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Automatic detection of spatio-temporal signaling
patterns in cell collectives
Paolo Armando Gagliardi1*, Benjamin Grädel1,2*, Marc-Antoine Jacques1,2, Lucien Hinderling1,2, Pascal Ender1,2, Andrew R. Cohen3,
Gerald Kastberger4, Olivier Pertz1, and Maciej Dobrzyński1

Increasing experimental evidence points to the physiological importance of space–time correlations in signaling of cell
collectives. From wound healing to epithelial homeostasis to morphogenesis, coordinated activation of biomolecules between
cells allows the collectives to perform more complex tasks and to better tackle environmental challenges. To capture this
information exchange and to advance new theories of emergent phenomena, we created ARCOS, a computational method to
detect and quantify collective signaling. We demonstrate ARCOS on cell and organism collectives with space–time correlations
on different scales in 2D and 3D. We made a new observation that oncogenic mutations in the MAPK/ERK and PIK3CA/Akt
pathways of MCF10A epithelial cells hyperstimulate intercellular ERK activity waves that are largely dependent on matrix
metalloproteinase intercellular signaling. ARCOS is open-source and available as R and Python packages. It also includes a
plugin for the napari image viewer to interactively quantify collective phenomena without prior programming experience.

Introduction
Cell signaling is a finely regulated process that governs funda-
mental aspects of a cell’s life, its metabolism, responses to en-
vironmental cues, and cell fate determination. Time-lapse
fluorescence microscopy has become a routine experimental
modality that has greatly furthered our understanding of these
processes and revealed the role of cell–cell heterogeneity and
signaling dynamics (Purvis and Lahav, 2013; Albeck et al., 2013;
Ryu et al., 2015). Live-cell imaging of fluorescent biosensors has
also demonstrated that signaling propagates across cell collectives,
a phenomenon that is becoming another important organizational
principle in biology. Even though we are only beginning to un-
derstand the rules that govern the emergence of spatial correla-
tions from single-cell signaling, their functional significance has
been reported in various systems. Notably, the coordinated acti-
vation of extracellular signal-regulated kinase (ERK) in spatial
clusters of cells is instrumental in the maintenance of epithelial
homeostasis (Aikin et al., 2020; Gagliardi et al., 2021; Pond et al.,
2022), acinar morphogenesis (Ender et al., 2022), osteoblast
regeneration (De Simone et al., 2021), cell cycle progression
(Hiratsuka et al., 2015), and in the coordination of collective cell
migration (Aoki et al., 2017; Hino et al., 2020). Calcium waves
observed in 2Dmonolayers trigger and facilitate the extrusion of
oncogenically transformed cells from the epithelium, thus also
contributing to its homeostasis (Takeuchi et al., 2020).

Waves rely on an active process in which individuals relay the
signal from their neighbors (Talia and Vergassola, 2022). They are
an important class of self-organizing phenomena that have
emerged repeatedly at different biological scales, arguably be-
cause they can quickly transmit information at long distances
throughout a community (Gelens et al., 2014; Wedlich-Söldner
and Betz, 2018). At the cellular level, voltage-gated sodium
channels mediate the action potential that propagates in neurons
(Hodgkin et al., 1952). A rapid initial development phase in large
animal eggs requires long-distance coordination of mitotic
events, which can only be achieved by signaling waves (Chang
and Ferrell, 2013). At the cell population level, waves rely on
cell–cell communication as is the case of cyclic adenosine mo-
nophosphate waves in Dictyostelium discoideum (Alcantara and
Monk, 1974), calcium waves in animal development, adult ani-
mal tissues, and plants (Robb-Gaspers and Thomas, 1995; Gilland
et al., 1999; Choi et al., 2014), depolarization waves in the heart
that control heartbeat (Noble, 1962), mechanical waves (Serra-
Picamal et al., 2012), and genetic waves in the presomitic
mesoderm (Tsiairis and Aulehla, 2016). Wave patterns also
occur in communities of independent multicellular organisms.
Giant honeybees flip their abdomens in a coordinated fashion
that results in shimmering waves that repel an intruder that
endangers the colony (Kastberger et al., 2014a).
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Despite waves being so common in biology, a general and
easy-to-use computational tool to identify them and extract
useful statistics for further analysis is still missing. In parallel,
other fields like geographic information science and ecology
have accumulated a multitude of statistical methods to analyze
patterns in weather prediction, epidemiology, animal migration,
and voting preferences (Moore and Carpenter, 1999; Lawson,
2006; Pfeiffer et al., 2008; Bivand et al., 2013). Here, we build
upon methods for spatio-temporal clustering and analysis of
point processes and develop a computational tool for the Auto-
matic Recognition of COllective Signaling (ARCOS) events and
their characterization with various statistics. The open-source
code is freely available as R and Python packages, along with ex-
tensive documentation. We also developed a plugin for napari—a
fast, interactive, multidimensional image viewer for Python
(Sofroniew et al., 2022). The plugin provides a graphical interface
to ARCOS and facilitates an intuitive discovery environment to
quantify collective phenomena in time-lapse images.

In the following sections, we explain the ARCOS algorithm
and apply it to several biological systems. First, we used an
optogenetic actuator that activates the mitogen-activated pro-
tein kinase (MAPK) network to generate synthetic waves of ERK
activity in vitro in an MCF10A epithelial monolayer. This way we
could establish a ground truth to test the algorithm in a controlled
setting. We then studied mammary epithelial cells expressing
different oncogenic mutations. We found that ERK activity waves
are exacerbated by oncogenic mutations and that the wave prop-
agation depends on matrix metalloproteinase (MMP)–mediated
intercellular communication. Further, we quantified apoptosis-
induced waves of ERK activity, calcium waves in renal cells, and
collective shimmering in a colony of giant honeybees. Finally, we
tackled 3D geometry and identified ERK waves in mammary acini
in vitro.

Results
The algorithm
To explicate the core ARCOS algorithm, let us consider a radially
expanding wave, a “firework,” as shown in Fig. 1 A, where we
schematically depict three consecutive frames of a developing
activation cluster. Such events have been observed, for example,
in epithelial monolayers where a correlated activation of ERK is
typically initiated by an apoptotic cell (Aikin et al., 2020;
Gagliardi et al., 2021; Pond et al., 2022). In the first step, we
apply a spatial clustering algorithm, dbscan (Ester et al., 1996;
Campello et al., 2013; Hahsler et al., 2019), to every frame in-
dependently to identify pockets of active cells. The clustering
requires two parameters: the search radius ε and the minimum
cluster sizeminClSzwithin that radius. We recommend setting ε
to ≈1.5× the first nearest neighbor distance (NND), and minClSz
to the dimensionality of the problem plus one, i.e., 3 for 2D, 4 for
3D, etc. (Ester et al., 1996).

In the second step, spatial clusters identified in the first step
are linked between frames based on their relative distance. The
first time frame contains only a single five-cell spatial cluster #1
that becomes the seed of a new collective event (CE). The second
frame also contains a single but bigger cluster #2. To link clusters

#1 and #2, we calculate the NND between cells that comprise both
clusters and compare it to the search radius εprev used for tracking
clusters over time. For simplicity, we set εprev = ε. In our case, at
least one cell from cluster #2 is within εprev to cells in cluster #1.
Hence, cells in cluster #2 inherit the identifier of the seed cluster
#1. The third frame contains four spatial clusters #3–6. Based on
NNDs between these cells and cells from the previous frame, we
conclude that only clusters #3, #5, and #6 can be linked to the
growing CE from the previous frame. Cells from cluster #4 are
farther than εprev and therefore they become a seed of a new CE.

Thus, the algorithm first identifies spatial clusters in indi-
vidual frames and then tracks the clusters between frames based
on their spatial overlap (Fig. 1 B). To illustrate how this algo-
rithm can integrate into a real-life workflow, consider a minimal
pipeline to identify collective ERK activation in a 2D MCF10A
epithelium (Fig. 1 C). After acquiring multichannel time-lapse
movies, images are segmented and cells are tracked over time.
The resulting single-cell ERK activity time series (ERKATS) form
a space–time pattern (x,y,m,t), where (x,y) are the centroid co-
ordinates of nuclei, m is the measurement of ERK activity, and t
corresponds to time. The input for ARCOS should only contain
“active cells,” i.e., spatial coordinates and time, (x,y,t), of cells
with the measurement m greater than a threshold.

Binarization
If the input data for the first step of the analysis does not com-
prise active cells, a binarization of the measurement is necessary
before clustering. We implemented several methods to binarize
time series data in ARCOS. The most straightforward approach
applies a global threshold to the measurement. However, data
from time-lapse microscopy often exhibit high variability in the
baseline due to different expression levels of the biosensor.
Additionally, high-intensity light and long exposures can lead to
photobleaching of fluorescent probes, which may cause long-
term trends in fluorescence intensities. To address this, AR-
COS offers detrending methods based on a running median or a
fit to a polynomial (Fig. 1 D; Materials and methods).

An alternative approach to measurement binarization uti-
lizes local indicators of spatial association (LISAs), which are a
class of statistics that quantify local spatial correlation and
clustering (Getis and Ord, 1992; Anselin, 1995; Naimi et al., 2019).
A LISA statistic applied to individual time frames of the space–
time pattern (x,y,m,t) yields a coefficient of local spatial associ-
ation ρ at every coordinate (x,y). For our purposes, we are
looking for pockets where the coefficient is high, which corre-
sponds to regions with high and positively correlated single-cell
ERK activity. After thresholding ρ, we obtain a space–time pat-
tern (x,y,t) that is restricted only to cells that form pockets of
high activity. We assume these clusters estimate the location of
active cells and we use this subset as an input for spatial clus-
tering with ARCOS. LISA-based binarization was performed
accurately on a cluster of cells with high ERK activity in the
MCF10A epithelium (Fig. 1 E).

Extracting statistics
ARCOS applied to binarized measurements yields spatio-
temporal clusters with identifiers of participating cells. Such a
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dataset can be further visualized or processed to extract various
statistics (Fig. 1 C). Our R/Python implementations offer several
helper functions to calculate CEs’ duration, size, growth over
time, and center of mass displacement. Visualization of results is
best performed in the napari plugin, where the original data can
be viewed together with image segmentation results and CEs.
The plugin also offers interactive plots to display the statistics

and to examine cells’ measurements over time, their binariza-
tion, and their assignment to CEs (Video 1).

Validation
The observed statistics of CEs can be further tested against a null
hypothesis that they do not differ from CEs calculated in a sys-
tem with an equivalent total activity but with activations

Figure 1. The algorithm and data analysis pipeline. (A) Demonstration of the ARCOS algorithm on a growing activity cluster. Protein activity of cells
arranged in a mesh can assume two states, inactive (light gray) and active (black). In step 1, the dbscan algorithm spatially clusters active cells independently in
each frame. In step 2, clusters are tracked between frames. The cluster in frame 1 forms a seed of a CE. The cluster in frame 2 is linked to this seed cluster
because its member cells are within the neighborhood radius εprev. In frame 3, only clusters #3, #5, and #6 are linked to the previous frame’s cluster. Cells in
cluster #4 are too far and thus form a new seed of a CE. (B) Flowchart of the core algorithm for detecting CEs in time-lapse data. (C) Image acquisition and
analysis pipeline. Segmentation and tracking software identifies cells in multichannel time-lapse movies and produces a long-format output where every row is
the measurementm in a cell ID at coordinates (x,y), at time t. Single-cell protein activity time series are then detrended and binarized. Binary activity time series
are then fed into ARCOS to identify collective activity. (D) Detrending and binarization of single-cell ERK activity with a runningmedian method. Time series are
first smoothed with a short-range filter, then the signal smoothed with a long-range filter is subtracted from the original. The result is rescaled and thresholded
to binarize it. Red segments indicate periods of activity, which are then processed by ARCOS. (E) Binarization of a single frame with a LISA, G* statistic. The
original frame is compared to the same frame with the measurement randomized between cells while keeping the original X-Y positions. Black dots indicate
active cells with G* > 2.
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occurring randomly in space and time. We provide several
R/Python implementations, with varying assumptions about the
null hypothesis, to randomize the binarizedmeasurement and to
simulate the null distribution, i.e., the sampling distribution of a
statistic under the null hypothesis (Fig. S1; Materials and
methods; Manly, 2007). To test a one-sided alternative hy-
pothesis that, for example, the mean CE duration in the observed
time-lapse is greater than the CE duration in randomly acti-
vating cells, we repeatedly apply any of the randomization
methods and calculate the statistic for every iteration. The
fraction of cases when the durations calculated from the ran-
domized dataset are equal to or exceed the observed duration is
the P value, i.e., the probability of obtaining the statistic at least
as extreme as observed (given the null hypothesis is true;
Davison and Hinkley, 1997; Good, 2005; Phipson and Smyth,
2010). These randomization tests of CEs’ statistics quantify the
“unusualness” of observed spatio-temporal correlations and thus
form the validation part of our workflow.

Optogenetically induced collective ERK activation
Aside from synthetic datasets used during the algorithm devel-
opment, we also wanted to test the code on a biological system,
with the actual variability in protein activity, but in a controlled
setting. To this end, we utilized anMCF10A cell linewith a stably
expressed optogenetic actuator–biosensor system described ear-
lier (Aoki et al., 2017; Fig. 2 A). Using an OptoRAF actuator, we
could induce ERK activity via the RAF-MEK-ERK pathway in
individual cells with light pulses and measure ERK activity using
the cytoplasmic/nuclear translocation of the ERK–KTR biosensor.
Additionally, we used a digital micromirror device (DMD) to
stimulate desired regions of the epithelium over time, thus gen-
erating synthetic collective ERK activity patterns that would
mimic various aspects of spontaneous waves (Fig. 2 B). Notably,
the ERK activity induced by OptoRAF does not propagate to
neighboring cells, which allowed us to precisely control the ex-
tent of synthetic ERK activity patterns and to benchmark ARCOS.

In the first scenario, we repeatedly stimulated a growing
circular region of the epithelium at 5-min intervals, starting at
11 min, with 100-ms light pulses. We observed a clear ERK ac-
tivation in the stimulated regions (Fig. 2 C). ARCOS applied to
detrended and binarized ERKATS identified a single, growing
activity cluster induced by optogenetic stimulation (Fig. 2 C and
Video 2). Additionally, several smaller CEs that lasted <5 min or
comprised <20 unique cells were detected. They stemmed from
spontaneous ERK activations in the epithelium and were dis-
carded after processing.

To verify that the optogenetic stimulation was confined to
desired regions, we inspected single-cell ERKATS (Fig. 2 D).
Cells from the innermost region received all stimulation
pulses after the 10-min mark. ERK activity increased sharply,
although a few responses were delayed, and ensued only after
the second or even the third pulse. We attribute this delay to
biological variability and the fact that the cells are at the
border of an already small activation region. Cells farther
away from the center responded accordingly to pulses that
they were exposed to, although a few cells were activated
earlier, likely by the illumination of regions with smaller

radii. The ERK activity in cells not exposed to DMD illumi-
nation remained at the baseline.

We concluded that our protocol was sufficiently selective to
control the stimulation of a growing ERK activation cluster and
that ARCOS correctly identified such a synthetic wave. An in-
tuitive visualization of that result is shown in a “spaghetti” plot
(Fig. 2 E). Therein, the spatio-temporal evolution of collective
ERK activity was projected onto the 2D (x,t) plane. Each trace
corresponds to a single cell involved in a CE identified by the
algorithm.We confirmed that the collective ERK activation grew
over time and within the bounds of the DMD illumination. As a
cross-check, we compared the result obtained from ARCOS with
an independent quantification of the global spatial correlation
per frame using Moran’s I statistic (Gittleman and Kot, 1990;
Bivand et al., 2013). Said statistic is commonly used in the field of
geographic information science to quantify spatial phenomena.
The Moran’s I coefficient increased with the growing collective
ERK activity region and peakedwhen that regionwas the biggest
(Fig. 2 E). This result confirmed a spatially correlated cluster as
detected by ARCOS.

We also tried other illumination scenarios to further chal-
lenge the algorithm. To test the tracking, we illuminated a pat-
tern with a circle that moved around the field of view (FOV;
Fig. 2, F and G; and Video 3). Another common scenario observed
in the epithelium prompted us to apply a circular pattern that
was slowly splitting into two detached regions (Fig. 2, H and I;
and Video 4). In both cases, ARCOS correctly identified the
spatio-temporal progression of the optogenetically induced ERK
activity region. Due to a longer, 2 h 40 min, acquisition time, we
detected additional ERK activity clusters that stemmed from
apoptotic events and/or a spontaneous activation. The results
from the optogenetic experiments assured us that our image
analysis pipeline performed well in a controlled setting with
biological variability and that we could apply it to more chal-
lenging scenarios.

Oncogenic mutations increase ERK waves in MMP/epidermal
growth factor receptor (EGFR)-dependent manner
One of our earlier studies showed that apoptosis of single cells
within epithelium triggers waves of ERK activity pulses (Gagliardi
et al., 2021). These waves act as a survival signal that protects two
to three layers of neighboring cells from further apoptosis, thus
contributing to epithelial homeostasis. The ERK waves are trigger
waves (Gelens et al., 2014) in which the extruding apoptotic cell
activates MMP-mediated cleavage of pro-EGFR ligands. Subse-
quently, the EGFR activates ERK in adjacent cells (Aoki et al., 2017;
Aikin et al., 2020). ERK-mediated activation of myosin contrac-
tility might then provide a mechanical input that activates ERK in
farther cells throughMMP/EGFR signaling. This explains how the
ERK wave emerges through a mechanochemical feedback loop
(Hino et al., 2020). Given those past results, we were curious how
oncogenic mutations that affect the MAPK network might influ-
ence the spatio-temporal ERK activation and the molecular
mechanism of CEs propagation. Therefore, we explored ERK
waves in starved MCF10A cells with oncogenic heterozygous
mutations, KRASG12V (Konishi et al., 2007) or PIK3CAH1047R

(Gustin et al., 2009), that activate the MAPK/ERK and frequently
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Figure 2. Testing ARCOS with optogenetically induced collective ERK activation. (A) Optogenetic actuator/biosensor circuit comprises the optogenetic
actuator OptoRAF tagged with mCitrine, the ERK biosensor (ERK-KTR) tagged with mRuby2, and a nuclear marker (H2B) tagged with miRFP703. (B) Schematic
of a spatially constrained stimulation of the 2D epithelium with a DMD. (C) Repeated, pulsed optogenetic stimulation of the MCF10A WT epithelium with a
growing circular region using DMD. Upper row: Inverted raw images from selected time points. The circle outlines the stimulation region. Pink dots on the
timeline indicate the timing of a 100-ms-long optogenetic pulse. Lower row: Quantification of ERK activity from image segmentation for selected time points.
Black dots indicate active cells identified from detrended and binarized ERKATS; black lines indicate a convex hull around collective activation. (D) Single-cell
ERK activity in different regions of the FOV from panel C. Vertical dashed lines indicate the timing of the optogenetic stimulation. Cells in the center are
stimulated at all stimulation times after 10’; cells farther away are stimulated only with pulses that occur after 35’, etc. (E) Spaghetti plot of collective ERK
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occur in cancer. In the KRASG12V mutant, loss of GTP hydrolysis
leads to increased activation of the rapidly accelerated fibrosarcoma
(RAF) kinase, thus activating the MAPK/ERK kinase (MEK)
and ERK. The H1047R mutation in PIK3CA, the α subunit of
PI3K, leads to amphiregulin expression/secretion amplification,
which activates the non-mutated MAPK/ERK pathway via EGFR
(Gustin et al., 2009; Young et al., 2015).

As expected, at the population level, in starved conditions,
without external stimulation, the average ERK activity was
higher in the mutants than in the WT cells (Fig. 3 A). Notably,
the increased basal activity occurs without ERK activity waves
due to apoptosis, which is negligible in the mutants. At the
single-cell level, ERK activity still exhibited non-periodic pulses,
although their number and shape markedly differed between
the two mutant cell lines (Fig. 3 B). WT cells displayed sharp,
isolated, and rare ERK pulses as observed earlier (Albeck et al.,
2013). In the KRASG12V cells, individual ERK pulses were still
discernible but often lasted longer and formed “massifs” of ERK
activity that resulted in higher pulse frequency (Fig. 3 C). In the
PIK3CAH1047R cells, as already reported (Ender et al., 2022), ERK
pulses retained the same shape, duration, and amplitude as in
WT cells, but the frequency of these pulses was the highest
(Fig. 3 C).

We then wondered how different single-cell ERK activity
dynamics translated into spatial correlations in the epithelium.
ERK activity was least spatially correlated in WT cells, where
CEs (comprisingminimum three cells and lasting at least 15min)
were sparse, short-lasting, and usually triggered by apoptotic
events. In comparison, KRASG12V and PIK3CAH1047R mutants
exhibited a more spatially correlated ERK activity with longer
and more frequent CEs (Fig. 3 D and Video 5). Given the quan-
tification of CEs obtained from ARCOS, we quantified their du-
ration and size, i.e., the total number of unique cells in a CE
(Fig. 3 E). Even though the median statistics were similar across
the cell lines, the distributions varied and confirmed our ob-
servations from spaghetti plots: small and short-lasting ERK
activity waves inWT cells, and bigger and slightly longer-lasting
events in the mutants (Fig. 3 F). Furthermore, the mutant cells
triggered more CEs compared with the WT (Fig. 3 G).

Next, we explored the molecular mechanism of CE propa-
gation in the presence of oncogenic mutations. We hypothesized
that they were mediated by the same MMPs/EGFR intercellular
communication mechanism that we identified for apoptotic
waves in WT cells (Gagliardi et al., 2021). Treatment with 10 µM
of the MMPs’ inhibitor batimastat reduced the average ERK
activity in the mutant cell lines (Fig. 3 A). WT and PIK3CAH1047R

ERKATS became nearly flat, with a strong increase in the frac-
tion of cells without any ERK activity pulses (WT: 24%→65%;
PIK3CA: 9%→51%). In contrast, 58% of KRASG12V cells still dis-
played residual pulsatile activity (Fig. 3 C). This result suggests
that WT and PIK3CAH1047R completely depend on intercellular

communication for the regulation of ERK activity dynamics,
whereas the dependency of KRASG12V is only partial. The
hampered ERK activity dynamics after MMP inhibition coin-
cided with a strong reduction of CEs’ number, size, and du-
ration in all three cell lines. However, we observed that in
KRASG12V there are more residual CEs than in WT and PIK3-
CAH1047R (Fig. 3, D–G).

An independent quantification with the global Moran’s I
coefficient calculated directly from segmented time-series data
showed a reduced spatial correlation of ERK activity in all cell
lines after batimastat treatment (Fig. 3 H). This confirms less
coordinated ERK activation, as quantified with ARCOS, and
shows that not only apoptotic ERK waves but also aberrant CEs
caused by oncogenic mutations are at least partly mediated
by MMPs.

We then compared the observed statistics of CEs to statistics
calculated in a system with the same dynamics but without
spatial correlations. We performed a randomization test by
shuffling positions of entire time series according to Fig. S1 B.
This only affected spatial correlations between neighboring
cells, while leaving the dynamics intact. After performing 1,000
iterations, we detected CEs that were shorter-lived and involved
fewer cells than the observed CEs; thus the one-sided P value for
CE duration and the size was <0.001 (Figs. S2 and S3). We
concluded that at the significance level of 0.05, we can reject the
null hypothesis that the observed statistics of CEs in three cell
lines with and without batimastat are no different from those
calculated from random events.

ERK waves in the NRK-52E epithelium
To further demonstrate ARCOS’s versatility, we quantified ERK
waves in the NRK-52E renal epithelial cells that express the
EKAREV-NLS ERK sensor. The majority of the waves in this cell
line are triggered by apoptosis, as reported earlier (Aoki et al.,
2013). Since waves are bigger and isolated from each other, we
used a LISA-based binarization of ERK activity as the pre-
processing step for ARCOS. To identify pockets of active cells,
we calculated the local G*, a LISA statistic that identifies spots of
activity (Naimi et al., 2019), and applied it to individual frames
of the (x,y,m,t) space-time pattern from image segmentation.
After thresholding the resulting statistic, we obtained the (x,y,t)
pattern only with active cells, which we then used in ARCOS
(Fig. 4 A and Video 6).

The spaghetti plot confirms that apoptotic events trigger
ERK activity waves (Fig. 4 B). We corroborate this result with
the global Moran’s I indicator of spatial correlation, which
indeed peaks at the time of CEs identified with ARCOS (Fig. 4
B). We also find that the median CEs’ duration of 0.5 h in NRK-
52E cells is comparable with all MCF10A cell lines analyzed
before (0.58–0.67 h) but the events are bigger with their
median size of 16 unique cells compared with five to six in

activation: an x-axis projection of single cells from panel C during their participation in a CE. Vertical dashed lines indicate the timing and position of the
optogenetic stimulation. The green solid line is the Moran’s Imeasure of global spatial autocorrelation calculated from single-cell ERKATS. (F) Repeated, pulsed
optogenetic stimulation of a circular region moving clockwise along a circle. Legend as in panel C. (G) Spaghetti plot and global Moran’s I of CEs from panel F.
(H and I) Same as F and G but the optogenetic stimulation is a circular region that splits horizontally over time.
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Figure 3. ERK activity in starved MCF10A WT, and KRASG12V and PIK3CAH1047R mutant cell lines with and without the MMP inhibitor batimastat.
(A) Population-averaged ERK activity at 10 h after the start of acquisition. Box plots show the median and 25th and 75th percentiles, whiskers correspond
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MCF10A WT and mutants (Fig. 4 C). The one-sided P value
from 1,000 iterations of the randomization test with shuffling
time series’ positions was <0.001 for CE duration and size
(Dobrzyński, 2023).

Calcium waves in the MDCK epithelium
We then tested ARCOS on a different cell line and biosensor by
analyzing calcium waves that trigger apical extrusion in the
MDCK epithelium (Takeuchi et al., 2020; imaging data, courtesy

to minimum and maximum non-outlier values; N ≈ 2,000 cells pooled from three FOVs per cell line/treatment of a single experiment. Symbols indicate the
statistical significance of a two-sample Wilcoxon rank sum test with Bonferroni correction: * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, **** P ≤ 0.0001. Numbers
indicate Cohen’s effect size d (Cohen, 2013). (B) A random sample of single-cell ERKATS from panel A. (C) Frequency of ERK activity pulses per cell for
ERKATS from panels A and B. A pulse is a continuous period of binarized high ERK activity. Symbols and numbers as in A. (D) X-axis projections of single
cells during their participation in CEs. Events are colored with a finite discrete palette; thus, colors repeat over time. Data from single FOVs. (E) Size and
duration of CEs. Hexagonal tiles are colored according to the number of CEs (logarithmic scale). Red dots indicate median statistics. Data pooled from
three FOVs per cell line/treatment of a single experiment. (F) Results of statistical tests for the size and duration of CEs for the data in E. Symbols and
numbers as in A. (G) Each dot corresponds to the mean number of CEs in a FOV normalized to the time-averaged number of cells in that FOV. The results
of unpaired two-sample t tests with Bonferroni correction are shown above the plot. Symbols and numbers as in A. (H) Global Moran’s I calculated over
time (287 time points) for each FOV. Each distribution contains values pooled from three FOVs and is based on N = 3 × 287 values. Vertical dashed lines
represent the median. P values obtained from the Wilcoxon rank sum test; d, Cohen’s effect size.

Figure 4. ERK activity waves in the NRK-52E epithelium, calcium waves in the MDCK epithelium, and shimmering bees. (A) Snapshots of an ERK wave
in starved NRK-52E EKAREV-NLS cells induced by the apoptotic cell indicated by a green ring. The FRET ratio is calculated pixel-by-pixel from donor and acceptor
images. Nuclei colored by ERK activity and a convex hull of the CE from ARCOS. Black dots indicate active cells calculated from the binarization step with the G*
statistic. Scale bar, 50 μm. (B) CEs in the NRK-52E epithelium compared to the global Moran’s I coefficient. Overlaid as green rings are manually annotated
apoptotic events. (C) Size vs. duration of CEs. 341 CEs pooled from 11 FOVs acquired during a single experiment. The red dot indicates the median. (D) Snapshots
of a calcium wave and its quantification in the MDCK epithelium with the apically extruded cell marked in green. Cells stably express GCaMP6S—a GFP-based
intracellular calcium sensor. Scale bar, 100 μm. (E) CEs in theMDCK epithelium comparedwith the global Moran’s I coefficient. Green rings aremanually annotated
RasV12-expressing cells that undergo apical extrusion triggered by calcium waves. (F) Hex-bin plot as in C containing 192 CEs from a single, 9-h-long acquisition.
(G) Snapshots of shimmering bee waves induced by a dummy wasp presented to the colony on the right of the FOV. A leader bee that initiates the wave is
indicated with a red arrow. The bottom row shows bees colored by the amount of their abdomen flipping and a convex hull of the CE identified with ARCOS. Scale
bar, 50 mm. (H) 116 CEs from a single time-lapse of bee shimmering. (B, E, and H) Dashed rectangles indicate space–time sections from panels A, D, and G.
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of Yasuyuki Fujita). Apical cell extrusion is an important ho-
meostatic mechanism that eradicates harmful or suboptimal
cells from the epithelium. In the experiment, the Myc-RasV12
oncogene was transiently expressed mosaically within a mono-
layer of MDCK cells. Due to their harmful potential, RasV12-
transformed cells were apically extruded from the epithelium.
Notably, before the extrusion, calcium levels acutely increased
in the RasV12 cells and radially propagated to neighboring cells.
Suchwaves have been shown to trigger and facilitate the process
of cell extrusion.

Since single-cell time series of calcium levels had a well-
defined baseline and lacked long-term trends, we used the G*
LISA statistic (Naimi et al., 2019) to identify pockets of active
cells (Fig. 4, D and E; and Video 7). Spatial correlation calculated
for each frame using global Moran’s I coefficient peaks when
calcium waves occur, which further strengthens our identifi-
cation of CEs with ARCOS (Fig. 4 E). We find that a single col-
lective calcium wave propagates radially from the extruded cell,
can involve up to 300 cells, and can last up to 2 min (Fig. 4 F).
The one-sided P-value from 1,000 iterations of the randomiza-
tion test with shuffling time series’ positions was <0.001 for CE
duration and size (Dobrzyński, 2023).

Shimmering bees
Even though we developed ARCOS to tackle collective phe-
nomena in cell signaling, our image processing pipeline can
also quantify spatio-temporal phenomena in the context of
ecology. As a demonstration, we analyzed a previously pub-
lished time-lapse dataset of a giant honeybee colony (Apis
dorsata) that collectively responds to a computer-controlled
dummy wasp hovering in front of the honeybee nest
(Kastberger et al., 2011). The giant honeybees responded to the
wasp by flipping their abdomens in a simultaneous and cas-
cadic way, generating a wave-like visual signal for external
observers. The visual effect achieved by this repetitive col-
lective response aims to repel the threat (Kastberger et al.,
2008, 2014b). Pulses connected to these visual patterns at
the nest surface also lead to vibrations within the nest, and
these are suitable for informing nest mates, even on both sides
of the nest, about the threat status (Kastberger et al., 2010;
Kastberger et al., 2011; Radloff et al., 2011; Kastberger et al.,
2012; Kastberger et al., 2013; Kastberger et al., 2014a).

As described above, shimmering waves propagate across the
surface of the giant honeybee nest in response to repeated ex-
posure to the dummy wasp presented to the colony on the right
side of the FOV (Fig. 4 G). Notably, our quantification confirms
an interesting aspect of the shimmering phenomenon. Each
vertical streak in the spaghetti plot (Fig. 4 H) corresponds to a
wave that propagates from right to left of the FOV. However, we
note that each of such streaks consists of “sub-waves” as indi-
cated by different colors within the streak. Such a shimmering
wave is typically initiated by “leader” bees on the nest surface,
assembled in so-called trigger centers across the nest surface
(Schmelzer and Kastberger, 2009; Kastberger et al., 2010;
Kastberger et al., 2014a). Video 8 confirms our observation that a
single exposure to the dummy wasp induces several smaller
waves consecutively triggered by the leader bees scattered across

the colony. These trigger centers were primarily arranged in the
close periphery of the mouth zone of the nest, around those parts
where the main locomotory activity occurs throughout daytime.

ERK waves in 3D acinus
Previously, we reported waves of ERK activity during the mor-
phogenetic program of 3D MCF10A acini in vitro (Ender et al.,
2022). One crucial stage of this process is the formation of a
lumen by apoptosis of inner cells. We found that ERK waves
coordinate spatial separation into two domains: the outer cell
population, which survives, and the inner cell population, which
undergoes apoptosis. Since the ARCOS algorithm can handle any
integer dimensionality, we were curious to analyze ERK activity
waves in this system. The top row of Fig. 5 A shows a single wave
in a maximum projection of the raw ERK-KTR channel. This
example CE starts at the surface of the acinus and propagates
over time to other cells in the outer layer (Fig. 5, B and C; and
Video 9). Only toward the end, some inner cells participate in
the event. This observation reflects a more general trend that we
reported earlier based on pooled data from 11 acini (Ender et al.,
2022). Most CEs initiate and propagate at the outer layer of the
acinus, thus providing a survival signal to those cells. The inner
domain exhibited fewer spontaneous ERK pulses and received
fewer pulses due to waves that remained predominantly in the
outer layer. Such a spatio-temporal distribution of waves creates
a lower survival signal in the inner domain, which contributes to
a higher apoptosis rate and clearing of the lumen. The formation
of hollow acini recapitulates key features of in vivo breast alveoli
and makes this system an attractive model to study the effect of
MAPK signaling on lumen morphogenesis.

Limitations
ARCOS is designed to identify spatial clusters and to track them
over time, thus making it potentially applicable to diverse
spatio-temporal phenomena. The computational cost lies mainly
in clustering with dbscan and in the calculation of NNDs between
objects in clusters, which is necessary to track CEs. For cases
with many objects per cluster, such as calciumwaves in Fig. 4 D,
the calculation lasts longer and memory requirements increase.
However, the analysis of even the longest time lapses presented
here lasted several minutes on a contemporary PC. In our
opinion, the main hurdle lies in the preparation of data from
microscopy images. Modern machine learning–based approaches
for image segmentation are robust even in the presence of a fair
amount of noise (Fig. S4, A–D and G; and Video 10; Materials and
methods). However, quality time series is crucial for the subse-
quent binarization and CE detection (Fig. S4, E, F, andH;Materials
and methods).

Signal binarization may require several trials with either
detrending/thresholding or LISA-basedmethods. In our case, the
latter performed better when activity time series had well-
defined baselines without long-term trends, as was the case for
all datasets except MCF10A, which required detrending due to
varying baselines. Furthermore, some understanding of the ac-
quired CEs is necessary to set the search radius ε and the mini-
mum for CE duration and size. If ε is too large, then independent
CEs are merged into a single cluster; if too small, then a single CE
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might be split into smaller events (Fig. S5, A–D; Materials and
methods).

A time-lapse with randomly active cells can also lead ARCOS
to identify spurious space-time correlations as CEs, especially
when the total binarized activity (TBA) is high. To identify this
regime, we simulated a 2D epithelium with randomly activating
cells for a range of TBA. Above TBA ≈ 10%, due to an increased
probability of neighboring cells remaining active, the algorithm
identified several CEs comprising at least three cells and lasting
at least three frames (Fig. S5 G). Therefore, validation with
randomization tests is crucial to assess whether statistics cal-
culated from observed data differ from the statistics obtained in
a system with random activations.

Another regime when ARCOS may yield imprecise results
is when CEs start overlapping. Simulation of concentrically
growing events (Fig. S5 H) revealed that the statistics of col-
lective activations agree with the ground truth up to TBA ≈
10%, which is the threshold when individual events start
colliding (Fig. S5, I–K). Even though ARCOS is designed to
handle collisions of CEs, such situations are indiscernible
above a certain threshold, making automated detection diffi-
cult. The actual percentages above which these problems
emerge are only an approximate guideline and may further
depend on detection thresholds for CE size and duration and
on the nature of the propagating wave. In our experiments,
TBA was well below the estimated overlap threshold (0.6% for
calcium waves; 2% for bee shimmering, 3 and 7% for ERK
activity waves in NRK-52E and MCF10A WT), although it
amounted to ≈23% in untreated MCF10A mutant cell lines,
which may partly explain the higher duration and size of
detected CEs.

Discussion
We introduced ARCOS, a novel tool for detecting and quantify-
ing collective spatio-temporal phenomena with a focus on cell
signaling, and validated it on several biological systems with

drastically different spatio-temporal collective behaviors. We
analyzed ERK activity waves in an epithelial monolayer that
propagate radially on the timescale of 10–30 min, radial calcium
waves on the timescale of 10–30 s, directional waves in a
shimmering bee colony, and a 3D culture model of mammary
acini. The open-source code provided as R and Python packages
can be used in Jupyter notebooks or batch processing pipelines.
Supplementary R notebooks contain full analysis of all experi-
mental modalities presented here and provide example param-
eters (Dobrzyński, 2023). The napari plugin enables anyone
without extensive programming knowledge to explore param-
eters through an intuitive graphical user interface on a platform
that emerges as a de facto standard for viewing multidimen-
sional images (Video 1).

Oncogenic mutations increase collective ERK dynamics
We unravel a new layer of complexity in cancer signaling by
showing that two different oncogenic mutations known to in-
crease ERK activity led to different, distinctive single-cell and
collective responses. We focused our experiments on two widely
studied and clinically relevant oncogenic mutations: KRASG12V

and PIK3CAH1047R. The former directly activates ERK by switching
on RAF and MEK (Huang et al., 2021), while the latter activates
ERK through a crosstalk mechanism that involves MMP-
dependent amphiregulin-mediated EGFR activation (Ender
et al., 2022). As observed before (Konishi et al., 2007; Gustin
et al., 2009), we show that both mutations lead to increased
population-averaged ERK activity in MCF10A epithelial cells.
Evaluation of single-cell ERK dynamics reveals two additional
levels of complexity—the oncogenic mutations modify: (1) ERK
dynamics at the single-cell level; (2) the collective behavior of
ERK signaling, as can be quantified using ARCOS.

Regarding ERK dynamics, we find that KRASG12V cells display
more ERK pulses that also switch off slower than ERK pulses in
WT. In marked contrast, PIK3CAH1047R leads to increased ERK
pulse frequency without modifying ERK pulse shape. The
KRASG12V-induced characteristic ERK dynamics can be

Figure 5. Quantification of collective ERK activation in a 7-d-old MCF10AWT acinus. (A) Snapshots of a single CE. Top row—maximum projection of the
ERK-KTR channel; middle row—cell nuclei shaded according to detrended and normalized ERK activity; bottom row—nuclear centroids colored by ERK activity
and sized according to z distance. Black dots indicate active cells. Scale bar, 10 μm. (B) Heatmap of ERKATS ordered along the y-axis. Each row corresponds to
a single cell. (C) Spaghetti plot of CEs during the entire acquisition. The dashed rectangle indicates the space–time section from A.
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explained as follows. Active Ras triggers the tripartite RAF/
MEK/ERK network with a negative feedback loop from ERK to
RAF (Sturm et al., 2010; Fritsche-Guenther et al., 2011); how-
ever, it bypasses the ERK-RSK2-SOS negative feedback loop
that acts upstream of the mutated Ras (Dessauges et al., 2022).
This partly abrogated negative regulation explains why ERK
pulses remain adaptive, albeit with slower dynamics com-
pared with WT, rather than exhibiting sustained ERK acti-
vation. The ability of the MAPK pathway to rescale the ERK
response in the presence of an activating mutation (Gillies
et al., 2017) explains why cells remain sensitive to signaling
inputs. In marked contrast, the PIK3CAH1047R mutation ac-
tivates the MMP/EGFR/amphiregulin-based crosstalk to ac-
tivate the MAPK signaling network with intact feedback
structures as in WT cells (Ender et al., 2022). This produces
ERK pulses of identical shapes as in WT cells, albeit with a
higher frequency.

Using ARCOS to quantify population-level ERK dynamics, we
report that both KRASG12V and PIK3CAH1047R lead to more, lon-
ger, and bigger CEs compared withWT. Because ERK waves rely
onMMP-mediated cleavage of EGF ligands to propagate between
cells, we used the MMP inhibitor batimastat to inhibit the
propagation. As previously quantified, ERK waves vanish in
WT cells upon inhibition of cell–cell communication (Gagliardi
et al., 2021). We observe the same behavior for PIK3CAH1047R

cells. We explain this by the fact that in this cell line, the
crosstalk from PI3K to ERK involves the EGFR-dependent acti-
vation by the EGF-like ligand amphiregulin, which also requires
MMPs (Young et al., 2015; Ender et al., 2022). Interestingly, the
number, length, and duration of CEs are only partly reduced in
the KRASG12V cells treated with batimastat. We speculate that in
addition to increased secretion of amphiregulin in this mutant
(Minjgee et al., 2011), mechanical input is also responsible for
cell–cell communication. ERK-dependent activation of myosin
contractility has been implicated in ERKwave generation during
collective epithelial motility, together with the MMP/EGF/EGFR
system (Aoki et al., 2017; Hino et al., 2020). The increased pe-
riods of ERK activity in KRASG12V cells might exacerbate myosin
activity and thus increase cell–cell communication indepen-
dently of the MMP signaling system, leading to residual ERK
waves upon MMP inhibition.

Concluding remarks
Our data demonstrate that the single-cell signaling dynamic does
not merely result from network wiring within individual cells
but also reflects emergent phenomena at the level of cell com-
munity. Disentangling these two contributions is necessary to
further interpret oncogenic signaling. We showed that inter-
cellular propagation of dynamic collective signaling plays a
major role in the pathological hyperactivation of the MAPK
pathway due to oncogenic mutations. Future studies of spatio-
temporal dynamics in other oncogenic MAPK/Akt pathway
mutants will be essential to better characterize the dependency
of individual cells on intercellular communication. Quantifica-
tion of these complex emergent processes might then allow for
modeling signaling networks in cell communities using agent-
based approaches, which will enable true understanding of

signaling processes at previously inaccessible lengths and time
scales.

Materials and methods
Cell culture
WT human mammary MCF10A cells were a gift of J.S. Brugge,
Harvard Medical School, Boston, MA, USA (Debnath et al.,
2003). The isogenic variants of MCF10A harboring the hetero-
zygous mutations PIK3CAH1047R (Gustin et al., 2009) and
KRASG12V (Konishi et al., 2007) were a gift of Ben Ho Park,
Vanderbilt University Medical Center, TN, USA. NRK-52E ex-
pressing EKAREV-NLS were a gift from K. Aoki, National In-
stitute for Basic Biology, Okazaki, Japan (Aoki et al., 2013).
Cultivation of WTMCF10A cells and the isogenic derivative was
carried out in growth medium composed of DMEM:F12, 5%
horse serum, 20 ng/ml recombinant human EGF (Peprotech),
10 μg/ml insulin (Sigma-Aldrich/Merck), 0.5 μg/ml hydrocor-
tisone (Sigma-Aldrich/Merck), 200 U/ml penicillin, and 200 μg/
ml streptomycin. NRK-52E cells were cultured in DMEM sup-
plemented with 10% FBS, 200 U/ml penicillin, and 200 mg/ml
streptomycin.

Biosensors and optogenetic actuator
To observe nuclei and measure ERK activity, we used the Pig-
gyBac plasmid coding for the stable nuclear marker H2B-
miRFP703 (pPBbSr2-H2B-miRFP703) and the PiggyBac plasmids
coding for the ERK activity biosensor ERK-KTR fused with
mRuby2 (pHygro-PB-ERK-KTR-mRuby2) or mTurquoise2 (pHy-
gro-PB-ERK-KTR-mTurquoise2). To express the CRY2-based op-
togenetic actuator OptoRAF and the plasma membrane anchor
CIBN-KrasCT, we used a PiggyBac plasmid expressing both the
proteins separated by the self-cleaving peptide P2A (pPB3.0-
PuroCRY2-cRAF-mCitrine-P2A-CIBN-KrasCT). All plasmids were
generated for a previous study from our laboratory (Gagliardi
et al., 2021). We chose OptoRAF to locally stimulate ERK activ-
ity because, inMCF10A cells, the activation of RAF is downstream
of the MMPs/EGFR-mediated cell–cell communication that prop-
agates ERK waves. This property makes the OptoRAF system an
ideal tool to generate artificial waves by precisely activating only
the cells in the illuminated area and not outside.

To generate cells stably expressing the biosensors or the op-
togenetic actuator, we transfected the PiggyBac plasmids together
with the helper plasmid expressing the transposase. The trans-
fection of WT MCF10A cells and the mutated derivatives was
carried out with FuGene (Promega) according to the manu-
facturer’s protocol. Antibiotic selection and image-based screening
were used to generate stable clones with the desired biosensors/
optogenetic tools.

Live microscopy and optogenetics
MCF10A and NRK-52E cells were seeded in 5 mg/ml fibronectin
(PanReac AppliChem) on 24-well #1.5 glass bottom plates
(Cellvis) to reach confluence on the day of the experiment. The
culture medium was replaced with imaging medium (DMEM:
F12, 0.5 μg/ml hydrocortisone (Sigma-Aldrich/Merck), 200
U/ml penicillin and 200 μg/ml streptomycin, and 10mMHepes)
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24 h before the experiments and kept for their entire duration.
Image acquisition was executed with an epifluorescence Eclipse
Ti inverted fluorescence microscope (Nikon) controlled by NIS-
Elements (Nikon) with a Plan Apo air 20× (NA 0.8) or Plan Apo
air 40× (NA 0.9) objectives and an Andor Zyla 4.2 plus camera at
a 16-bit depth. Laser-based autofocus was used throughout the
experiments. All the experiments were performed in a humid-
ified chamber at 37°C and 5% CO2. Excitation and emission of the
fluorescent proteins were obtained with the following mono-
chromatic LEDs and filters. Far red: 640 nm, ET705/72m; red:
555 nm, ET652/60m; NeonGreen: 508 nm, ET605/52; mTur-
quoise2: 440 nm, HQ480/40. For optogenetic experiments, cells
expressing OptoRAF were kept in the dark for at least 24 h be-
fore the experiments and all preparatory steps at the microscope
were carried out with red or green light (wavelength >550 nm).
Stimulation of the OptoRAF was obtained with monochromatic
488 nm blue light for 100 ms at 0.3 W/cm2. The stimulated areas
were produced by a DMD (Andor Mosaic3) controlled by NIS
Jobs based on masks prepared beforehand.

Image analysis of 2D epithelia
We used three image segmentation approaches. In the first, we
used Ilastik (Berg et al., 2019) to classify pixels in the nuclear
channel and build a nuclear probability mask. The classifier was
trained on manual annotations of nuclei based on the H2B-
mRFP703 fluorescent marker for MCF10A cells and EKAREV-
NLS for NRK-52E. We used CellProfiler 3.0 (McQuin et al., 2018)
to perform further analysis. A threshold-based segmentation
identified nuclei from the probability masks. The nuclear seg-
mentation masks were used to quantify the average nuclear pixel
intensity in the ERK-KTR channel. To determine the area corre-
sponding to the cytosol, we expanded the nuclei by a predefined
number of pixels, but not further than the underlying fluores-
cence intensity in the ERK-KTR channel. We calculated the av-
erage cytosolic pixel intensity of ERK-KTR from the resulting
cytosolic ring. By dividing the average pixel intensities from the
cytosolic ring and the nucleus, we obtained the cytosolic/nuclear
ratio that estimates the ERK kinase activity. For experiments with
NRK-52E cells that express EKAREV-NLS biosensor, we calcu-
lated the fluorescence resonance energy transfer (FRET) ratio,
where the FRET image is divided pixel-by-pixel by the donor
image. Tracking of single cells was done on nuclear centroids in
MATLAB using μ-track 2.2.1 (Jaqaman et al., 2008).

In the second approach, we used stardist (Schmidt et al.,
2018) to segment nuclei, then shrank the nuclei by one pixel,
and used this binary image together with the raw ERK-KTR
image to segment the cytoplasm of corresponding cells using
cellpose (Stringer et al., 2021; Pachitariu and Stringer, 2022).
The cytoplasmwas shrunk by a predefined number of pixels and
mean intensities for nuclei and cytoplasm were extracted from
the KTR images to subsequently calculate the KTR ratio as
before.

In the third approach, we used a custom segmentation algo-
rithm that extracts image features from the nuclear marker
channel using filters from a modified VGG16 (Arsa and Susila,
2019) convolutional neural network pretrained on ImageNet
(Deng et al., 2009). We then quantified nuclear and cytosolic

fluorescence intensity following the procedure described above.
To track nuclei, we used a Python implementation of the linking
algorithm (Crocker and Grier, 1996) provided in the trackpy li-
brary (Allan et al., 2021).

Apoptotic events were manually annotated based on nuclear
shrinkage, as reported earlier (Gagliardi et al., 2021).

MCF10A acini
Live imaging of 3D mammary acini with MCF10A cells and the
corresponding image analysis were executed as described earlier
(Ender et al., 2022). MCF10A cells were dissociated to single cells
and embedded in growth factor–reduced Matrigel (Corning) and
overlaid with DMEM/F12 supplemented with 2% horse serum,
20 ng/ml recombinant human EGF, 0.5 mg/ml hydrocortisone,
10 mg/ml insulin, 200 U/ml penicillin, and 200 mg/ml strep-
tomycin. After 3 d, EGF, insulin, and horse serum were removed
from the medium. 25 mM Hepes was added to the medium be-
fore imaging.

Image acquisition was performed with an epifluorescence
Eclipse Ti2 inverted fluorescence microscope (Nikon) equipped
with a CSU-W1 spinning-disk confocal system (Yokogawa) and a
Plan Apo VC 60× water immersion objective (NA = 1.2). Images
were acquired with a Prime 95B camera at 16-bit depth (Tele-
dyne Photometrics). 3D segmentation of nuclei and extraction of
cytosolic/nuclear ERK-KTR fluorescence intensity ratio were
performed using a customized version of the LEVER software
(Winter et al., 2016).

Shimmering bees
Image acquisition was performed as described earlier (Kastberger
et al., 2011). To segment the act of flipping the abdomen in in-
dividual bees, we used a pixel classifier from the Ilastik image
processing software (Berg et al., 2019). We obtained a probability
mask that could be thresholded and processed as a conventional
single-cell time-lapse movie that resulted in single-bee time se-
ries data. Motion-active bees, i.e., bees that flipped their abdo-
men, were identified with the local G* statistic, which we then
thresholded and fed into ARCOS.

Signal binarization
Single-cell ERK activity obtained from image segmentation
yields a (x,y,m,t) spatio-temporal point pattern, where (x,y) are
centroid coordinates of nuclei, m is the corresponding mea-
surement value at these coordinates (e.g., ERK activity), and t
denotes time. To find CEs, we identify “active cells,” i.e., cells
with m above a certain threshold. We implemented three
methods in the binMeas function of the ARCOS R and Python
packages to identify activity periods in time series. In the sim-
plest case (the biasMet parameter set to “none”), the measure-
ment is rescaled globally to [0,1], smoothed with a short-term
median filter to remove fast frequencies and/or incidental
peaks, and binarized with a global threshold. Setting biasMet =
“runmed” activates detrending, where a long-term median-
smoothed measurement is subtracted from the initial time se-
ries. With biasMet = “lm,” the detrending step subtracts a linear
fit to the measurement. The aim of this step is to remove long-
term trends due to photobleaching of fluorescent probes or to
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remove permanently active cells. The subsequent thresholding
of the detrended signal may lead to identification of longer
pulses only during their peak activity, thus omitting the leading
and the decaying phase of the pulse (Fig. 1 D).

For the LISA-based activity binarization, we used the statis-
tics available in the R package elsa (Naimi et al., 2019). These
include local Moran’s I and local Geary’s c (Anselin, 1995), as well
as G and G* statistics (Getis and Ord, 1992). The resulting spatial
correlation coefficient is binarized with a fixed threshold, as
exemplified in Fig. 1 E.

The choice of the binarization algorithm depends on the
dataset and should be evaluated on a case-by-case basis. The
main disadvantage of detrending with the running median is
that it requires long time series to apply the median filter to
estimate the baseline. The recommended window for such a
filter usually amounts to a quarter of the time series’ length. This
condition may be difficult to satisfy when image segmentation
errors produce short single-cell time series. Instead, LISA-based
binarization is not contingent on long time series because
frames are analyzed independently. However, the difficulty lies
in the choice of a LISA statistic, e.g., local Moran’s I, Geary’s c, G,
and G*, for each of them measures a different aspect of the
spatial pattern. For example, Moran’s I measures the local de-
viation from the global mean, local G measures the clustering of
hot/cold spots, and Geary’s c measures the degree of dissimi-
larity of a value to its neighbor (Naimi et al., 2019). Moreover,
most LISAs are not numerically bounded and are sensitive to the
level of global autocorrelation, thus making them difficult to
compare between systems with different overall clustering.

ARCOS algorithm
After time series binarization, the space–time point pattern
(x,y,t) of active cells is passed to the clustering and tracking al-
gorithm (Fig. 1 B). In the first step, a dbscan algorithm (Ester
et al., 1996; Campello et al., 2013; Hahsler et al., 2019) is ap-
plied independently to every time frame t of the time-lapse to
spatially cluster active cells. In the ARCOS R package, we use the
implementation from the dbscan package and the Scikit-learn
implementation in the Python version. Two, user-provided pa-
rameters determine this clustering: ε, the radius of the neigh-
borhood, andminClSz, the minimum number of cells that form a
cluster. The radius ε must be large enough to form clusters of
neighboring active cells.We recommend setting it slightly larger
than the mean first nearest neighbor distance calculated for all
cells in the entire time-lapse. When ε is too small, cells are
grouped into small clusters instead of one. When ε is too big,
multiple CEs are joined. The minClSz parameter corresponds to
the minimum number of cells that are considered a CE. Setting it
to 1 allows detecting the initial stage of a CE, while risking that a
sudden onset of simultaneously activating cells may be assigned
to separate clusters. A bigger minClSz lets the algorithm delay
the clustering until a larger event develops. A sudden appear-
ance of multiple active cells may indicate an insufficient ac-
quisition frequency during the experiment.

In the second step, identified clusters are tracked between
the frames. The number of previous frames to link objects in the
current frame depends on the parameter nPrev. Usually,

clusters between two consecutive frames are linked (nPrev = 1)
but the numbermight be increased if missing frames are present
in the dataset. Assuming, for simplicity, that nPrev = 1, the
cluster tracking is performed as follows. For each cluster in t, we
calculate the first NND between all cells in the current cluster
and all cells in all clusters in the frame t−1. We use the nn2
function from the RANN package in R or the Scipy im-
plementation of the KDTree nearest neighbor search in Python
to calculate the distances. If at least a single cell in the current
cluster is within a threshold distance εprev to a cell in the pre-
vious frame, cells in the current cluster inherit cluster IDs from
first nearest neighbor cells in the previous frame. The εprev pa-
rameter is the threshold for detecting cluster displacements
between the frames. Detection of a propagating activation wave
as several consecutive CEs suggests that εprev should be increased.

Visualization with hex-bin plots
To display the relationship between the size and duration of CEs,
we used hex-bin plots (Fig. 3 E; and Fig. 4, C and F), as they avoid
overplotting that can occur in a conventional scatter plot when
dealing with large datasets. The hexagonal binning tiles are
colored according to the number of points in those bins, and we
used a logarithmic color scale.

Randomization tests
Given a dataset in which we suspect that the measurement is
spatio-temporally correlated, we can numerically test the hy-
pothesis that the statistics of CEs detected by ARCOS are different
from the statistics obtained in a system without space–time
correlations. To achieve that, we repeatedly randomize the
original binarized time-lapse data and calculate the statistics, e.g.,
the size or duration of CEs. The P value of a one-sided, unpaired
test for the mean is then the fraction of cases when the statistic
from randomized data was at least as extreme as the observed
statistic. For an upper-tailed test, we have (Davison and Hinkley,
1997; Good, 2005; Phipson and Smyth, 2010):

p � Pr T ≥ t|H0 is true( ) � 1 + # tr ≥ t{ }
Nr + 1

, (1)

where T is the test statistic, t is the observed value of the test
statistic, and Nr is the number of independent randomizations
from which we obtain the values tr of the test statistic T.

We propose five randomization implementations in ARCOS
R/Python packages to simulate the null distribution of CEs’ sta-
tistics (Fig. S1). The methods vary regarding assumptions about
the null hypothesis. The first shuffles the entire time series in
space between initial spatial positions of existing cells (Fig. S1 B).
This is the recommended method as it only disturbs the spatial
component while conserving individual cells’ measurement dy-
namics and the population-averaged activity over time. However,
since this approach moves the entire time series to a new location,
they may end up outside the initial FOV. This may happen when
cells migrate, and the new initial position after shuffling is close to
the FOV’s border. If that is the case, we recommend other ap-
proaches: randomly shifting the measurement for every time se-
ries back and forth in time (Fig. S1 C), shuffling whole activity
blocks per time series (Fig. S1 D), or shuffling individual time
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points along every time series (Fig. S1 E). All three methods pre-
serve the total activity in individual time series and leave them in
their original positions but affect the onset (randomly shifting the
time series) or randomize the activity dynamics (shuffling blocks
or time points of activity), thus potentially disrupting correlations
between the neighbors. If these methods are insufficient to re-
arrange the spatio-temporal pattern, e.g., for a single large col-
lective activation, they can be combined with the last approach,
where measurements are shuffled between the cells indepen-
dently for every frame (Fig. S1 F). Note that such complete ran-
domization changes the tested question, for the observed pattern
is compared to a uniform distribution of activations in space and
time. It is likely that the observed statistics will be sufficiently
away from such a null distribution to reject the null hypothesis at
a given significance level but will not be extreme enoughwhen the
time series are only shuffled in space with their dynamics intact.

The choice of the randomization method depends on the type
of locality in the observed phenomenon. If cell activity is local in
space but uniform in time, e.g., sustained or synchronized os-
cillatory activation of a cell cluster, then shuffling positions of
entire trajectories or shuffling positions per time point would
disrupt the spatial correlation. However, when the observed
phenomenon is local in time but uniform in space, e.g., a syn-
chronized, transient activation pulse of all cells in the FOV,
position shuffling will not affect such an activity cluster. Instead,
shifting trajectories in time, shuffling time points, or blocks of
activity per trajectory would be required to disrupt the temporal
locality.

Synthetic datasets and simulations
The implementation of the ARCOS package in R offers two func-
tions to generate a single or multiple CEs on a 2D lattice over time.
genSynthSingle2D creates a single event with predetermined cell
activations over time. genSynthMultiple2D generates a random
number of concentrically growing circles with a random duration
at random points in space and time. Additionally, we used
NetLogo, a multiagent programmable modeling environment
(Wilensky, 1999), to simulate coordinated ERK activation in a 2D
epithelium (Figs. S1 and S5). Configuration files to reproduce the
simulations are in supplementary data (Dobrzyński, 2023).

Quantification of global correlation
In Fig. 2, E, G, and I; Fig. 3 H; and Fig. 4, B, E, and H, a global
Moran’s I autocorrelation coefficient was calculated according to
the method described in Gittleman and Kot (1990). We applied
the Moran.I function from the R package ape (Paradis and
Schliep, 2019) to the (x,y,m) point pattern and calculated the
coefficient independently for every time frame t. From the ob-
served Moran’s I, we subtracted the expected value of I under
the null hypothesis that there was no correlation. Quantification
with the global correlation coefficient is useful only for cases
when a single (or a few) CE occurs in a FOV.

Sensitivity to image degradation
Imaging artifacts and experimental noise contribute to segmen-
tation errors that can impair ARCOS analysis. To evaluate how
image quality affects ARCOS, we added Gaussian white noise to

images before segmenting images with stardist (Schmidt et al.,
2018), tracking with trackpy (Allan et al., 2021), and quantifying
ERK activity (Fig. S4, A–D). To formalize the process of adding
noise, we calculated the amount of noise needed to reach a spe-
cific signal-to-noise ratio (SNR):

SNR dB[ ] � 10log10
PSignal

PNoise

� �
, (2)

where PSignal is the average, squared pixel intensity over the
entire time-lapse. For a randomGaussian variable with μ = 0, the
average power is equal to its variance, hence PNoise = σ2. Solving
Eq. 2 for PNoise yields the required σ for a given SNR. ERK activity
was quantified in the original, unperturbed image channel but
with the degraded segmentation to assess the effect of seg-
mentation degradation alone, without affecting the ERK mea-
surement. This procedure was carried out for a range of SNR
values and repeated 10 times to account for the randomness of
drawing from a normal distribution.

For each time point that contained a CE, either in the original
data or in the current SNR iteration, we counted the number of
cells assigned correctly to an event (true positives), incorrectly
to an event (false positives), or that should have been assigned
but were missed (false negatives). Cells were identified by their
unique track IDs. These numbers were cumulated for all time
points and used to calculate:

precision � True positives
True positives + False positives

(3)

and

recall � True positives
True positives + False negatives

(4)

for a given SNR iteration and averaged over 10 repeats.
To test the sensitivity of CE detection on image quality, we

used a time-lapse of an ERK activity wave in MDCK epithelial
cells stably expressing the EKAREV-NLS FRET biosensor (Fig. S4
A and Video 10). We report data degradation using SNR ex-
pressed in decibels or dB (Eq. 2). A SNR > 0 dB indicates that the
signal power, i.e., the average of squares of all pixel intensities
over time, is greater than the power of added noise; SNR < 0 dB is
when the power of noise dominates the power of the original
data. The higher the ratio, the cleaner the signal, with +∞ cor-
responding to original, measured images.

For a chosen set of segmentation parameters in stardist
(Schmidt et al., 2018), we observed that nuclei segmentationwas
severely affected only when SNR < −10 dB (Fig. S4 B). Below that
SNR, higher noise in images resulted in severely deteriorated
time series (Fig. S4 C) to a point when ARCOS could no longer
detect CEs (Fig. S4 D). The number of false negatives, i.e., cells
that were not assigned to true CEs increased sharply for SNR <
−10 dB, which corresponds to noise power being 10× the power
of the original signal. The number of false positives, i.e., cells
that were erroneously assigned to clusters, increased only
slightly at SNR < −10 dB (Fig. S4 G). Overall, the image seg-
mentation and cell tracking pipeline can tolerate noisy images
for SNR > −10 dB before recall (Eq. 4) or the number of relevant
items retrieved decreases (Fig. S4 G). The code to reproduce this
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analysis is available in the accompanying data repository
(Dobrzyński, 2023).

Sensitivity to data degradation
To study the effect of noise on ARCOS analysis, we added
Gaussian white noise with an increasing amplitude to single-cell
ERK activity from the segmentation of the wave in MDCK cells
(Fig. S4, E and F). ARCOS was then run on the newly generated
dataset and compared with the original output as above. This
was carried out for a range of SNRs and repeated 10 times.

CEs were faithfully detected only down to SNR ≈ 20 dB (Fig.
S4 F), which corresponds to the power of the original time series
being 100× higher than the power of the added Gaussian noise.
For lower SNR, the number of false negatives soared, which
caused the recall to drop sharply (Fig. S4 H). We conclude that
for the parameters in our pipeline, CE detection is more sensi-
tive to degradation of time series rather than images.

Sensitivity to parameters
The core ARCOS algorithm clusters active cells in individual
frames of the time-lapse and then tracks the clusters. The key
parameter for spatial clustering is the neighborhood radius, ε. It
should be greater than the first NND between active cells to let
the dbscan algorithm form clusters. If too large, nearby inde-
pendent CEs are included in a single cluster; too small, and a
single CE is identified as several smaller events. We investigated
the quality of event detection as a function of ε by simulating a
synthetic time-lapse of 200 frames in NetLogo. We simulated 69
radially expanding, collective activations randomly spaced on a
2D hexagonal mesh, like ERK waves observed in the MCF10A
epithelium (Fig. S5 A). The simulation established a ground
truth with a known number (69 events), size (37 unique cells),
and duration (9 time frames) of CEs. The events were identified
correctly for a range of ε2 [1.5, 4] × NND (Fig. S5, B–F), bar
several small errors due to overlaps between simulated events.
For ε < 1.5, cells were not clustered together and formed their
own clusters; for ε > 4, the algorithm identified large clusters
that comprised many independent events. These results hint at a
general rule for processing spatial datasets: ε ought to be slightly
larger than the NND, but care must be taken to set it low enough
to avoid bundling nearby events.

Online supplemental material
Fig. S1 presents various randomization techniques used to
evaluate the accuracy of the ARCOS output. Fig. S2 depicts sta-
tistics derived from randomization tests of collective events
detected inwild-type, KRASG12V, and PIK3CAH1047R cell lines. Fig.
S3 depicts the same statistics as in Fig. S2 but applied to bati-
mastat treatment on the same cell lines. Fig. S4 explores the
sensitivity of ARCOS to image or time-series degradation. Fig. S5
portrays the algorithm’s sensitivity to the search radius ε and
the total binarized activity. Video 1 shows the features im-
plemented in the ARCOS napari plugin. Video 2 displays the
detection of a growing circular region generated in cells with the
OptoRAF/ERK-KTR actuator/biosensor circuit. Video 3 displays
a moving circle generated in cells with the same technique.
Video 4 displays a splitting circular region generated in cells

with the same technique. Video 5 shows ARCOS analysis of
collective ERK activity waves in MCF10A WT, KRASG12V, and
PIK3CAH1047R epithelial cells. Video 6 shows collective ERK ac-
tivity waves in starved NRK-52E epithelial cells detected with
ARCOS. Video 7 displays collective calcium waves identified by
ARCOS in starved MDCK epithelial cells expressing the calcium
reporter GCaMP6S. Video 8 demonstrates the ability of ARCOS
to analyze shimmering waves in a giant honeybee colony. Video
9 showcases collective 3D ERK activity waves, identified by
ARCOS in a mammary acinus in vitro. Video 10 demonstrates
ARCOS’s sensitivity to iterative image degradation with additive
Gaussian white noise.

Data availability
The data, R notebooks to reproduce the plots and randomization
tests, configurations of simulations, and Jupyter notebooks to
show the results in the napari image viewer were uploaded to
Mendeley Data (Dobrzyński, 2023). ARCOS can be downloaded
from https://arcos.gitbook.io as an R or a python package or a
napari plugin together with extensive documentation.
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Ender, P., P.A. Gagliardi, M. Dobrzyński, A. Frismantiene, C. Dessauges, T.
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Figure S1. Measurement randomization methods. Left: Three sample binarized time series with blocks of cell activity indicated by shaded squares. Right:
Spaghetti plots of collective events simulated in NetLogo. (A) The original dataset. (B) Positions of entire trajectories are shuffled between cells while
preserving the original dynamics. (C) Time series are independently and randomly shifted back and forth in time while preserving positions of entire tracks. The
original dynamics are preserved, although the onset changes. (D) Blocks of activity are shuffled in time independently for every trajectory while preserving
positions of entire tracks. (E) Individual time points are shuffled independently for every trajectory while preserving positions of entire tracks. (F) The activity is
shuffled between cells independently in every time frame. Positions of entire tracks remain intact.
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Figure S2. Statistics of CEs from 1,000 randomization iterations for untreated and starved MCF10AWT, and KRASG12V and PIK3CAH1047R mutant cell
lines. (A) Spaghetti plots of CEs identified in the original data from Fig. 3. (B) Spaghetti plots of CEs identified in a single iteration of randomization, where
positions of binarized time series were shuffled according to Fig. S1 B. (C–E) Distributions of statistics calculated from 1,000 randomization iterations
compared to the observed statistic indicated by the vertical dashed line: the number of CEs (C), the mean duration of CEs (D), the mean total number of unique
cells in a CE, i.e., the “size” of a CE (E). The P value was calculated according to Eq. 1 as the fraction of cases when the statistic was at least as extreme as
observed.
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Figure S3. Statistics of CEs from 1,000 randomization iterations for starved MCF10A WT, and KRASG12V and PIK3CAH1047R mutant cell lines treated
with 10 μM batimastat. (A–E) As in Fig. S2.
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Figure S4. Evaluation of ARCOS sensitivity to iterative image and time series degradation with additive Gaussian white noise. (A) Sample images of
the sum of donor and acceptor channels of the EKAREV-NLS FRET biosensor in MDCK cells with an increasing amount of Gaussian white noise. The amount of
added noise corresponds to a target SNR in dB according to Eq. 2 (Materials and methods). (B) Segmentation with the stardist python package. (C) Track-
length histograms of respective iterations. (D) Spaghetti plots depicting CEs detected at a specific SNR. (E) Sample single-cell ERK trajectories of MDCK cells
measured using the EKAREV-NLS FRET biosensor. An increasing amount of Gaussian white noise was added to the time series. The noise amplitude is cal-
culated according to Eq. 2 (Materials and methods) to reach a target SNR in dB. (F) Spaghetti plots depicting CEs detected at a specific SNR. (G) Total number
of false positives (FP), false negatives (FN), and precision and recall for detecting CEs with ARCOS for progressive image degradation from panels A–D.
Calculated by checking if a specific cell was detected as part of a CE at a specific time point. (H) Same as panel G but for progressive time series degradation
from panels E and F. (G and H) Shaded regions represent ±1 SD of 10 random noise additions.
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Figure S5. Sensitivity of CE identification to search radius length and TBA. (A) A single frame from a NetLogo simulation of collective cell activation on a
2D hexagonal lattice with distance a = 1. Cells assume a gradient of activity levels from inactive (dark gray) to active (light gray). We simulated 69 activation
events placed randomly in space and time. Each event lasts nine time frames and comprises 37 cells. (B) Size vs. duration of detected CEs for a range of search
radius ε. The minimum CE detection size was three cells, with a minimum duration of three frames. Red dashed lines indicate the simulated size and duration.
(C) Spaghetti plots of CEs detected in simulations. (D–F) The number of CEs detected in the simulation, their size, and duration. Red dashed lines indicate the
true properties of simulated CEs, i.e., 69 events, 37 cells, 9 frames. (G) Single frames of simulated random cell activations on a 2D hexagonal lattice for a range
of TBA fractions. Cells assume active or inactive states; active cells are uniformly distributed in space and time. Spaghetti plots visualize CEs detected in
simulations. ARCOS parameters are: ε = 1.2× the lattice distance, the minimum cluster size is three cells, and the minimum cluster duration is three frames.
(H) Single frames from NetLogo simulations of collective cell activation on a 2D hexagonal lattice for a range of TBA fractions. Each simulated CE involved 37
unique cells and lasted nine frames. Spaghetti plots underneath the frames visualize CEs detected in simulations. ARCOS parameters are: ε = 1.5× the lattice
distance, the minimum cluster size is three cells, and the minimum cluster duration is three frames. (I–K) Comparison of statistics of CEs detected in a
simulation of random activations in panel G, and CEs simulated and detected in a simulation in panel H.
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Video 1. Video demonstration of features implemented in the interactive napari plugin. Showcases loading and preprocessing data, choosing pa-
rameters to detect CEs, and visualizing them in interactive plots.

Video 2. Starved MCF10A WT epithelial cells expressing OptoRAF/ERK-KTR actuator/biosensor circuit are stimulated optogenetically with a
growing circular region using DMD. Left panel: Raw images from the ERK-KTR channel; right panel: nuclear centroids color-coded according to ERK-KTR
cytoplasmic/nuclear ratio. Black dots—active cells identified in the binarization step; shaded convex hulls—CEs identified by ARCOS. The stimulation region is
indicated in magenta. 1 movie frame corresponds to 1 min.

Video 3. Starved MCF10A WT epithelial cells expressing OptoRAF/ERK-KTR actuator/biosensor circuit are stimulated optogenetically with a
moving circular region using DMD. Left panel: Raw images from the ERK-KTR channel; right panel: nuclear centroids color-coded according to ERK-KTR
cytoplasmic/nuclear ratio. Black dots—active cells identified in the binarization step; shaded convex hulls—CEs identified by ARCOS. The stimulation region is
indicated in magenta. 1 movie frame corresponds to 1 min.

Video 4. Starved MCF10A WT epithelial cells expressing OptoRAF/ERK-KTR actuator/biosensor circuit are stimulated optogenetically with a
splitting circular region using DMD. Left panel: Raw images from the ERK-KTR channel; right panel: nuclear centroids color-coded according to ERK-KTR
cytoplasmic/nuclear ratio. Black dots—active cells identified in the binarization step; shaded convex hulls—CEs identified by ARCOS. The stimulation region is
indicated in magenta. 1 movie frame corresponds to 1 min.

Video 5. Collective ERK activity waves in starved MCF10AWT, KRASG12V, and PIK3CAH1047R epithelial cells expressing ERK-KTR biosensor. Results of
the ARCOS analysis are overlaid on raw images from the ERK-KTR channel. Each CE is indicated with a distinct color from a palette, reused over time. 1 movie
frame corresponds to 5 min.

Video 6. Collective ERK activity waves in starved NRK-52E epithelial cells expressing ERK activity reporter EKAREV-NLS. Left panel: Nuclei; right
panel: nuclear centroids color-coded according to FRET ratio. Green circles—apoptotic cells; black dots—active cells identified in the binarization step; shaded
convex hulls—CEs identified by ARCOS. 1 movie frame corresponds to 5 min.

Video 7. Collective calcium waves in starved MDCK epithelial cells expressing calcium reporter GCaMP6S. Left panel: Raw images from the GCaMP6S
channel; right panel: nuclear centroids color-coded according to ERK-KTR cytoplasmic/nuclear ratio. Green circles—apically extruded cells; black dots—active
cells identified in the binarization step; shaded convex hulls—CEs identified by ARCOS. 1 movie frame corresponds to 5 s.

Video 8. Bee shimmering in the giant honeybee colony. Left panel: Raw images of the bee colony; right panel: bee centroids color-coded according to the
amount of shimmering. Black dots—“active bees” identified in the binarization step; shaded convex hulls—CEs identified by ARCOS. 1 movie frame corre-
sponds to 1/60th of a second.

Video 9. Collective ERK activity waves in stage 2 MCF10AWT acinus expressing the ERK-KTR biosensor. From left to right: (1) maximum Z projection of
the ERK-KTR channel; (2) 3D rendering of cell nuclei volumes with lever.js software, where gray shades indicate low/high ERK activities; (3) nuclear centroids
color-coded according to CEs identified with ARCOS. The size of the nuclei in the right panel corresponds to their Z position. (4) Spaghetti plot of collective
events. 1 movie frame corresponds to 3 min.
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Video 10. ARCOS sensitivity to iterative image degradation with additive Gaussian white noise. Top left panel: Collective ERK activity in an MDCK
epithelium expressing the EKAREV-NLS FRET biosensor. Shown are nuclei color coded according to the FRET ratio. Warmer colors indicate higher ERK activity.
Top right panels: Sum of donor and acceptor channels with white Gaussian noise. Black outlines indicate segmentation of the nuclei. Active cells are marked
with a black dot, whereas cells marked by a colored dot belong to respective CEs. Colored shapes indicate convex hulls of respective CEs. SNR label represents
how much noise was added to the corresponding image. Bottom left panel: Timestamp; bottom right panels: animated spaghetti plots for the corresponding
SNR iterations above. Colors correspond to different CEs. 1 movie frame corresponds to 1 min.
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