
lable at ScienceDirect

Brain Stimulation 14 (2021) 607e615
Contents lists avai
Brain Stimulation

journal homepage: http: / /www.journals .e lsevier .com/brain-st imulat ion
Right and left inferior frontal opercula are involved in discriminating
angry and sad facial expressions

Igor Iarrobino a, b, 1, Alessandro Bongiardina a, 1, Olga Dal Monte a, c, Pietro Sarasso a,
Irene Ronga a, Marco Neppi-Modona a, Rossana Actis-Grosso d, e, Adriana Salatino a,
Raffaella Ricci a, *

a Psychology Department, University of Turin, Torino, Italy
b Institute of Neuroscience, Universit�e Catholique de Louvain, Woluwe-Saint-Lambert, Bruxelles, Belgium
c Psychology Department, Yale University, New Haven, CT, USA
d Psychology Department, University Milano-Bicocca, Milano, Italy
e NeuroMi, Milan Center for Neuroscience, Milano, Italy
a r t i c l e i n f o

Article history:
Received 2 October 2020
Received in revised form
21 February 2021
Accepted 23 March 2021
Available online 27 March 2021

Keywords:
Emotion
Facial expressions
Emotion discrimination
Inferior frontal gyrus
Inferior frontal operculum
Transcranial direct current stimulation
Arousal hypothesis
Angry
Sadness
* Corresponding author. Via Verdi 10, 10124, Turin,
E-mail address: raffaella.ricci@unito.it (R. Ricci).

1 Contributed equally to this work.

https://doi.org/10.1016/j.brs.2021.03.014
1935-861X/© 2021 The Authors. Published by Elsevier
a b s t r a c t

Background: Neuroimaging studies suggest that the inferior frontal operculum (IFO) is part of a neuronal
network involved in facial expression processing, but the causal role of this region in emotional face
discrimination remains elusive.
Objective: We used cathodal (inhibitory) tDCS to test whether right (r-IFO) and left (l-IFO) IFO play a role
in discriminating basic facial emotions in healthy volunteers. Specifically, we tested if the two sites are
selectively involved in the processing of facial expressions conveying high or low arousal emotions. Based
on the Arousal Hypothesis we expected to find a modulation of high and low arousal emotions by
cathodal tDCS of the r-IFO and the l-IFO, respectively.
Methods: First, we validated an Emotional Faces Discrimination Task (EFDT). Then, we targeted the r-IFO
and the l-IFO with cathodal tDCS (i.e. the cathode was placed over the right or left IFO, while the anode
was placed over the contralateral supraorbital area) during facial emotions discrimination on the EFDT.
Non-active (i.e. sham) tDCS was a control condition.
Results: Overall, participants manifested the “happy face advantage”. Interestingly, tDCS to r-IFO
enhanced discrimination of faces expressing anger (a high arousal emotion), whereas, tDCS to l-IFO
decreased discrimination of faces expressing sadness (a low arousal emotion).
Conclusions: Our findings revealed a differential causal role of r-IFO and l-IFO in the discrimination of
specific high and low arousal emotions. Crucially, these results suggest that cathodal tDCS might reduce
the neural noise triggered by facial emotions, improving discrimination of high arousal emotions but
disrupting discrimination of low arousal emotions. These findings offer new insights for treating clinical
population with deficits in processing facial expressions.
© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The ability to recognize emotions in other people’s faces is a
complex process involving a bilateral fronto-temporo-limbic
network [1,2]. Lesion studies have provided evidence that the
inferior frontal gyrus (IFG), and particularly area 44, belongs to a
Italy.
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phylogenetically early emotional contagion system that operates on
emotional empathy and emotion recognition [3e5]. Neuroimaging
findings also suggested that the inferior frontal operculum (IFO) -
i.e. a transition zone between the anterior insula and the frontal
operculum - is part of a neuronal network subserving processing of
emotional facial expressions [6e9]. Nonetheless, the causal role of
IFO and putative hemispheric differences of this specific region in
facial emotion recognition remain largely unknown.

Trancranial electrical stimulation has been recently used to
probe the involvement of other frontal regions in emotional pro-
cessing, although reporting partially contrasting results. Some
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Fig. 1. Task and Paradigm. (A) Emotion Face Discrimination Task (EFDT). Participants faced a computer monitor on which fixation targets and facial expressions were shown. After
holding central fixation for 2000 ms, two visual stimuli in a vertical position were presented for 250 ms followed by a 3000 ms s fixation where subjects were asked to report, using
the computer board, whether the two faces expressed the same or a different emotion. The EFDT had two types of trials: same emotion and different emotion condition. On the right
are female and male examples of the six different expressions presented: sadness, happiness, disgust, anger, fear, neutral. Emotional face stimuli were taken from the K-DEF in-
ventory. (B) Experiment 2 paradigm. TDCS was administered for 15min. Participants started the EFDT task 10min after the beginning of tDCS. The task was carried out for the first
5min during brain stimulation and for the last 5min without stimulation. (C) Location of the electrodes in the three transcranial direct current stimulation (tDCS) conditions; right-
IFO (left panel), left-IFO (middle panel), and sham mode (right panel). The blue circle indicates a cathode. The red circle indicates an anode. The grey circle indicates sham
stimulation. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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studies showed improvement in emotion recognition when anodal
(excitatory) transcranial direct current stimulation (tDCS) was
applied to the right orbitofrontal cortex [10] or to the right dorso-
lateral prefrontal cortex (DLPFC) [10,11], whereas others showed
emotion recognition improvement when anodal tDCS was applied
to the left DLPFC [12]. On the contrary, both tDCS [13] and high-
frequency transcranial random noise stimulation (which usually
facilitates task performance) [14] applied to the bilateral DLPFC
were not found to influence emotional processing. To the best of
our knowledge, only two transcranial electrical stimulation studies
investigated the causal role of IFG in facial expression processing.
Penton and colleagues [15] found a general higher performance in
facial emotion recognition when high-frequency transcranial
random noise stimulation was applied to bilateral IFG, but they did
not analyse the effect of brain stimulation on the different types of
emotion (due to the low number of trials per type of emotion). On
the other hand, Yang and Banissy [16] showed enhanced perception
of anger but not happiness, after applying high-frequency trans-
cranial random noise stimulation to bilateral IFG in older adults.
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However, bilateral stimulation does not allow to disentangle the
specific contribution of right and left IFG.

Previous findings have suggested possible hemispheric asym-
metries in emotional processing [17]. Some theories have proposed
a right hemisphere specialization for emotional processing (i.e., the
Right Hemisphere Hypothesis) [17e19]. Others [20e22] have
claimed that hemispheric lateralization depends on the emotional
valence (i.e., the Valence Hypothesis), with the involvement of the
right or left hemisphere in decoding unpleasant or pleasant emo-
tions, respectively [23]. Along similar lines, the Arousal Hypothesis
has classified emotions based on high (e.g., anger, fear and happi-
ness) and low (e.g., sadness and disgust) arousal [17,24,25] pro-
posing the involvement of the right hemisphere for processing high
arousal emotions and of the left hemisphere for low arousal emo-
tions. Consistent with this hypothesis, EEG findings have revealed
that facial expressions are distinguished between 200 and 320 ms
as a function of arousal or the degree of affective and motivational
activation, as indexed by differences in N2 and EPN components
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between happy and angry faces versus fearful, sad, and neutral
faces [26].

In the current study, we directly investigated the causal role of
IFO and putative hemispheric differences of this specific region in
facial emotion recognition by applying cathodal tDCS to right (r-
IFO) and left IFO (l-IFO) in different groups of healthy volunteers
while they were performing an ad-hoc designed emotion
discrimination protocol, the Emotional Faces Discrimination Task
(EFDT). During this task participants were asked to judge whether
pairs of faces expressed same or different emotions. Facial ex-
pressions comprised high and low arousal emotions. We used
cathodal stimulation because, differently from anodal tDCS or high-
frequency transcranial random noise stimulation (which enhance
cortical excitability), it reduces cortical excitability [e.g., 27, 28] and
inhibition of local activity can be used to test the causal involve-
ment of a specific region in the execution of a cognitive task [29,30].

In experiment 1, we tested and validated the EFDT paradigm. In
experiment 2, we used the EFDT to investigate the causal role of the
r-IFO and the l-IFO in discriminating high and low arousal emo-
tions. Based on the Arousal Hypothesis we expected to find a
modulation in discriminating high arousal emotions, when tDCS
was applied to the r-IFO and of low arousal emotions by tDCS to l-
IFO. We critically aimed to investigate whether cathodal (inhibi-
tory) tDCS applied to the r-IFO modulated discrimination of all high
arousal emotions or instead it only affected specific expressions.
Similarly, we wanted to understand the specific impact of cathodal
tDCS applied to the l-IFO on low arousal emotions. Sham tDCS was
also applied to r-IFO as control condition.

In relation to cathodal polarity, we expected different possible
outcomes. Reduction of brain activity by inhibitory cathodal tDCS
might disrupt discrimination of all facial expressions encoded by
the stimulated site, as predicted by the ‘virtual lesion’ approach
[29,30]. Alternatively, cathodal tDCS might diminish the neural
noise triggered by the facial emotion, as suggested by previous
findings [7,31]. For example, Klimm and colleagues [7] using Near
Infrared Spectroscopy, showed that a reduction of excitability in the
left IFG by cathodal tDCS facilitates emotion recognition on the
‘Reading the Mind in the Eyes’ test. The authors proposed that
inhibitory tDCS might reduce the neural noise facilitating signal
detection. In this case, the behavioural outcome might depend on
the interaction between the tDCS inhibitory effect, and the arousal
level triggered by a specific emotion. Cathodal tDCS reduction of
neural activity might, on one hand, enhance discrimination of high
arousal emotions and, on the other hand, disrupt the processing of
low arousal emotions, by further reducing low-level neural
excitability.

Finally, since the current evidence suggests that acute and after-
effects of tDCS involve different mechanisms (i.e., the acute effects
would derive from the modulation of membrane potential, while
the after-effects would involve synaptic plasticity, see for example
28, 32, 33), we investigated tDCS effects during and after the
application of brain stimulation. Despite neurophysiological studies
have shown the persistence of tDCS effects when the current is
switched off on cortical excitability (as measured, for example, by
transcranial magnetic stimulation [27,28]), findings of tDCS after-
effects on healthy individuals’ performance are less consistent
[29,34]. This difference is likely explained by greater sensitivity of
neurophysiological assessment in detecting cortical excitability
changes induced by tDCS compared to the sensitivity of behavioral
measures in detecting cognitive changes consequent tomodulation
of cortical excitability. Based on this evidence, we expected to
observe tDCS effects on the EFDT during brain stimulation and
explored the putative presence of tDCS after-effects on this task.
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Materials and methods

Experiment 1

Participants
Sixteen healthy graduate students (9 males; mean

age ¼ 24.6 ± 2.7), recruited from the University of Turin, partici-
pated in the study. All subjects gave their written informed consent
to participate in this study, which was approved by the Ethics
Committee of the University of Turin (#23996). Subjects did not
receive any monetary compensation for their participation.
Emotional faces discrimination task
In the present experiment, the Emotional Faces Discrimination

Task (EFDT) was implemented and tested (Fig. 1a). This new pro-
tocol was designed to allow modulation of healthy participants’
ability to discriminate emotional facial expressions by non-invasive
brain stimulation. On the basis of previous studies, using
noneinvasive brain stimulation techniques to assess the causal
involvement of a specific brain region in a cognitive function
[30,31,35], we designed and piloted a relatively challenging
discrimination task that, by avoiding ceiling effects, allowed mod-
ulation of healthy young participants’ performance [29,31]. To this
end, pairs of male or female faces, expressing different or same
emotions (Karolinska Directed Emotional Faces [37]), were briefly
presented (Exposure Time: 250 ms) along the vertical axis in
random order. Six different faces (3 females) depicted the five basic
facial emotions: sadness, happiness, disgust, anger, fear. A neutral
facial expression was also employed. Identities of the coupled faces
came from different actors. Actors composing each pair could be
only females (28.5%), only males (28.5%) or a female and a male
(mixed, 43%). Each pair of faces was presented twice with inverted
spatial position of faces (i.e. the face that was at the top in one
stimulus was at the bottom in the second one). Each face imagewas
8.73 cm high and 6.44 cm wide. Faces were aligned along the
vertical axis to avoid putative effect of lateralized brain stimulation
on specific spatial locations along the horizontal axis [31; but also
see 35, 36]. Before the beginning of data collection each participant
went through a training session. We used 32 pairs of stimuli to
familiarize the subject with the task. The EFDT had two conditions:
same emotion and different emotion. In the same emotion condition
two identical emotions were presented to the participant whereas
in the different emotion condition a neutral facewas pairedwith one
of the five emotions. The experimental task comprised 192 pairs of
faces: 72 pairs were used for the same emotion condition, and 120
pairs for the different emotion condition. Participants sat at 55 cm
from the computer monitor and were asked to use a computer
board, using the index and middle finger, to report as fast and as
accurately as possible whether the two faces expressed the same or
a different emotion. The two task conditions were presented in a
random order. The EFDT was programmed and implemented in E-
prime 2.0 software (Psychology Software Tools, Inc., Sharpsburg,
PA). The experimental task lasted about 10 min.
Statistical analysis
In this first experiment we examined whether the accuracy

(dependent variable) was affected by the within-subjects factors
Task (two levels: same and different emotion conditions) and
Emotion (five levels: sadness, happiness, disgust, anger, and fear).
Second, we investigated whether the reaction times (RTs) (depen-
dent variable) were affected by the within-subjects factors Task and
Emotion. We ran two independent ANOVAs, one for accuracy and
one for RTs, and paired samples t-tests (with Bonferroni correction)
were used for post-hoc comparisons.
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Experiment 2

Participants
Fifty-four healthy graduate students were recruited from the

University of Turin for this second experiment. Contraindications to
a safe use of tDCS were assessed [38]. Participants were randomly
assigned to one of three different tDCS conditions: cathodal tDCS to
r-IFO (r-tDCS), cathodal tDCS to l-IFO (l-tDCS), sham tDCS to r-IFO
(r-Sham). They were blind to the type of stimulation they received
(i.e., active versus sham) and naïve to the tDCS technique. One
participant assigned to the l-tDCS condition withdrew from the
study because of personal time constraints. Hence, the final sample
size of the three groups was as follows: r-tDCS group, N ¼ 18 (9
males); l-tDCS group, N ¼ 17 (7 males); r-Sham group, N ¼ 18 (7
males). The three groups did not differ for age (r-tDCS group:
mean¼ 25.4 ± 1.5; l-tDCS group: mean¼ 24.5 ± 2.3; r-Sham group,
mean¼ 25.2 ± 2.2) as assessed by a one-way ANOVA [F2, 52 ¼ 0.766,
p ¼ 0.470]. All subjects gave their written informed consent to
participate in the study, which was approved by the Ethics Com-
mittee of the University of Turin. They did not receive anymonetary
compensation for their participation.

Procedure
The procedures and the task (EFDT) were the same of Experi-

ment 1 with the addition of tDCS. All participants underwent a
training session before the beginning of the experimental session.
The tDCS was administered for 15 min (min). After 10 min of tDCS,
the participants started the EFDT that lasted about 10min. Thus, the
task was carried out for the first 5 min during brain stimulation and
for the last 5 min without stimulation (Fig. 1b). This design allowed
us to investigate whether there was an effect on EFDT during the
stimulation and putative after-effects following the stimulation.

Transcranial direct current stimulation
Transcranial Direct Current Stimulation (tDCS) is a portable

device which uses a constant low-intensity current (between 1 and
2 mA) delivered directly to the cortex via surface electrode pads
with an anode and a cathode [38,39]. In this study, a battery-
powered tDCS stimulator (HDC stim, HDC kit, Magstim Company
Limited, Whitland, Wales, UK) delivered constant current at 2 mA
for 15 min (30 s ramp-up time) through a pair of saline-soaked
sponge electrodes (5 � 5 cm2). Current density was therefore
0.08 mA/cm2. The sites of stimulation (Fig. 1c) corresponded to FC6
[40] in the right hemisphere (placed at 1/3 of the distance between
F8 and C6, on the standard 10/20 system EEG system) and FC5 in
left hemisphere (placed at 1/3 of the distance between F7 and C5).
In the r-tDCS group and in the l-tDCS group, the cathode electrode
was placed over the right or left IFO, respectively, while the anode
electrode was placed over the contralateral supraorbital area. In the
r-Sham group, the cathode electrode was placed over the right IFO,
while the anode electrode was placed over the contralateral su-
praorbital area. For this group the current was turned off 30 s after
the beginning of the stimulation. This procedure allowed subjects
to feel the itching sensation below the electrodes at the beginning
of the stimulation, making it difficult for naïve subjects to distin-
guish sham from real stimulation. Participants were blind to the
experimental condition (i.e. active or sham), but the experimenter
was not.

Statistical analysis

Given the evidence that primary acute effects of tDCS derive
from a modulation of membrane potential, while the after-effects
involve synaptic plasticity [32], we analyzed the influence of the
type of stimulation during tDCS and then we explored the possible
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presence of tDCS after-effects. For both online and offline perfor-
mance we examined whether the accuracy and the RTs (dependent
variables) were affected by the between-subjects factor Stimulation
(three levels: r-tDCS, l-tDCS, r-sham) and thewithin-subjects factors
Task (two levels: same and different emotion conditions) and
Emotion (five levels: sadness, happiness, disgust, anger, and fear). We
ran independent repeated measures ANOVAs for accuracy and for
RTs. Paired samples t-tests (with Bonferroni correction) were used
as post-hoc analyses. LSD was used for between-subjects post-hoc
analyses.

Results

Experiment 1

We started by investigating whether Emotion (sadness, happi-
ness, disgust, anger and fear) and Task (same or different emotion
condition) influenced the accuracy of the EFDT. Overall, we found a
main effect of Emotion (F4, 60 ¼ 10.173, p < 0.0001, partial
h2 ¼ 0.404, power ¼ 1.000) and a significant interaction Task by
Emotion (F4, 60 ¼ 7.495, p < 0.0001, partial h2 ¼ 0.333,
power ¼ 0.995). Post-hoc analyses for the factor Emotion showed
higher accuracy for happiness (Mean ¼ 77% ± 11%) compared to
disgust (Mean ¼ 65% ± 16%; p ¼ 0.005), fear (Mean ¼ 62% ± 16%;
p ¼ 0.001), and sadness (Mean ¼ 53% ± 13%; p < 0.0001), while the
difference with anger (Mean¼ 62% ± 22%; p¼ 0.008), did not reach
a significant value after Bonferroni correction. Additionally, our
participants were more accurate to discriminate disgust compared
to sadness (p ¼ 0.005) (Fig. 2a). In order to analyse the interaction
Task by Emotion we performed paired samples t-tests comparing
the two types of Task (same and different emotions condition) for
each of the five emotions. We found that participants were more
accurate in discriminating happiness (p ¼ 0.002) when both stimuli
presented were happy faces (same emotions condition) compared
to when one was a neutral expression (different emotions condi-
tion). We did not find any other significant comparisons among all
the other emotions (all p > 0.05, Bonferroni corrected) (Fig. 2b).

We also investigated how quickly the participants discriminated
emotions. Consistent with the effects reported for the accuracy we
found a main effect of Emotion (F4, 60 ¼ 4.335, p ¼ 0.004, partial
h2 ¼ 0.224, power ¼ 0.912) and a significant interaction Task by
Emotion (F4, 60 ¼ 10.194, p < 0.0001, partial h2 ¼ 0.405,
power ¼ 1.000). Post-hoc analyses (paired-samples t-tests) for the
factor Emotion showed faster RTs (p ¼ 0.003) for happiness
(Mean ¼ 819.347 ± 212.699) compared to sadness
(Mean ¼ 940.412 ± 229.669) (Fig. 2c). No other comparisons were
significant after Bonferroni correction (all p > 0.05). In order to
analyse the interaction Task by Emotion we performed paired
samples t-tests comparing same and different emotions conditions
for each of the five emotions. We found that participants were faster
in discriminating happiness (p < 0.001) when both stimuli pre-
sented were happy faces (same emotions condition) than when one
of them was a neutral expression (different emotions condition)
(Fig. 2d). We did not find any other significant difference among all
the other emotions (all p > 0.05).

Experiment 2

To investigate whether the type of stimulation during online
tDCS affected accuracy, we quantified the participants’ perfor-
mance on the EFDT based on the type of applied stimulation. The
ANOVAs with Task (same and different emotions condition) and
Emotion (sadness, happiness, disgust, anger, and fear) as within-
subjects factors and Stimulation (l-tDCS; r-tDCS; r-Sham) as a
between-subjects factor showed a significant main effect of



Fig. 2. EFDT Accuracy and Reaction Time. (A) Values shown are the mean percentage ± SEM (n ¼ 16) of successful emotion discrimination for Sadness, Happiness, Disgust, Anger,
and Fear. (B) Emotion discrimination accuracy as a function of task condition (Same vs. Different condition). Values shown are the mean percentage ± SEM. (C) Values shown are the
mean reaction time ± SEM of successful emotion discrimination for Sadness, Happiness, Disgust, Anger, and Fear. (D) Values shown are the mean reaction time ± SEM of successful
emotion discrimination for Sadness, Happiness, Disgust, Anger, and Fear as a function of task condition (Same vs. Different condition). *p < 0.05, **p < 0.01, ***p < 0.001.
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Emotion (F4, 200 ¼ 27.898, p < 0.0001, partial h2 ¼ 0.358,
power¼ 1.000), and a significant interaction Emotion by Stimulation
(F8, 200 ¼ 2.006; p ¼ 0.047, partial h2 ¼ 0.074, power ¼ 0.813).

In order to explore the interaction Emotion by Stimulation
(Fig. 3), five separate one-way ANOVAs comparing differences be-
tween Stimulation (l-tDCS; r-tDCS; r-Sham) for each Emotion
(sadness, happiness, disgust, anger and fear) were carried-out. Re-
sults showed a significant effect of Stimulation for sadness (F2,
50 ¼ 5.291; p ¼ 0.008) and anger (F2, 50 ¼ 4.797; p ¼ 0.012) (Fig. 3a
and b). The Stimulation did not affect the performance for other
emotions (all p > 0.05) (Fig. 3cee). For sadness we found that
stimulation of the left IFO (l-tDCS) compared to the sham condition
(r-Sham; p ¼ 0.049) significantly decreased participant’s discrimi-
nation accuracy for sad expressions. Crucially, the l-tDCS reduced
subjects’ performance also compared to the r-tDCS (p ¼ 0.002). On
the other hand, stimulation of the right IFO (r-tDCS) significantly
increased the participant’s performance in discriminating anger
compared to the sham condition (r-Sham; p ¼ 0.003). Interestingly,
also the l-tDCS resulted in a better accuracy for angry expressions
compared to the sham (Fig. 3b). Although this difference was pre-
sent numerically, it did not reach the significance level (p ¼ 0.064).

To investigate possible after-effects of the different types of tDCS
on accuracy, we quantified the participants’ performance on the
EFDT based on the type of stimulation they just received. The
ANOVA with Task (same and different emotions condition) and
Emotion (sadness, happiness, disgust, anger, and fear) as within-
subjects factors and Stimulation (l-tDCS; r-tDCS; r-Sham) as a
between-subjects factor showed a significant main effect of
Emotion (F4, 200 ¼ 39.980; p < 0.0001, partial h2 ¼ 0.444,
power ¼ 1.0) and interaction Task by Emotion (F4, 200 ¼ 17.294;
p < 0.0001, partial h2 ¼ 0.257, power ¼ 1.0). However, the
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interaction Emotion by Stimulation was not significant (F8,
200 ¼ 0.440; p ¼ 0.896, partial h2 ¼ 0.017, power ¼ 0.203).

To summarize, the results showed that only online stimulation
affected the participant’s performance to the EFDT in line with
previous findings in healthy individuals [29].

We also explored whether acute, online tDCS had any effect on
how quickly the participants discriminated emotions. The ANOVA
with Task (same and different emotion conditions) and Emotion
(sadness, happiness, disgust, anger, fear) as within-subject factors
and Stimulation (l-tDCS; r-tDCS; r-Sham) as a between-subjects
factor did not show any significant result. When analyzing tDCS
after-effects the ANOVA showed a significant effect of Task (F1,
52 ¼ 6.260; p ¼ 0.016, partial h2 ¼ 0.111, power ¼ 0.689), Emotion
(F4,208 ¼ 2.820; p¼ 0.026, partial h2¼ 0.053, power¼ 0.763), and a
significant interaction Task by Emotion (F4, 208 ¼ 2.772, p ¼ 0.028,
partial h2 ¼ 0.053, power ¼ 0.755).
Discussion

Neuroimaging studies have been extremely helpful to inform
our community about a wide fronto-temporo-parietal network
[6e9,41] implicated in face processing and emotion recognition.
Guided by these findings, in our study we aimed to investigate the
causal contribution of the IFO in discriminating high and low
arousal emotions. Here, we aimed to solve this puzzle by applying
cathodal inhibitory tDCS to the right and left IFO while participants
took part in an emotion discrimination task. Our study comple-
ments the functional neuroimaging evidence by suggesting a
crucial role of the IFO in emotion discrimination.

In the first experiment we tested the ability to discriminate five
basic facial emotions using the EFDT and, in agreement with the



Fig. 3. Emotion discrimination accuracy as a function of (online) brain stimulation conditions. Values show the mean percentage ± SEM of successful emotion discrimination
for Sadness (A), Anger (B), Happiness (C), Disgust (D) and Fear (E). Participants were randomly assigned to one of three different tDCS conditions: left-tDCS (n ¼ 17), right-tDCS
(n ¼ 18), and sham (n ¼ 18). *p < 0.05, **p < 0.01.
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previous literature, we found a gradient in participants’ discrimi-
nation accuracy [17,42e45]. They manifested the “happy face
advantage”e i.e. happy faces were easier to discriminate than other
expressions [42e45]. It has been proposed that happiness is easier
to discriminate compared to the other emotions because it entails a
superordinate category, while the other (negative valence) emo-
tions would represent more subordinate categories of the super-
ordinate category ‘unhappy’, resulting therefore more confusable
with one another than with happiness [17].

In Experiment 2, participants showed an overall analogous
performance (i.e. the ‘happy face advantage’). In relation to the
main goal of this study, cathodal tDCS to both right and left IFO
modulated EFDT performance in a direction that was consistent
with the Arousal Hypothesis (high/low arousal emotions are pro-
cessed by the right/left hemisphere, respectively). Cathodal tDCS
applied to r-IFO affected recognition of a high arousal emotion (i.e.
anger), while cathodal tDCS applied to l-IFO modulated recognition
of a low arousal emotion (i.e. sadness). However, we also found a
selective effect for distinct facial emotions. Brain stimulation of r-
IFO only affected anger, while stimulation of l-IFO mainly affected
sadness. Interestingly, cathodal (inhibitory) tDCS produced oppo-
site outcomes on the two types of emotions, improving anger
(when applied to r-IFO), while disrupting sadness (when applied to
l-IFO).

These opposite outcomes might be interpreted in light of pre-
vious findings suggesting that cathodal tDCS may affect subjects’
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performance via reduction of the neural noise triggered by the vi-
sual stimulus [7,31]. In particular a previous investigation [7],
applying cathodal tDCS to left IFG using a protocol similar to ours,
observed emotion recognition facilitation in association with
reduced excitability at the site of stimulation, as measured through
fNIRS. In our study, neural noise reduction may likely account for
the opposite effects observed on high and low arousal emotions.
Inhibitory tDCS might have reduced the arousal level induced by
facial expressions specifically processed in right and/or left IFO,
facilitating encoding of the high arousal emotion (i.e. anger) and, on
the opposite, decreasing encoding of the low-arousal emotion (i.e.
sadness). These findings indicate that the effects of cathodal tDCS
applied to IFO not only depend on hemispheric lateralization but
also on the arousal level triggered by the specific emotion encoded
by the stimulated site.

Overall, the outcomes of our study are in linewith the polarity of
brain stimulation interventions targeting the DLPFC to treat mood
disorders [46,47]. DLPFC is a region functionally connected to IFG
[48]. It is well established that excitatory brain stimulation of left
DLPFC and/or inhibitory brain stimulation of right DLPFC [49] are
effective in treating depression and other mood disorders, mani-
festing among other symptoms, deficits in facial emotional
perception [12]. However, these studies focus on dorsal regions of
the prefrontal cortex. Our data are in line with previous findings
[14,15] suggesting potential modulatory effects by transcranial
electrical stimulation when targeting more ventral regions offering
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therefore new possibilities for treatment of mood disorders mani-
festing specific deficits (i.e. anger and sadness) of facial emotion
processing.

The ability to recognize other people’s facial expressions is
critical for effective social communication and behavioural regu-
lation [50]. The devastating social consequences of a disruption of
this ability have been observed in a wide range of clinical pop-
ulations, including schizophrenia [51], psychopathy [52], autism
spectrum disorder [53], and acquired brain injury [54]. In addition,
impaired emotional faces perception is also observed in multiple
[55,56] and amyotrophic lateral [57] sclerosis. Finally, the involve-
ment of IFG has been reported in several brain pathologies, such as
alexithymia [58], panic and post-traumatic stress [59], depression
[60], eating [61] and anxiety [62] disorders.

Here we provide evidence that caudal regions of left and right
IFG are specifically dedicated to sadness and anger encoding. Dys-
regulation of the activity of these specific regions might play a role
in mediating encoding of anger and sadness from other people’s
face, in many of the above disorders. Neuromodulation possibilities
offered by stimulation of this specific sites warrant further in-depth
investigations. For example, future studies in healthy participants
are necessary to understand whether the use of an opposite
(anodal) tDCS polarity applied to right and left IFO might reverse
the observed effects for anger and sadness and whether it might
also affect other types of emotions. This information may be rele-
vant to tailor tDCS treatments of brain disorders. Additionally, given
the extensive literature about both the anatomical brain differences
and the different ability between males and females to recognize
and discriminate facial expressions [41,63] future studies should
investigate whether the tDCS effects might vary as a function of
gender. Research over the last years has also focused on age dif-
ferences in facial emotion discrimination and recognition [64].
Given that older adults areworse at recognizing anger, sadness, and
fear [65,66] it would be crucial to test our protocol in elderly
population to investigate whether tDCS could impact especially the
discrimination of those emotions. Finally, future studies should
focus on targeting clinical populations such as patients with
depression [67] and with frontotemporal dementia [68] given the
well know impairment in emotion perception in these subjects.

In order to extend these research findings to clinical population
the possibility to induce behavioral changes outlasting the period of
stimulation becomes crucial. In our study, the absence of tDCS
after-effects was likely due to the use of a single, relatively short,
session of stimulation which was applied to young healthy in-
dividuals. Effective non-invasive brain stimulation treatments
generally induce brain plasticity changes [33] leading to improved
clinical outcomes when using long durations (up to 30 min) and
repeated applications (a minimum of 5 applications in pilot
experimental studies, to a minimum of 10 sessions in clinical trials).
Future studies in patients with impairment in emotion perception
are needed to verify whether repeated sessions (3e5) of cathodal
tDCS applied to IFO for longer duration (20e30 min) might be
suitable to produce beneficial after-effect outlasting the period of
stimulation.

The present study has a series of limitations. The first limitation
is the lack of a control active site of stimulation. However, we tested
tDCS effects of right IFO on high arousal emotions and of left IFO on
low arousal emotions, and findings were partially in line with our
predictions. Furthermore, no changes occurred during sham stim-
ulation. Other limitations consisted in the lack of procedures suit-
able to assess the level of arousal triggered by each emotion [69,70]
and the lack of high and low arousal positive valence facial emo-
tions [71]. Both aspects would have represented a valid test to
unambiguously verify the Arousal Hypothesis. Indeed, they would
have helped to disambiguate whether the observed effects are
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purely accounted for by the level of the arousal triggered by the
facial emotion independently of its negative or positive valence. As
reported above, although our findings are in line with the Arousal
Hypothesis, they clearly show selective effects by cathodal tDCS on
specific negative valence emotions (i.e., only sadness and anger
were modulated by cathodal tDCS of IFO), making unlikely the
possibility that they are exclusively accounted for by the arousal
level induced by a facial (negative valence) emotion. In line with
this hypothesis, we did not observe anymodulation of happiness by
tDCS, although we cannot exclude that this result might be
explained by ceiling effects, given the high accuracy demonstrated
by participants in discriminating happy faces and the expectation
of increased accuracy in correspondence of cathodal tDCS targeting
the right IFO.

Future studies using the same or similar tasks shall be per-
formed to investigate whether tDCS effects observed in this study
are specific of left and right IFO or might also be induced by stim-
ulation of anatomically contiguous or functionally connected areas,
belonging to the same emotion network. In addition, the use of
more (challenging) sensitive tasks (for example, using shorter
exposure time or degraded visual stimuli) foreseeing procedures to
assess the arousal level triggered by the specific emotion - for
example, a subjective Lickert scale [69] or the skin conductance
response [70] - and comprising high and low positive arousal
emotions [71] might uncover subtle modulatory tDCS effects on the
arousal level triggered by negative and positive emotions, that in
our study might have been hidden by ceiling effects (see for
example happiness).

Conclusions

This study provides evidence for the causal involvement of right
and left IFO in discriminating angry and sad facial expressions.
Importantly, here we demonstrated for the first time the relevance
of the arousal level implicated by a specific emotion in determining
the behavioural outcome of cathodal tDCS application. These
findings are crucial for our understanding of the network and
mechanisms underlying facial emotion discrimination, but also
advocate the use of tDCS as a promising neurostimulation tool for
addressing clinically significant emotion recognition deficits in a
wide range of patients.
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