
20 February 2025

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Splitting Recursion Schemes into Reversible and Classical Interacting Threads

Publisher:

Published version:

DOI:10.1007/978-3-030-79837-6_12

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Springer International Publishing

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1794961.3 since 2021-11-03T22:24:16Z

Splitting recursion schemes into reversible and
classical interacting threads

Armando B. Matos1, Luca Paolini2[0000−0002−4126−0170], and Luca
Roversi2[0000−0002−1871−6109]

1 Universidade do Porto, Departamento de Ciência de Computadores – Portugal
armandobcm@yahoo.com

2 Università degli Studi di Torino, Dipartimento di Informatica – Italy
{luca.paolini,luca.roversi}@unito.it

Abstract. Given a simple recursive function, we show how to extract
from it a reversible and an classical iterative part. Those parts can syn-
chronously cooperate under a Producer/Consumer pattern in order to
implement the original recursive function. The reversible producer is
meant to run on reversible hardware. We also discuss how to extend
the extraction to a more general compilation scheme.

1 Introduction

Our goal is to compile a class of recursive functions in a way that parts of
the object code produced can leverage the promised green foot-print of truly
reversible hardware. This work illustrates preliminary steps towards that goal.
We focus on a basic class of recursive functions in order to demonstrate its
feasibility.

Contributions. Let recF[p,b,h] be a recursive function defined in some pro-
gramming formalism, where p is a predecessor function, h a step function, and
b a base function. We show how to compile recF[p,b,h] into itFCls[b,h] and
itFRev[p,pInv] such that:

recF[p,b,h] ' itFCls[b,h] ‖ itFRev[p,pInv] , (1)

where: (i) “'” stands for “equivalent to”; (ii) itFCls[b,h] is a classical for-loop
that, starting from a value produced by b, iteratively applies h; (iii) itFRev[p,
pInv] is a reversible code with two for-loops in it one iterating p, the other its
inverse pInv; (iv) “‖” is interpreted as an interaction between itFCls[b,h] and
itFRev[p,pInv], according to a Producer/Consumer pattern, where itFRev[p,
pInv] produces the values that itFCls[b,h] consumes to implement the initially
given recursion recF[p,b,h]. In principle, itFRev[p,pInv] can drive a real re-
versible hardware to exploit its low energy consumption features.

In this work we limit the compilation scheme (1) to use: (i) a predecessor
p such that the value p(x)-x is any constant ∆p equal to, or smaller than, -1;
(ii) recursion functions recF[p,b,h] whose condition identifying the base case

2 A. Matos, L. Paolini, L. Roversi

is x<=0 instead than the more standard x==0; this means that more than one
base non positive value for recF[p,b,h] exists in the interval [∆p + 1, 0]. This
slight generalization will require a careful management of the reversible behavior
of itFRev[p,pInv] and its interaction with itFCls[b,h] in order to reconstruct
recF[p,b,h].

Contents. Section 2 sets the stage to develop the main ideas about (1), restricting
recF[p,b,h] to a recursive function that identifies its base case by means of the
standard condition x==0; this ease the description of how itFRev[p,pInv] and
itFCls[b,h] interact. Section 3 extends (1) to deal with recF[p,b,h] having x<=
0, and not x==0, to identify its base case(s); this impacts on how itFRev[p,pInv]
must work. In both cases, the programming syntax we use can be interpreted
into the reversible languages SRL [3,4] and RPP [5,6,4], up to minor syntactic
details. Section 4 addresses future work.

1 Fix recF(x) {
2 if (c(x)) { b(x); }
3 else { h(x,recF(p(x))); } }

Fig. 1. The recursive function recF.

1 /*** Assumption: the inital value of x is 3 */
2 x = p(x) // ==2
3 x = p(x) // ==1
4 x = p(x) // ==0
5 y = b(x) // ==b(p(p(p(3))))
6 y = h(x,y) // ==h(p(p(p(3))),b(p(p(p(3)))))
7 x = pInv(x) // ==pInv(p(p(p(3))))==p(p(3))
8 y = h(x,y) // ==h(p(p(3)),h(p(p(p(3))),b(p(p(p(3))))))
9 x = pInv(x) // ==pInv(p(p(3)))==p(3)

10 y = h(x,y) // ==h(p(3),h(p(p(3))
11 // ,h(p(p(p(3))),b(p(p(p(3)))))))
12 x = pInv(x) // ==pInv(p(3))==3
13 y = h(x,y) // ==h(3,h(p(3),h(p(p(3))
14 // ,h(p(p(p(3))),b(p(p(p(3))))))))

Fig. 2. Iterative unfolding recF(3): the bottom-up part.

Splitting recursion schemes into reversible and classical interacting threads 3

2 The driving idea

Let recF[p,b,h] in (1) have a structure as in Fig. 1 where b(x) is the base func-
tion, h(x,y) the step function, p(x) the predecessor x-1, and c(x) the condition
x==0 to identify a unique base case.

Fig. 2 details out h(3,h(p(3),h(p(p(3)), h(p(p(p(3))),b(p(p(p(3)))))))),
unfolding of recF(3). Every comment asserts a property of the values that x or y
stores. Lines 2–4 unfold an iteration that computes p(p(p(3))), which eventually
sets the value of x to 0. Line 5 starts the construction of the final value of recF(3)
by applying the base case of recF, i.e. b(x). By definition, let pInv denote the
inverse of p, i.e. pInv(p(z))==p(pInv(z))==z, for any z. Clearly, in our running
example, the function pInv(x) is x+1. Lines 6–13 alternate h(x,y), whose result y,
step by step, gets closer to the final value recF(3), and pInv(x), which produces
a new value for x.

1 s = 0, e = 0, g = 0, w = 0
2 w = w + x;
3 for (i = 0; i<=w; i++) {
4 if (x> 0) { g++; }
5 else if (x==0) { e++; }
6 else { s++; }
7 x = p(x); }
8

9 for (i = 0; i<=w; i++) {
10 x = pInv(x);
11 if (x> 0) { g--; y = h(x,y); }
12 else if (x==0) { e--; y = b(x); }
13 else { s--; } }
14 w = w - x;

Fig. 3. Iterative itF equivalent to recF.

Let us call itF the code in Fig. 3. It implements recF by means of finite
iterations only. Continuing with our running example, if we run itF here above
starting with x==3, then x==0 holds at line 8, just after the first for-loop; after
the second for-loop y==recF(3) holds at line 14.

The code of itF has two parts. Through lines 2–7 the variable g counts how
many times x remains positive, the variable e how many it stays equal to 0, and
the variable s how many it becomes negative. In this running example we notice
that x never becomes negative, for the iteration at lines 3–7 is driven by the value
of x which, initially, we can assume non negative, and which p(x) decreases of
a single unity. We shall clarify the role of s later. Lines 9–13 undo what lines
2–7 do by executing pInv(x), g--, e--, s--, i.e. the inverses, in reversed order,
of p(x), g++, e++, s++. So the correct values of x are available at lines 12, and

4 A. Matos, L. Paolini, L. Roversi

11, ready to be used as arguments of b(x) and h(x,y) to update y as in Fig. 3,
according to the results we obtain by the recursive calls to recF.

1 s = 0, e = 0, g = 0, w = 0
2 w = w + x;
3 for (i=0; i<=w; i++) {
4 if (x> 0) { g++; } //number of times x is ‘g’reater than 0
5 else if (x==0) { e++; } //number of times x is ‘e’qual to 0
6 else { s++; } //number of times x is ‘s’maller than 0
7 x = p(x); }
8

9 for (i=0; i<=w; i++) {
10 x = pInv(x);
11 if (x> 0) { g--; /* Value of x for h availabe here */ }
12 else if (x==0) { e--; /* Value of x for b availabe here */ }
13 else { s--; } }
14 w = w - x;

Fig. 4. Reversible side of itF.

Now, let us focus on the main difference between Fig. 4 and Fig. 3.
Both x=b(x) and y=h(x,y) at lines 12, and 11 of Fig. 3 are missing from lines

12, and 11 of Fig. 4. Dropping them let Fig. 4 be the reversible side of itF;
calling b(x) and h(x,y) in it generatesy, which is the result we need, so preventing
the possibility to reset the value of every variable dealt with in Fig. 4 to their
initial value. This is why we also need a classical side of itF that generates y
in collaboration with the reversible side in order to implement the initial recF
correctly.

1 /*** Assumption. The value of the input x is available here */
2 /* Inject the current x at line 2 of itFRev to let it start */
3 iterations = /* Probe line 9 of itFRev to get the
4 number of iterations to execute */
5 y = b(/* Probe line 14 of itFRev to get the argument */);
6 for (i = 0; i<iterations; i++) {
7 y = h(/* Probe line 12 itFRev to get
8 the first argument of h */ , y); }

Fig. 5. Classical side of itF: the consumer itFCls.

The previous observations lead to Fig. 5 which defines the classical side
itFCls of recF, and to Fig. 6 which defines the reversible side itFCRev of recF.

Splitting recursion schemes into reversible and classical interacting threads 5

1 s = 0, e = 0, g = 0, w = 0;
2 x = /* Inject here the value of x at line 2 of itFCls */
3 w = w + x;
4 for (i = 0; i<=w; i++) {
5 if (x> 0) { g++; }
6 else if (x==0) { e++; }
7 else { s++; }
8 x = p(x); }
9 /* itFCls probes here g which has the number of iterations */

10 for (i = 0; i<=w; i++) {
11 x = pInv(x);
12 if (x> 0) { g--; /* itFCls probes here the
13 first argument value of h */ }
14 else if (x==0) { e--; /* itFCls probes here the
15 argument value of b */ }
16 else { s--; } }
17 w = w - x;

Fig. 6. Reversible side of itF updated to be the producer itFRev of the values that
the consumer itFCls needs.

So, here below we can illustrate how itFCls and itFRev synchronously inter-
act, itFRev producing values, itFCls consuming them as arguments of b(x) and
h(x,y).

Line 2 of itFCls is the starting point of the synchronous interaction between
itFCls and itFRev; its comment:

/* Inject the current x at line 2 of itFRev to let it start */

describes what, in a fully implemented version of itFCls, we expect in that line
of code. The comment says that itFCls injects (sends, puts) its input value x to
line 2 of the reversible side itFRev (cf. Fig. 6). Once itFRev obtains that value
at line 2, as outlined by:

/* Inject here the value of x from line 2 of itFCls */

its for-loop at lines 4–8 executes.
After line 2, itFCls stops at line 3. It waits for itFRev to produce the number

of times that itFCls has to iterate line 7. Accordingly to:

/* Probe line 9 of itFRev to get the number of iterations to execute */

itFRev makes that value available in its variable g at line 9:

/* itFCls probes here g which has the number of iterations */ .

Once gotten the value in iterations, itFCls proceeds to line 5 and stops,
waiting for itFRev to produce the argument of b which is eventually available for
probing at line 14 of itFRev.

6 A. Matos, L. Paolini, L. Roversi

Once the argument becomes available b is applied, and itFCls enters its for
-loop, stopping at line 7 at every iteration. The reason is that itFCls waits for
line 12 in itFRev to produce the value of the first argument of h(x,y). This
interleaved dialog between line 7 of itFCls and line 12 of itFRev lasts iterations
times.

1 Fix recG(x) {
2 if (x<=0) { b(x); }
3 else { h(x,recG(p(x))); } }

Fig. 7. The generic structure of recG.

3 From recursion to iteration

We now generalize what we have seen in Section 2. Inside (1) we use recG of
Fig. 7 instead than recF of Fig. 1. This requires to generalize Fig. 6.

From the introduction we recall that, given a predecessor p(x), we define
∆p = p(x)-x, which is a negative value. In this section ∆p can be any constant
k <=-1, not only k ==-1; this requires to consider the slightly more general con-
dition x<=0 in recG. For example, let p(x) be x-2. The computation of recG(3)
is h(3,h(p(3),h(p(p(3)),b(p(p(3)))))) which looks for the least n of iterated
applications of p(x) such that p(...p(3)...)<=0; in our case we have 2==n <3.

Fig. 8 introduces itG which generalizes itF in Fig. 3.

The scheme itG iteratively implements any recursive function whose structure
can be brought back to the one of recG. We remark that line 1 in Fig. 8 initializes
ancillae s, e, g, and w, like Fig. 3 initializes the namesake variables of itF, but
line 2 of itG has new ancillae z, predDivX, and predNotDivX.

We also assume an initial non negative value for x. The reason is twofold.
Firstly, it keeps our discussion as simple as possible, with no need to use the
absolute value of x to set the upper limit of every index i in the for-loops
that occur in the code. Second, negative values of x would widen our discussion
about what a classical recursive function on negative values is and about what
its reversible equivalent iteration has to be; we see this as a very interesting
subject connected to [1], which is much more oriented than us to optimization
issues of recursively defined functions.

We start observing that line 3 of itG sets w to the initial value of x; the reason
is that every for-loop, but the one at lines 10–12, has to last x+1 iterations, and
x changes in the course of the computation; so, w stores the initial value of x and
stays constant from line 4 through line 21. In fact it can change at lines 22–33.
We will see why, but w is eventually reset to its initial value 0 at line 36.

Splitting recursion schemes into reversible and classical interacting threads 7

1 s = 0, e = 0, g = 0, w = 0;
2 z = 0, predDivX = 0, predNotDivX = 1;
3 w = w + x; /* x is assumed to be the input */
4 for (i = 0; i <= w; i++) {
5 if (x > 0) { g++; }
6 else if (x == 0) { e++; }
7 else { s++; }
8 x = p(x); }
9

10 for (i = 0; i < e; i++) {
11 predDivX = predDivX + predNotDivX;
12 predNotDivX = predDivX - predNotDivX; }
13

14 for (j = 0; j < predDivX; j++) {
15 for (i = 0; i <= w; i++) {
16 x = pInv(x);
17 if (x > 0) { g--; y = h(x,y); }
18 else if (x == 0) { e--; y = b(x); }
19 else { s--; }}}
20

21 for (j = 0; j < predNotDivX; j++) {
22 w++;
23 for (i = 0; i <= w; i++) {
24 x = pInv(x);
25 if (x > 0) { g--;
26 x = p(x);
27 if (z < 0) { }
28 else if (z == 0) { y = b(x); z++; }
29 else { y = h(x,y); }
30 x = pInv(x); }
31 else if (x == 0) { e--; }
32 else { s--; }}
33 w--; }
34 for (i = 0; i < predNotDivX; i++) {
35 z--; }
36 w = w - x;
37 /* y carries the output */

Fig. 8. The iterative function itG.

8 A. Matos, L. Paolini, L. Roversi

With the here above assumptions, given a non negative x, and in analogy
to itF, the for-loop at lines 4–8 of itG iterates the application of p(x) as many
times as w+1, i.e. the initial value of x plus 1. So, the value of x at line 9 is
equal to w+(w+1)*∆p which cannot be positive. In particular, all the values that
x assumes in the for-loop at lines 4–8 belong to the following interval:

I(w) , [w+(w+1)*∆p, w+w*∆p, . . . , w+∆p, w] (2)

from the least to the greatest; the counters g, e, s say how many elements of
I(x) are greater, equal or smaller than 0, respectively. Depending on 0 to belong
to I(x) determines the behavior of the reminder part of itG, i.e. lines 10–36.

We distinguish two cases in order to illustrate them.

First case. Let w%∆p == 0, i.e. the integer value ∆p divides with no reminder
the initial value of x that we find in w. So, 0 ∈ I(x), which implies the following
relations hold at line 9:

e == 1 g == -
w

∆p
s == (w+1)-g-e . (3)

1 if (e < 0) { }
2 else if (e == 0) { predDivX = predDivX+predNotDivX;
3 predNotDivX = predDivX - predNotDivX; }
4 else { }

Fig. 9. A possible replacement of lines 10–12 in Fig. 8.

Lines 10–12 execute exactly once, swapping predDivX and predNotDivX. As a
remark, we could have well used the if-selection in Fig. 9 (a construct of RPP)
in place of the for-loop at lines 10–12, but we opt for a more compact code.

Swapping predDivX and predNotDivX sets predDivX==1 and predNotDivX==0,
computationally exploiting that ∆p divides w with no reminder: the for-loop
body at lines 15–19 becomes accessible, while lines 22–33, with for-loops among
them, do not. Lines 15–19 are identical to lines 10–16 of itF in Fig. 4 which
we already know to correctly apply b(x) and h(x,y) in order to simulate the
recursive function we start from.

As a second case. Let w%∆p != 0, i.e. the integer value ∆p divides the initial
value of x that w stores, but with some reminder. So, 0 6∈ I(x), which imply:

e == 0 g == -

⌊
w

∆p

⌋
s == (w+1)-g-e (4)

Splitting recursion schemes into reversible and classical interacting threads 9

hold at line 9. Lines 11–12 cannot execute, leaving predDivX and predNotDivX as
they are: lines 22–33 become accessible and the for-loop at lines 15–19 does not.
Line 22 increments w to balance the information loss that the rounding of g in
(4) introduces; line 33 recovers the value of w when the outer for-loop starts.
The if-selection at lines 25–32 identifies when to apply b(x), which must be
followed by the required applications of h(x,y). We know that 0 6∈ I(x), so x==0
can never hold. Clearly, s-- is executed until x>0. But the first time x>0 holds
true we must compute b(p(x)), because the base function b(x) must be used the
last time x assumes a negative value, not the first time it gets positive; lines
26–30 implement our needs. Whenever x>0 is true, the value of x is one step
ahead the required one: we get one step back with line 26 and, if it is the first
time we step back, i.e. z==0 holds, then we must execute line 28. If not, i.e. z!=0,
we must apply the step function at line 29. Line 30, restores the right value of
x. Finally, the for-loop at line 34 sets z to its initial value.

At this point, in order to obtain the fully reversible version of Fig. 8 we must
think of replacing the calls to h(x,y) and b(x) at lines in 28, and 29 by means of
actions that probe the value of x, in analogy to Fig. 6, lines 12 and 14. The full
details are in [7] which we look as a playground with Java classes that implement
Fig. 8 and Fig. 5 as synchronous and parallel threads, acting as a producer and
a consumer.

4 Future work

We have shown that we can decompose every classical recursive function, based
on a predecessor that decreases every of its input by a constant value, into
reversible and classical components that cooperate to implement the original
recursive functions under a Producer/Consumer pattern (see (1)).

Firstly, we plan to extend (1) to recursive functions recF based on predeces-
sors p not limited to a constant ∆p not greater than -1. A predecessor p should
be at least such that:

1. ∆p is not necessarily a constant. For example, ∆p == -3 on even arguments,
and -2 on odd ones can be useful;

2. the predecessor can be an integer division x/k, for some given k>0, like in a
dichotomic search, which has k==2.

Secondly, we aim at generalizing (1) to a compiler J·K:

JpK = some implementation code

JpInvK = !JpK, i.e. implementation that inverts JpK
JrecF[p,b,h]K = itFCls[JbK,JhK] ‖ itFRev[JpK,JpInvK] .

(5)

The domain of J·K should be a class R of recursive functions built by means
of standard composition schemes, starting from a class of predecessors p1, p2,
. . . each of which must have the corresponding inverse function p1Inv, p2Inv,

10 A. Matos, L. Paolini, L. Roversi

In these lines we want to explore interpretations of || more liberal than the
essentially obvious synchronous Producer/Consumer that we implement in [7].
We shall very likely take advantage of parallel discrete events simulators as
described in [8,9] in order to get rid of any explicit synchronization between
the pairs of reversible-producer/classical-consumer that (5) would recursively
generate when applied to an element in R.

We also plan to follow a more abstract line of research. The compilation
scheme (5) recalls Girard’s decomposition A → B ' !A (B of a classical
computation into a linear one that can erase/duplicate computational resources.
Decomposing recF[p,b,h] in terms of itFCls[b,h] and itFRev[p,pInv] suggests
that the relation between reversible and classical computations can be formalized
by a linear isomorphism An ˛ Bn between tensor products An, and Bn of A,
and B, in analogy to [2]. Then we can think of recovering classical computations
by some functor, say γ, whose purpose is, at least, to forget, or to inject replicas,
of parts of An, and Bn in a way that (γAn → γAn)] (γAn ← γAn) can be their
type. The type says that we move from a reversible computation to a classical
one by choosing which is input and which is output, so recovering the freedom
to manage computational resources as we are used to when writing classical
programs.

References

1. E. A. Boiten. Improving recursive functions by inverting the order of evaluation.
Science of Computer Programming, 18(2):139 – 179, 1992.

2. R. P. James and A. Sabry. Information effects. In J. Field and M. Hicks, edi-
tors, Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA, January
22-28, 2012, pages 73–84. ACM, 2012.

3. A. B. Matos. Linear programs in a simple reversible language. Theor. Comput. Sci.,
290(3):2063–2074, 2003.

4. A. B. Matos, L. Paolini, and L. Roversi. On the expressivity of total reversible pro-
gramming languages. In I. Lanese and M. Rawski, editors, Reversible Computation,
pages 128–143, Cham, 2020. Springer International Publishing.

5. L. Paolini, M. Piccolo, and L. Roversi. On a class of reversible primitive recur-
sive functions and its turing-complete extensions. New Generation Computing,
36(3):233–256, Jul 2018.

6. L. Paolini, M. Piccolo, and L. Roversi. A class of recursive permutations which is
primitive recursive complete. Theor. Comput. Sci., 813:218–233, 2020.

7. L. Roversi, A. Matos, and L. Paolini. Eclipse java project rev2iterrev. https:
//github.com/LucaRoversi/Rec2IterRev.

8. M. Schordan, T. Oppelstrup, D. R. Jefferson, and P. D. B. Jr. Generation of re-
versible C++ code for optimistic parallel discrete event simulation. New Gener.
Comput., 36(3):257–280, 2018.

9. M. Schordan, T. Oppelstrup, M. K. Thomsen, and R. Glück. Reversible Languages
and Incremental State Saving in Optimistic Parallel Discrete Event Simulation,
pages 187–207. Springer International Publishing, Cham, 2020.

https://github.com/LucaRoversi/Rec2IterRev
https://github.com/LucaRoversi/Rec2IterRev

	Splitting recursion schemes into reversible and classical interacting threads

