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Abstract
Purpose – The purpose of this paper is to investigate the relations among soft skill, information technologies
and Big Data for building a possible bridge able to link human and technology dimensions for increasing
firm performance.
Design/methodology/approach – Using the Business-focused Inventory of Personality , work personality
of 4,758 human resources engaged in 72 high-tech European firms has been analyzed and its relations with
firms’ investment in Big Data and firms’ economic performance have been tested using the structural
equation modeling (SEM).
Findings – The research shows the existence of strong relations between some elements of human resources’
personality such as the work motivation and the social competencies and the firms’ economic performance.
At the same time, the research clarifies the mediated effect of firms’ investment in Big Data in the relations
between human resources’ organizational behavior and the firms’ economic performance.
Originality/value – The paper extends previous managerial contributions about Big Data management and
human resource management providing evidence on which build more effective managerial models in the era
of digital transformation.
Keywords Big Data, Artificial intelligence, Soft skills, High-tech European firms
Paper type Research paper

1. Introduction
For a long time, managerial and marketing studies have focused their attention on the role
of “tangible resources” such as raw materials, production processes and physical structures
as key levers for ensuring firms’ survival and competitiveness ( Jauch and Glueck, 1988;
Dakin, 1993). Nowadays, the challenging social and economic dynamics are showing the
relevance of “not tangible resources” as key elements on which act for building managerial
and business models able to support firms in catching emerging market opportunities
(Teece, 1998; Chesbrough, 2010; Almatrooshi et al., 2016).

Among “not tangible resources,” an increasing relevance has been acquired by the
multiple instruments rooted in the field of information and communication technologies
(ICTs) (Roberts, 2000; Fuchs, 2009; Aquino et al., 2018; Gupta et al., 2018). The spread of
social networks, virtual realities, electronic devices, 3D printers and artificial intelligence
(AI) supported systems among the others are clear evidence of disruptive changes that are
radically changing the world in which we all live.

Within the challenging debate about opportunities and risks provided by the ICT,
several contributions have been specifically provided with reference to the multi- and
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trans-disciplinary domains of Big Data (McAfee et al., 2012; Chen et al., 2013) and
AI (Liebowitz, 2001; Brodie and Mylopoulos, 2012). Accordingly, a number of theoretical
perspectives have been adopted for examining firm innovation processes, including
cognitive theory, dynamic capabilities theory, institutional theory, market orientation
perspective, resource-based view and sociotechnical approaches (Huizingh, 2011;
Garud et al., 2013).

According to the large part of these contributions, ICTs are considered as a source for
process innovation, while process innovation is considered as catalyst for understanding
the business value of ICT. In such a view, Big Data can support the application of business
intelligence (BI) tools, while AI can support the definition of more efficient work processes
(Chen et al., 2012).

Despite the multiple advancements in knowledge provided with reference to BI and AI, a
large part of existing research approaches seems to be oriented to consider them as domains
related only to firms’ processes and infrastructures (Chen and Zhang, 2014), while only few
contributions have been provided with reference to the role of human resources in managing
processes based on Big Data and AI (Powell and Dent-Micallef, 1997). Still, a general halo of
uncertainty seems to linger with reference to the conditions that affect human resources in
the adoption of Big Data and AI (Linoff and Berry, 2011).

With the aim to bridge this gap, the paper adopts an interpretative perspective centered
on human resources for providing a possible conceptual framework able to link human and
technology dimension under the shared umbrella of business management. The main aim of
the paper is to identify possible link able to support an efficient and suitable combination
between human resources’ features and opportunities offered by the advancements in
knowledge in technology field. In such a line, the cognitive domain of 4,758 human resources
engaged in 72 high-tech European firms is analyzed using the Business-focused Inventory
of Personality (BIP) for defining key elements of human resources’ work personality.
After this, the relations between key elements of human resources’ work personality, firm’s
investment in Big Data and firms’ revenues have been analyzed using structural equation
modeling (SEM) for tracing possible elements on which managerial researchers and
practitioners can act for improving efficiency in the relation between firms’ human and
technology dimension. Accordingly, the rest of paper is structured as follow: Section 2
defines the literature overview on which reflections herein are based and Section 3 proposes
the hypotheses development. Section 4 illustrates methodology and research process.
In Section 5, the results are presented and, in Section 6, they are discussed for underling
theoretical and practical implications of the research. Finally, Section 7 proposes some final
remarks, limitations and future directions for research.

2. Literature overview
The emerging trend toward open innovation requires an integrative perspective and it calls
for a rethinking of traditional perspectives about firm boundaries for considering
knowledge exploration, retention, and exploitation inside and outside organizational
boundaries (Chesbrough, 2006; Del Giudice and Della Peruta, 2013).

Quantitative empirical studies about external knowledge sourcing provide evidence that
involving a large number of external sources in innovation is a promising choice for
improving firms’ economic performance (Chesbrough et al., 2006; Perkmann and Walsh,
2007; Del Giudice and Della Peruta, 2016). Open innovation scholars also agree that external
sourcing of knowledge does not replace in-house research and development and they
highlight the importance of “absorptive capacity”which allows firms to identify, absorb and
make use of external knowledge (Spithoven et al., 2010).

Moreover, a large number of works have been concerned with the role of the diverse
relationships and cooperation developed by firms with other stakeholders to “absorb”
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external knowledge (Zahra and George, 2002; Huang and Rice, 2009; Scuotto, Del Giudice,
Bresciani and Meissner, 2017). The general idea is that the capacity of a firm to exploit
external knowledge is a critical determinant of its capacity for innovation (Chesbrough,
2006; Scuotto, Del Giudice, della Peruta and Tarba, 2017).

As summarized in Table I, six knowledge capacities are needed to capture internal and
external knowledge exploration, retention and exploitation: inventive, absorptive,
transformative, connective, innovative and disruptive capacity (Argote et al., 2003;
Lane et al., 2006).

While inventive capacity refers to internal exploring new knowledge, absorptive
capacity relates to exploring external knowledge. Based on Cohen and Levinthal’s original
definition of recognizing, assimilating and applying external knowledge, Zahra and George
(2002) differentiated between potential and realized absorptive capacity. In a similar vein,
Lane et al. (2006) distinguished exploratory, transformative and exploitative learning
processes. Following this reconceptualization, the studies about the absorptive capacity in
the knowledge management framework focus the attention on the knowledge acquisition
(Gray, 2006).

From a different perspective, connectivity capacity is closely related to absorptive
capacity. Accordingly, connective capacity comprises the process stages of maintaining
knowledge in interorganizational relationships and subsequently reactivating this
knowledge (Xia and Roper, 2008; Saviano and Caputo, 2013).

Studies about open innovation proposed by knowledge management literature suggest
that firms should use external as well as internal ideas. Thus, new innovation models entail
new forms of interactions and collaborations for fostering new products and processes
development within varying contexts (Bellantuono et al., 2013; Saviano et al., 2018).

Generally speaking, innovation management process is a relevant part of the operations
of many businesses (Slack et al., 2010; Scuotto, Santoro, Bresciani and Del Giudice, 2017).
Innovation process management is a systematic approach for nurturing the creative
capabilities of employees and for creating a workplace environment that encourages new
ideas for workflows, methodologies, services and products (Ahmed and Shepherd, 2010).

Gartner’s recommendations to IT leaders interested in launching an innovation
management program are to follow a disciplined approach based on five steps (Gartner,
1990): strategize and plan: settle on a shared view of aims and plans; develop governance:
establish a process for making decisions; drive change management: build systems by
which people can communicate and socialize via multiple channels; execute: make sure to
draw from a wide range of sources to generate ideas for innovations that will transform the
business, align the initiatives with business goals and then update and drive new elements
of the initiatives in response to changing business requirements; and measure and improve:
monitor and measure how the innovation process affects business outcomes.

Following Gartner’s recommendations, it is possible to note that digital transformation
could be an interesting field for improving experience for both customers and employees.
In the past, digital transformation was primarily integrated with business process
management (BPM) tools, which aim to help companies in resources orchestration, routing
work to the right people, manual task routine automation and self-service enabling where none
existed before ( Jeston, 2014). In a business landscape where companies need to be more agile,

Knowledge exploration Knowledge retention Knowledge exploitation

Internal (intrafirm) Inventive capacity Transformative capacity Innovative capacity
External (interfirm) Absorptive capacity Connective capacity Desorptive capacity
Sources: Authors’ elaboration from Argote et al. (2003) and Lane et al. (2006)

Table I.
Capability-based view

of open innovation
processes
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BPM tools have helped line-of-business and IT departments to better align their goals and
work processes (Smith and Fingar, 2003). Nowadays, new relevant opportunities for digital
transformation are provided by the AI (Brodie and Mylopoulos, 2012) that combined with
Big Data analytics (BBA) as “a collection of data and technology that accesses, integrates, and
reports all available data by filtering, correlating, and reporting insights not attainable with
past data technologies” (APICS, 2012, p. 6) are defining the “next management revolution”.

More specifically, Big Data has the potential to support firms in identifying
opportunities related to decision-making processes and in defining more efficient
organizational processes through the data acquisition, filtering and coding (Caputo, 2018).
Big Data is a broad and abstract concept that is receiving great recognition both from
scholars and practitioners (Caputo et al., 2018). Generally, it can be considered as a
complex of tools for supporting firms’ decision-making process by using technology with
the aim to rapidly analyze large amounts of variegate data (e.g. structured data from
relational databases and unstructured data such as images, videos, e-mails, transaction
data and social media interactions) from a variety of sources to produce a stream of
actionable knowledge (Perko and Caputo, 2018).

Furthermore, following the reflections rooted in the field of Big Data, several
contributions have underlined the support of Big Data for organization’s discovery of
decision-making opportunities thanks to advanced analytics and data integration
(Popovič et al., 2012). According to Azma and Mostafapour (2012), there are two main
features of data: the organizational learning process and the smart processing of data.
The organizational learning includes the discovery of new knowledge and the
dissemination of this knowledge; on the other hand, smart processing refers to
the analysis and assessing of information with the aim to ensure the definition of efficient
plans and the adoption of adequate control approaches.

From the process perspective, the main goal of the complex of technologies rooted in the
field of Big Data is to improve the decision-making process reducing the time spent for
the decision (Provost and Fawcett, 2013). From the product perspective, the domain of
Big Data is considered as the complex of IT component that can be used to generate
analytics for managers as the decision makers (Hazen et al., 2014). Finally, from the
organizational perspective, Big Data field should be considered as a part of a decision
environment that combines both technologies and human capacities for obtaining
decisions aligned with firms’ plans (Chen et al., 2012). In nutshell, Big Data tools provide to
the firms the opportunities for reducing the time needed for routinary processes and,
in this way, they can support firms in paying more attention to the definition of vision
and mission.

3. Hypotheses development
3.1 Knowledge management and work motivation
Recognizing the validity of previous contributions about knowledge management (Ruggles,
1998; Alavi and Leidner, 2001; Gold et al., 2001; Hussein et al., 2016), it is possible to state that
knowledge management strongly affects the way in which firms define their relational
approaches both from internal and external perceptive. With specific reference to the internal
perspective, Ardichvili et al. (2006) show that firms’ attention to knowledge management
influences the ways, in which human resources perceive their role in social and economic
configurations contributing to the firms’ economic results. In the same directions, Jiang et al.
(2012) underline that a strong firms’ attention on the levers of knowledge management
influences the ways, in which human resources approach to their work in terms of motivation,
engagement and commitment with several consequences in terms of their contributions to
firms’ economic performance. Again, Yahya and Goh (2002) show that human resources’work
motivation is a consequence of the total amount of knowledge available inside the firms and it
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is a consequence of the way in which firms manage the available knowledge. Finally,
Al Mehrzi and Singh (2016) show that it exists a link between perceived organizational
support and organizational culture mediated by employee motivation.

Recognizing the validity of all these contributions and considering firms’ revenues as a
suitable manifestation of firms’ economic performance, it is possible to state that:

H1. There is a positive relationship between human resources’ work motivation and
firms’ revenues.

3.2 Human resources’ social competence and digital transformation
Among the technology-based innovations, AI technology is becoming predominant in
marketing fields such as customer relationship management (Ngai et al., 2009). By using
supervised machine learning, BPM tools thanks to the support provided by the AI can
support an easily identification of valuable targets in the market (Dumas et al., 2005). In such
a vein, BPM tools and AI allow human employees to focus the attention on the more
productivity processes (Weske et al., 2004).

In nutshell, managerial studies show that thanks to the combination between BPM and
AI, human resources have the opportunities for better focusing their attention to the so-
called human-based competencies (Wang and Wang, 2006). With regard to the complex of
social competencies, human resource has the opportunities for better understanding
markets’ expectations and needs with the aim to better delivering/providing firms’ services
and products (Powell and Dent-Micallef, 1997). In this direction, Cappelli and Crocker-Hefter
(1996) underline that human resources’ social competencies are a relevant lever on which
firms should act for improving their market share and economic performance. In the same
way, Huselid et al. (1997) underline that human resources’ social competencies direct impact
on firms’ economic performance because they influence market’s perception about firms’
image. Again, Becker and Gerhart (1996) show that human resources with high social
competencies provide a value added to firms interested in building loyalty-based
relationships with the market for improving their economic performance. According to all
these contributions and considering firms’ revenues as a suitable manifestation of firms’
economic performance, it is possible to state that:

H2. There is a positive relationship between human resources’ social competencies and
firms’ revenues.

3.3 Big Data and human resources’ organizational behavior
Reflecting upon the general domain of Big Data, it is possible to state that after that data are
collected and stored, the biggest challenge for firms is related to their analysis and to the
extraction of valuable information (Carayannis et al., 2018). In such a perspective, Caputo
et al. (2017) underline that Big Data and BBA can be efficiently used by firms only if human
resources are able to effectively organize their work processes. More specifically, Brown
et al. (2011) show that BBA act on the internal organizational flow and that the human
resources’ organizational behaviors affect the opportunities for companies to adopt Big Data
tools and approaches. In the same direction, LaValle et al. (2011) focus the attention on the
way in which human resources affect the firm organizational behaviors stating that firms’
willingness to invest in Big Data depends by the human resources’ ability to understand and
catch the opportunities provided by the so-called digital transformation. Accordingly, it is
possible to speculate that:

H3. There is a positive relationship between human resources’ organizational behaviors
and firms’ investment in Big Data.
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Recognizing the validity of conceptualizations provided by managerial studies in the field of
Big Data (Zikopoulos and Eaton, 2011; McAfee et al., 2012; Waller and Fawcett, 2013), it is
also possible to state that an effective contribution of Big Data to firm’s organizations and
decisions is possible only in the case in which human resources are able to understand the
strategic value of Big Data (Carayannis et al., 2018). Using different words, as underlined by
Bozionelos and Singh (2017), it is possible to state that human resources’ emotion
intelligence (EI) affects the ways in which human resources perceive external world
providing it a meaning and classifying through a subjective hierarchy of social and
economic dynamic. In such a vein, Amendola et al. (2018) underline that human resources
perspectives (or more generally emotions) define the firms’ approach toward innovation
affecting their willingness and orientation in the adoption of new technologies. In the same
direction, Pradhan et al. (2017) demonstrate that human resources’ EI influences employees’
adaptation and then the possibility for success of firms’ strategies. From a different
perspective, Sagiroglu and Sinanc (2013) show that only firms with human resources
inspired by an innovative conceptualization of the market are oriented to start new
(also technology-based) processes. Following these contributions, the paper states that:

H4. There is a positive relationship between human resources’ emotions and firms’
investment in Big Data.

Furthermore, reflecting upon the role of Big Data in firms’ managing processes, several
contributions should be considered also with reference to the impact of Big Data on firms’
economic performance (Chae et al., 2014; Wamba et al., 2017). In such a view, Wamba et al.
(2017) demonstrate that firms’ attention to Big Data, and more generally, to ICT positively
impacts on firms’ economic performance, while Brown et al. (2011) empirically verify the link
between firm’s attention and investment in Big Data and firms’market performance. From a
different perspective, Weill (1992) shows that Big Data improves the quality of several firms’
internal processes with positive effects on firms’ economic performance, while Provost and
Fawcett (2013) show the high contribution provided by Big Data to firms’ selling strategies
and the related positive impact of firms’ revenues. According to all these contributions, the
paper speculates that:

H5. There is a positive relationship between firms’ investment in Big Data and
firms’ revenues.

4. Methodology and research process
4.1 Sample and data collection
Considering the pervasive nature of digital transformation for European companies involved in
high-tech sectors (European Commission, 2017), a sample of 1,175 human resources engaged in
23 high-tech European firms is analyzed using a questionnaire based on the BIP (Hossiep and
Paschen, 2008). BIP is a psychological questionnaire used for investigating professional
characteristics of human resources (Birknerova, 2012). The questionnaire is composed by 210
through which human resources’ occupational orientation and occupational behavior are
measured via a six-point-based scale (Kauer et al., 2007; Langendörfer, 2008).

The choice to focus the attention on the high-tech firms is motivated by their strong
attention on technology-based innovations and to the opportunities for better identifying
their investment in the field of Big Data using official websites and documents
(CIONET and Next Value, 2017).

Building upon the “SEP ELITE Tech Scaleup 100” launched by Mind the Bridge in
partnership with ELITE, London Stock Exchange Group’s business support and capital
raising program (Mind the Bridge and ELITE, 2018), all the firms included in the list have
been contacted via e-mail explaining the aim of the research and describing the
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research process. After the first contact, 86 firms have declared their interest in participating
in the research and a link to a questionnaire composed by 70 items inspired by BIP model
has been sent to the firms that have declared their interest in participating to the research
requiring them to share the link with their human resources. Therefore, the research is
based on a survey methodology, which is useful to enhance the generalization of results.

The questionnaire was directed to investigate human resources’ perceptions about four
independent variables: human resources’ work motivation, human resources’ social
competencies, human resources’ organizational behavior and human resources’ emotions
management. According to the BIP model, these categories have been split up in items and,
for each items, a certain number of sentences have been formulated requiring to the firms’
human resources to express their opinion using a seven-point Likert scale in which 1 means
“strongly disagree” and 7 means “strongly agree.”

In Table II, they are summarized the main contents of the questionnaire.
During the data collection period, 14 firms changed their opinion declaring that it was

not possible to collect data about the perceptions of their human resources so the final
sample is composed by 72 high-tech European firms. From these firms, 4,758 human
resources have completed the questionnaire from June to November 2018.

During the research, data related to the companies inside the sample such as firms’
revenues and firms’ investment in Big Data projects in the period from 2015 to 2017 have
been collected using official data set provided by Amadeus (2018) – a Bureau van Dijk data
set (https://amadeus.bvdinfo.com/).

Independent
variables Items Items’ meaning

Number of
sentences used for
measuring the item

Human resources’
work motivation

Results orientation Capability to work for producing results 5
Power orientation Capability to motivate other human

resources using recognized structures
and processes

5

Leadership
orientation

Capability to motivate other human
resources using social influence

5

Human resources’
social competencies

Feeling Capability to understand relational signals 5
Capabilities for
building
relationships

Capability for building relational network
and long-term interactions

5

Sociality Capability for building conditions for
collaboration and positive interactions

5

Team orientation Capability to work in team and to support
team work

5

Assertiveness Capability to defend personal idea and
identity

5

Human resources’
organizational
behavior

Conscientiousness Capability to perform the work according to
shared standards and procedures

5

Flexibility Capability to adapt himself to external
changes

5

Action orientation Capability to product results 5
Human resources’
emotions
management

Emotion stability Capability to manage personal emotions 5

Capacities to work
under pressure

Capability to produce results also in
condition of physical and/or
psychological stress

5

Self-loyalty Capability to maintain personal position as
consequence of the emotional independence

5

Table II.
Variables under

investigation,
meanings and number

of items
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4.2 Data analysis
The data collected have been analyzed respecting the rules about the privacy and adopting
all the techniques for avoiding possible biases (Ott and Longnecker, 2015). The data have
been analyzed and organized with the aim to test the hypotheses reported in Table III.

The hypotheses have been tested via covariance-based SEM using IBM® SPSS®

Statistics – Version 25. According to Ullman and Bentler (2012), SEM is “a collection of
statistical techniques that allow a set of relationships between one or more independent
variables (IVs), either continuous or discrete, and one or more dependent variables (DVs),
either continuous or discrete, to be examined” (p. 661). The research approach is based on
SEM because it is a method through which it is possible “over performing a series of
multiple regressions; namely, it provides a test of the overall model fit” (Savalei and Bentler,
2006, p. 339). Following Reinartz et al.’s (2009) suggestion, a covariance-based SEM has been
conducted because it outperforms variance-based SEM in terms of parameter consistency
and is preferable in terms of parameter accuracy.

Before conducting the test via SEM, the relations among the variable were examined for
analyzing common method bias (MacCallum and Austin, 2000; Bandalos, 2002). Harman’s
single factor test to extract a single factor indicated an explained variance of 27.93 percent,
providing an evidence about the absence of common method bias (Malhotra et al., 2006).
According to Podsakoff et al. (2003), “the basic assumption of this technique is that if a
substantial amount of common method variance is present, either (a) a single factor will
emerge from the factor analysis or (b) one general factor will account for the majority of the
covariance among the measure” (p. 889).

Finally, according to Lomax and Schumacker (2004), R2 was measured for defining the
capability of dependent variables to explain the variance of independent variables.
The research shows that the measurement model has an R2 equal to 0.75 evidencing a
strong effect size (Moore et al., 2013).

Building upon the hypotheses summarized in Table III, the conceptual model of the
research has been defined as reported in Figure 1.

To evaluate the model fit, a number of incremental, absolute and parsimonious fit indices
were measured (Barrett, 2007; Steiger, 2007), including the goodness of fit index (GFI), the
normed fit index (NFI), the comparative fit index (CFI), the standardized root mean square
residual (SRMSR) and the root mean square error of approximation (RMSEA).

5. Findings
5.1 Internal consistency reliability and construct validity
For verifying the reliability of the data collected through the questionnaire, the Cronbach’s α
coefficients were measured with reference to all the independent variables. A Cronbach’s α
value equal or higher than 0.7 is considered suitable for applied research (Nunnally, 1978),
while a Cronbach’s α value equal or higher than 0.6 can be considered suitable in the case of
exploratory research (Hair et al., 2012). As reported in Table IV, all Cronbach’s α coefficients
exceed the cut-off value of 0.7.

H1 (+) There is a positive relationship between human resources’ work motivation and firms’ revenues
H2 (+) There is a positive relationship between human resources’ social competencies and firms’ revenues
H3 (+) There is a positive relationship between human resources’ organizational behaviors and firms’

investment in Big Data
H4 (+) There is a positive relationship between human resources’ emotions and firms’ investment in

Big Data
H5 (+) There is a positive relationship between human resources’ organizational behaviors and firms’

revenues mediated by firms’ investment in Big Data

Table III.
Hypotheses under
investigation
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At the same time, the construct validity was analyzed combining convergent validity and
discriminant validity. Specifically, convergent validity was measured by calculating the
average variance extracted (AVE), while discriminant validity was verified by comparing
the square roots of AVEs to the correlations between constructs. As reported in Table IV,
the square roots of AVEs were all greater than their respective relationships, providing solid
evidence of discriminant validity.

5.2 Hypothesis testing via SEM
Via SEM using IBM® SPSS® Statistics – Version 25, the hypotheses were tested and the
results are reported in Table V. According to Hooper et al. (2008), all the hypotheses with
a p-value lower than 0.05 can be considered verified with reference to the analyzed sample.

Finally, for verifying the model fit, several statistics such as GFI, NFI, CFI, SRMSR and
RMSEA were measured. As reported in Table VI, all the cut-off values are exceeded.

Human resources’
work motivation

Human resources’
social competences

Human resources’
organizational

behaviors

Human resources’
emotions

management

Firms’ investment in
Big Data

H1(+)
H2(+)

H3(+) H4(+)

H5(+)

Firms’ revenues Figure 1.
The conceptual model

Cronbach’s
α AVE

HRs’ work
motivation

HRs’ social
competencies

HRs’
organizational

behavior
HRs’ emotions
management

HRs’ work motivation 0.815 0.682 0.826
HRs’ social
competencies

0.724 0.571 0.679 0.830

HRs’ organizational
behavior

0.901 0.652 0.708 0.703 0.807

HRs’ emotions
management

0.827 0.530 0.643 0.667 0.713 0.728

Note: Diagonal (italised) represent the square root of the AVE, while off diagonals represent the correlations

Table IV.
Relationships among

study constructs
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6. Discussions
According to the results reported in Table V, the study demonstrates the existence of
positive relationships between human resources’ work motivation and firms’ revenues (H1).
This result is aligned with previous studies provided by the research works rooted in the
field of human resource management (HRM) (Schuler and MacMillan, 1984; Schneider, 1988;
Ulrich et al., 1995). Specifically, as underlined by Wright et al. (1994), the human resources’
abilities to achieve the planned aims, organize the flow processes and stimulate
collaborative relationships are one of the key levers for firms’ competition. In such a vein,
Barney and Wright (1998) state that human resources are the first source of firms’
competitive advantages and Lengnick-Hall and Lengnick-Hall (1988) underline that human
resources able to be aligned with firms’ plans and are also able to stimulate firms’ in
achieving greater and more ambitious results. From a different perspective, Li et al. (2006)
underline that human resources’ work motivation is one of the emerging topics on which
business researchers and practitioners should reflect for improving firms’ performances and
Putra et al. (2017) demonstrate that firms endowed by human resources strongly motivated
are able to better catch market opportunities and face market challenges.

The results also show that there is a positive relationship between human resources’ social
competencies and firms’ revenues (H2). This result can be considered a partial demonstration
of previous sociological studies about the high relevance of social interactions within
firms’ environment as a way for improving firms’ efficiency (Gamst, 1991). As underlined by
Caputo and Evangelista (2019), human resources spend a large part of their life time
in work environment and, for this reason, they demand to satisfy their need for social
interactions as basic conditions for ensuring their productivity. From a different perspective,
Cabrera and Cabrera demonstrate that social interactions within work environment are an
efficient way for ensuring informal information flows through which human resources have
the opportunities for aligning their behaviors to firms’ plans supporting the achievement of
firms’ aims.

Furthermore, the study also demonstrates the positive relations between human resources’
organizational behaviors and firms’ investment in Big Data (H3). This result can be considered
aligned with previous contributions provided with reference to the conditions required for a
useful use of Big Data inside firms’ processes (Leeflang et al., 2014). As clarified by Han et al.
(2011), Big Data is a complex set of tools that improve human resources’ ability to read
available data about specific dynamics and domains. Accordingly, Big Data orientation can

Model fit index Cut-off values (source) Measured value

GFI W0.90 ( Jöreskog and Sörbom, 1996) 0.921
NFI W0.90 (Hu and Bentler, 1999) 0.903
CFI W0.90 0.971
RMSEA o0.06 (Hooper et al., 2008) 0.031
SRMR o0.08 (Hooper et al., 2008) 0.035

Table VI.
Model fit statistics

Hypothesis p-value

H1 (+): HRs’ work motivation → firms’ revenues 0.0412
H2 (+): HRs’ social competencies → firms’ revenues 0.0238
H3 (+): HRs’ organizational behaviors → firms’ investment in Big Data 0.0481
H4 (+): HRs’ emotions → firms’ investment in Big Data 0.0760
H5 (+): Firms’ investment in Big Data → firms’ revenues 0.0437

Table V.
Results of hypothesis
testing via SEM
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emerge only in the case in which firms are equipped with human resources able to understand
the effective role of Big Data and digital transformation (Loebbecke and Picot, 2015). With
reference to this, Sagiroglu and Sinanc (2013) show that Big Data can become a problem for
firms in the case in which they are not approached in the correct way, while Carayannis et al.
(2018) show that only acting on human resources’ soft skills Big Data can support firms’
processes through the definition of so-called Wise Data.

Finally, the research demonstrates that there is a positive relationship between firms’
investment in Big Data and firms’ revenues (H5). This result is aligned with previous
studies about the managerial contributions of Big Data (Prescott, 2014; Frisk and
Bannister, 2017; Dubey et al., 2018). Specifically, Wamba et al. (2017) have demonstrated
the positive impact of Big Data use on firms’ performance, while Brown et al. (2011) have
demonstrated the multiple advantages for firms related to an adequate investment and a
correct use of Big Data.

Despite the general validity of the research herein not all the hypotheses are verified.
Specifically, the study does not provide validation about the existence of positive
relationships between human resources’ emotions and firms’ investment in Big Data (H4).
This result can be discussed in the light of the complexity related to the domain of human
emotions (Lane and Nadel, 1999). As clarified by Frey and Stutzer (2010), humans’ emotion
impacts all social and economic processes but the real challenge is to identify the correct
way for measuring this impact. In the same direction, Powell and Dent-Micallef (1997) reflect
about the role of human resources’ emotions on firms’ orientation toward innovation, and
they recognized the complexity for defining instruments able to support human resources in
understanding their emotions and communicating them in a suitable way.

6.1 Theoretical implications
According to the results reported in previous sections, it clearly emerges the need for
extending the boundaries of social and managerial studies interesting in business
performances with the aim to clarify the elements able to influence on work motivations. In
such a perspective, managerial and marketing researchers should develop multi- and trans-
disciplinary research paths aimed at defining approaches through which stimulate human
resources involvement, engagement and commitment in firms’ strategies and actions
(Geroy et al., 2000; Wright et al., 2000).

The research also shows the need for developing theoretical framework able to explain
paths and implications of social interactions in work environment as a way for increasing
information sharing and employees’ commitment (Chrusciel, 2006; Mittal and Dhar, 2015).

Again, discussed results underline the need for increasing the attention on human
resources’ ability to organize work processes and activities (Tikkanen et al., 2005; Kesting
and Parm Ulhøi, 2010). In such a perspective, the research calls the attention of managerial
researchers on the need for developing instruments and processes through which increase
not only human resources’ problem-solving competences but also their decision-making
competencies (Vaiman et al., 2012; Alpkan et al., 2010).

Finally, the research enforces the relevance of ongoing debate about the role of Big Data
in managerial fields underling the need for in-depth investigation in which ways human
resources and firms’ processes can be modified for catch all the opportunities offered by the
digital transformation (Liu et al., 2011).

6.2 Practical implications
From practical point of view, the research underlines the need for developing tangible
instruments through which stimulate human resources’ work motivation. In such a
perspective, it emerges the need for defining paths for human resources engagement based on
individual personality and cognitive domain (Hess and Bacigalupo, 2011; Wang et al., 2013).
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A possible advancement for business practices with reference to this point could be based on
the firms’ adoption of psychological instruments able to provide useful information about
human resources’ personality on which build personalized techniques for engagement and
motivation (Canós-Darós, 2013).

According to the results of the study proposed in previous sections, it also emerges the
need for managerial practitioners to develop approaches able to stimulate social interactions
within work environment (Andriopoulos, 2001). In such a way, differently from the
consolidated approaches based on the maximization of time spend in work processes,
the research underlines the need for increasing time for social interactions as a way for
improving firms’ performance (Lin and Lee, 2006).

Again, the research calls the attention of managerial practitioners on the need for
developing education processes not only based on the enforcement of human resources
technical skills but also oriented to increase human resources’ ability in planning their
activities and work processes (Luoma, 2000).

Finally, the research demonstrates the validity of business approaches based on the
investment in Big Data (Zeng and Khan, 2018). From this point of view, it emerges the need
for managerial practitioners to accurately define the processes through which face the
ongoing digital transformation for firms identifying the correct way for balancing human
and technology dimensions (Dawes and Rowley, 1998).

7. Final remarks, limitations and future directions for research
The general domain of digital transformation and the related research field interested in
Big Data, BPM and AI can be considered the source of one of the most challenging debate
in the field of managerial studies (Matt et al., 2015). Over the last few years, an increasing
number of researchers and practitioners have provided managerial studies about the
impacts of digital transformation on firms’ organizations and processes (Zhu et al., 2006).
At the state, the general part of these contributions focuses the attention on the digital
(or technology) dimensions of the opportunities and processes that are emerging from the
digital transformation without consider their impact and/or relations with the human
dimensions of the firms (Perko and Caputo, 2018).

With the aim to bridge this gap, the paper tries to build a conceptual framework direct to
link soft skills of human resources and the firms’ orientation to technology-based innovations.
The final aim is to partially clarify the relations between human and technology dimensions
inside firms’ environment aftermath the so-called digital transformation.

Accordingly, the research demonstrates the existence of several connections between
human and technology dimensions in firms’ setting opening to multiple managerial
implications. In such a vein, as a result of the research herein it is possible to state that
companies interesting in catching the opportunities provided by the digital
transformation needed to act on human resource management and to build the
conditions for an effective use of the multiple emerging instruments related to digital
transformation inside the firm. From this perspective, several general recommendations
can be derived as following summarized:

• Prioritize hybrid approaches: initially, technology-based tools should be leveraged
toward only repeated, low-skill task. More complex tasks, like the use of AI for
automatizing the supply chain it is needed wait until human resources do not develop
an adequate level of confidence with the underlying technology.

• Identify feasibility across the firm: technology-based tools are most useful if they are
adopted in firms’ processes for which high skills of human resources are required. In
these processes, technology-based tools can increase the productivity of firms
building conditions for firms’ competitive advantage.
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• Align data with goals: firms should focus their attention on the collection and
analysis of data related to their business activities. In such a perspective, firms
should understand that not all the data are useful but that data can contribute to
firms’ performance only if they are analyzed in the light of efficient interpretation
schemes for creating condition of wisdom.

• Look for “semi-structured data”: analytics solutions are useful in finding trends in
either structured data but semi-structured data could offer several opportunities for
matching human creativity with technology advantages.

Summarizing the reflections and empirical results herein, the paper calls for the attention on
the multiple dimensions of so-called digital transformation and specifically on the
underestimated relevance of human resources in the firms’ transformation and processes
(Bowersox et al., 2005). Accordingly, the role of human resources is analyzed using a holistic
approach with the aim to link in a common conceptual framework several relevant elements
of ongoing digital transformation.

Considering the pervasive nature of the digital revolution (Dreyer et al., 2006), the
reflections and empirical results herein can be considered only a small part of a more widen
conceptual framework to which both researchers and practitioners are called to contribute
for clarifying the pillars that will affect the next changes of the world in which we all live.
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