of the number of clusters. The application of the following procedure allowed a selection of

samples subgroups characterized by a robust and unbiased approach. Moreover compared to di�erential gene

expression approaches, this analysis allows a better identification of synchronous transcriptional changes of the

catabolic and anabolic genes of the metabolism under exam. In order to further evaluate the proper metabolic

nature of the cluster, the random shu�e of gene name labels of the expression data samples has been performed.

This procedure generated a novel clustering result that avoids the possibility that the results of the correlation

analysis could be caused by random clusters. The results obtained with these clusters didn’t show any statistically

significant correlation at a Bonferroni corrected pvalue < 0.05 (data not shown).

As a result of this classification, the di�erence in metabolic genes expression is translated into a categorical

variable that has been tested for association with di�erent clinical and genomic features. From a mathematical

point of view these features can be broadly divided in:

1. Numeric continuous, i.e. methylation, copy number alteration (CNA, quantified as Significant Gain Or Loss

[SGOL] scores), RPPA data (protein abundance levels) and miRNA expression levels.

2. Categorical nominal, i.e. clinical data elements (CDEs, such as histological type and primary therapy

outcome), mutation data (the presence/absence of a specific mutation).

3. Survival, overall and relapse free.

And for each of them the most specific and appropriate statistical test was applied:
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1. Mann–Whitney–Wilcoxon test (Mann and Whitney 1947) or Kruskal-Wallis rank sum test (Kruskal and

Wallis 1952) for more than 2 clusters. These tests have been used to test the independence of the observations

belongings to di�erent groups.

2. Pearson’s ‰-squared, ‰2, test (K. Pearson 1900) or Fisher’s exact test (R. A. Fisher 1922) for 2x2 tables.

These tests have been developed for the analysis of contingency tables, in order to measure the association

between categorical variables.

3. Cox proportional hazards regression model (Cox 1972). This is a survival model that relates the time

that passes before some event (in this case patient’s death) occurs to one covariate (cluster) that may be

associated with that quantity of time. Since in this case the covariate is categoric a Kaplan-Meier model

could have been chosen as well, however hazard regression model also returns the hazard ratio showing the

percentage of increase/decrease in the hazard.

The summary of genomic and clinical features is presented in the following table.

Feature Name Data Type Variable Type

Survival Clinical Survival

Clinical Data Element, (CDE) Clinical Categoric-Nominal

Mutation Molecular Categoric-Binary

Copy Number Alteration, (CNA) Molecular Numeric-Continuous

Methylation Molecular Numeric-Continuous

Reverse Phase Protein Array, (RPPA) Molecular Numeric-Continuous

miRNA expression data Molecular Numeric-Continuous
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4 Materials And Methods

12



4.1 Cancer Samples Data

The results shown here are in whole or part based upon data generated by the TCGA Research Network: http:

//cancergenome.nih.gov/. Clinical and genomic data of TCGA cancer samples and patients (release 2016_02_28)

were downloaded from the Broad TCGA GDAC site (https://confluence.broadinstitute.org/display/GDAC/Home),

by means of firehose_get Version: 0.4.1. The data refers to a cohort of 11158 cancer patients, of 34 di�erent

tumor types, the list of all their acronyms is presented in the following table. In 5 cases, it has been possible to

merge assimilable tumors, i.e. COADREAD (union of COAD and READ), GBMLGG (union of GBM and LGG),

KIPAN (union of KICH, KIRC, and KIRP), LUNG (union of LUAD and LUSC) and STES (union of ESCA and

STAD).

Tumor Type Acronym Tumor Type Acronym

Acute Myeloid Leukemia LAML Lymphoid Neoplasm Di�use Large B-cell

Lymphoma

DLBC

Adrenocortical carcinoma ACC Mesothelioma MESO

Bladder Urothelial Carcinoma BLCA Ovarian serous cystadenocarcinoma OV

Brain Lower Grade Glioma LGG Pancreatic adenocarcinoma PAAD

Breast invasive carcinoma BRCA Pheochromocytoma and Paraganglioma PCPG

Cervical squamous cell carcinoma and

endocervical adenocarcinoma

CESC Prostate adenocarcinoma PRAD

Cholangiocarcinoma CHOL Rectum adenocarcinoma READ

Colon adenocarcinoma COAD Sarcoma SARC

Esophageal carcinoma ESCA Skin Cutaneous Melanoma SKCM

Glioblastoma multiforme GBM Stomach adenocarcinoma STAD

Head and Neck squamous cell carcinoma HNSC Testicular Germ Cell Tumors TGCT

Kidney Chromophobe KICH Thymoma THYM

Kidney renal clear cell carcinoma KIRC Thyroid carcinoma THCA

Kidney renal papillary cell carcinoma KIRP Uterine Carcinosarcoma UCS

Liver hepatocellular carcinoma LIHC Uterine Corpus Endometrial Carcinoma UCEC

Lung adenocarcinoma LUAD Uveal Melanoma UVM

Lung squamous cell carcinoma LUSC

In details, the data (version: stdata_2016_01_28) are:

• Clinical data:

– Overall and Relapse-free survival from Clinical.Level_1

– Clinical parameters (manually selected) from Clinical_Pick_Tier1.Level_4
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• Coding Genes Expression: RNAseqV2_RSEM_genes_normalized__data_Level_3

• Methylation data: Methylation.Preprocess_Level_3

• Reverse Phase Protein Data: RPPA_AnnotateWithGene.Level_3

• Copy Number Alteration (CNA) data: derived from

Level_3_segmented_scna_minus_germline_cnv_hg19__seg.Level_3

• Mutation data: Mutation_Packager_Oncotated_Calls.Level_3

• miRNAs expression data: Mirnaseq__illuminhiseq_mirnaseq__bcgsc_ca__Level_3_miR_gene_expression

4.2 CNA SGOL Scores

CNA SGOL scores at the single gene level were generated by means of cghMCR, DNAcopy and CNTools

Bioconductor packages. cghMCR package allows the calculation of segment gain or loss (SGOL) starting by

segmented data, by means of a modified version of GISTIC algorithm. The segment function of DNAcopy

package is used to segment the normalized data so that chromosome regions with the same copy number have

the same segment mean values. Then, by means of CNTools, getRS function, the data returned by segment are

organized in a matrix format. SGOL function of cghMCR is ultimately used to compute the SGOL scores for

genes by calculating the summations (parameter method) for all the positive and all the negative values, over and

below respectively, a set threshold (-0.5, 0.5). To avoid redundant informations linked to the fact the it is very

unlikely for a certain CNA to occur in a single gene region only, the data were regrouped at the chromosomal

region level using the positional gene sets of Broad Institute.

4.3 Gene Sets

The datasets of 345 metabolic pathways were selected from c2.KEGG, c2.REACTOME, c5.BP and hallmark-

MSigDB v5.2 collections. The positional datasets used to collapse CNA data at cytogenetic band level

were taken from c1 -MSigDB v5.2 major collection. Hallmark datasets, used in GSEA were taken from

hallmark-MSigDB v5.2 (Liberzon et al. 2011, and @Thiele2013) All datasets were manually downloaded from
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http://software.broadinstitute.org/gsea/downloads.jsp

4.4 Methylation Data

Methylation data are the result of GDAC from Humnan Methylome 450k platform and already collapsed at gene

level. Methylation at all genes level, for every tumor type, was calculated as the mean — score of all the genes

analysed in every patient.

4.5 Di�erential Gene Expression

Analysis of di�erentially expressed genes (DEGs) between two clusters has been performed by means of limma

R package, with standard settings.

4.6 Gene Set Enrichment Analysis

Gene Set Enrichment Analysis ((Mootha et al. 2003) and (Subramanian et al. 2005)) was performed by running

the GSEAPreranked tool from command line (gsea2-2.2.0.jar, with the following parameters: -mode Max_probe,-

norm meandiv,-nperm 1000, -rnd_seed timestamp,-set_max 500 and-set_min 15). The list’s ranking metric was

calculated on the LogFC of the di�erentially expressed genes between the two clusters.

4.7 Metabolic Clusters Generation

The metabolic clusters were defined by means of the partition around medoid (PAM) cluster algorithm (1) on

the Spearman rank correlation coe�cient (2),fl
rg

or fl
s

, -based distance matrix of metabolic genes expression in

cancer samples. The number of clusters (between a 1:10 range) generated by each metabolic gene set has been

then estimated by optimum average silhouette width (3). The Duda-Hart test was applied to verify significance

of 1 cluster estimation.

(1) The goal of the algorithm is to minimize the average dissimilarity of objects to their closest selected object

(medoid) (L. Kaufman and Rousseeuw 1987)
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(2)

fl
rgX,rgY

= cov(rg
X

, rg
Y

)
‡

rgX

‡
rgY

where rgX and rgY are the ranked converted equivalent of X and Y raw scores.

Or by

fl
s

= 1 ≠
6

q
i

D2
i

N(N2 ≠ 1)

where D
i

= r
i

≠ s
i

is rank di�erence between first and second variable rank of ith observation and N is

total observations number

(3)

s(i) = b(i) ≠ a(i)
max{a(i), b(i)}

where a(i) is the average dissimilarity of i with all other data within the same cluster and b(i) is the lowest

average dissimilarity of i to any other cluster. The resulting average s(i) overall data of a cluster is the

measure of how tightly grouped all the data in the cluster are.

The clusters and the distance matrix were computed by means of the pamk function, from fpc R package and

Dist function, from amap R packages, respectively.

4.8 Correlation Between Metabolic Clusters And Clinical-Genomic Variables

The nominal variable resulted from the clustering analysis has been correlated with the three kinds of variables

analysed in this study:

1. Numeric continuous, i.e. methylation, CNA (Segment Gain Or Loss, SGOL, scores), and RPPA.

2. Categorical nominal, i.e. clinical data, mutation data and clusters.

3. Survival, overall and relapse free.
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And for each of them a specific statistical analysis was applied:

1. Mann–Whitney–Wilcoxon test (4) or Kruskal-Wallis rank sum test (5) for more than 2 clusters.

(4)

M = 1
c(c ≠ 1)

ÿ
AUC

k,l

where

AUC1 = U1
n1n2

where

U1 = R1 ≠ n1(n1 + 1)
2

where n1 si sample size for sample 1 and R1 is the sum of ranks in sample 1; c is the number of calsses and

the R
k,l

are the ranking of the items belonging to classes k and l, specifically.

(5)

P (‰2
g≠1 Ø K)

where

K = (N ≠ 1)
q

g

i=1ni
(r

i

≠ r)2
q

g

i=1
q

ni

j=1(r
ij

≠ r)2

where n
g

amount of observations in group g. r
ij

is the rank of observation j in group i. N is the total

number of observations in all the groups. r
i

=
qni

j=1
rij

ni

2. Pearson’s ‰-squared, ‰2, test (6) or Fisher’s exact test (7) for 2x2 tables.
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(6)

‰2 =
nÿ

i=1

(O
i

≠ E
i

)2

E
i

= N
nÿ

i=1

(O
i

/N ≠ p
i

)2

p
i

where ‰2 = Pearson’s cumulative test statistic. O
i

= the number of observations of type i. N = total

number of observations. E
i

= Np
i

= the theoretical frequency of type i under the H0 of frequency of type
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in the population. n is the number of the cells in the table
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where a + b and c + d are the row totals and a + c and b + d are the column totals of a 2x2 table and

n = a + b + c + d

3. Cox proportional hazards regression model (8).

(8)

⁄(t; z) = ⁄0(t)exp{—Õ
0z(t)}

where —0 is a p-vector of unkown regression coe�cient and ⁄0(t) the underlying hazard function ((Therneau

2015) and (Terry M. Therneau and Patricia M. Grambsch 2000)).

4.9 Pvalues And Multiple Tests Correction

All pvalues where calculated at a 95% confidence level, so with an – = 0.05. Due to the elevated number of

di�erent comparison performed during the correlative analysis and the willingness to summarize and to compare

the results, Bonferroni (9, in order to control family wise error ratio, FWER) and Benjamini-Hochberg in order to

control false discovery rate, FDR, from pvalues) pvalue corrections were applied at the tumor level for intra tumor

comparisons and globally for inter tumor comparisons. Unless otherwise stated, global Bonferroni corrected

pvalues < 0.05 were considered as significant.
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(9)

–
B

= –

m

where –
B

is the Bonferroni corrected significance level and m is the number of tested hypotheses. For

global comparisons, m = number of features * number of metabolisms * number of tumors.

4.10 R And RSTUDIO Software

The data and figures were generated by means of R (version 3.2.1) and RStudio (version 1.0.143).
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5 Results
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5.1 General Results

The results of the associations are briefly and systematically presented below and more in details in the

supplementary tables and figures section. For every clinical and genomic feature, a representative example of the

association with a certain metabolism will be presented herein.

5.1.1 Clinical Relevance Of Metabolic Clusters

An example of the results of the correlative analysis between metabolic clusters and survival data is shown

in Figure 1. In this example the GMP metabolism genes divides the KIPAN cohort in three clusters with

di�erent survival rate, with a significant di�erence between samples from cluster 1 (K1) having a better prognosis

compared to samples in cluster 3 (K3). More broadly, the clusters obtained by the 345 metabolic pathways

analysed, were tested for being predictors of Overall survival (OS), in all the 38 tumor types and of Relapse free

survival (RFS) in 37 tumor types (no RFS data were available for LAML). Almost 40% of the analysed tumors

have at least one metabolism a�ecting its survival. Interestingly not all the tumors show a similar susceptibility

in terms of prognosis and some tumors showed an higher number of metabolisms impacting on survival (see

Figure 29 and Figure 32). Low grade gliomas and kidney cancer are the tumors that shown an higher number of

metabolisms correlating with survival. Summaries of the top, by frequency, tumors which survival is a�ected by

metabolism and summary of the top, by frequency, metabolisms a�ecting survival in di�erent tumors, are shown

in Table 7 and Table 8. In Figure 30 and Figure 33 the pvalues of the correlation between metabolisms and OS

and RFS respectively, are shown. In Figure 31 and Figure 34 the pvalues of the correlation between a subset of

metabolisms and OS and RFS respectively, are shown. Consistently with these results, similar data were recently

obtained, with a di�erent approach on a smaller number tumors (Gaude and Frezza 2016).

CDEs availability in tumor types is very heterogeneous, with few parameters present in almost the totality of

analysed tumors i.e. gender (not present in gender specific turmors such as ovarian carcinoma and testicular

germ cell tumors ) and many tumor specific, i.e. StGallen classification of breast cancer and Gleason score in

prostate cancer. The complete list can be found in Table 1.

The result of the correlation between metabolism and a categorical variable, gender in this case is shown in

Figure 2. Fatty acid metabolism clusters have a strong gender bias in low grade gliomas, with cluster 1 patients

being prevalently females. In general the almost totality (80%) of tumor types have at least one CDEs associated
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with metabolism. In Figure 35 the amount of CDEs correlating with metabolism in di�erent tumor types can

be appreciated. The histological type is the CDEs more frequently correlated with metabolism (Figure 36

and Figure 37) suggesting the presence of a tissue specific metabolic rewiring. Association strength between

histological types and metabolism in the di�erent tumor types can be seen in Figure 38 and Figure 39. Summaries

of the top, by frequcency, tumors where CDEs are a�ected by metabolism and summary of the top, by frequency,

metabolisms a�ecting CDEs in di�erent tumor types, are shown in Table 9.
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CDE Tumors (n) CDE Tumors (n)

gender 32 excess adrenal hormone history type-2 1

histological type 28 extravascular matrix patterns 1

primary therapy outcome success 28 fetoprotein outcome lower limit 1

pathologic t 27 her2 immunohistochemistry level result 1

pathologic n 26 histological type-2 1

pathologic m 25 human papillomavirus type 1

karnofsky performance score 17 human papillomavirus type-2 1

neoplasm histologic grade 14 hysterectomy performed type 1

clinical m 11 melanoma clark level value 1

clinical t 9 new gleason score 1

additional treatment completion success

outcome

6 nuclear grade iii iv 1

clinical n 6 primary neoplasm focus type 1

histological type other 3 primary pattern 1

child pugh classification grade 2 prior systemic therapy type 1

fetoprotein outcome upper limit 2 progesterone receptor level cell percent

category

1

fibrosis ishak score 2 relative cancer type 1

food allergy types 2 secondary pattern 1

gleason score 2 StGallen2013 1

tumor type 2 tertiary pattern 1

vascular tumor cell type 2 therapeutic mitotane levels achieved 1

asbestos exposure type 1 tumor response cdus type 1

breast carcinoma immunohistochemistry pos

cell score

1 tumor shape pathologic clinical 1

chemotherapy regimen type 1 weiss score 1

excess adrenal hormone history type 1

Table 1: List of analysed CDEs. This table contains all analysed CDEs with their frequency across tumor types.
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Figure 1: Correlation between GMP metabolism and survival in kidney cancer. The Kaplan-Meier
plot showing the di�erences in survival between the three clusters obtained by GMP metabolism (upper panel)
and the table with the number of patients at risk (lower panel).
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Figure 2: Association between fatty acid metabolism and gender in low grade glioma. The mosaic
plot represents the abundace of female (F) and male (M) patients (rows) in the two clusters (K1,K2, columns)
generated by fatty acid metabolism in low grade glioma. Pearson’s positive and negative residuals are highlighted
in blue and red respectively. It is striking the enrichment of females patients in K1 and the enrichment of male
patients in K2. Pearson residuals are given by (observed≠expected)Ô

expected

.
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5.1.2 Genomic Relevance Of Metabolic Clusters

For what concerns genomic characterization of metabolic clusters, the data analysed are the following:

1. Mutations, 3 di�erent depth levels:

a. Protein coding gene level (PCGL, n=18833). Nucleotide variations occurring in the exons of coding

genes.

b. Missense/Nonsense-mutations and Deletions/Insertions at protein level of coding genes (n=886274).

Nucleotide variations inducing an alteration in the aminoacidic composition of a protein.

c. Nucleotide variations at genome level (n=1283947). Nucleotide variations occurring in any region

comprised between the 5’ and 3’ UTRs of a coding gene.

2. CNA data at cytogenetic band level

3. Methylations, 2 di�erent depth levels:

a. Whole genome level

b. Gene level

4. RPPA (Reverse Phase Protein Array) data of specific protein/protein post translational modification,

abundance level. Protein arrays allow the simultaneous quantification of proteins and protein post

translational modifications.

5. miRNAs expression level

All these genomic features are continuous numerical variable exception made for mutation data that were

considered as Boolean variables, the mutation could be present or absent. For the first case non-parametric

Mann-Whitney U or Kruskal-Wallis tests have been used, while Fisher or ‰2 tests have been used for mutation

data.

5.1.2.1 Mutation Data

Mutations were analysed at two main levels of detail: 1) protein coding gene level (PCGL) mutations, the less

specific, and 2) at protein level and nucleotide level, more specific. The results of the correlation between PCGL
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mutations and metabolisms returned a discrete number (33 out of 18833, 0.17%, across all cancer samples) of

mutated genes associated with at least one metabolism at a Bonferroni corrected pvalue < 0.05 (m=311 ú 106),

however any information about the specific kind of mutation was lost since all the di�erent kind of mutations

(missense, nonsense, insertions, deletions, frameshift, duplication and repeat expansion) were reduced to a single

binary variable. Among the more frequently metabolism-correlated, mutated genes, we find TP53 (the most

frequently correlated among di�erent tumor types), EGFR, IDH1, PTEN, PI3KCA and MET. On the other

hand protein and nucleotide levels results yielded a remarkably lower amount of significant correlated mutations

(6 out of 886274 0.0007% for protein level and 8 out of 1283947 0.0006%), but they preserved the information

about the type of mutation. Moreover for what concerns the latter results a high level of redundancy between

protein and nucleotide level was observed since IDH1, TVP23C, RNF43, BRAF, NRAS and GTF2I genes were

found in both analysis. More interestingly two genes (DNAJC18 and ZNF43) were found to have single deletions

at intronic level. Since the diversity of mutational processes observed in human tumors ((Alexandrov et al. 2013)

and (Chalmers et al. 2017)) normalization on mutational landscape of every tumor type will surely be done in

the future. In Figure 3 it can be appreciated the result of the correlation between a protein level mutational

and retinol metabolism in thyroid carcinoma, while more details about the mutational analysis can be found in

Figure 40 - Figure 54 and Tables 10 - 11.

5.1.2.2 Copy Number Alteration Data

Chromosomal instability (CIN) has been extensively studied in cancer ((Bakhoum and Compton 2012) and

(Giam and Rancati 2015) ) and a recent study showed that metabolic requirements of highly proliferating tumors

fosters the selection of cancer cells harbouring amplification of glycolytic genes and other cancer linked metabolic

enzymes (Graham et al. 2017). Copy number alterations, summarized at cytogenetic band level, are correlated

with at least one metabolism in 32 out 38 (~84%) tumors. The tumors with the higher frequency of correlation

are kidney, lung, breast and brain Figure 55. If we observe the correlations between CNAs and metabolism in

di�erent tumor types we can see a subgroup which is more frequently associated (Figure 56). Results of the

correlations between copy number alteration (CNA) data and metabolism and are summarized in Table 13. The

CNAs most frequently correlated with metabolism are found on chromosome 3, 1, 19 and 20. Details of the

correlations between those CNAs and metabolism can be appreciated in Figure 57 and Figure 58.

Below is shown the di�erence in chr3p24 observed between the two clusters, created by glycerophospholipids
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Figure 3: Correlation between retinol metabolism and BRAF v600E in thyroid carcinoma. The
mosaic plot represents the distribution (presence: yes or absence: no; rows) of BRAF V 600E mutation in the two
clusters (K1,K2, columns) generated by retinol metabolism in thyroid carcinoma. Pearson’s positive and negative
residuals are highlighted in blue and red respectively and they are calculated as follows: (observed≠expected)Ô

expected
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metabolism, in kidney cancer cohort. The box plot shows the di�erence of a single cytogenetic band, while in

Figure 15 and Figure 24 (in the detailed results section) examples of complete CNA landscape are shown.
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Figure 4: Correlation between chr3p24 and glycerophospholipid in kidney cancer. Box plot repre-
senting the di�erence in copy number of chr3p24 between the two clusters generated by glycerophospholipid
metaolism in kidney cohort. The notch in the boxes indicates 95% confidence interval for the medians in each
cluster. Pval < 2.16 ú 10≠16
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5.1.2.3 Methylation Data

Methylation data were analysed at two di�erent levels:

1. Whole genes level: for each sample in tumor cohort the median level of mehylation of all genes was

calculated and then tested for correlation with metabolic clusters, in order to generate a proxy for whole

genome methylation level.

2. Single gene level: each gene — value has been correlated with metabolic clusters.

DNA methylation of CpG islands plays a key role in the epigenetic control of gene expression and correlates with

cellular di�erentiation. It has been extensively studied in both pathological and physiological conditions ((Razin

and Cedar 1991), (Phillips 2008), (Wagner et al. 2014) and (Moarii et al. 2015)).

5.1.2.3.1 All Genes Methylation Level

The correlative analysis between metabolic pathways and methylation levels, highlighted an high number of

tumor types, 26 out of 38 (68%), in which methylation correlates with at least one metabolic pathway. Moreover

is it possible to see a subgroup of tumors, i.e. GBMLGG, KIPAN, LUNG and TGCT, which show a stronger

correlation between broad methylation and metabolism. Summaries of the presence of correlation between

metabolism and all genes methylation data are presented in Figure 60 - Figure 62 and Table 14. In Figure 5

a representative result of the correlation between all genes methylation level in lung cancer and glutamine

metabolism is shown and in Table 2 details of pvalues from pairwise comparisons are shown. Glutamine has

been reported to influence chromatin organization, cellular histone and DNA methylation levels by means of the

production of glutamine-derived metabolite a-KG (Ji Zhang, Pavlova, and Thompson 2017).
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Figure 5: Correlation between all genes methylation and glutamine metabolism in lung cancer. Box
plot representing the di�erence in all genes methylation levels (Beta value) between the three clusters generated
by glutamine metabolism in kidney cancer. The notch in the boxes indicates 95% confidence interval for the
di�erence between the medians. It is appreciable the di�erence in terms of higher methylation of cluster 1
compared to clusters 2 and 3, Kruskal-Wallis Pval < 2.16 ú 10≠16
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• method: Mann-Whitney U test

• data.name: All genes methylation and K

• p.value:

1 2

2 2.5e-14 NA

3 1.036e-33 0.1738

Table 2: Pairwise Pvalues results This table contains the Pvalues of pairwise comparisons of the analysis of

all genes methylation in the three di�erent cluster generated by glutamine metabolism in lung cohort
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5.1.2.3.2 Gene Specific Methylation Level

The analysis at single gene level resulted in 34 out of 38 (89%) tumor samples, Table 15, which have the

methylation of a gene significantly correlated with at least a metabolic pathway (results summarized in Figure 63

- Figure 67). Interestingly the analysis highlighted * LOC100130933* (SMIM6/ELN), a recently discovered gene

(D. M. Anderson et al. 2016) involved in the regulation SERCA activity, to be the gene which methylation is

more frequentlty correlated with metabolism, in di�erent tumors. However its direct link to metabolism hasn’t

been investigated yet and this results could led to better investigate its expression in the di�erent metabolic

clusters. In Figure 6 correlation between LOC100130933 methylation and glycosaminoglycan metabolism in

bladder cancer is shown.

Figure 6: Correlation between LOC100130933 methylation and glycosaminoglycan metabolism in
bladder cancer. Box plot representing the di�erence in LOC100130933 methylation level (Beta value) between
the two clusters generated by glycosaminoglycan metabolism in bladder cancer. The notch in the boxes indicates
95% confidence interval for the medians in each cluster. Pval = 5.5 ú 10≠10
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5.1.2.4 RPPA Data

TCGA Reverse Phase Protein Array data represents one of the widest collections of cancer proteomic data.

These data are not only relevant for what concerns protein abundance, but they also provide quantification of

some of the most relevant protein post translational modifications. The identification of the top di�erentially

present post translational modifications between the clusters helps, in turn, an easier and more direct molecular

characterization at a cell signalling level. Results of the correlation between RPPA data and the di�erent

metabolisms are summarized in Figure 68 - Figure 72 and Table 16. Figure 7 shows the representative correlation

between sterols metabolism and GSK3 phosphorylation in serine 9 in sarcoma. GSK3A/B are highly conserved

kinases that have roles in a number of signal transduction pathways regulating cell growth, di�erentiation,

and development. GSK3B activity is regulated negatively by the phosphorylation of serine 9 ((Stambolic and

Woodgett 1994), (G. Cai et al. 2007) and (Giovannini et al. 2013)). In Table 3 details of pvalues from pairwise

comparisons are shown.
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Figure 7: Correlation between GSK3 Serine 9 phosphorylation and sterol metabolism in sarcoma.
Box plot representing the di�erence in GSK pS9 level (RPPA signal) between the four clusters generated by
sterol metabolism in bladder cancer. The notch in the boxes indicates 95% confidence interval for the medians.
Kruskal-Wallis Pval < 2.16 ú 10≠16
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• method: Mann-Whitney U test

• data.name: GSK3_pS9 and K

• p.value:

1 2 3

2 3.857e-16 NA NA

3 0.02794 4.487e-11 NA

4 0.009004 3.551e-08 0.5719

Table 3: Pairwise Pvalues results This table contains the Pvalues of pairwise comparisons of the analysis of

GSK pS9 in the four di�erent clusters generated by sterol metabolism in sarcoma cohort

37



5.1.2.5 miRNA Data

miRNAs are responsible for gene silencing and post translational regulation of gene expression. Almost 80%

of analysed tumors showed at least one correlation between a miRNA and a metabolism (Table 17). Among

the most frequently metabolism-correlated miRNAs, hsa-mir-375 is the top of the list. Its high rank have

been anticipated mainly due to the fact that on one hand side its transcriptional regulation is controlled by

FOXOA2, a transcription factor that regulates the expression of genes important for glucose sensing in pancreatic

beta-cells and glucose homeostasis and on the other hand its direct involvement in the regulation of the genes

regulating insulin secretion ((Latreille et al. 2015), (Deiuliis 2016) and (Vienberg et al. 2017). In Figure 73 -

Figure 75 heatmaps of the number of tumors, metabolisms and miRNAs are shown. In Figure 76 -Figure 77

details of the metabolism correlating with hsa-mir-375 are shown, while in Figure 8 the detail of the di�erential

expression of hsa-mir-375 in the clusters generated by inositol phosphate metabolism in oesophageal and stomach

adenocarcinoma is shown and in Table 4 detail of pvalues from pairwise comparisons are shown.
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Figure 8: Correlation between hsa-mir-375 and inositol phosphate metabolism in oesophageal and
stomach adenocarcinoma. Box plot representing the di�erence in hsa-mir-375 expression levels (log2(FPKM))
between the three clusters generated by inositol phosphate metabolism in bladder cancer. The notch in the boxes
indicates 95% confidence interval for the medians. Kruskal-Wallis Pval < 2.16 ú 10≠16
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• method: Wilcoxon rank sum test

• data.name: hsa-mir-375 and K

• p.value:

1 2

2 0.0001366 NA

3 1.363e-30 8.538e-17

Table 4: Pairwise Pvalues results This table contains the Pvalues of pairwise comparisons of the analysis of

hsa-mir-375 expression levels in the three di�erent clusters generated by inositol phosphate in oesophageal and

stomcah adenocarcinoma cohort
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5.2 Context Specific Results

The previously shown data can highlight common metabolism-feature correlation among di�erent tumors, however,

in order to obtain more biologically relevant informations, is it possible to focus on a specific metabolism in

a specific tumor (context specific results). Below are presented a few examples of the observations that can

be drawn from context specific results analysing the unsaturated fatty acid metabolism in LGG and hexose

metabolism in BRCA.

5.2.1 Unsaturated Fatty Acids Metabolism In LGG

Below are summarized results of the impact of the unsaturated fatty acids metabolism gene set, GO:0033559,

on LGG. This gene set contains genes which expression is linked to the chemical reactions and pathways involving

an unsaturated fatty acid, any fatty acid containing one or more double bonds between carbon atoms.

The expression profile of unsaturated fatty acid metabolism genes divides the LGG sample cohort in two distinct

clusters (K1 and K2). The di�erences in gene expression can be appreciated in Figure 9.

GSEA analysis performed on di�erentially expressed genes between the two clusters reveals a reduction in, among

the others:

A. broad activation of inflammatory pathways (IL6-JAK-STAT3, INFNA, INFNB, TNF–-NFKB, IL2-STAT5)

B. ephitelial to mesenchimal transition

C. angiogenesis and hypoxia

D. glycolysis

E. proliferation

in K1 samples. Figure 10

From a clinical perspective the patients of the two clusters behave di�erently in terms of survival, with K1 patients

having a better prognosis compare to K2 ones Figure 11. As expected di�erences between histological subtypes

are present, interestingly di�erences in grade and in primary therapy outcome are also observed (Figure 12).
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For what concerns di�erences in the mutation landscape of the two sample cohorts, we can observe an higher

frequency of IDH1 and CIC mutations in K1 and an higher frequency of PTEN and EGFR1 mutations in K2

(Figure 13). An in depth analysis of mutation data highlights IDH1-R132H and EGFR-G598V as the most

di�erentially present mutations in K1 and K2 respectively.

In Figure 14 the CNA landscape of the two cluster is shown. It is striking the di�erence between K1 (upper plot)

and K2 (lower plot) in terms of CNA abundance. K1 is characterized by a severe loss in CHR1p and CHR19q

while K2 by a severe loss of CHR9p12-p22 and a gain in CHR7p11 (Figure 15).

Methylation analysis Figure 16 clearly shows a hypermethilation in K1 cohort, characterized by higher frequency

of mutated IDH1. This results is consistent with literature data (Turcan et al. 2012), and with grading score

(Figure 12, panel C) result since grade depends on tumor di�erentiation level (higher grade, less di�erentiation)

and hypomethylation usually correlates with di�erentiation level ((L. Shen et al. 1998), (Soares et al. 1999) and

(C. H. Lin et al. 2001), reviewed in (Ehrlich 2002)).

Some of the di�erences observed in protein abundance between the two cohorts could be explained by CNA

data, i.e. the higher abundance of EGFR (located in CHR7p11) and lower abundance of CDKN1B (located in

CHR9p21) in K2 samples. Clusters characterization by means of RPPA data is particularly interesting for what

concerns post translational modifications. We can see that K2 samples are characterized by a higher A-Raf

S299, PKC_– S657 and HER3 Y1289 phosphorylation. On the other hand K1 samples are characterized by a

higher YB-1 S102, EGFR Y1173 and HER2 Y1248 phosphorylation. Interestingly K1 samples show a decrease in

GAPDH abundance Figure 17.

Finally the di�erentially expressed miRNAs are shown in Figure 18. In Table 5 the data of the ten most up and

down regulated miRNAs are shown. Interestingly has-mir-105 are found to be upregulated in K1, the cluster

that shows better prognosis has been previously described as having prognostic value in hepatocellular carcinoma

(Ma et al. 2017). Consistently with GSEA results, hsa-mir-10a, which involvement in EMT has been recently

reported (Y. Liu et al. 2017) is found as the most downregulated one. Moreover hsa-mir-196a, is consistently

downregulated in the better prognosis, K1, cluster as suggested by literature (Y. S. Lee et al., n.d.) in pancreatic

cancer. At last hsa-mir-155 which downregulation correlates with enhance apoptosis and anoikis (cell death

triggered by loss of adhesion, ((F.-q. Zhu et al. 2016) and (Rajasekhar et al. 2017)) is found to be dowregulated

as well. Even more puzzling is the interpretation of higher expression, in K1 samples, of hsa-mir-767, which has
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been reported as oncomir (miRNA promoting tumorigenesis) in tandem with CYLD expression (K. Zhang and

Guo 2018), which is slightly but significantly (pvalue < 2.2e-16 ) downregualted in K1 (median expression 10.19)

respect to K2 (median expression 10.38).
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Figure 9: Di�erentially expressed metabolic genes in LGG. Heatmap representing the expression of the
genes of the unsaturated fatty acid metabolism (rows) in LGG cohort. The colour bar above heatmap columns
(samples) represents samples from the two clusters. The samples are been subdivided as resulted from PAM
algorithm. The colour bar on the rows of the heatmap highlights genes belonging to anabolism (yellow) and
catabolism (blue). Colours ranging from red (upregulated) to green (downregulated), represent genes expression
Z scores.
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Figure 10: GSEA results from K1 and K2 di�erentially expressed genes. GSEA plots of the most
di�erentially enriched gene sets between the two cohorts. A) Inflammatory response, B) Angiogenesis, C)
Glycolysis, D) EMT, E) Hypoxia and F) G2M checkpoint. In each panel the following informations are shown:
upper panel, green line representing enrichment statistic, middle panel, black horizontal lines indicating the
position of gene set genes respect to the expression profile (lower plot, genes ordered by ranking metric, log2(Fc)).
ES = enrichment score.
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Figure 11: Kaplan-Meier plot of the two clusters in LGG. This plot shows the di�erence in survival
between the two clusters generated by the unsaturated fatty acid metabolism in LGG. Cluster 1 (K1) shows a
significantly better prognosis compared to cluster 2 (K2) samples.
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Figure 12: Di�erence in CDEs distribution between LGG clusters. Mosaic plot of three di�erent
clinical elements in LGG cohort. A) Histological type (A = Astrocytoma, OA = Oligoastrocytoma and OD =
Oligodendrocytoma), B) Histological grade (G2 = Grade 2 and G3 = grade 3) and C) Primary therapy outcome
(CR = complete response, PR = partial response, PD = progressive disease, SD = stable disease). Pearson
residuals are given by (observed≠expected)Ô

expected

.
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Figure 13: Di�erence in mutations distribution between the two clusters in LGG cohort. Oncoplot
representing the di�erent mutation occurrence and typology between the clusters generated by unsaturated fatty
acid metabolism in LGG.
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Figure 14: CNAs landscape in LGG clusters. SGOL plot of the di�erent regions of amplification (green)
and deletion (red) in K1 (upper panel) and K2 (lower panel). On the y-axis SGOL scores are shown, while on
the x-axis the chromosomes are shown.
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Figure 15: Regions of copy number gains or losses at the cytogenetic band level. Heatmap representing
di�erent chromosomal regions (rows), showing di�erential chromosomal cytogenetic band abundance in the
samples of the two clusters (columns). Colour bar on the rows represents chromosomes arms and column colours
bar identify samples from cluster 1 and cluster 2. Colours ranging from red (gain) to blue (loss) represent Z
scores of SGOL scores between the two clusters.
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Figure 16: Di�erence in all genes methylation levels between the two clusters. Box plot representing
the di�erence in all genes methylation level between cluster 1 and cluster 2 samples. The notch in the boxes
indicates 95% confidence interval for the medians.
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Figure 17: Di�erence in protein abundance level between samples between the two clusters. Heatmap
representing di�erentially abundance in proteins level (rows) between cluster 1 and cluster 2 samples (columns).
Colours ranging from red (upregulated) to green (downregulated), represent proteins signal Z scores.
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Figure 18: Di�erence in miRNAs expression levels between the two clusters. Heatmap of di�erentially
expressed miRNAs (rows), at Bonferroni corrected pvalue < 0.05, between the two clusters samples (columns).
The colour bar above heatmap columns represents samples from the two clusters. Colours ranging from red
(upregulated) to green (downregulated), represent miRNAs expression Z scores.
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logFC AveExpr t P.Value adj.P.Val B

hsa-mir-767 1.431 5.318 10.58 8.778e-24 2.24e-22 41.81

hsa-mir-105-2 1.292 4.974 9.883 3.431e-21 7.325e-20 35.89

hsa-mir-105-1 1.262 4.959 9.437 1.359e-19 2.787e-18 32.24

hsa-mir-182 1.204 11.84 5.906 6.408e-09 3.989e-08 8.028

hsa-mir-183 1.164 10.04 5.459 7.503e-08 4.242e-07 5.633

hsa-mir-96 1.106 2.905 6.381 3.951e-10 2.973e-09 10.75

hsa-mir-1296 1.07 4.97 8.896 1.009e-17 1.552e-16 27.98

hsa-mir-139 1.02 7.987 6.237 9.391e-10 6.505e-09 9.903

hsa-mir-219-2 1.018 11.33 6.135 1.707e-09 1.144e-08 9.32

hsa-mir-128-1 0.9753 9.516 7.006 7.789e-12 6.904e-11 14.6

hsa-mir-221 -1.661 5.355 -10.81 1.127e-24 3.413e-23 43.85

hsa-mir-34a -1.814 5.849 -15.55 6.333e-45 1.104e-42 90.29

hsa-mir-204 -1.893 5.512 -9.104 1.956e-18 3.41e-17 29.6

hsa-mir-10b -1.963 11.81 -5.643 2.776e-08 1.659e-07 6.6

hsa-mir-21 -2.053 13.59 -13.15 3.288e-34 2.023e-32 65.69

hsa-mir-148a -2.46 9.753 -17.23 9.431e-53 2.466e-50 108.3

hsa-mir-155 -2.506 4.287 -22.78 8.776e-80 9.18e-77 170.5

hsa-mir-196a-1 -2.879 0.7985 -19.36 5.212e-63 2.726e-60 131.9

hsa-mir-196b -3.267 2.49 -13.86 2.669e-37 2.327e-35 72.78

hsa-mir-10a -3.605 6.293 -18.11 5.56e-57 1.939e-54 118

Table 5: Summary of the di�erentially expressed miRNAs in LGG. This table represents the 20 most di�erentially

expressed miRNAs between K1 and K2 cohorts, sorted by expression fold change. logFC is log2 fold change of miRNA

expression in K1 vs K2, AveExpr average miRNA log2 expression, t is the moderated t-statistic, P.Value is the raw pvalue

of di�erential expression, adj.P.Value is BH adjusted (FDR) adjusted p-value and B* is log-odds that the miRNA is

di�erentially expressed.
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5.2.2 Hexose Metabolism in BRCA

Below are summarized results of the impact of the hexose metabolism gene set, GO:0019318, on BRCA. This

gene set contains genes whose expression is linked to the chemical reactions and pathways involving a hexose,

any monosaccharide with a chain of six carbon atoms.

The expression profile of hexose metabolism genes divides the BRCA sample cohort in two distinct clusters (K1

and K2). The di�erences in gene expression can be appreciated in Figure 19.

GSE analysis performed on di�erentially expressed genes between the two clusters reveals a reduction in, among

the others:

A. estrogen response genes

B. ephitelial to mesenchimal transition

C. KRAS signalling

D. adipogenesis

and an increase in:

E. proliferation

F. MYC target genes

G. MTORC1 signalling

H. oxidative phosphorylation

I. glycolysis

in K1 samples. Figure 20

From a clinical perspective the patients belonging to cluster 1 (K1) have a worse prognosis in respect to those

of cluster 2 (K2) Figure 21. As expected di�erences between histological subtypes are present, interestingly

di�erences in pathologic T (tumor score) and in StGallen classification are also observed (Figure 22).
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For what concerns di�erences in the mutation landscape of the two sample cohorts, we can observe a higher

frequency of TP53 (mainly R175H and R248W) in K1 samples and an higher frequency of CDH1 mutations in

K2 (Figure 23). Both TP53 observed mutations have been reported to impair DNA binding, by the introduction

of a large hydrophobic side chain (R248W mutation) or by disrupting the zinc binding domain, as it happens in

R175H, the most frequent hotspot mutant (Olivier, Hollstein, and Hainaut 2010). CDH1 mutations are cancer

predisposing mutations in hereditary di�use gastric cancer (HDGC) (Hansford et al. 2015). Consistently with

literature, a higher CDH1 mutation rate is observed in invasive lobular carcinoma (ILC) (Dossus and Benusiglio

2015).

In Figure 24 the CNA landscape of the two clusters is shown. Although there are no striking qualitative di�erences

in regions of gain and losses between K1 (upper plot) and K2 (lower plot) samples, exception made for chr3q

gain in K1 samples, quantitative di�erences can be appreciated. Notably K1 shows higher grade of gains and

losses (see graphs y-axes range and Figure 25) such as chr8q gains and chr8p and chr13q losses.

Methylation analysis Figure 26 shown no di�erence in all genes methylation between the two.

More striking di�erences arise from RPPA data shown in Figure 27. K1 samples have a clearly higher proliferating

signature i.e. higher phosphorylation of CDKs (cycle dependent kinases), higher amount of cyclines (CCNE1/2,

CCNB1) and cell cycle checkpoint genes (CHECK1/2), consistently with GSEA results on proliferation, and a

reduction in apoptotic genes such as BCL2, ANXA7. Moreover K1 samples show a hyper activation of NFKB,

whose implication in breast cancer metastasis has been extensively described ((Helbig et al. 2003) and (M. A.

Huber et al. 2004)).

The miRNA analysis identifies the oncomir, has-mir-210 as the most upregulated one, consistently with the

literature (Camps et al. 2008). On the other hand the tumor suppressor hsa-mir-139 (Krishnan et al. 2013) is

the most downregulated.

Bottom line the results obtained by the subdivision of the BRCA cohort on expression profile of hexose metabolic

genes recapitulates known features of breast cancer tumorigenesis.
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Figure 19: Di�erentially expressed metabolic genes in BRCA. Heatmap representing the expression of
the genes of the hexose metabolism (rows) in BRCA cohort. The colour bar above heatmap columns (samples)
represents samples from the two clusters. The samples have been subdivided as resulted from PAM algorithm.
The colour bar on the rows of the heatmap highlights genes belonging to anabolism (yellow), catabolism (blue) and
enzymes catalysing reversible reactions (green). Colours ranging from red (upregulated) to green (downregulated),
represent genes expression Z scores.
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Figure 20: GSEA results from K1 and K2 di�erentially expressed genes. GSEA plots of the most
di�erentially enriched gene sets between the two cohorts. A) Estrogen response, B) EMT, C) KRAS signalling,
D) Adipogenesis, E) G2M checkpoint, F) MYC targets, G) MTROC1 signalling, H) Oxydative phosphorylation
and I) Glycolysis . In each panel the following informations are shown: upper panel, green line representing
enrichment statistic, middle panel, black horizontal lines indicating the position of gene set genes respect to the
expression profile (lower plot, genes ordered by ranking metric, log2(Fc)). ES = enrichment score.
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Figure 21: Kaplan-Meier plot of the two clusters in BRCA This plot shows the di�erence in survival
between the two clusters generated by the hexose metabolism in BRCA Cluster 1 (K1) show a significantly worse
prognosis compared to cluster 2 (K2) samples.
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Figure 22: Di�erence in CDEs distribution between LGG clusters. Mosaic plot of three di�erent clinical
elements in LGG cohort. A) Histological type (IC = Infiltrating carcinoma, IDC = Infiltrating ductal carcinoma,
ILB = Infiltrating lobular carcinoma, MDC = Medullary carcinomam, MTC =Metaplastic carcinoma, MHC =
Mixed histology, MC = Mucinous carcinoma and O = Other), B) Pathologic T (from T1 to T4, grade of tumor
burder) and C) StGallen classification (TN = triple negative, H2 = HER2 +, A = Luminal A, B = Luminal B
and BH = Luminal B HER2 +). Pearson residuals are given by (observed≠expected)Ô

expected

.
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Figure 23: Di�erence in mutations distribution between the two clusters in BRCA cohort. Oncoplot
representing the di�erent mutations occurrence and typology between the clusters generated by hexose metabolism
in BRCA.
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Figure 24: CNAs landscape in BRCA clusters. SGOL plot of the di�erent regions of amplification (green)
and deletion (red) in K1 (upper panel) and K2 (lower panel). On the y-axes SGOL scores are shown, while on
the x-axes the chromosomes are shown.
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Figure 25: Regions of copy number gains or losses at the cytogenetic band level. Heatmap representing
di�erent chromosomal regions (rows), showing di�erential abundance in the samples of the two clusters (columns).
Colour bar on the rows represents chromosomes arms and column colours bar identify samples from cluster 1 and
cluster 2. Colours ranging from red (gain) to blue (loss) represent Z scores of SGOL scores between the two
clusters.
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Figure 26: Di�erence in all genes methylation levels between the two clusters. Box plot representing
the di�erence in all genes methylation level between cluster 1 and cluster 2 samples.
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Figure 27: Di�erence in protein abundance level between samples between the two clusters. Heatmap
representing di�erentially abundance in proteins level (rows) between cluster 1 and cluster 2 samples (columns).
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Figure 28: Di�erence in miRNAs expression levels between the two clusters. Heatmap of di�erentially
expressed miRNAs (rows), at Bonferroni corrected pvalue < 0.05, between the two clusters samples (columns).
The colour bar above heatmap columns represents samples from the two clusters. Colours ranging from red
(upregulated) to green (downregulated), represent miRNAs expression Z scores

66



logFC AveExpr t P.Value adj.P.Val B

hsa-mir-210 1.676 8.21 10.82 1.867e-25 6.511e-23 45.87

hsa-mir-1269 1.046 2.062 4.681 3.39e-06 2.749e-05 2.23

hsa-mir-9-2 0.9182 8.735 5.477 5.904e-08 7.817e-07 6.142

hsa-mir-9-1 0.9089 8.739 5.428 7.684e-08 9.923e-07 5.886

hsa-mir-105-2 0.8454 1.094 5.482 5.735e-08 7.691e-07 6.17

hsa-mir-1307 0.8222 10.28 11.28 2.209e-27 1.156e-24 50.28

hsa-mir-105-1 0.8095 1.12 5.255 1.926e-07 2.166e-06 4.996

hsa-mir-301a 0.8019 3.637 7.729 3.47e-14 2.135e-12 20.19

hsa-mir-3200 0.7999 2.036 8.432 1.728e-16 1.643e-14 25.42

hsa-mir-3677 0.7648 3.337 7.261 9.634e-13 4.381e-11 16.92

hsa-mir-30a -0.631 15.42 -6.113 1.575e-09 2.745e-08 9.67

hsa-mir-150 -0.6448 9.007 -4.637 4.174e-06 3.234e-05 2.03

hsa-mir-34c -0.6894 3.415 -8.266 6.282e-16 5.476e-14 24.15

hsa-mir-195 -0.6997 5.369 -10.66 8.276e-25 2.164e-22 44.39

hsa-mir-483 -0.7035 2.289 -7.38 4.191e-13 1.993e-11 17.74

hsa-mir-99a -0.8019 9.191 -9.048 1.228e-18 1.605e-16 30.31

hsa-let-7c -0.8031 10.92 -9.723 3.971e-21 8.307e-19 35.99

hsa-mir-1247 -0.8209 4.206 -6.324 4.381e-10 9.165e-09 10.92

hsa-mir-204 -0.8668 1.674 -9.648 7.637e-21 1.331e-18 35.34

hsa-mir-139 -0.9843 5.361 -13.39 8.146e-37 8.521e-34 71.88

Table 6: Summary of di�erentially expressed miRNAs. The table represents the most di�erentially expressed

miRNAs between K1 and K2 clusters logFC is log2 fold change of miRNA expression in K1 vs K2, AveExpr average

miRNA log2 expression, t is the moderated t-statistic, P.Value is the raw Pvalue of di�erential expression, adj.P.Value is

BH adjusted (FDR) adjusted Pvalue and B is log-odds that the miRNA is di�erentially expressed.
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6 Discussion
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This study provides a quantitative description of the metabolic heterogeneities found in di�erent human tumor

types. By means of the subdivision of cancer patients based on the metabolic gene expression profile and

subsequent correlative tests, it has been possible to provide a quantitative clinical and genomic description linked

to metabolic di�erences.

For sure, direct clustering on metabolomic data (Hakimi et al. 2016) would reduce the uncertainty generated

by the impact of post-translational modification on protein function, in particular for what concerns metabolic

enzymes. However the availability of metabolomic data doesn’t allow the analysis of vast cohort of tumors such

as the one presented in this study. Besides, nowadays transcriptome profile of tumor biopsies is more frequently

adopted in clinical settings, moreover, the correlative analysis between metabolites levels and the expression levels

of the genes responsible for their synthesis (data from X. Tang et al. (2014)) showed a concordance above 75%

between enzymes and their reaction products (data not shown). Another advantage of using transcriptomic data

is the possibility to perform flux balance analysis (FBA, Blazier and Papin (2012) and Bordbar et al. (2014)).

Despite the mere correlative nature of the results, so far, and in turn the lack of any causal link between a

metabolic profile and a given feature, this study provides data that can provide hypotheses that can be further

experimentally validated and, in some cases, can lead to the generation of new precision therapies.

Indeed, nowadays, the development of an e�ective metabolic therapy will require defining the stage of tumor

progression in which each pathway provides its benefit. Key step would be the establishment of therapeutic

windows that target tumor metabolism considering that normal proliferating cells share similar metabolic

requirements and adaptations. Moreover therapeutics targets are nominated from simple experimental models,

like culture cells. It will be essential to define their context-specific roles in biologically accurate models of tumor

initiation and progression. We think that this study may represent a small step toward the identification of

tumors metabolic heterogeneity.
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7 Supplementary Figures And Tables
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7.1 Clinical Data

7.1.1 Overall Survival

• Tumors_freq: 39.5 % (15 out of 38 tumors)

• Tumors_top:

Metabolisms (n)

GBMLGG 305

LGG 145

KIRC 137

KIPAN 79

UVM 53

• Metabolisms_freq: 75 % (324 out of 432 metabolisms)

• Metabolisms_top:

Tumors (n)

GO NUCLEOBASE CONTAINING SMALL

MOLECULE METABOLIC PROCESS

7

GO CELLULAR MODIFIED AMINO ACID

METABOLIC PROCESS

6

GO FATTY ACID METABOLIC PROCESS 6

GO GMP METABOLIC PROCESS 6

GO MULTICELLULAR ORGANISMAL

MACROMOLECULE METABOLIC

PROCESS

6

Table 7: Summary of OS results. Tumors_freq/Metabolism_freq is the number of tumors/metabolisms where correlation

between OS and any metabolism/tumor was observed. Tumors_top/Metabolism_top are the top five tumors/metabolisms

sorted by number of metabolisms/tumors correlating with OS.
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Figure 29: Heatmap of the presence of correlation between OS and metabolism across di�erent
tumor types. This heatmap summarizes the presence (dark violet) or absence (black) of correlation beyween
OS and specific metabolisms (columns) in tumors cohort (rows). Statistical significance was set as a global
Bonferroni corrected pval <.05.
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Figure 30: Heatmap of the association strength between OS and metabolisms. This heatmap represents
the correlation of OS, with di�erent metabolisms (columns) in di�erent tumors (rows). The colour scale, from
light to dark green, represents the log2 of the globally Bonferroni-corrected pvalues; black means lack of statistical
significance (log2(pval

Bonf

) > ≠1.3).
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Figure 31: Heatmap of the association strength between OS and a subset of metabolisms. This
heatmap represents the correlation of OS, with di�erent metabolisms (rows) in di�erent tumors (columns). The
colour scale, from light to dark green, represents the log2 of the globally Bonferroni-corrected pvalues; black
means lack of statistical significance (log2(pval

Bonf

) > ≠1.3).
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7.1.2 Relapse Free Survival

• Tumors_freq: 18.9 % (7 out of 37 tumors)

• Tumors_top:

Metabolisms (n)

LGG 102

PAAD 71

ACC 59

LUNG 6

UVM 3

• Metabolisms_freq: 39.4 % (170 out of 432 metabolisms)

• Metabolisms_top:

Tumors (n)

GO ALCOHOL METABOLIC PROCESS 3

GO ALPHA AMINO ACID METABOLIC

PROCESS

3

GO CARBOHYDRATE DERIVATIVE

METABOLIC PROCESS

3

GO CELLULAR LIPID METABOLIC

PROCESS

3

GO COENZYME METABOLIC PROCESS 3

Table 8: Summary of RFS results. Tumors_freq/Metabolism_freq is the number of tumors/metabolisms where

correlation between RFS and any metabolism/tumor was observed. Tumors_top/Metabolism_top are the top five

tumors/metabolisms sorted by number of metabolisms/tumors correlating with RFS.
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Figure 32: Heatmap of the presence of correlation between RFS and metabolism across di�erent
tumor types. This heatmap summarizes the presence (dark violet) or absence (black) of correlation between
RFS and specific metabolisms (columns) in tumors cohort (rows). Statistical significance was set as a global
Bonferroni corrected pval <.05.
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Figure 33: Heatmap of the association strength between RFS and metabolisms. This heatmap
represents the correlation of RFS, with di�erent metabolisms (columns) in di�erent tumors (rows). The colour
scale, from light to dark green, represents the log2 of the globally Bonferroni-corrected pvalues; black means lack
of statistical significance (log2(pval

Bonf

) > ≠1.3).
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Figure 34: Heatmap of the association strength between RFS and a subset of metabolisms. This
heatmap represents the correlation of RFS, with di�erent metabolisms (rows) in di�erent tumors (columns). The
colour scale, from light to dark green, represents the log2 of the globally Bonferroni-corrected pvalues; black
means lack of statistical significance (log2(pval

Bonf

) > ≠1.3).
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7.1.3 Clinical Data Elements

• Tumors_freq: 84.2 % (32 out of 38 tumors)

• Tumors_top:

Metabolisms (n)

KIPAN 342

GBMLGG 324

LUNG 323

ESCA 307

BRCA 299

• Metabolisms_freq: 79.9 % (345 out of 432 metabolisms)

• Metabolisms_top:

Tumors (n)

HALLMARK FATTY ACID METABOLISM 21

GO AMINOGLYCAN METABOLIC PROCESS 19

GO AMMONIUM ION METABOLIC

PROCESS

19

GO AMINE METABOLIC PROCESS 18

GO MEMBRANE LIPID METABOLIC

PROCESS

18

• histological type:

Tumor Metabolisms (n) Metabolism Tumors (n)

KIPAN 342 GO AMINOGLYCAN METABOLIC PROCESS 15

GBMLGG 323 GO SMALL MOLECULE METABOLIC

PROCESS

15

LUNG 323 GO AMINE METABOLIC PROCESS 14

ESCA 307 GO CELLULAR LIPID METABOLIC

PROCESS

14

SARC 248 GO MEMBRANE LIPID METABOLIC

PROCESS

14
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Table 9: Summary of CDEs results. Tumors_freq/Metabolism_freq is the number of tumors/metabolisms in which at

least one correlation between any CDE and any metabolism/tumor is found. Tumors_top/Metabolism_top are the top

five tumors/metabolisms sorted by number of metabolisms/tumors correlating with at least one CDE. The last table

represent the top five tumors/metabolism where the specific CDE has been observed.
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Figure 35: Heatmap of the amount of CDEs correlated with metabolism across di�erent tumor
types. This heatmap represents the number of CDEs correlating with a specific metabolism (rows) in tumors
cohort (columns). The colour scale, from white to dark violet, represent the amount of CDEs; black means no
observation found at a global Bonferroni corrected pval <.05.
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Figure 36: Heatmap of the frequency of association between CDEs and metabolisms. This heatmap
represents the number of tumors in which a correlation between a CDE (columns) and a metabolism (rows) has
been observed. The colour scale, from white to dark violet, represent the number of tumors; black means no
observation found at a global Bonferroni corrected pval <.05.
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Figure 37: Heatmap of the frequency of metabolisms. This heatmap represents the number of metabolisms
that correlates with a specific CDE (rows) in di�erent tumor types (columns). The colour scale, from white to
dark violet, represent the number of tumors; black means no observation found at a global Bonferroni corrected
pval <.05.
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Figure 38: Heatmap of the association strength between a specific CDE and metabolisms. This
heatmap represents the correlation of a specific CDE, Histological type, with di�erent metabolisms (rows) in
di�erent tumors (columns). The colour scale, from light to dark green, represents the log2 of the globally
Bonferroni-corrected pvalues; black means lack of statistical significance (log2(pval

Bonf

) > ≠1.3).
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Figure 39: Heatmap of the association strength between a specific CDE and a subset of metabolisms.
This heatmap represents the correlation of a specific CDE, Histological type, with di�erent metabolisms (rows)
in di�erent tumors (columns). The colour scale, from light to dark green, represents the log2 of the globally
Bonferroni-corrected pvalues; black means lack of statistical significance (log2(pval

Bonf

) > ≠1.3).
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7.2 Genomic Data
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7.2.1 Mutation Data

7.2.1.1 Protein Coding Gene Level Mutations

• Tumors_freq: 39.5 % (15 out of 38 tumors)

• Tumors_top:

Metabolisms (n)

GBMLGG 259

THCA 212

LUNG 203

BRCA 192

KIPAN 184

• Metabolisms_freq: 78.7 % (340 out of 432 metabolisms)

• Metabolisms_top:

Tumors (n)

GO CELLULAR LIPID METABOLIC

PROCESS

9

KEGG TYROSINE METABOLISM 9

GO CARBOHYDRATE DERIVATIVE

METABOLIC PROCESS

8

GO LIPID METABOLIC PROCESS 8

GO SMALL MOLECULE METABOLIC

PROCESS

8

• TP53:

Tumor Metabolisms (n) Metabolism Tumors (n)

BRCA 185 GO ACYL COA METABOLIC PROCESS 4

LUNG 108 GO ALCOHOL METABOLIC PROCESS 4

KIPAN 90 GO ETHANOLAMINE CONTAINING

COMPOUND METABOLIC PROCESS

4

GBMLGG 38 GO LIPID METABOLIC PROCESS 4

LGG 38 GO ORGANIC HYDROXY COMPOUND

METABOLIC PROCESS

4
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Tumor Metabolisms (n) Metabolism Tumors (n)

Table 10: Summary of PCGL mutations results. Tumors_freq/Metabolism_freq is the number of tu-

mors/metabolisms in which at least one correlation between any PCGL mutation and any metabolism/tumor is found.

Tumors_top/Metabolism_top are the top five tumors/metabolisms sorted by number of metabolisms/tumors correlating

with at least one PCGL mutation. The last table represent the top five tumors/metabolism in wihch the specific gene has

been observed.
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Figure 40: Heatmap of the amount of PCGL mutations correlated with metabolism across di�erent
tumor types. This heatmap represents the number of PCPGL mutations correlating with a specific metabolism
(columns) in tumors cohort (rows). The colour scale, from white to dark violet, represents the amount of PCGL
mutations; black means no observation found at a global Bonferroni corrected pval <.05.
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Figure 41: Heatmap of the frequency of association between PCGL mutations and metabolisms.
This heatmap represents the number of tumors in which a correlation between PCPGL mutations (rows) and a
metabolism (olumns) has been observed. The colour scale, from white to dark violet, represent the number of
tumors; black means no observation found at a global Bonferroni corrected pval <.05.
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Figure 42: Heatmap of the frequency of metabolisms. This heatmap represents the number of metabolisms
that correlates with a specific PCGL mutation (rows) in di�erent tumor types (columns). The colour scale, from
white to dark violet, represent the number of tumors; black means no observation found at a global Bonferroni
corrected pval <.05.
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Figure 43: Heatmap of the association strength between a specific PCGL mutation and
metabolisms. This heatmap represents the correlation of a specific PCGL mutation in TP53, with di�erent
metabolisms (columns) in di�erent tumors (rows). The colour scale, from light to dark green, represents the log2
of the globally Bonferroni-corrected pvalues; black means lack of statistical significance (log2(pval

Bonf

) > ≠1.3).
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Figure 44: Heatmap of the association strength between a specific PCGL mutation and a subset
of metabolisms. This heatmap represents the correlation of a specific PCGL mutation in TP53, with di�erent
metabolisms (rows) in di�erent tumors (columns). The colour scale, from light to dark green, represents the log2
of the globally Bonferroni-corrected pvalues; black means lack of statistical significance (log2(pval

Bonf

) > ≠1.3).
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7.2.1.2 Protein Level Mutations

• Tumors_freq: 18.4 % (7 out of 38 tumors)

• Tumors_top:

Metabolisms (n)

GBMLGG 252

THCA 216

THYM 72

LGG 36

KIPAN 24

• Metabolisms_freq: 69.9 % (302 out of 432 metabolisms)

• Metabolisms_top:

Tumors (n)

GO CARBOHYDRATE DERIVATIVE

METABOLIC PROCESS

4

GO CELLULAR LIPID METABOLIC

PROCESS

4

GO CELLULAR MODIFIED AMINO ACID

METABOLIC PROCESS

4

GO GLUCOSE METABOLIC PROCESS 4

GO HEXOSE METABOLIC PROCESS 4

• IDH1 p.R132H:

Tumor Metabolisms (n) Metabolism Tumors (n)

GBMLGG 252 GO ACETYL COA METABOLIC PROCESS 2

LGG 36 GO ALDITOL PHOSPHATE METABOLIC

PROCESS

2

Table 11: Summary of protein level mutations results. Tumors_freq/Metabolism_freq is the number of tu-

mors/metabolisms in which at least one correlation between any protein level mutation and any metabolism/tumor is

found. Tumors_top/Metabolism_top are the top five tumors/metabolisms sorted by number of metabolisms/tumors

correlating with at least one protein level mutation. The last table represent the top five tumors/metabolism in wihch the
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specific protein level mutation has been observed.
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Figure 45: Heatmap of the amount of protein level mutations correlated with metabolism across
di�erent tumor types. This heatmap represents the number of protein level mutations correlating with a
specific metabolism (columns) in tumors cohort (rows). The colour scale, from white to dark violet, represents
the amount of protein level mutations; black means no observation found at a global Bonferroni corrected pval
<.05.
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Figure 46: Heatmap of the frequency of association between protein level mutations and
metabolisms. This heatmap represents the number of tumors in which a correlation between protein level
mutation (rows) and a metabolism (columns) has been observed. The colour scale, from white to dark violet,
represent the number of tumors; black means no observation found at a global Bonferroni corrected pval <.05.
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Figure 47: Heatmap of the frequency of metabolisms. This heatmap represents the number of metabolisms
that correlates with a specific protein level mutation (rows) in di�erent tumor types (columns). The colour
scale, from white to dark violet, represents the number of tumors; black means no observation found at a global
Bonferroni corrected pval <.05.
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Figure 48: Heatmap of the association strength between a specific protein level mutation and
metabolisms. This heatmap represents the correlation of a specific protein level mutation in IDH1_p.R132H,
with di�erent metabolisms (columns) in di�erent tumors (rows). The colour scale, from light to dark green,
represents the log2 of the globally Bonferroni-corrected pvalues; black means lack of statistical significance
(log2(pval

Bonf

) > ≠1.3).
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Figure 49: Heatmap of the association strength between a specific protein level mutation and a
subset of metabolisms. This heatmap represents the correlation of a specific protein level mutation in
IDH1_p.R132H, with di�erent metabolisms (rows) in di�erent tumors (columns). The colour scale, from light
to dark green, represents the log2 of the globally Bonferroni-corrected pvalues; black means lack of statistical
significance (log2(pval

Bonf

) > ≠1.3).
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7.2.1.3 Genomic Specific Nucleotide Variations

• Tumors_freq: 18.4 % (7 out of 38 tumors)

• Tumors_top:

Metabolisms (n)

GBMLGG 251

THCA 216

THYM 74

LGG 35

KIPAN 23

• Metabolisms_freq: 70.1 % (303 out of 432 metabolisms)

• Metabolisms_top:

Tumors (n)

GO CARBOHYDRATE DERIVATIVE

METABOLIC PROCESS

4

GO CELLULAR LIPID METABOLIC

PROCESS

4

GO CELLULAR MODIFIED AMINO ACID

METABOLIC PROCESS

4

GO GLUCOSE METABOLIC PROCESS 4

GO HEXOSE METABOLIC PROCESS 4

• IDH1 37 2 209113112 209113112 + Missense Mutation SNP C C T rs121913500:

Tumor Metabolisms (n) Metabolism Tumors (n)

GBMLGG 251 GO ACETYL COA METABOLIC PROCESS 2

LGG 35 GO ALDITOL PHOSPHATE METABOLIC

PROCESS

2

Table 12: Summary of gene specific nucleotide variation results. Tumors_freq/Metabolism_freq is the num-

ber of tumors/metabolisms in which at least one correlation between any gene specific nucleotide variation and any

metabolism/tumor is found. Tumors_top/Metabolism_top are the top five tumors/metabolisms sorted by number of

metabolisms/tumors correlating with at least one gene specific nucleotide variation. The last table represent the top five
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tumors/metabolism in wihch the specific gene specific nucleotide variation has been observed. The name of the mutation

contains the following informations: 1) gene name, 2) genome assembly version, 3) chromosome number, 4) start position,

5) end position, 6) strand, 7) variant classification, 8) variant type, 9) reference allele, 8) tumor allele, 9) aberrant allele

and 10) dbSNP RS id.
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Figure 50: Heatmap of the amount of gene specific nucleotide variation correlated with metabolism
across di�erent tumor types. This heatmap represents the number of gene specific nucleotide variations
correlating with a specific metabolism (columns) in tumors cohort (rows). The colour scale, from white to dark
violet, represents the amount of gene specific nucleotide variations; black means no observation found at a global
Bonferroni corrected pval <.05.
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Figure 51: Heatmap of the frequency of association between gene specific nucleotide variations and
metabolisms. This heatmap represents the number of tumors in which a correlation between gene specific
nucleotide variation (rows) and a metabolism (columns) has been observed. The colour scale, from white to dark
violet, represents the number of tumors; black means no observation found at a global Bonferroni corrected pval
<.05.
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Figure 52: Heatmap of the frequency of metabolisms. This heatmap represents the number of metabolisms
that correlates with a specific gene specific nucleotide variation (rows) in di�erent tumor types (columns). The
colour scale, from white to dark violet, represents the number of tumors; black means no observation found at a
global Bonferroni corrected pval <.05.
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Figure 53: Heatmap of the association strength between a specific gene specific nucleotide variation
and metabolisms. This heatmap represents the correlation of a specific gene specific nucleotide variation
in *IDH1_37_2_209113112_209113112_+_Missense_Mutation_SNP_C_C_T_rs121913500*, with di�erent
metabolisms (columns) in di�erent tumors (rows). The colour scale, from light to dark green, represents the log2
of the globally Bonferroni-corrected pvalues; black means lack of statistical significance (log2(pval

Bonf

) > ≠1.3).
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Figure 54: Heatmap of the association strength between a specific gene specific nucleotide variation
and a subset of metabolisms. This heatmap represents the correlation of a specific gene specific nucleotide
variation in *IDH1_37_2_209113112_209113112_+_Missense_Mutation_SNP_C_C_T_rs121913500*, with
di�erent metabolisms (columns) in di�erent tumors (rows). The colour scale, from light to dark green, represents
the log2 of the globally Bonferroni-corrected pvalues; black means lack of statistical significance (log2(pval

Bonf

) >
≠1.3).
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7.2.2 Copy Number Alteration Data

• Tumors_freq: 84.2 % (32 out of 38 tumors)

• Tumors_top:

Metabolisms (n)

KIPAN 343

LUNG 336

GBMLGG 330

BRCA 304

KIRC 281

• Metabolisms_freq: 79.9 % (345 out of 432 metabolisms)

• Metabolisms_top:

Tumors (n)

GO AMMONIUM ION METABOLIC

PROCESS

25

GO ORGANIC HYDROXY COMPOUND

METABOLIC PROCESS

25

GO ALPHA AMINO ACID METABOLIC

PROCESS

24

GO CARBOHYDRATE METABOLIC

PROCESS

24

GO CELLULAR AMINO ACID METABOLIC

PROCESS

24

• chr3p:

Tumor Metabolisms (n) Metabolism Tumors (n)

KIPAN 329 GO ALPHA AMINO ACID METABOLIC PROCESS 12

LUNG 300 GO AMINE METABOLIC PROCESS 12

KIRC 246 GO MONOCARBOXYLIC ACID METABOLIC

PROCESS

12

STES 154 GO CARBOHYDRATE METABOLIC PROCESS 11

ESCA 146 GO DICARBOXYLIC ACID METABOLIC

PROCESS

11
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Tumor Metabolisms (n) Metabolism Tumors (n)

Table 13: Summary of CNA results. Tumors_freq/Metabolism_freq is the number of tumors/metabolisms in which at

least one correlation between any CNA and any metabolism/tumor is found. Tumors_top/Metabolism_top are the top

five tumors/metabolisms sorted by number of metabolisms/tumors correlating with at least one CNA. The last table

represents the top five tumors/metabolisms in wihch the specific CNA has been observed.
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Figure 55: Heatmap of the amount of CNAs correlated with metabolism across di�erent tumor
types. This heatmap represents the number of CNAs correlating with a specific metabolism (columns) in tumors
cohort (rows). The colour scale, from white to dark violet, represents the amount of CNAs; black means no
observation found at a global Bonferroni corrected pval <.05.
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Figure 56: Heatmap of the frequency of association between CNAs and metabolisms. This heatmap
represents the number of tumors in which a correlation between CNA (columns) and a metabolism (rows) has
been observed. The colour scale, from white to dark violet, represent the number of tumors; black means no
observation found at a global Bonferroni corrected pval <.05.
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Figure 57: Heatmap of the frequency of metabolisms. This heatmap represents the number of metabolisms
that correlates with a specific CNA (columns) in di�erent tumor types (rows). The colour scale, from white to
dark violet, represents the number of tumors; black means no observation found at a global Bonferroni corrected
pval <.05.
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Figure 58: Heatmap of the association strength between a specific CNA and metabolisms. This
heatmap represents the correlation of a specific CNA of chr3p, with di�erent metabolisms (columns) in di�erent
tumors (rows). The colour scale, from light to dark green, represents the log2 of the globally Bonferroni-corrected
pvalues; black means lack of statistical significance (log2(pval

Bonf

) > ≠1.3).
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Figure 59: Heatmap of the association strength between a specific CNA and a subset of
metabolisms. This heatmap represents the correlation of a specific CNA of chr3p, with di�erent metabolisms
(rows) in di�erent tumors (columns). The colour scale, from light to dark green, represents the log2 of the globally
Bonferroni-corrected pvalues; black means lack of statistical significance (log2(pval

Bonf

) > ≠1.3).
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7.2.3 Methylation Data

7.2.3.1 All Genes Methylation Level

• Tumors_freq: 68.4 % (26 out of 38 tumors)

• Tumors_top:

Metabolisms (n)

TGCT 329

LUNG 296

GBMLGG 295

KIPAN 247

LGG 229

• Metabolisms_freq: 79.9 % (345 out of 432 metabolisms)

• Metabolisms_top:

Tumors (n)

GO MONOCARBOXYLIC ACID METABOLIC

PROCESS

19

GO COFACTOR METABOLIC PROCESS 17

GO MONOSACCHARIDE METABOLIC

PROCESS

17

GO SULFUR COMPOUND METABOLIC

PROCESS

17

REACTOME METABOLISM OF LIPIDS AND

LIPOPROTEINS

17

Table 14: Summary of whole genome methylation results. Tumors_freq/Metabolism_freq is the number of

tumors/metabolisms where the correlation between whole genome methylation and any metabolism/tumor was observed

Tumors_top/Metabolism_top are the top five tumors/metabolisms sorted by occurrence of metabolisms/tumors correlating

with whole genome methylation.
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Figure 60: Heatmap of the presence of the correlation between whole genome methylation and
metabolism across di�erent tumor types. This heatmap represents the presence of the correlation between
whole genome methylation with a given metabolism (columns) in tumors cohort (rows). The colour scale, black
for absence and dark violet for presence, represents the presence of association between whole genome methylation
and metabolism in every tumor types, at a global Bonferroni corrected pval <.05.
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Figure 61: Heatmap of the association strength between whole genome methylation and
metabolisms across di�erent tumor types. This heatmap represents the correlation of whole genome
methylation, with di�erent metabolisms (columns) in di�erent tumors (rows). The colour scale, from light to dark
green, represents the log2 of the globally Bonferroni-corrected pvalues; black means lack of statistical significance
(log2(pval

Bonf

) > ≠1.3).
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Figure 62: Heatmap of the association strength between whole genome methylation and a subset
of metabolisms across di�erent tumor types. This heatmap represents the correlation of whole genome
methylation, with di�erent metabolisms (rows) in di�erent tumors (columns). The colour scale, from light to dark
green, represents the log2 of the globally Bonferroni-corrected pvalues; black means lack of statistical significance
(log2(pval

Bonf

) > ≠1.3).

118



7.2.3.2 Gene Specific Methylation Level

• Tumors_freq: 89.5 % (34 out of 38 tumors)

• Tumors_top:

Metabolisms (n)

KIPAN 345

TGCT 342

LUNG 341

BRCA 340

GBMLGG 340

• Metabolisms_freq: 79.9 % (345 out of 432 metabolisms)

• Metabolisms_top:

Tumors (n)

GO AMINOGLYCAN METABOLIC PROCESS 30

GO GLUTATHIONE METABOLIC PROCESS 30

GO GLYCOPROTEIN METABOLIC

PROCESS

30

GO LIPID METABOLIC PROCESS 30

GO NEUTRAL LIPID METABOLIC PROCESS 30

• LOC100130933:

Tumor Metabolisms (n) Metabolism Tumors (n)

KIPAN 316 GO FATTY ACID METABOLIC PROCESS 19

LUNG 312 REACTOME GLYCOSAMINOGLYCAN

METABOLISM

19

GBMLGG 275 GO GLYCEROPHOSPHOLIPID

METABOLIC PROCESS

18

ESCA 262 GO MONOCARBOXYLIC ACID

METABOLIC PROCESS

18

BLCA 258 GO ORGANIC ACID METABOLIC

PROCESS

18
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Table 15: Summary of gene methylation level results. Tumors_freq/Metabolism_freq is the number of tu-

mors/metabolisms in which at least one correlation between any gene methylation level and any metabolism/tumor is

found. Tumors_top/Metabolism_top are the top five tumors/metabolisms sorted by number of metabolisms/tumors

correlating with at least one gene methylation level. The last table represents the top five tumors/metabolisms in which

the specific gene methylation level has been observed.
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Figure 63: Heatmap of the amount of gene methylation levels correlated with metabolism across
di�erent tumor types. This heatmap represents the number of CpG sites correlating with a specific metabolism
(columns) in tumors cohort (rows). The colour scale, from white to dark violet, represents the amount of gene
methylation levels; black means no observation found at a global Bonferroni corrected pval <.05.
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Figure 64: Heatmap of the frequency of association between single gene methylation levels and
metabolisms. This heatmap represents the number of tumors in which a correlation between CpG sites (rows)
and a metabolisms (columns) has been observed. The colour scale, from white to dark violet, represents the
number of tumors; black means no observation found at a global Bonferroni corrected pval <.05.
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Figure 65: Heatmap of the frequency of metabolisms correlating with gene specific methylation
levels. This heatmap represents the number of metabolisms that correlates with gene specific methylation levels
(columns) in di�erent tumor types (rows). The colour scale, from white to dark violet, represents the number of
tumors; black means no observation found at a global Bonferroni corrected pval <.05.
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Figure 66: Heatmap of the association strength between a specific gene methylation level and
metabolisms. This heatmap represents the correlation of the specific LOC100130933 methylation level,
with di�erent metabolisms (columns) in di�erent tumors (rows). The colour scale, from light to dark green,
represents the log2 of the globally Bonferroni-corrected pvalues; black means lack of statistical significance
(log2(pval

Bonf

) > ≠1.3).
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Figure 67: Heatmap of the association strength between a specific gene methylation level and a
subset of metabolisms. This heatmap represents the correlation of the specific LOC100130933 methylation
level, with di�erent metabolisms (rows) in di�erent tumors (columns). The colour scale, from light to dark
green, represents the log2 of the globally Bonferroni-corrected pvalues; black means lack of statistical significance
(log2(pval

Bonf

) > ≠1.3).
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7.2.4 Reverse Phase Protein Array Data

• Tumors_freq: 68.4 % (26 out of 38 tumors)

• Tumors_top:

Metabolisms (n)

TGCT 336

BRCA 322

LGG 317

GBMLGG 313

KIRC 310

• Metabolisms_freq: 79.9 % (345 out of 432 metabolisms)

• Metabolisms_top:

Tumors (n)

GO GLYCOPROTEIN METABOLIC

PROCESS

23

GO AROMATIC AMINO ACID FAMILY

METABOLIC PROCESS

22

GO CELLULAR AMINO ACID

METABOLIC PROCESS

22

GO FATTY ACID METABOLIC

PROCESS

22

GO STEROID METABOLIC PROCESS 22

• AR|AR:

Tumor Metabolisms (n) Metabolism Tumors (n)

BRCA 236 GO MONOCARBOXYLIC ACID METABOLIC

PROCESS

9

LGG 205 GO PHOSPHOLIPID METABOLIC PROCESS 9

GBMLGG 180 GO CARBOHYDRATE METABOLIC PROCESS 8

KIRC 149 GO CELLULAR HORMONE METABOLIC

PROCESS

8

LIHC 135 GO CELLULAR LIPID METABOLIC PROCESS 8
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Table 16: Summary of protein abundace results. Tumors_freq/Metabolism_freq is the number of tumors/metabolisms

in which at least one correlation between any protein production level and any metabolism/tumor is found. Tu-

mors_top/Metabolism_top are the top five tumors/metabolisms sorted by number of metabolisms/tumors correlating

with at least one protein production level. The last table represents the top five tumors/metabolisms in which the specific

protein production level has been observed.
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Figure 68: Heatmap of the amount of protein production levels correlated with metabolism across
di�erent tumor types. This heatmap represents the number of protein production levels correlating with a
specific metabolisms (columns) in tumors cohort (rows). The colour scale, from white to dark violet, represents
the amount of protein production levels; black means no observation found at a global Bonferroni corrected pval
<.05.
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Figure 69: Heatmap of the frequency of association between protein production levels and
metabolisms. This heatmap represents the number of tumors in which a correlation between protein production
level (columns) and a metabolism (rows) has been observed. The colour scale, from white to dark violet, represents
the number of tumors; black means no observation found at a global Bonferroni corrected pval <.05.
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Figure 70: Heatmap of the frequency of metabolisms. This heatmap represents the number of metabolisms
that correlates with a specific protein production level (columns) in di�erent tumor types (rows). The colour
scale, from white to dark violet, represents the number of tumors; black means no observation found at a global
Bonferroni corrected pval <.05.
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Figure 71: Heatmap of the association strength between a specific protein production level and
metabolisms. This heatmap represents the correlation of the specific AR abundace level, with di�erent
metabolisms (columns) in di�erent tumors (rows). The colour scale, from light to dark green, represents the log2
of the globally Bonferroni-corrected pvalues; black means lack of statistical significance (log2(pval

Bonf

) > ≠1.3).
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Figure 72: Heatmap of the association strength between a specific protein production level and a
subset of metabolisms. This heatmap represents the correlation of the specific AR abundace level, with di�erent
metabolisms (rows) in di�erent tumors (columns). The colour scale, from light to dark green, represents the log2
of the globally Bonferroni-corrected pvalues; black means lack of statistical significance (log2(pval

Bonf

) > ≠1.3).
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7.2.5 miRNA Expression Data

• Tumors_freq: 78.9 % (30 out of 38 tumors)

• Tumors_top:

Metabolisms (n)

KIPAN 339

LUNG 328

LGG 307

GBMLGG 304

BRCA 298

• Metabolisms_freq: 79.9 % (345 out of 432 metabolisms)

• Metabolisms_top:

Tumors (n)

GO AMINOGLYCAN METABOLIC PROCESS 26

GO AMINE METABOLIC PROCESS 25

GO MUCOPOLYSACCHARIDE METABOLIC

PROCESS

24

GO ORGANIC ACID METABOLIC PROCESS 24

GO PHENOL CONTAINING COMPOUND

METABOLIC PROCESS

24

• hsa-mir-375:

Tumor Metabolisms (n) Metabolism Tumors (n)

LUNG 294 GO GLYCOPROTEIN METABOLIC PROCESS 10

TGCT 219 GO INOSITOL PHOSPHATE METABOLIC

PROCESS

10

STES 185 GO PYRUVATE METABOLIC PROCESS 10

ESCA 178 GO ALCOHOL METABOLIC PROCESS 9

THCA 165 GO ORGANIC ACID METABOLIC PROCESS 9

Table 17: Summary of mirna expression level results. Tumors_freq/Metabolism_freq is the number of tu-

mors/metabolisms in which at least one correlation between any mirna expression level and any metabolism/tumor is
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found. Tumors_top/Metabolism_top are the top five tumors/metabolisms sorted by number of metabolisms/tumors

correlating with at least one mirna expression level. The last table represents the top five tumors/metabolisms in which

the specific mirna expression level has been observed.
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Figure 73: Heatmap of the amount of mirna expression levels correlated with metabolism across
di�erent tumor types. This heatmap represents the number of mirna expression levels correlating with a
specific metabolism (columns) in tumors cohort (rows). The colour scale, from white to dark violet, represents
the amount of mirna expression levels; black means no observation found at a global Bonferroni corrected pval
<.05.
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Figure 74: Heatmap of the frequency of association between mirna expression levels and
metabolisms. This heatmap represents the number of tumors in which a correlation between mirna ex-
pression level (columns) and a metabolism (rows) has been observed. The colour scale, from white to dark violet,
represents the number of tumors; black means no observation found at a global Bonferroni corrected pval <.05.
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Figure 75: Heatmap of the frequency of metabolisms associated to di�erentially expressed miRNAs
across di�erent tumor types. This heatmap represents the number of metabolisms that correlates with a
specific mirna expression level (columns) in di�erent tumor types (rows). The colour scale, from white to dark
violet, represents the number of tumors; black means no observation found at a global Bonferroni corrected pval
<.05.
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Figure 76: Heatmap of the association strength between a specific mirna expression level and
metabolisms. This heatmap represents the correlation of the specific hsa-mir-514-1: expression level, with
di�erent metabolisms (columns) in di�erent tumors (rows). The colour scale, from light to dark green, represents
the log2 of the globally Bonferroni-corrected pvalues; black means lack of statistical significance (log2(pval

Bonf

) >
≠1.3).
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Figure 77: Heatmap of the association strength between a specific mirna expression level and a
subset of metabolisms. This heatmap represents the correlation of the specific hsa-mir-514-1: expression
level, with di�erent metabolisms (rows) in di�erent tumors (columns). The colour scale, from light to dark
green, represents the log2 of the globally Bonferroni-corrected pvalues; black means lack of statistical significance
(log2(pval

Bonf

) > ≠1.3).
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