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Abstract
We propose a nonparametric method for density estima-
tion over (possibly complicated) spatial domains. The 
method combines a likelihood approach with a regulariza-
tion based on a differential operator. We demonstrate the 
good inferential properties of the method. Moreover, we 
develop an estimation procedure based on advanced nu-
merical techniques, and in particular making use of finite 
elements. This ensures high computational efficiency and 
enables great flexibility. The proposed method efficiently 
deals with data scattered over regions having complicated 
shapes, featuring complex boundaries, sharp concavities or 
holes. Moreover, it captures very well complicated signals 
having multiple modes with different directions and inten-
sities of anisotropy. We show the comparative advantages 
of the proposed approach over state of the art methods, 
in simulation studies and in an application to the study of 
criminality in the city of Portland, Oregon.
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1  |   INTRODUCTION

Density estimation represents a core tool in statistic. It is essential for the visualization of data structures in 
exploratory data analysis and often represents the starting point for regression and classification problems.

In this work, in particular, we consider density estimation over planar domains with non-trivial geom-
etries, including those with complicated boundaries, sharp concavities or interior holes. Figure 1 illus-
trates the kind of problem we are considering. The points correspond to reported crime locations in the 
municipality of Portland, Oregon. The data come from the Portland Police Bureau, and they comprise a 
collection of different crime categories in different years. The interest here is to estimate the distribution 
of reported crimes, in order to identify critical areas in the city. In this case, the complicated geographical 
conformation of the domain, characterized by the presence of the river, is crucial in the study of the phe-
nomenon. For instance, in the northern area of the city, many more crimes are reported in the East side 
of the river with respect to the West side. Standard density estimators, such as kernel density estimators 
(KDE) (Wand & Jones, 1994), local estimators (Hjort & Jones, 1996) or spline density estimators (Gu, 
1993; Gu & Qiu, 1993), do not readily generalize to this case. These methods in fact rely on Euclidean 
distances, thus leading to inaccurate estimates when the phenomenon under study is influenced by the 
shape of the spatial domain. The same holds for the other recent proposals to density estimation, such as 
shape-constrained methods, that assume that the log-density is concave, and therefore unimodal (Carando 
et al., 2009; Cule et al., 2010; Samworth, 2018). Vice versa, the counting processes in Bejanov (2011), as 
well as the log-Gaussian Cox Processes proposed in Simpson et al. (2016) and the analogous point process 
models described in Yuan et al. (2017), can handle point data over domains with irregular shapes.

F I G U R E  1   The figure displays the municipality of Portland, with the locations of motor vehicle thefts. The 
city is divided into two parts by the Willamette River. The phenomenon under study appears influenced by the 
complicated shape of the municipality. For instance, in the northern area of the city, a much higher criminality is 
observed on the East side of the river with respect to the West side. This is also the case for the southern part of the 
city and for Hayden Island, in the northern part towards Washington State, where the number of occurrences is much 
higher than in the inland nearby part of the municipality [Colour figure can be viewed at wileyonlinelibrary.com]
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More generally, outside of the density estimation framework, the modelling of data distributed over 
complex planar domains has recently attracted an increasing interest; for instance Ramsay (2002), Lai 
and Schumaker (2007), Wang and Ranalli (2007), Wood et al. (2008b), Sangalli et al. (2013) and Scott-
Hayward et al. (2014) develop smoothing and spatial regression methods for data scattered over domains 
with complicated geometries; Zhang et al. (2007) and Menafoglio et al. (2018) consider kriging in this 
context, while Lindgren et al. (2011) proposes Gaussian fields based on a stochastic Partial Differential 
Equation (sPDE) approach, and Niu et al. (2019) uses intrinsic processes. Different solutions have been 
put forwards by various authors to handle boundaries and boundary conditions. For instance, Zhang et al. 
(2007) considers some physical constraints at the boundaries of the domain in a kriging approach, Wood 
et al. (2008a) handles boundary features with soap film smoothing, Sangalli et al. (2013) and Azzimonti 
et al. (2014, 2015) deal with general forms of boundary conditions in regression with differential regular-
ization, while Bakka et al. (2019) shows how physical barriers can be included in sPDE models.

In this paper, we develop a flexible density estimation method for data observed over compli-
cated two-dimensional domains. The method is based on a nonparametric likelihood approach, with 
a regularizing term involving a partial differential operator. We study the theoretical properties of the 
proposed estimator and prove its consistency. From a theoretical perspective, an analogous regularized 
nonparametric likelihood approach has been considered in the context of simple multidimensional 
domains by Gu and Qiu (1993) and Gu (1993), and formerly, in the univariate case, by Good and 
Gaskins (1980) and Silverman (1982). On the other hand, the generalization of the latter estimators 
to complicated domains is not obvious. In fact, the classical spline basis used to implement these 
methods (Gu, 1993, 2014) naturally work over rectangular domains. Here we propose an innovative 
method to tackle the estimation problem. This method leverages on advanced numerical analysis 
techniques, making use of finite elements. The finite element method (see, e.g. Ciarlet, 2002) is often 
used in engineering applications to solve partial differential equations. An important advantage of the 
use of finite elements is the possibility to consider spatial domains with complex shapes, instead of 
simple tensorized domains. Moreover, the proposed approach for density estimation does not impose 
any shape constraints, and its unstructured basis allows for the estimation of fairly complex structures. 
In particular, thanks to the finite element formulation, the method is able to capture highly localized 
features, and lower dimensional structures such as ridges. This ability makes the method particularly 
well suited in research areas such as density-based clustering (Chacón, 2015) and ridge estimation 
(Chen et al., 2015; Genovese et al., 2014). As a by-product, we also describe an innovative heat diffu-
sion estimator, inspired by the works of Chaudhuri and Marron (1999) and Botev et al. (2010), that is 
able to handle data distributed over complicated domains.

The article is organized as follows. Section 2 introduces the proposed nonparametric likelihood 
density estimator with differential regularization. In Section 3, we study its theoretical properties and 
prove the consistency of the estimator. In Section 4, we describe the estimation procedure. Section 5 
reports simulation studies that show the performances of the proposed method with respect to state 
of the art techniques. Section 6 gives the application to the Portland crime data. Section 7 discusses 
possible directions for future research.

2  |   DENSITY ESTIMATION WITH DIFFERENTIAL 
REGULARIZATION

We consider the problem of estimating a density function f on a spatial domain Ω ⊂ ℝ
2. Let x1, …, xn 

be n independent realizations from f. We use the logarithm transform g = log f, and propose to esti-
mate f by finding the function g that minimizes the negative penalized log likelihood 
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where λ > 0. The first term in (1) is the negative log-likelihood. The second term is necessary to ensure that 
the estimate integrates to one, as detailed in Appendix A. The third term is a regularization, necessary to 
avoid unbounded likelihoods. In fact, unlike classical parametric density estimation, where the parameter 
space is finite dimensional and the form of f is assumed known, here we deal with an infinite class of den-
sities. In particular, the regularizing term we use involves the Laplacian, a differential operator defined as 

where x = (x1, x2 ) . The Laplacian provides a measure of the local curvature of g, invariant with respect 
to rigid transformations of the coordinate system. This regularization thus controls the roughness of the 
estimate. In particular, when the smoothing parameter λ increases, the solution flattens out, presenting 
less bumps.

Instead of the simple Laplacian, the regularizing term could as well involve more complex partial 
differential operators, or the misfit of a partial differential equation (PDE). This is particularly inter-
esting when some problem-specific information about the phenomenon is available that can be for-
malized in terms of a PDE, Lg u, modelling to some extent the phenomenon under study. In such case, 
it makes sense to replace the regularization in (1) by ∫

Ω
(Lg − u)2 , thus including the problem-specific 

information in the estimation functional. This is explored in the context of spatial and spatiotemporal 
regression methods in Azzimonti et al. (2014), (2015), and Arnone et al. (2019), who consider gen-
eral linear second-order differential operators L, including second-order, first-order and zero-order 
differential operators with space varying coefficients, as well as space-varying forcing terms u, thus 
enabling an extremely rich modelling of anisotropy and non-stationarity. For sake of simplicity of 
exposition, in this work, we focus on the isotropic and stationary case in Equation (1), involving the 
penalization of the Laplace operator.

2.1  |  Equivalence to Poisson process intensity estimation

In this section, we discuss the relationship of the proposed estimator with the problem of estimating a 
Poisson intensity. The estimation of spatial point processes, especially of inhomogeneous processes, 
is emerging as fundamental in many applications. Some likelihood approaches for inhomogeneous 
processes have been proposed by Waagepetersen and Guan (2009) and Guan and Shen (2010). In 
these models, weighted estimating equations incorporate information on both inhomogeneity and de-
pendence of the process. More recent approaches are studied in Diggle et al. (2013), that focuses on 
log-Gaussian Cox process estimated via MCMC, in Coeurjolly and M⊘ller (2014), that considers 
a variational procedure, in Flaxman et al. (2017), that proposes a nonparametric approach based on 
Reproducing Kernel Hilbert Spaces, and in Fuentes-Santos et  al. (2016) that proposes a bootstrap 
bandwidth selection method for the consistent kernel intensity estimator of a spatial point processes. 
All these models, although able to comply with bounded domains, do not consider the influence of the 
domain on the intensity of the process. They are therefore not appropriate when the data are distributed 
over complicated spatial domains, with holes or strong concavities. The recent proposals in Bejanov 
(2011), Simpson et al. (2016) and Yuan et al. (2017) can instead handle data over domains with ir-
regular shapes. In particular, Simpson et al. (2016) extends the sPDE approach introduced by Lindgren 
et al. (2011) to model point data, using log-Gaussian Cox Processes. Moreover, Yuan et al. (2017) 

(1)L (g) = −
1

n

n∑
i= 1

g (xi ) + ∫Ωexp(g ) + �∫Ω (Δg)2

Δg =
�2g

�x2
1

+
�2g

�x2
2
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generalizes this technique to space-time point data. These methods use integrated nested Laplace ap-
proximations (see, e.g. Rue et al., 2009) with Gaussian processes priors for fast Bayesian inference.

We now briefly sketch how intensity estimation can be performed within the framework proposed 
in this article. Let us consider n i.i.d. observations x1,…, xn from a Poisson counting process on Ω 
with inhomogeneous intensity function γ. The likelihood of the process is 

If we set g(x) = log (γ(x)) and we omit the constant term ∫
Ω

1du = |Ω |, we obtain the negative log-likelihood 

Finally, likewise in the case of density estimation, we can add a regularization, and consider the functional 

with a positive smoothing parameter �̃. The minimization of the functional (2) is equivalent to the mini-
mization of (1), setting �̃ = n�. We can thus tackle the minimization of (2) along the same lines detailed 
below for the density estimation problem considered in Section 2. Thus, our proposal also defines an in-
novative method for the study of inhomogeneous Poisson processes that is able to accurately handle data 
observed over complex spatial domains.

3  |   THEORETICAL PROPERTIES

In this section, we formalize the minimization problem introduced in the previous sections, and we 
demonstrate that this estimation problem is well posed, proving the existence of a unique minimizer, 
in an appropriate functional space. We then demonstrate the consistency of the estimator.

3.1  |  Well-posedness of the estimation problem

Let L2 (Ω) denote the space of square integrable functions over Ω. The Sobolev space Hk (Ω ) is de-
fined as 

and is equipped with the standard norm ‖g‖2

Hk (Ω )
=
∑

���≤k‖D�g‖L2(Ω)2 where D�g denotes the weak de-
rivative of order α (see, e.g. Adams, 1975; Agmon, 2010; Brezis, 2010, for a detailed treatment of Sobolev 
spaces). Denote by ν the normal unitary vector to the boundary of the domain ∂Ω, that is, at each point 
x ∈ ∂Ω, ν is the vector with unitary norm that is orthogonal to the tangent to the curve ∂Ω at x. Define 
the space 

n∏
i= 1

� (xi )exp

(
∫Ω (1 − � (u) )du

)
.

−

n∑
i= 1

g(xi ) + n∫Ωexp(g (u) )du.

(2)−

n∑
i= 1

g(xi ) + n∫Ωexp(g(u) )du + �̃∫Ω (Δg)2

Hk (Ω ) =
{

g ∈ L2 (Ω) : D�g ∈ L2 (Ω) ∀ |�| ≤ k
}

V =

{
g ∈ H2 (Ω) :

�g

��
= 0 on �Ω

}
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where �g

��
= ∇g ⋅ � is the derivative of the function g in the normal direction. The so-called homogeneous 

Neumann boundary conditions, �g

��
= 0 on ∂Ω, that impose a null normal derivative at the boundary of the 

domain, are naturally associated with the Laplace operator. In the space V, when λ→ + ∞, the estimated 
density is the uniform distribution over Ω. This corresponds to the null family of the Laplace operator, 
i.e., the solution of the problem Δg 0 for g ∈ V. In the formulation of the problem of Poisson intensity 
estimation, outlined in Section 2.1, when λ→∞, the obtained estimates tend to an homogeneous Poisson 
intensity on Ω.

The following Theorem states that the minimization problem is well posed in the space V.

Theorem 3.1  The functional L(g) defined in Equation (1) has a unique minimizer in V.
Proof   The proof is deferred to Appendix B.

The same result of course holds for the functional in Equation (2), setting �̃ = n�. In the following, 
we focus on the density setting.

3.2  |  Consistency of the estimator

Denote by DsKL (g1, g2 ) the symmetrized Kullback–Leibler distance between g1 and g2, that is 
�g1

(g1 − g2 ) + �g2
(g2 − g1 ), where �g (h ) = ∫ heg is the mean of h(X) when X has log-density g. 

The symmetrized Kullback–Leibler is a distance specific for density functions; it measures the loss of 
information between two probability distributions.

Let g0 be the true log-density function. Moreover, let L∗ (g ) be a quadratic form such that the Taylor 
expansions of L and L∗ in g0 coincide up to the second order. Denote with Varg (h) the variance of 
h(X) when X has log-density g. Following the same approach as in Silverman (1982) and Gu and Qiu 
(1993), we introduce g∗, an approximation of ĝ, which is the minimizer of 

The functional L∗, and hence its minimizer g∗, are introduced in order to split the distance between ĝ and 
g0 in two parts, namely DsKL ( ĝ, g∗ ) and DsKL (g∗, g0 ), whose asymptotic behaviours are easier to investi-
gate. We make the following assumptions on g0 and g∗.

Assumption 1  The true log-density g0 is bounded above and below, and is such that ∫
Ω

(Δg0 )2 <∞.
Assumption 2  For g in a convex set B0 around g0 containing ĝ and g∗, there exists a positive con-

stant c such that cVarg0
≤ Varg uniformly with respect to g.

Assumption 1 is a standard requirement for the consistency of density estimators (see, e.g. 
Silverman, 1982). It guarantees that the weighted L2 (Ω) norm with the density function f0 = exp(g0 ) 
is equivalent to the standard L2 (Ω) norm, that is there exist two constants c1 and c2 such that 
c1 ‖h‖2

L2 (Ω )
≤ �

Ω
h2f0 ≤ c2 ‖h‖2

L2 (Ω )
 for each h ∈ V. Assumption 2 is also standard (see, e.g. Gu & Qiu, 

1993). This assumption is satisfied whenever the members of B0 are bounded from above and below. 
The assumption requires that the same property described by Assumption 1 is satisfied by functions 
near g0, and in particular by ĝ and g∗.

The following theorem states the consistency of the proposed density estimator and gives the rate 
of convergence.

L∗ (g) = −
1

n

n∑
i= 1

g (xi ) + 1 + �g0
(g ) +

1

2
Varg0

(g − g0 ) + �∫Ω (Δg)2 .
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Theorem 3.2  Under Assumptions 1 and 2, as λ→0 and n�1∕2
→∞ the estimator ĝ that minimizes 

(1) is consistent and 

Proof   The proof is deferred to Appendix C.
Remark 1  Theorem 3.2 states the consistency of the estimator in the symmetrized Kullback–Leibler 

distance. This distance, however, controls other commonly used distances for density functions, 
such has the total variation and the Hellinger distances (see, e.g. Pollard, 2002). Therefore, the 
proposed estimator is also consistent in the total variation and Hellinger distances.

4  |   ESTIMATION PROCEDURE

The minimization of the functional (1) is an infinite dimensional problem and its solution is not ana-
lytically available. Here we consider a discretization of such infinite dimensional problem based on 
finite elements (see, e.g. the textbook Ciarlet, 2002, for an introduction to finite elements). In particu-
lar, we consider a linear approximation of the function g and correspondingly of the functional (1). 
This leads to a tractable estimation procedure. The proposed technique permits to efficiently handle 
data scattered over domains with complicated shapes. Moreover, the unstructured nature of the finite 
element basis enables the accurate estimation of complicated densities, with multiple modes having 
different intensities and direction of anisotropy.

The implementation of the method is based on the R package fdaPDE (Lila et al., 2019).

4.1  |  Finite elements

First, we consider a discretization of the domain Ω using a constrained Delaunay triangulation; this is a 
generalization of the Delaunay triangulation (see for example Hjelle and Dæhlen, 2006) that enables the 
definition of the boundary of the domain, forcing the required segments into the triangulation. The resulting 
domain is denoted by Ω , where   is the set of all the triangles. In the simulation studies and application pre-
sented in the following sections, the triangulation is constructed starting from the boundary; the triangulation 
is then refined according to criteria concerning maximal allowed triangle area and minimal allowed triangle 
angle. The R package fdaPDE (Lila et al., 2019) provides the functions to construct the mesh and refine it.

Figure 2 shows the mesh that we use for the estimation of the distribution of motor vehicle theft 
reports in Portland. The mesh is able to represent very well this complicated domain, accurately ren-
dering the Willamette River, that cuts through the city, and other detailed features of the domain. In 
general, the mesh should be fine enough to capture the features in the signal. Typically, a regular mesh 
having a number of nodes higher than the number of data, but of the same order of magnitude, works 
efficiently. Triangles having too acute angles should be avoided, as they may be associated with nu-
merical instability. In particular, we suggest setting a minimum angle of 30 degrees in the refinement 
function. For data displaying highly localized modes, it may be convenient to consider data-driven 
meshes that are constructed using the procedure detailed in Appendix F.4, and then refined, always 
according to criteria of minimal allowed triangle angle and maximal allowed triangle area. Such data-
driven meshes permit to capture strongly localized features of the density, while being parsimonious 
(i.e. using a limited number of mesh nodes) and thus requiring a lower computational cost. An exam-
ple in this sense is shown in Figure 11 in Section 6.2.

(3)DsKL ( ĝ, g0 ) = O (n−1�−1∕2 + � ) .
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We now define the piecewise polynomial functions over Ω . For simplicity of exposition we pres-
ent the linear case, but higher order polynomials can be used as well. To this aim, we define a system 
of bases. Let us denote by �k, k = 1, …, K, the nodes of the mesh. In the case of linear finite elements, 
these nodes coincide with the vertices of the triangles. For each node �k, we hence consider the finite 
element basis �k, defined as the piecewise linear function that has value 1 at node �k and value 0 at 
any other node ��, with ℓ≠k. As highlighted in Figure 3, �k has a tent-like shape: the tip of the tent is 
above the node �k, where �k reaches value 1; the basis �k takes non-zero values only over the patch 
of triangles sharing the vertex �k, and this patch of triangles constitutes the base of its tent-like shape; 
the tent drops linearly from the value 1 at �k to the value 0 at the other nodes of the path of triangles 
sharing the vertex �k, and hence remains 0 over all other triangles of the mesh. The finite element 
bases hence have a strongly localized support.

Any function g, that is globally continuous on Ω  and is linear when restricted to any triangle 
of  , can be obtained as an expansion of the K bases �1, …, �K,, that is, g( ⋅ ) = gT� ( ⋅ ) , where 
g = (g1, …, gK )⊤ is the K-vector of coefficients of the basis expansion, and � := (𝜓1, …, 𝜓K )⊤ is 
the vector that packages the K finite element basis. Moreover, it turns out that the vector g of coeffi-
cients of the basis expansion coincides with the vector of evaluations of the function at the K nodes 
of the mesh, that is g = (g (�1 ) , …, g(�K ) )⊤. In fact, since �k (�j ) = �jk, where �jk is the Kronecker 
delta (�jk = 1 if j = k and �jk = 1 otherwise), we have that 

 The finite element space of functions is thus constructed so that any function in such space is completely 
defined by the values its assumes at the K nodes.

g(�j ) =

K∑
k= 1

gk�k (�j ) =

K∑
k= 1

gk�jk = gj.

F I G U R E  2   Mesh used for the study of motor vehicle theft in the city of Portland. The mesh represents very well 
the complex morphology of the domain, cut through by the Willamette River. The mesh is obtained as a constrained 
Delaunay triangulation using the functions in the R package fdaPDE (Lila et al., 2019)
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4.2  |  Discretization of the infinite dimensional estimation problem

We now discretize the infinite dimensional estimation problem, associated with the minimization of 
functional (1), using the finite elements introduced in Section 4.1.

Let Ψ be the n × K matrix having as entries the evaluations of the K finite element basis functions 
�1, …, �K at the n data points (x1, …, xn ), that is 

Moreover, let 1 denote the K-vector with entries all equal to 1. With this notation, using the piecewise lin-
ear function g = g⊤� , we can discretize by −1⊤Ψg the negative penalized log-likelihood that constitutes 
the first term in (1).

To discretize the second term in (1), that is ∫
Ω

exp(g) , we need an appropriate quadrature rule. 
Here, in particular, we use a standard Gaussian quadrature rule, with q = 9 quadrature nodes and 
associated vector of quadrature weights w ∈ ℝ

q (see, e.g. Quarteroni et  al., 2010). For each trian-
gle � ∈  , denote by Ψ� the q × K matrix having as entries the evaluations of the K basis functions 
�1,…,�K at the q quadrature nodes in the triangle τ. The second term in (1) can hence be discretized 
as 

∑
𝜏∈ w⊤exp(Ψ𝜏g ) .

Finally, to approximate the third term in (1), that is the roughness penalty, we need to introduce 
the vectors � x1

:= (𝜕𝜓1∕𝜕x1,…, 𝜕𝜓K∕𝜕x1 )⊤ and � x2
:= (𝜕𝜓1∕𝜕x2,…, 𝜕𝜓K∕𝜕x2 )⊤, and K × K mass 

and stiffness matrices 

 Following Ramsay (2002) and Sangalli et  al. (2013), the regularization can hence be discretized by 
𝜆g⊤R1R−1

0
R1g. Such approximation only involves the first derivatives of the function g = g⊤�.

Ψ:=

⎡
⎢⎢⎢⎣

�1(x1)… �
K

(x1)

⋮ ⋱ ⋮

�1(x
n
)… �

K
(x

n
)

⎤
⎥⎥⎥⎦

.

R0 := �Ω
(��⊤ ) and R1 := �Ω

(� x1
�⊤

x1
+ � x2

�⊤
x2

) .

F I G U R E  3   A linear finite element basis function on a triangulation [Colour figure can be viewed at 
wileyonlinelibrary.com]
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Summarizing, the negative penalized log-likelihood functional (1) can be discretized as 

The minimization of (4) can be performed using classical steepest descent approaches, such as the 
gradient descent and the quasi-Newton algorithms briefly reviewed in Appendix D. Both algorithms 
are proved to converge when the functional to be minimized is strictly convex (Lange, 2013). Since 
(4) is strictly convex, both algorithms are guaranteed to converge. However, the number of iterations 
needed to converge depends on the goodness of the initial guess g0. A standard choice for such initial 
guess can be g0 = 0, that corresponds to a uniform distribution over Ω. In next section, we propose a 
better initial guess g0, which cuts down the computational cost, significantly reducing the number of 
necessary iterations.

4.3  |  Initialization of the optimization algorithm

We initialize the vector of parameters by means of a heat diffusion estimator, inspired by the work 
of Chaudhuri and Marron (1999). In particular, Chaudhuri and Marron (1999) proposes an approach 
to curve estimation based on a heat diffusion process, exploiting the close relationship between heat 
diffusion processes and Gaussian kernels. The approach is motivated by the ‘scale-space’ models 
from computer visions and the idea is to explore the whole space of solutions for increasing levels 
of smoothness. Botev et al. (2010) uses the same idea to define a density estimator and studies the 
properties of the method. This approach to density estimation, based on the heat diffusion process, 
gives elegant solutions in the case of univariate domains or multivariate domains with simple shapes. 
On the other hand, the method discussed in Botev et al. (2010) cannot account for domains with 
complex shapes.

To overcome this problem, differently from Chaudhuri and Marron (1999) and Botev et al. (2010), 
we consider a discretization of the heat diffusion process, that enables us to deal with domains with 
complex shapes. We stress the fact that we use such method only to compute an initial guess for the 
optimization algorithm.

Let δ(·) denote the Dirac measure. Given n realizations x1, …, xn, consider the heat equation 

 The initial condition of the equation, f̃ (x ;0), is the empirical density of the data. The use of homoge-
neous Neumann boundary conditions (second equation of the system) ensures that, for every t ≥ 0, the 
solution f̃  integrates to one over the domain Ω, thus being a proper density. While the initial condition, 
the empirical density, constitutes an extremely rough solution, as t increases, the solution f̃ (x ; t) becomes 
progressively more smooth, converging to a uniform density over Ω when t→∞. The main idea is that, for 
a certain time t, f̃ (x ; t) provides a good initial guess for the true density f, that we can use in the gradient 
descent or quasi-Newton algorithm.

(4)
L (g) = −1⊤Ψg +

∑
𝜏 ∈

w⊤exp(Ψ𝜏g ) + 𝜆g⊤R1R−1
0

R1g.

(5)
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Differently from Chaudhuri and Marron (1999) and Botev et al. (2010), we solve the heat-diffusion 
problem (5) numerically, using a forward Euler integration scheme (see for example Butcher, 2016). 
Moreover, we consider an appropriate finite element formulation. Specifically, let us first of all con-
sider the Voronoi tesselation of the spatial domain of interest, associated with the triangulation of the 
domain discussed in Section 4.1. The triangulation and the Voronoi tessellation constitute two dual 
partitions of the domain of interest.

Figure 4 illustrates the relationship between the triangulation and the Voronoi tesselation: in 
the top centre panel, we show in grey a triangulation and in red the corresponding Voronoi tes-
selation. For k  =  1,  …,  K, we denote by Rk the k-th Voronoi tile: this is the set of all points in 
Ω  that are closer to node �k of the triangulation than to any other node �j, with j  ≠  k, that is: 
Rk = {x ∈ Ω |d(x, �k ) ≤ d(x, �j ) for all j ≠ k} , where d(·,·) denotes the Euclidean distance, com-
puted within the domain of interest (i.e. without crossing the boundaries of the domain). We hence 
approximate the empirical density of the data by the finite element function f̃

0
= f̃

0⊤
� that takes the 

following values at the nodes: 

where � is the indicator function, |Rk | denotes the area of the kth tile and |Ω| the area of the spatial domain 
Ω. The value of this function at the kth node corresponds to the proportion of data that fall within the kth 

(6)f̃
0

k
= f̃

0
(�k ) =

1

n

n∑
i= 1

|Rk |
|Ω | � (xi ∈ Rk ) for k = 1, …, K

F I G U R E  4   Top left: a sample of 200 observations from a mixture of Gaussian distributions on a square domain; 
the figure also displays a Voronoi tessellation of the domain. Top centre: Voronoi tessellation and the dual Delaunay 
triangulation. Top right: approximation of the empirical density of the data, computed on the Voronoi tessellation and 
using finite elements; this constitutes the initial condition of the heat equation. Bottom panels: heat diffusion estimates 
as the time increases [Colour figure can be viewed at wileyonlinelibrary.com]
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tile, weighted by the relative area of the tile. With a sufficiently fine triangulation, and correspondingly 
small tiles, such function provides a good approximation of the empirical density. We thus use this func-
tion to approximate the initial condition of the heat diffusion problem (5). Figure 4 offers an illustration. 
The top left panel shows a sample of 200 observations from a mixture of Gaussian distributions; the 
same figure also displays a Voronoi tessellation of the domain. The top centre panel shows a zoom of 
the Voronoi tessellation, with the associated triangulation. The top right panel shows the corresponding 
approximation of the empirical density, f̃

0
.

We hence discretize the heat-diffusion problem in (5) by finite elements in space and a forward 
Euler scheme in time, setting the temporal step size to Δt. This means that, starting from the initial-
ization in Equation (6), we compute an approximation of f̃ (x ; t) , at times t = mΔt, where m = 1, 2, … 
is the iteration index, by the finite element function f̃

m
= f̃

m⊤
� , setting the following values of the 

functions at the nodes 

where �k is the set of nodes that are closest neighbours of �k and # (�k ) is its cardinality. Looking at 
the solutions for different time instants (i.e. for different m) we obtain a set of functions that ranges 
from the extremely rough sum of spikes at the observations (m = 0) to the uniform distribution over 
Ω (m→∞). Figure 4 illustrates this process. In particular, starting from the approximation of the 
empirical density f̃

0, displayed in the top right panel, the bottom panels show progressively smother 
solutions f̃

m.
Among the various solutions f̃

m
, we then use as a starting guess for the gradient descent algorithm 

the solution f̃
m

, such that gm = log( f̃
m

) minimizes the functional (4).
Remark 2  We stress that the initialization step described in this section is not necessary for the 

estimation procedure. A constant initialization would nevertheless lead to convergence of the 
optimization algorithm, and thus, to the same estimate. However, the initialization here de-
scribed leads to a significant reduction of the number of iterations needed to convergence of the 
optimization algorithm, and hence to a computational saving, as highlighted in the simulation 
studies in Section 5. For this reason, especially for very fine meshes, we encourage the use of 
this initialization.

4.4  |  Selection of the smoothing parameter

The selection of the smoothing parameter λ is crucial for an accurate estimation and to ensure a 
right balance between the bias and the variance of the estimator. The smoothing parameter can 
be automatically selected through cross-validation. In particular, we consider here a k-fold cross-
validation based on the L2 norm. This norm is frequently used in literature and leads to a particu-
larly tractable selection algorithm (Marron, 1987). The value of λ can be chosen minimizing the 
cross-validation error 

where k is the fold index, f̂
− [ k ]

�
(x) is the density estimated without the k-th fold, x [ k ] is the subset of 

observations of the k-th fold and # (x
[ k ] ) its cardinality. See Appendix E for details.

f̃
m+1

k
= f̃

m

k
+Δt

1

# (�k )

∑
j∈�k

( f̃
m

j
− f̃

m

k
) , k = 1, …, K

(7)R̂ (� ) = ∫ ( f̂
− [ k ]

�
(x) )2 −

2

# (x
[ k ] )

∑
i∈ [ k ]
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5  |   SIMULATION STUDIES

In this section, we present three simulation studies, under different scenarios. In Simulation 1, in Section 
5.1, we consider a non-trivial density, obtained as a mixture of four Gaussian distributions, on a simple 
square domain. In Simulation 2, in Section 5.2, we consider a very simple density, but defined on a 
complicated domain, having the form of a horseshoe. Finally, in Simulation 3, in Section 5.3, we con-
sider a non-trivial density defined on a complicated domain, the horseshoe. These simulations are cho-
sen to mimic the difficulties posed by the analysis of crime report data, mentioned in the Introduction.

In these different settings, we compare the performances of

1.	 KDE: the classical Kernel density estimation, implemented using the R package ks (Duong, 
2018), that employs anisotropic Gaussian kernels, selecting the full the bandwidth matrix by 
k-fold cross validation;

2.	 SPLINE: the spline density estimation in Gu (1993), implemented using the R package gss (Gu, 
2014), selecting the smoothing parameter by leave-one-out cross-validation, as implemented in the 
package;

3.	 LGCP: the log-Gaussian Cox processes based on the sPDE approach introduced in Simpson et al. 
(2016), implemented using the R packages inlabru (Bachl et al., 2019) and RINLA (Lindgren 
et al., 2015), considering a Matern model that uses the penalizing complexity prior discussed in 
Simpson et al. (2017);

4.	 HEAT: the heat diffusion density estimator described in Section 4.3, that constitutes the initializa-
tion for the proposed method, implemented using the R package fdaPDE (Lila et al., 2019);

5.	 DE-PDE: the proposed nonparametric density estimator with partial differential equation regulari-
zation, implemented using the R package fdaPDE, selecting the smoothing parameter by k-fold 
cross validation.

The different methods are compared in terms of mean integrated squared error (MISE), computed 
as ∫

Ω
( f̂ − f)2, where the integral is approximated using a regular lattice that covers the domain.

5.1  |  Simulation 1: Mixture of Gaussians on square domain

In the first simulation, we consider a non-trivial density, with multiple modes having different direc-
tions and intensities of anisotropy, obtained as a mixture of four Gaussian distributions, on a simple 
square domain. The density is shown in the top left panel of Figure 5, and its detailed definition is 
given in Appendix F.1. We generate from this density 100 samples of 200 observations each. We 
hence compute the estimates with the various methods, under the specifications detailed in Appendix 
F.1.

Figure 5 shows the mean estimates, obtained by the various considered methods, over the 100 sim-
ulation repetitions. KDE is able to capture all the modes of the density, especially the highest mode 
in the top right. It has nonetheless some difficulties in capturing the shapes of the leftmost modes: 
this is due to the fact that KDE selects the full bandwidth of an anisotropic kernel, and this might 
lead to inaccuracies in the estimates when the modes present different orientation and intensities of 
anisotropy. SPLINE captures the overall shape, but has a tendency to oversmooth, especially the most 
elongated modes in the top right. This is caused by the intrinsically tensorized nature of the spline 
basis: anisotropic modes that are in different directions with respect to the two main axes are not well 
captured; on the contrary, anisotropic features in the directions of one of the two main axes may be 
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overemphasized, as highlighted in Simulation 3 and in the application to motor vehicle thefts data in 
Section 6.1. LGCP captures all four modes, but oversmooths them. HEAT drastically oversmooths the 
modes. DE-PDE captures the heights of the four modes better than the competing methods, with a 
more precise identification of the leftmost modes with respect to KDE.

The left panel in Figure 8 shows the boxplots of the MISE, over the 100 simulation replicates, of 
the estimates obtained with the competing models. DE-PDE and KDE displays significantly smaller 
values of MISE with respect to the other methods, with the proposed DE-PDE attaining the smallest 
MISE with the smallest variance.

5.2  |  Simulation 2: Simple density on horseshoe domain

In the second simulation, we consider the horseshoe domain from Ramsay (2002), and define a simple 
density on this domain, starting from the test function introduced in Section 5.1 Wood et al. (2008a); 
see Appendix F.2 for details. The density, shown in the top left panel of Figure 6, follows the shape of 
the domain, with higher values on the top horseshoe arm and lower values on the bottom horseshoe 
arm. This simulation setting presents similar difficulties as the analysis of crimes in Portland, outlined 
in the Introduction. In both cases, the domain is characterized by a strong concavity, that almost sepa-
rates two parts of the domains, with one part displaying much higher density values that the other part. 

F I G U R E  5   Simulation 1: mixture of Gaussians on square domain. Top left panel: true density. Other panels: 
mean estimates yielded by the competing methods over 100 simulation repetitions [Colour figure can be viewed at 
wileyonlinelibrary.com]
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We generate from the true density on the horseshoe domain 100 samples of 200 observations each. We 
hence compute the estimates with the various methods, under the specifications detailed in Appendix 
F.2.

KDE is clearly unable to identify the true structure of the density, and pours the higher density 
values of the top horseshoe arm into the lower density values of the bottom horseshoe arm, returning 
estimates that are particularly poor near the boundaries. SPLINE has similar problems in identifying 
the true shape of the density. The methods tend to smooth the function of the most external part of the 
domain, but is unable to capture the difference in density levels between the two horseshoe arms. This 
highlights that methods that rely on the Euclidean distance may return inaccurate estimates when the 
shape of the domain is important for the phenomenon under study. LGCP, HEAT and DE-PDE instead 
appropriately take in account the shape of the domain. These methods are able to capture the overall 
shape of the density, and do not display any particular problem near the boundaries. HEAT estimates 
are rougher than those provided by LGCP and DE-PDE, that are instead very similar.

The boxplots of the MISE shown in Figure 8 confirm that LGCP, HEAT and DE-PDE provide the 
best estimates. In particular, HEAT attains the smallest MISE and with the smallest variance, likely 
due to the fact that the considered true density resembles the solution of a diffusion equation. The 
MISE of LGCP and DE-PDE are not significantly different, as tested by pairwise Wilcoxon tests.

5.3  |  Simulation 3: Mixture on horseshoe domain

In the third simulation study, we combine the complexities of the two previous simulation studies: a 
complicated density on a complicated domain. In particular, we consider the horseshoe domain, as in 
the second simulation, but we define a less trivial density on the top of this domain, obtained mixing 
the true density in Simulation 2 with Gaussian and skewed Gaussian distributions; see Appendix F.3 
for details. This density, shown in the top left panel of Figure 7, features two modes in the bottom 
horseshoe arm, and a mode in the top horseshoe arm, close to the internal boundary. This feature is 
similar to the ones displayed by Portland crime reports (see Section 6).

KDE is able to identify all modes, but displays some difficulties near the boundaries; the modes 
estimated in the bottom horseshoe arm are elongated in the horizontal direction, due to the fact that the 

F I G U R E  6   Simulation 2: simple density on horseshoe domain. Top left panel: true density. Other panels: 
mean estimates yielded by the competing methods over 100 simulation repetitions [Colour figure can be viewed at 
wileyonlinelibrary.com]
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selected bandwidth parameters captures a strong anisotropy in this direction. SPLINE shows similar 
difficulties. Also, in this case, the modes in the bottom are strongly elongated in the horizontal direction: 
this is an effect of the tensorized basis that may overemphasize anisotropies in the direction of the axes. 
LGCP captures all the modes, but oversmooths the density, as already seen in Simulation 1. HEAT pres-
ents a similar behavior. DE-PDE also slightly oversmooths the two bottom modes, but not as much as 
the competitors, but captures very well the top mode. The boxplots of the MISE in right panel of Figure 
8 show that DE-PDE has significantly lower errors and with a lower variance than all other methods.

6  |   PORTLAND CRIME REPORTS

We consider the problem of estimating the crime reports distribution in the city of Portland. The data 
come from NIJ ‘Real-Time Crime Forecasting Challenge’1 and consists of calls-for-service positions 
from the Portland Police Bureau. Wilhelm and Sangalli (2016) also offers a study of crime data over 
the city of Portland, but they aggregate crimes per district, and consider a generalized linear model to 
analyse crime counts over the various municipality districts.

 1https://nij.ojp.gov/fundi​ng/real-time-crime​-forec​astin​g-chall​enge

F I G U R E  7   Simulation 3: mixture over horseshoe domain. Top left panel: true density. Other panels: mean 
estimates yielded by the competing methods over 100 simulation repetitions [Colour figure can be viewed at 
wileyonlinelibrary.com]

F I G U R E  8   Boxplots of the mean integrated squared error (MISE), over the 100 simulation repetitions, of the 
competing methods, in the three considered simulation studies
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6.1  |  Motor vehicle theft report

Figure 1 shows the location of motor vehicle theft reports over the municipality, in the year 2012. 
Figure 3 shows the municipality of Portland, along with a Delaunay triangulation based on 788 nodes.

Note that two areas are not part of the domain of interest: the airport, in the northern part of the 
city, and the western part of Hayden Island, towards Washington State. As already commented in the 
Introduction, the frequency of occurrences of motor vehicle thefts varies significantly over the var-
ious parts of the municipality; moreover, the complex morphology of the city clearly influences the 
phenomenon under study. For instance, rather different theft numbers are observed on the two sides 
of the river. In the northern part of the city, a much higher occurrence of vehicle thefts is observed 
on the east side of the river; the same can be said in the southern part of the city. In the city centre 
instead, more occurrences are present on the west side of the river. A similar situation applies for the 
Hayden Island, in the north toward Washington State, where there are more vehicle thefts that in the 
inland nearby part of the municipality. In general, the phenomenon is not smooth across the river that 
acts as a physical barrier.

This problem should more appropriately be considered as an intensity estimation problem (as 
done in Section 6.2), rather than a density estimation problem. On the other hand, to enable quan-
titative comparison among the various competing methods, through the cross-validation error (7), 
we shall deal with it as a density estimation problem. Figure 9 shows the estimates of the vehicle 
theft density obtained by the various methods, implemented under the specifications detailed in 
Appendix F.4. The top left panel shows the results in terms of 5-fold cross-validated error, com-
puted as in (7). DE-PDE outperforms all competitors. KDE is the second best method, but shows 
significantly higher errors and variance in the estimates. SPLINE clearly shows some artefact due 
to its tensorized basis, with strongly elongated regions of high density in the direction of the axes. 
LGCP and HEAT return oversmoothed densities, as already commented in Simulation 1 and 3. 
The proposed DE-PDE, on the contrary, accurately complies with the shape of the domain and is 
able to capture localized features. The two main distribution masses are concentrated in the city 
centre and in the Lloyd district, a primarily commercial neighbourhood in the north and north-east 
section of the city. It is also interesting to note the high density region on the eastern part of the 
city, along the War Veterans Memorial freeway, a main highway that serves the Portland-Vancouver 
metropolitan area and passes near three of the largest shopping centres of the city. All these areas 
have huge amounts of parking lots, with cars parked for long periods of time. It is interesting to note 
the high concentration area in the Eastern part of Hayden Island, highlighted in the enlarged views 
in Figure 10. This part of the island, named Jantzen Beach, has highly developed retail areas near 
the freeway, with hotels, offices, manufactured home communities, and condominium complexes. 
Despite the complexity of the domain, DE-PDE is able to identify the high density region on the 
island, without interfering with the estimation on the opposite side of the river, where almost no 
observations are present; see the bottom right panel in Figure 10. As shown by the other panels of 
this figure, the competing methods return instead inaccurate estimates over this region: KDE and 
SPINE because they do not take into account for the shape of the domain, while LGCP and HEAT 
because they oversmooth the signal.

6.2  |  Prostitution

Figure 11 shows instead the locations of crime reports related to prostitution, reported in 2012. For 
sake of space, we here only display DE-PDE estimates, briefly commenting on the estimates yielded 
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by the competing methods. We formalize the data analysis as an intensity estimation problem, consid-
ering the DE-PDE intensity methodology, as discussed in Section 2.1. The top left panel of Figure 11 
shows that the locations of prostitution related crime reports are concentrated along the Northeast 82nd 
Avenue. This is a major arterial on the Eastside that has long had a reputation as a hub for prostitution 

F I G U R E  9   Motor vehicle theft reports (see Figure 1). Top left panel: boxplots of 5-fold cross-validation errors of 
the estimates yielded by the competing methods. Other panels: estimates yielded by the competing methods [Colour 
figure can be viewed at wileyonlinelibrary.com]
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F I G U R E  1 0   Motor vehicle theft reports. Enlargement of the data and estimates on Hayden Island [Colour figure 
can be viewed at wileyonlinelibrary.com]
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and other aspects of Portland’s sex industry. The top centre and right panels of the same figure show 
the corresponding DE-PDE intensity obtained on a regular triangulation with around 3000 nodes (see 
Appendix F.4 for details). These figures highlight how accurately the proposed method captures the 
very high intensity concentrated around a segment that corresponds to the Northeast 82nd Avenue. 
The proposed estimator is flexible enough to detect a low dimensional structure of the underlying in-
tensity, a ridge, without oversmoothing it. The bottom left panel of the same figure displays a coarse 
data-driven triangulation, with 612 nodes, that is finer where there are more data points; the mesh is 
constructed as detailed in Appendix F.4. The bottom centre and right panels show the corresponding 
DE-PDE intensity estimate. While being more parsimonious and requiring the estimation of a smaller 
number of parameters, the estimate on the coarse data-driven mesh is nevertheless able to accurately 
represent the highly anisotropic signal. The other methods return instead inaccurate estimates, not 
shown here for sake of space. In particular, KDE gives a very rough estimate, with many spikes, 
SPINE overemphasizes the elongated ridge in the Northeast 82nd Avenue, and misses the nearby 
mode, while LGCP oversmooths the signal returning a flat estimate.

7  |   DISCUSSION AND FUTURE RESEARCH DIRECTIONS

The proposed DE-PDE method shows robust performances in all considered scenarios, with compa-
rable or significantly better performances with respect to state of the art density estimation methods. 

F I G U R E  1 1   Prostitution-related crime reports. Top left: data. Top center and right: DE-PDE estimates on a 
fine regular mesh with about 3000 nodes. Bottom left: coarse data-driven mesh with about 600 nodes. Bottom center 
and right: DE-PDE estimates on the coarse data-driven mesh. These images highlight how accurately the proposed 
method captures the density mass concentrated along Northest 82nd Avenue, that appears as a neat ridge in the three-
dimensional visualization [Colour figure can be viewed at wileyonlinelibrary.com]
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Thanks to its unstructured basis, DE-PDE can capture complicated signals, displaying multiple modes 
with different intensities and directions of anisotropy (see, e.g. Simulation 1) and also low-dimensional 
structures such as the ridge displayed by prostitution-related crime reports. Furthermore, it is able to 
comply with non-trivial bounded domains, as highlighted by Simulation 2 and by the application to 
motor vehicle theft reports. Moreover, it only requires the selection of one smoothing parameter, that 
can be chosen through cross-validation.

The proposed density estimation method can be extended in various directions. A first fas-
cinating direction goes toward higher dimensional and non-Euclidean domains. These include 
two-dimensional curved domains with non-trivial geometries, and three-dimensional domains 
with complex boundaries. Data observed over these complicated domains are common in modern 
applications (see, e.g. Chung et al., 2016; Coveney et al., 2020; Ettinger et al., 2016; Lila et al., 
2016; Niu et al., 2019). Density estimation over complicated multidimensional domains requires 
flexible methods able to overcome the classical concept of Euclidean distance. Some proposals 
generalize the kernel density estimation to Riemaniann manifolds, using the concept of exponen-
tial map to solve the problem (see, e.g. Berry & Sauer, 2017; Kim & Park, 2013). In our setting, 
the flexible formulation of DE-PDE in terms of finite elements enables the extension to curved 
two-dimensional domains and to complex three-dimensional domains. In particular, we can here 
resort respectively to surface finite elements, likewise in (Lila et  al., 2016), and to volumetric 
finite elements. In a similar spirit, some recent works address density and point processes estima-
tion on networks (see, for example McSwiggan et al., 2017; Moradi & Mateu, 2020; Moradi et al., 
2019; Rakshit et al., 2019).

Another interesting direction of research concerns the modelling of spatiotemporal point data 
over complicated spatial domains (Gervini, 2019; Yuan et al., 2017). This permits the understand-
ing of the evolution of underlying processes generating the data. DE-PDE could be generalized to 
space-time point data by considering two regularizations, one in time and one in space, or alterna-
tively a unique regularization involving a time-dependent differential operator, in analogy to the 
spatiotemporal regression methods presented in Bernardi et al. (2017) and Arnone et al. (2019).

It would moreover be interesting to explore alternative discretizations based on splines over tri-
angulations (Lai & Schumaker, 2007) or on other advanced non-tensor product splines, such as non-
uniform rational B-splines, as explored in Wilhelm et al. (2016) in a regression setting.

As commented in Section 2, we could as well consider regularizing terms involving more complex 
differential operators and partial differential equations, similarly to what done in Azzimonti et  al. 
(2014) and Arnone et al. (2019) in the context of spatial regression. This possibility would enable 
the inclusion in the estimator of problem-specific information concerning the physics of the process 
generating the data.

Finally, the problem of uncertainty quantification in nonparametric density estimation represents a 
fascinating research topic. It would be interesting to explore the use of bootstrap techniques to estimate 
confidence bands around the density (Hall, 1992), although these bands are centred on the true den-
sity only asymptotically. A recent promising alternative is the approach proposed by Giné and Nickl 
(2010), based on Rademacher symmetrization. A possible extension of this approach to the proposed 
setting constitutes a very interesting direction for future research.
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