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Introduction

Over the decades geometers faced with the problem to define and detect canonical

metrics over smooth manifolds. In particular, even when the notion of canonical

metric is established, such as for Einstein metrics in Riemannian geometry, their

existence still remains an open question in most of the cases.

To address such a problem various techniques have been proposed. Among them,

geometric flows are one of the most fruitful tool, since canonical metrics can often

be realized as limit points of specific evolution equations. The foremost example in

this direction is given by the Ricci flow, a very powerful tool to study geometric and

topological problems in Riemannian geometry.

The Ricci flow was introduced by Hamilton in [48], who proved its well-posedness

(see also [26]) and regularity. Hamilton used the flow to classify 3-dimensional and

4-dimensional Riemannian manifolds admitting positive Ricci [48] and Riemannian

curvature [49]. Moreover, in his breakthrough works [89–91], Perelman developed

new techniques which enabled him to prove Thurston’s Geometrization Conjecture

for compact 3-manifolds by using the Ricci flow.

Shortly after Hamilton’s seminal paper, in [17] Cao proved that the Ricci flow

on a complex manifold preserves the Kähler condition and gave an alternative proof

of Calabi’s conjecture by using the Kähler-Ricci flow. Remarkably, since the strong

nature of the Kähler condition, the ∂∂̄-lemma implies that the Kähler-Ricci flow is

a potential flow. This in turn can be used to prove some regularity and convergence

results which do not hold for the Ricci flow in general. For instance, Tian and Zhang

proved that the maximal existence time of a solution to the Kähler-Ricci flow only
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depends on the cohomological class of the initial Kähler metric and the first Chern

class of the manifold [118]. Furthermore, the Kähler-Ricci flow has been proposed to

address the analytical minimal model program [107], that is an attempt to understand

the algebraic minimal model program through the singularities of the Kähler-Ricci

flow.

Regrettably enough, on a complex non-Kähler manifold, the Ricci flow does not

preserve the Hermitian condition and different geometric flows have been introduced

in literature to avoid such a problem. The first work in this direction is due to

Streets and Tian, who introduced a new flow of Hermitian metrics called Hermitian

curvature flow [112].

The main idea behind Streets and Tian’s work consists in considering a flow of

Hermitian metrics whose principal part is governed by the Ricci tensor of the Chern

connection, instead of the Ricci tensor of the Levi-Civita connection as in the case of

the Ricci flow. In this way, Streets and Tian obtained a parabolic flow of Hermitian

metrics which, once modified by adding some quadratic terms in the torsion, is a

gradient flow.

More precisely, let X be a compact complex manifold. The operator

S : Herm(X)→ S1,1(X) , S(g)ij̄ = gr̄sΩsr̄ij̄ ,

associating to any Hermitian metric on X its second Chern-Ricci tensor, is strongly

elliptic (here Ω represents the curvature tensor of the Chern connection) and, conse-

quently, the geometric flow

∂t gt = −S(gt) , gt|0 = g0 , (1)

is well-posed for any initial Hermitian metric g0 on X. On the other hand, this flow

can be modified by adding an extra (1, 1)-symmetric term Q = Q(g) quadratic in the

torsion of the Chern connection (see Subsection 2.1 for its precise definition). Then,

since (1) is a second-order flow, the term Q does not affect the well-posedness of the

flow and

∂t gt = −S(gt) +Q(gt) , gt|0 = g0
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gives rise to an interesting family of flows evolving Hermitian metrics. Each flow

in this family generalizes the Kähler-Ricci flow and different choices of Q can be

considered in order to preserve some geometric conditions.

In [112], Streets and Tian chose the tensor Q in order to make the Hermitian

curvature flow a gradient flow; while, in the subsequent papers [111, 113, 114], Q

was chosen in order to preserve the pluriclosed condition, that is ∂∂̄ω = 0. In [128],

Ustinovskiy modified the Hermitian curvature flow so that the Griffiths positivity of

the initial metric is preserved and, as a relevant application of the well-posedness of

his modified flow, he proved a nice generalization of the Frankel’s conjecture to the

Hermitian setting.

The first part of the present thesis is devoted to the study of the Hermitian

curvature flow on complex Lie groups. Our research is mainly motivated by the study

of the Ricci flow on Lie groups and homogeneous spaces, which gave several important

insights on the general behaviour of the flow [56, 57, 59, 60, 64, 70, 71, 73, 80].

Our first theorem completely describes the behaviour of the Hermitian curvature

flow on complex unimodular Lie groups when the initial Hermitian metric is left-

invariant. By definition, a complex Lie group is a Lie group equipped with a complex

structure such that the group operation maps are holomorphic.

Theorem A. Let G be a complex unimodular Lie group equipped with a left-invariant

Hermitian metric g0. The maximal solution gt to the Hermitian curvature flow start-

ing from g0 satisfies
d

dt
gt = −Ric1,1(gt) , gt|0 = g0

where Ric(gt) denotes the Riemannian Ricci tensor. The family of left-invariant

Hermitian metrics gt is defined for t ∈ (−ε,∞), for some ε > 0, and the normalized

solution (1 + t)−1gt subconverges as t → ∞ to a non-flat semi-algebraic soliton to

the Hermitian curvature flow (Ḡ, ḡ), in the Cheeger-Gromov topology.

The assumption on G to be unimodular cannot be in general dropped. Indeed,

when the complex Lie group is not unimodular, the solutions to the Hermitian cur-

vature flow may develop finite time singularities (see Proposition 2.30).
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By definition, a soliton to the Hermitian curvature flow is a Hermitian metric g

on G such that

S(g)−Q(g) = c g + LZg , (2)

for some c ∈ R and a complete holomorphic vector field Z on G, where L denotes

the Lie derivative. It is worth noting that soliton metrics to the Hermitian curvature

flow form a distinguished class of Hermitian metrics. Indeed, since the Hermitian

curvature flow tensor is both scale invariant and diffeomorphisms invariant, a solution

to the Hermitian curvature flow starting from a Hermitian metric g satifying (2) is

given by gt = c(t)ϕ∗t g, where c(t) > 0 and ϕt : G → G are respectively a smooth

scaling function and a one-parameter family of biholomorphisms. If furthermore g is

left-invariant and ϕt is a family of Lie group automorphisms, then the soliton is said

to be semi-algebraic.

By convergence in the Cheeger-Gromov topology we mean that: there exists a

family of biholomorphisms ϕt : Ωt ⊂ Ḡ→ ϕt(Ωt) ⊂ G mapping the identity of Ḡ into

the identity of G, such that the open sets {Ωt} exhaust Ḡ, and in addition ϕ∗t gt → ḡ

as t→∞, uniformly over compact subsets in the C∞-topology. Remarkably, even if

the space Ḡ might not be diffeomorphic to G, it still remains a complex unimodular

Lie group.

It is clear that a first step in the study of the Hermitian curvature flow is by its

soliton metrics, since they give rise to explicit solutions to the flow. The following

result states the existence and uniqueness of semi-algebraic solitons to the Hermitian

curvature flow on complex unimodular Lie groups.

Theorem B. A complex unimodular Lie group G has at most one semi-algebraic

soliton to the Hermitian curvature flow, up to homotheties. Moreover, G has a static

left-invariant metric if and only if it is semisimple, and in this case the ‘canonical

metrics’ (in the sense of Definition 2.25) induced by the Killing form of g are static

with c < 0.

By definition, a Hermitian metric g on G is said to be static if it satisfies the

Einstein-type equation

S(g)−Q(g) = c g ,
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for some c ∈ R. Static metrics can be thought as the natural counterpart to Einstein

metrics in the Hermitian curvature flow realm.

Our next result precisely describes the algebraic structure underlying a complex

Lie group equipped with an expanding (i.e. c < 0) semi-algebraic soliton to the

Hermitian curvature flow. This result is strictly related to Theorem A, since any

semi-algebraic soliton to the Hermitian curvature flow on a non-abelian complex

unimodular Lie group has to be expanding (see Proposition 2.22).

More precisely, let (G, g) be a complex (not necessarily unimodular) Lie group

equipped with a left-invariant Hermitian metric and consider the orthogonal splitting

of its Lie algebra g in

g = r⊕ n ,

where n is the nilradical of g. If gn is the pull-back of g to the Lie group N of n, then

we have the following

Theorem C. The metric g is an expanding (i.e. c < 0) semi-algebraic soliton to the

Hermitian curvature flow if and only if gn is an expanding algebraic soliton to the

Hermitian curvature flow on N , r is a reductive Lie subalgebra,
∑

[adri |n, adtr̄i |n] = 0

for any unitary basis {ri} of r, and

K(gr)(X, Ȳ ) = cgr(X, Ȳ ) +
1

2
tr(adX |nadtȲ |n)−

1

2
tr adX · tr adȲ ,

for any X,Y ∈ r, where gr is the pull-back of g to the Lie group of r.

In view of this result, any complex solvable Lie group admitting an expanding

semi-algebraic soliton has to be standard in the sense of Heber [50], that is the Lie

algebra of the group orthogonally decomposes in the direct sum of an abelian Lie

algebra with its nilradical. Standard solvmanifolds have been deeply investigated by

Heber, who proved many remarkable structural and uniqueness results about left-

invariant Einstein metrics [50]; while, Lauret proved that any Einstein solvmanifold

is standard [69].

We mention that similar results to Theorem C, concerning the Ricci flow on dif-

ferent homogeneous spaces, have been obtained in [64] and [71]. However, as pointed
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out by Lafuente and Lauret in [64], for the Ricci flow there exists a limitation given

by Alekseevskii’s conjecture. Indeed, if Alekseevskii’s conjecture were confirmed,

then any Ricci flow expanding algebraic soliton (G/H, g) should be diffeomorphic

to an Euclidean space [60] and thus, accordingly, only solvmanifolds could admit

expanding algebraic solitons to the Ricci flow. However, in the Hermitian curvature

flow case such a limitation does not exist, since also semisimple complex Lie groups

admit expanding solitons to the Hermitian curvature flow by Theorem B.

It is quite natural to wonder whether Theorem A can be generalized to other flows

belonging to the Hermitian curvature flows family, at least under some different

assumptions on the Lie group. In this direction, Arroyo and Lafuente proved an

analogue result for the pluriclosed flow on 2-step nilpotent Lie groups [6], while for

Ustinovskiy’s flow we prove

Theorem D. Let G be a complex 2-step nilpotent Lie group. Any solution gt to the

modified Hermitian curvature flow starting from a left-invariant Hermitian metric

on G is immortal. Moreover, the normalized solution (1 + t)−1gt subconverges as

t→∞ to a non-flat semi-algebraic soliton to the modified Hermitian curvature flow

(Ḡ, ḡ), in the Cheeger-Gromov topology.

In the second part of the thesis, we focus on the behaviour of the Hermitian

curvature flow on locally homogeneous complex non-Kähler surfaces. Our first results

in this direction is the following

Theorem E. Let X be a compact complex surface and g0 a locally homogeneous

non-Kähler metric on X. If the solution to the Hermitian curvature flow starting

from g0 develops a finite time singularity, then X is a Hopf surface. Conversely,

any locally homogeneous solution to the Hermitian curvature flow on a Hopf surface

collapses in finite time.

Theorem E provides the first example of a compact complex manifold admitting

a finite time singularity for the Hermitian curvature flow. On the other hand, one

could wonder if under a suitable normalization immortal solutions to the Hermitian

curvature flow converge in some sense. An affirmative answer is given by the following
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theorem, which characterizes the convergence of normalized immortal solutions in the

Gromov-Hausdorff topology.

Theorem F. Let X be a compact complex surface, g0 a locally homogeneous non-

Kähler metric on X and gt the solution to the Hermitian curvature flow starting

from g0.

(i) If X is either a hyperelliptic or Kodaira surface, then
(
X, (1+t)−1gt

)
converges

to a point in the Gromov-Hausdorff topology as t→∞.

(ii) If X is a non-Kähler properly elliptic surface, then
(
X, (1+t)−1gt

)
converges

to its base curve (C, gKE) in the Gromov-Hausdorff topology as t → ∞, where

Ric(gKE) = −gKE.

(iii) If X is an Inoue surface, then
(
X, (1+t)−1gt

)
converges to a circle in the

Gromov-Hausdorff topology as t→∞.

We mention that similar analyses have been carried out by Boling for the pluri-

closed flow [12] and by Tosatti and Weinkove for the Chern-Ricci flow [120] (see also

[31, 121, 122]). Moreover, one of the most interesting feature about Theorem F is

the convergence to a circle. In fact, the Ricci flow starting from a Kähler metric on

a complex surface always converges to a real even-dimensional space.

Theorem E and Theorem F can be thought as a first step in the study of the

Hermitian curvature flow on complex non-Kähler surfaces. Indeed, adhering to the

philosophy for which canonical metrics can appear as limit points to the flows, a

possible goal could be to use the Hermitian curvature flow to refine the Enriques-

Kodaira classification of compact complex surfaces. Actually, in the same spirit of

[12] and [80], we expect the blowdown of any immortal locally homogeneous solution

to converge to an expanding soliton.

In the last part of the thesis, we focus on the study of the Hull-Strominger system

on Lie groups. This system was independently introduced by Hull [52, 53] and

Strominger [115], and it arises from the symmetric compactification of the heterotic

string to the 4-dimensional Minkowski space.
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More precisely, let X be a 3-dimensional complex manifold equipped with a

nowhere vanishing (3, 0)-form Ψ and a complex vector bundle π : E → X. A solution

to the Hull-Strominger system is a pair of Hermitian metrics (ω,H), with ω on X

and H along the fibers of E, satisfying

Aκ ∧ ω2 = 0 , (Aκ)2,0 = (Aκ)0,2 = 0 ,

i ∂∂ω =
α′

4
(tr(Rτ ∧Rτ )− tr(Aκ ∧Aκ)) ,

d(‖Ψ‖ω ω2) = 0 .

Here, Rτ and Aκ are the curvature tensors of Gauduchon connections ∇τ on (X,ω)

and ∇κ on (E,H), while α′ ∈ R is the so-called slope parameter.

In the above system, the first two equations represent the Hermitian-Yang-Mills

equation for the connection ∇κ; while the third equation, arising from the Green-

Schwarz cancellation mechanism in string theory, is known as anomaly cancellation.

The last equation, which particularly implies that ω is conformally balanced, was

originally formulated as

d∗ω = i(∂̄ − ∂) ln ‖Ψ‖ω ,

where d∗ is the co-differential, and the above expression is due to Li and Yau [77].

The first rigorous mathematical solutions to the Hull-Strominger system on com-

pact non-Kähler manifolds were found by Fu and Yau [41, 42], under the assumption

for ∇τ and ∇κ to be both Chern. In their outstanding work, starting from a torus

bundle over a compact K3 surface previusly obtained by Goldstein and Prokushkin

in [46], Fu and Yau reduced the Hull-Strominger system to a Monge-Ampère type

equation for a scalar function on the base, which was solved by using a continuity

method argument.

In [40] Fino, Grantcharov and Vezzoni extended the result of Fu and Yau by

proving that the construction of the Monge-Ampère type equation generalizes to

some torus bundles over compact K3 orbifolds. In this way, the results in [41, 42]

were extended to Hermitian 3-folds foliated by non-singular elliptic curves, obtaining

new simply-connected compact examples carrying solutions to the Hull-Strominger
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system. Moreover, Fino, Grantcharov and Vezzoni used their results to prove that

the smooth manifolds

S1#k(S
2 × S3) and #r(S

2 × S4)#r+1(S3 × S2) ,

with 13 ≤ k ≤ 22 and 14 ≤ r ≤ 22, always admit a solution to the Hull-Strominger

system.

Other solutions to the Hull-Strominger system were obtained in [4, 5, 32, 34, 37,

43, 47, 87, 125]. We refer to [44] for a survey on this topic.

In [92] Phong, Picard and Zhang proposed to study the Hull-Strominger system

via a new geometric flow called Anomaly flow. The Anomaly flow is the coupled flow

of Hermitian metrics (ωt, Ht), with ωt on X and Ht along the fibers of E, given by

∂t(‖Ψ‖ωt ω2
t ) = i∂∂ωt −

α′

4
(tr(Rτt ∧Rτt )− tr(Aκt ∧Aκt )) ,

H−1
t ∂tHt =

ω2
t ∧Aκt
ω3
t

,

(3)

where Rτt and Aκt are the curvature tensors associated to ωt and Ht, respectively.

When the connections ∇τ and ∇κ are both Chern, the flow preserves the con-

formally balanced condition d(‖Ψ‖ω ω2) = 0, and, under an extra assumption on the

initial metric ω0, it is well-posed [92]. Moreover, if ω0 is conformally balanced and

the flow is defined for every t ≥ 0, then its limit points (ω∞, H∞) are solutions to

the Hull-Strominger system [92, Thm. 1].

The Anomaly flow was used in [94] to give an alternative proof of the Fu-Yau

results obtained in [41, 42]. In particular, Phong, Picard and Zhang studied the

flow on a torus fibration over a K3 surface, showing that if ω0 satisfies some extra

assumptions, then the flow has a long-time solution which always converges.

In [93] Phong, Picard and Zhang reformulated the definition of the Anomaly flow

by considering the evolution equation

∂t(‖Ψ‖ωt ω2
t ) = i∂∂ωt −

α′

4
(tr(Rτt ∧Rτt )− Φ(t)) ,

where Φ(t) is a given path of closed (2, 2)-forms in the characteristic class c2(X).

In this way, the flow still preserves the conformally balanced condition, and it is
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well-posed, provided that ∇τ is the Chern connection and |α′Rτ0 | < 1
2 . In [95], the

following simplified version of the flow

∂t(‖Ψ‖ωt ω2
t ) = i∂∂ωt −

α′

4
(tr(Rτt ∧Rτt )) (4)

was proposed and its behaviour was studied on complex unimodular Lie groups.

Our next result describes the behaviour of the Anomaly flow (4) on 2-step nilpo-

tent Lie groups.

Theorem G. Let G be a 6-dimensional 2-step nilpotent (real) Lie group with first

Betti number b1 ≥ 4. Let G be equipped with a left-invariant non-parallelizable com-

plex structure J and a left-invariant volume form Ψ. Then, any left-invariant solu-

tion to (4) is given by

ωt =
i

2
r(t)2

(
ζ11̄ + a ζ22̄ + b ζ12̄ + b̄ ζ21̄

)
+
i

2
c ζ33̄ ,

where {ζ1, ζ2, ζ3} is a special left-invariant coframe of G, and the constants a, c ∈ R
and b ∈ C depend on ω0. In particular, r(t)2 solves the ODE

d

dt
r(t)2 = K1 +

K2

r(t)4
, (5)

for some constants K1 = K1(ω0) and K2 = K2(ω0, α
′, τ) in R.

The constant K1 and K2 only depend on the initial conditions and hence we

can always predict the behaviour of the Anomaly flow via a qualitative study of the

related model problem (5).

The thesis is organized as follows.

Chapter 1 is mainly a summary of well-known results which will be used through-

out the thesis. We start recalling the main definitions in Hermitian geometry, such

as canonical metrics and canonical Hermitian connections. After that, we move our

attention to geometric flows, recalling basic properties and the main results about

the Ricci and the Kähler-Ricci flows. Finally, we mention the bracket flow technique

and some associated results regarding the convergence and regularity of the flow.
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Chapter 2 contains the proofs of the first four theorems stated above. After

recalling the very definition of the Hermitian curvature flow and its foremost prop-

erties, we compute the general formula of the Hermitian curvature flow tensor for

a Lie group equipped with a left-invariant metric. Such formula allows us to put

in relation the Hermitian curvature flow and the Ricci flow on complex Lie groups

and then the proof of Theorem A follows by applying geometric invariant theory

and the bracket flow technique. Also the proof of Theorem B and Theorem C are

obtained by applying real geometric invariant theory. Throughout the chapter other

results concerning the pluriclosed flow and the modified Hermitian curvature flow

proposed by Ustinovskiy in [128] are presented. Moreover, a special attention is paid

to the existence of static and soliton metrics. Finally, many low-dimensional exam-

ples are presented. In particular, we use Theorem C to build expanding solitons to

the Hermitian curvature flow on 4-dimensional solvable complex Lie groups.

Chapter 3 is dedicated to Theorem E and Theorem F. We start it recalling

the basic definitions of complex model geometry and Gromov-Hausdorff convergence.

After that, we list all the possible geometries of complex dimension 2 according to

[131] and we compute their associated Hermitian curvature flow tensors. Finally,

the proofs of the theorems will follow by a case-by-case analysis of the Hermitian

curvature flow on each listed geometry.

Chapter 4 is dedicated to the study of the Anomaly flow on our class of 2-step

nilpotent Lie groups. After proving that every group in our class admits an adapted

basis, we explicit compute the trace of the wedge product in the Anomaly flow (3).

Then, by means of these results, we prove Theorem G and we discuss the behaviour of

the model problem depending on the sign of the constants. To conclude the chapter,

we study the Anomaly flow (3) on a specific 2-step nilpotent Lie group N with

holomorphic bundle given by T 1,0N . In particular, under some extra assumptions,

the Anomaly flow (3) on N will admit a stationary point solving the Hull-Strominger

system with non trivial instanton.
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Notation. All over the thesis, we adopt the Einstein convention for the summations

of formulas with repeated indexes, the superscript ‘∗’ after a matrix will denote its

transpose, and given a coframe {ζ1, . . . , ζs} we set ζi1...il := ζi1 ∧ . . . ∧ ζil .
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Chapter 1

Preliminaries

This chapter is mainly a summary of definitions and results which will be used

throughout the thesis. We start with a brief review of the Hermitian geometry

and its foremost properties, paying a particular attention to the geometry of the

Hermitian connections. Then, we focus on the theory of geometric flows, discussing

various results mainly related to static and soliton metrics. Finally, we recall the

bracket flow technique, a powerful tool which allows us to study different geometric

flows on homogeneous spaces via a related flow on the Lie brackets level.

1.1 Hermitian geometry

1.1.1 Complex manifolds

A complex manifold M of complex dimension n is a 2n-dimensional (real) smooth

manifold equipped with an equivalence class of holomorphic atlases. Any holomorphic

altas {zi = xi+iyi} induces a canonical endomorphism J of the (real) tangent bundle

TM via

J(∂xi) = ∂yi and J(∂yj ) = −∂xi ,

which satisfies J2 = −Id. Here Id : Γ(TM)→ Γ(TM) denotes the identity map.

Let M be an even-dimensional smooth manifold, an almost complex structure J

is an endomorphism of (real) tangent bundle TM satisfying J2 = −Id. Whenever

1
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a smooth manifold M is equipped with an almost complex structure J , the couple

(M,J) is said to be an almost complex manifold and the complexified tangent bundle

TCM := TM ⊗ C splits into

TCM := T 1,0M ⊕ T 0,1M .

Here, T 1,0M and T 0,1M denote the ±i-eigenspaces induced by J , i.e.

T 1,0M :=
{
X ∈ TCM : JX = iX

}
,

T 0,1M :=
{
X ∈ TCM : JX = −iX

}
.

Consequently, the space of the complex-valued k-differential forms splits in

Ωk
C(M) =

⊕
p+q=k

Ωp,q(M) ,

inducing a splitting of the exterior derivative d : Ωk
C(M)→ Ωk+1

C (M) into

d : Ωp,qM → Ωp+2,q−1M ⊕ Ωp+1,qM ⊕ Ωp,q+1M ⊕ Ωp−1,q+2M .

Here, Ωk
C(M) := Γ(Λk(TCM)∗) and Ωp,q(M) := Γ(Λp(T 1,0M)∗ ⊗C Λq(T 0,1M)∗). In

the following, the elements of Ωp,q(M) are called (p, q)-differential forms (or (p, q)-

forms).

Given an almost complex manifold (M,J), the almost complex structure J is

said to be complex, or integrable, if it is induced by a holomorphic atlas. Thanks to

the celebrated Newlander-Nirenberg theorem, the integrability condition of J can be

characterized in terms of its Nijenhuis tensor, i.e. the (1,2)-tensor defined by

NJ(X,Y ) := [JX, JY ]− J [JX, Y ]− J [X, JY ]− [X,Y ] ,

for any X,Y ∈ Γ(TM).

Theorem 1.1 ([85]). An almost complex manifold (M,J) is a complex manifold if

and only if the Nijenhuis tensor NJ vanishes identically.
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On the other hand, NJ = 0 if and only if the exterior derivative splits as follows

d = ∂ + ∂̄ ,

being ∂ : Ωp,q(M) → Ωp+1,q(M) and ∂̄ : Ωp,q(M) → Ωp,q+1(M). Finally, since

d2 = 0, given an integrable complex structure it follows that

∂2 = ∂̄2 = 0 and ∂∂̄ = −∂̄∂ .

1.1.2 Hermitian structures

An almost Hermitian manifold (M, g, J) is the data of an almost complex manifod

(M,J) and a J-invariant Riemannian metric g. If further the complex structure

is integrable, the triple (M, g, J) is called a Hermitian manifold. Note that, any

Riemannian metric g induces a J-invariant metric via

g̃(·, ·) :=
1

2
(g(·, ·) + g(J ·, J ·)) .

Now, let (M, g, J) be a Hermitian manifold. We still denote by g the C-linear

extension of the metric to TCM := TM ⊗ C and, given a holomorphic coordinates

system {zi}, we set

gij̄ := g(∂zi , ∂z̄j ) .

Then, (gij̄) defines a positive definite Hermitian matrix and we denote with (gij̄) the

(transpose) inverse matrix of (gij̄), i.e.

gik̄gkj̄ = δij̄ .

The fundamental form of a Hermitian manifold (M, g, J) is the (1, 1)-differential

form ω on M defined as

ω(· , ·) := g(J · , ·) ,

or equivalently, in local coordinates,

ω =
√
−1 gij̄dzi ∧ dz̄j .

When the fundamental form ω is closed, i.e. dω = 0, the Hermitian metric g is said

to be Kähler and the triple (M, g, J) is a Kähler manifold.
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Remark 1.2. The Kähler condition is quite restrictive, as it leads to several con-

straints both on the topology and the cohomology of the manifold (see e.g. [54], and

the references therein).

On the other hand, to study certain geometric problems it is often enough to

consider weaker conditions than the Kähler one. In this direction, a n-dimensional

Hermitian manifold (M, g, J) is said to be balanced in the sense of Michelsohn if

dωn−1 = 0 (see [81]), while it is said to be pluriclosed if ∂∂̄ω = 0 (see [10]).

Proposition 1.3 ([1]). If the fundamental form ω of (M, g, J) is both balanced and

pluriclosed, then the manifold is Kähler.

1.1.3 Hermitian connections

The Levi-Civita connection is a powerful tool in Riemannian geometry. In particular,

given a Riemannian manifold (M, g), the Levi-Civita connection D is the unique

torsion-free connection which preserves the metric. In the Kähler case, the Levi-

Civita connection also preserves the complex structure, while in the Hermitian non-

Kähler case the complex structure is never preserved by D and different connections

have to be considered.

Let (M, g, J) be a Hermitian manifold. A Hermitian connection ∇ on (M, g, J)

is a linear connection (on the tangent bundle TM) which preserves both the metric

and the complex structure, i.e.

∇g = 0 and ∇J = 0 .

Given a Hermitian manifold, there always exist infinite Hermitian connections. Among

these, a special class is given by the canonical Hermitian connections, a class of con-

nections which can be defined by imposing conditions on the torsion tensor

T∇(X,Y ) := ∇XY −∇YX − [X,Y ] , X, Y ∈ Γ(TM) .

Particular examples of canonical Hermitian connections are:
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• The Chern connection ∇C , which is the unique Hermitian connection whose

torsion tensor satisfies

T∇
C

(JX, Y ) = T∇
C

(X, JY ) , X, Y ∈ Γ(TM) . (1.1)

• The Bismut connection ∇B, which is the unique Hermitian connection such

that

c(X,Y, Z) := g(T∇
B

(X,Y ), Z) , X, Y, Z ∈ Γ(TM) ,

is totally skew-symmetric.

• The Lichnerowicz connection ∇L, which is the unique Hermitian connection

with torsion satisfying

T∇
L
(Z,W ) = 0 , Z,W ∈ Γ(T 1,0M) .

In [45] Gauduchon gave a precise definition of the canonical Hermitian connec-

tions, and we briefly recall it. Let us consider the space of the TM -valued 2-forms

Ω2(TM), which splits as

Ω2(TM) = Ω2,0(TM)⊕ Ω1,1(TM)⊕ Ω0,2(TM) ,

where
Ω2,0(TM) :=

{
A ∈ Ω2(TM) : A(J · , ·) = JA(· , ·)

}
,

Ω1,1(TM) :=
{
A ∈ Ω2(TM) : A(J · , J ·) = A(· , ·)

}
,

Ω0,2(TM) :=
{
A ∈ Ω2(TM) : A(J · , ·) = −JA(· , ·)

}
.

On the other hand,

Ω2(TM) = Ω2
b(TM)⊕ Ω2

c(TM) ,

with

g(Ab(X,Y ), Z) =
1

2
(g(B(X,Y ), Z)− g(B(Z,X), Y )− g(B(Y,Z), X)) ,

g(Ac(X,Y ), Z) =
1

2
(g(B(X,Y ), Z) + g(B(Z,X), Y ) + g(B(Y,Z), X)) .

A Hermitian connection ∇ is said to be canonical if its torsion tensor T∇ ∈ Ω2(TM)

satisfies

(T∇)1,1
b = 0 .
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In particular, Gauduchon proved that the class of canonical connections gives rise to

an affine line in the space of all Hermitian connections [45].

Theorem 1.4 ([45]). Any canonical Hermitian connection can be defined via

g(∇τXY,Z) = g(DXY,Z) +
1− τ

4
T (X,Y, Z) +

1 + τ

4
C(X,Y, Z), (1.2)

where

C(·, ·, ·) := dω(J ·, ·, ·) and T (·, ·, ·) := −dω(J ·, J ·, J ·) .

Moreover, when (M, g, J) is Kähler, the line of canonical connections {∇t}t∈R reduces

to the Levi-Civita connection D.

In view of this result, it follows that

• for t = 1, one gets the Chern connection,

• for t = −1, one gets the Bismut connection,

• for t = 0, one gets the Lichnerowicz connection.

In the following, given a linear connection ∇, we denote by R∇ its curvature

tensor, which can be either realized as a (1, 3) or a (0, 4)-tensor via

R∇(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z ,

R∇(X,Y, Z,W ) := g(∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,W ) ,

for any X,Y, Z,W ∈ Γ(TM).

The Chern connection

Due to its extensive use throughout the thesis, we now focus on the Chern connection.

Let us denote by ∇C the C-linear extension of the Chern connection to TCM and

its associated bundles. A direct computation, in complex coordinates, shows that

condition (1.1) is equivalent to require

T∇
C

(Z, W̄ ) = 0 , Z,W ∈ Γ(T 1,0M) .
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Let us now denote by Ω the curvature tensor of the Chern connection. A direct

computation yields that

Ω(X, Ȳ , Z, W̄ ) = Ω(Y, X̄,W, Z̄)

and

Ω(X,Y, · , ·) = Ω(· , · , Z,W ) = 0 ,

for any X,Y, Z,W ∈ Γ(T 1,0M).

Let now {zi} be a holomorphic coordinate system and let us denote with

Ωij̄lk̄ := Ω(∂zi , ∂z̄j , ∂zl , ∂z̄k)

the Chern curvature tensor components. Then, there exist four different Chern-Ricci

curvature tensors, namely:

S
(1)

ij̄
:= glk̄Ωij̄lk̄ , S

(2)

ij̄
:= glk̄Ωlk̄ij̄ ,

S
(3)

ij̄
:= glk̄Ωik̄lj̄ , S

(4)

ij̄
:= glk̄Ωlj̄ik̄ .

The Chern-Ricci curvature tensors are obtained by contracting different entries in the

Chern curvature tensor Ω. Nonetheless, they are related to each other by formulas

involving the fundamental form and the torsion (see [78] for a complete description

of the relations). Clearly, we can also define two different Chern scalar curvatures,

namely

s := trg S
(1) = trg S

(2) and ŝ := trg S
(3) = trg S

(4) .

Finally, the Chern-Ricci form is the (1, 1)-form given by

ρC :=
√
−1S

(1)

ij̄
dzi ∧ dz̄j .

Notation. Henceforth, when confusion cannot occur, we will denote by ∇ := ∇C

the Chern connection.

The Bismut connection

Let (M, g, J) be a Hermitian manifold and ∇B its Bismut connection.
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Definition 1.5. The manifold (M, g, J) is said to be strong Kähler with torsion (or

SKT) if the induced 3-form c := g(TB(·, ·), ·) is closed.

Remark 1.6. The SKT and the pluriclosed conditions are actually equivalent. Indeed,

a direct computation yields that

c(·, ·, ·) = −Jdω(·, ·, ·) ,

where Jdω(·, ·, ·) := −dω(J ·, J ·, J ·) (see e.g. [38]).

Finally, let us denote with {zi} a holomorphic coordinates system. Then, the

Bismut-Ricci form is given by

ρB(X,Y ) :=
√
−1 glk̄RB(X,Y, ∂zl , ∂z̄k) ,

for any X,Y ∈ Γ(TM), and a direct computation yields

ρB = ρC − dd∗ω ,

where d∗ is the co-differential operator of g.

1.2 Geometric flows on smooth manifolds

In this section we focus on geometric flows. A geometric flow is a partial differential

equation describing the evolution of a geometric structure on a fixed manifold. Over

the years, geometric flows have been used to address different problems in geometrical

analysis, differential geometry and topology. In this direction, the foremost example

is given by the Ricci flow, a powerful tool in the study of geometric and topological

problems. Introduced by Hamilton in its seminal paper [48], the Ricci flow has

been used by Perelman to prove Thurston’s Geometrization Conjecture for compact

3-manifolds [89–91].

The section is organized as follow. We start briefly reviewing the foremost defini-

tions and results on metric flows. Then we focus on the class of self-similar solutions

to a prescribed metric flow, which contains both static and soliton metrics. Finally,

we recall the definitions of the Ricci and Kähler-Ricci flow and their foremost prop-

erties.
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1.2.1 Definitions and properties

Let (M, g0) be a Riemannian manifold. We refer to the P-flow as the evolution

problem

∂t gt = −P (gt) , gt|0 = g0 , (1.3)

where g 7→ P (g) is an assignment of a (0, 2)-tensor field on M . A solution to the

P -flow is a family of Riemannian metrics {gt} defined on M , depending on a real

parameter t ∈ (T−, T+), usually called time, which satisfies (1.3). Here, (T−, T+) de-

notes the maximal interval of existence of the solution gt and T± are the singularities

of the flow.

In general, showing existence and uniqueness of a solution to a prescribed flow

is not trivial. Nonetheless, under some reasonable assumptions both on the mani-

fold and the operator P , the existence and the uniqueness of the solutions can be

guaranteed by using standard elliptic operator theory.

Notation. A solution to a metric flow is usually called immortal, eternal or ancient

if its interval of existence is respectively given by (−s,+∞), (−∞,+∞) or (−∞, s)
for some s ≥ 0.

Elliptic operators

We refer the reader to [7, Chapter 4] and [133, Chapter 4] for a detailed exposition

of the following topics.

Let π : E →M be a vector bundle of rank k over a Riemannian manifold (M, g)

and Γ(E) the space of its smooth sections. Let also ∇ be a linear connection on E

which is compatible with g.

Definition 1.7. A map Q : Γ(E) → Γ(E) is said to be a differential operator of

order s if, for any u ∈ Γ(E) and x ∈M , it satisfies

Qx(u) = F (x, u(x),∇u(x), . . . ,∇su(x)) ∈ Ex .

Moreover, the operator is said to be smooth if F is smooth, while it is said to be

linear if the operator is linear.



10 Chapter 1. Preliminaries

It is worth noting that, any linear differential operator Q can be locally written

as

Qx =
s∑

p=0
|α|=p

Q
α1...αp
x

∂p

∂xα1 · · · ∂xαp
,

where Q
α1...αp
x ∈ End(Ex) and the sum over |α| includes all the possible multi-indexes

α = (α1, . . . , αp) of length |α| = p.

Definition 1.8. The principal symbol of a linear partial differential operator Q of

order s is the bundle map σ(Q) : E ⊗ T ∗M → E defined by

σ(Q)x(ξx) :=
∑
|α|=s

Qα1...αs
x ξα1 · · · ξαs ∈ End(Ex) , for all x ∈M ,

where ξx ∈ T ∗xM denotes a non-zero covector satisfying ξx = ξidx
i in local coordi-

nates.

Proposition 1.9. Let Q1, Q2 be two linear partial differential operators of order s, s′,

respectively. Then, Q1 ◦Q2 is a linear partial differential operator of order s+ s′ and

σ(Q1 ◦Q2)(ξ) = σ(Q1)ξ ◦ σ(Q2)ξ ,

for all non-zero ξ ∈ T ∗M .

Definition 1.10. A linear partial differential operator Q is said to be elliptic if

σ(Q)x(ξx) ∈ Aut(Ex), for all x ∈M and non-zero ξx ∈ T ∗xM .

Definition 1.11. A linear partial differential operator Q of order 2r is said to be a

strictly elliptic if it is elliptic and there exists a real constant C > 0 such that

g(σ(Q)(ξ)u, u) ≥ C|ξ|2r|u|2 ,

for all u ∈ Γ(E) and non-zero ξ ∈ T ∗M .

Remark 1.12. Even if the principal symbol σ(Q)x of a linear partial differential op-

erator Q of order s has been defined using local coordinates, it is well-posed. Indeed,

an equivalent coordinates-free definition can be given as follows: let φ : M → R be
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a smooth function defined around x ∈M and ξx := dφx ∈ T ∗xM ; then, the principal

symbol of Q is given by

σ(Q)x(ξx)u(x) := lim
t→∞

1

ts
e−tφ(x) P (etφu)(x) ,

for all u ∈ Γ(E).

Let Q be a non-linear partial differential operator and Q∗u(v) its linearization at

u ∈ Γ(E) in the direction of v ∈ Γ(E), that is

Q∗u(v) =
d

dt

∣∣∣∣
t=0

Q(u+ tv) .

The principal symbol of Q at u ∈ Γ(E) is given by σ(Q)u := σ(Q∗u) and Q is said to

be elliptic (resp. strictly elliptic) at u ∈ Γ(E) if it linearization Q∗u is elliptic (resp.

strictly elliptic).

Let us now denote with ut a smooth section of E depending smoothly on t ∈ [0, T ),

i.e. a smooth map (x, t) 7→ ut(x) ∈ Ex, and

∂

∂t
ut = Q(ut) (1.4)

its evolution equation in the direction of Q. Then, equation (1.4) is said to be

parabolic at v ∈ Γ(E) if the operator Q is strictly elliptic at v ∈ Γ(E); while, it is

called parabolic if the operator Q is strictly elliptic at any v ∈ Γ(E).

The following classic result highlights the relevance of elliptic operators in geo-

metric flows theory.

Theorem 1.13. Let (M, g) be a compact Riemannian manifold and Q : Γ(E)→ Γ(E)

a second-order strictly elliptic operator. Then, the initial value problem

∂t ut = Q(ut) , ut|0 = u0 ,

with u0 ∈ Γ(E), has a unique smooth solution defined on M × [0, ε) for some ε > 0.

We refer the reader to [7, Thm. 4.51] for a proof of this statement.
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1.2.2 The Ricci flow

We already pointed out the role played by the Ricci flow in Perelman’s works.

Nonetheless, other important results have been found in the last years and the Ricci

flow is still one of the main research area in geometric analysis.

We now recall some basics results involving the Ricci flow. For a detailed expo-

sition on the Ricci flow we refer to [25, 119].

Let (M, g0) be a Riemannian manifold, the Ricci flow is the geometric flow of

Riemannian metrics given by the following equation

∂t gt = −2 Ric(gt) , gt|0 = g0 , (1.5)

where Ric(g) denotes the Ricci curvature tensor of (M, g).

Although equation (1.5) is not parabolic, using the Nash-Moser inverse function

theorem, Hamilton proved that short-time existence and uniqueness of the solutions

hold on any compact manifold [48]. More precisely,

Theorem 1.14 ([48]). Let (M, g0) be a compact Riemannian manifold. Then, there

exists a unique solution gt to the Ricci flow (1.5) on the interval [0, ε) for some ε > 0.

An alternative proof of Theorem 1.14 were proposed shortly after by DeTurk in

[26]. In its work, DeTurk modified the right hand-side of the Ricci flow by adding

the Lie derivative of the Riemannian metric in the direction of a suitable vector

field. In this way, DeTurk obtained a new parabolic flow, for which the solutions are

equivalent to the ones of the Ricci flow (up to a time-dependending pull-back).

Remark 1.15. The short-time existence and the uniqueness of the solutions are not

always guaranteed in the non-compact case. Anyway, there are some results for

complete non-compact manifolds with bounded curvature (see e.g. [18]), and some

results in the homogeneous case (see Section 1.3).

In [48], Hamilton also proved that under some regularity conditions on the cur-

vature tensor the long-time existence of the flow is guaranteed. This result has

been improved later by Sesum [104], who refined the regularity conditions posed by

Hamilton.
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Theorem 1.16 ([104]). Let M be a compact manifold and gt a solution to the Ricci

flow. If the Ricci curvature tensor is uniformly bounded along the flow, then the

solution gt exists for all positive times.

Given a closed 3-manifold of positive Ricci curvature, the normalized solution

to the Ricci flow exists for all positive times and converges to a metric of constant

positive sectional curvature. This result implies the following

Theorem 1.17 ([48]). Let M be a closed Riemannian 3-manifold with positive Ricci

curvature. Then, M admits a Riemannian metric of constant positive sectional cur-

vature. Furthermore, if M is simply connected, then it is diffeomorphic to S3.

1.2.3 The Kähler-Ricci flow

Let (X, g0) be a Kähler manifold and ω0 its fundamental form. The Kähler-Ricci

flow is given by the following equation

∂t ωt = −Ric(ωt) , ωt|0 = ω0 , (1.6)

where Ric(ω) denotes the Ricci form of (X,ω).

Firstly studied by Cao in [17], the Kähler-Ricci flow preserves the Kähler condi-

tion and, by Hamilton’s results, short-time existence and uniqueness of the solutions

follows on compact Kähler manifolds. On the other hand, since the strong nature

of the Kähler condition, there exist many results concerning the Kähler-Ricci flow

which do not hold in the Ricci flow setting.

It is well known that, in the Kähler setting the Ricci form satisfies the following

cohomological condition

[Ric(ω)] = 2π c1(X) ,

where c1(X) is the first Chern class of X. Therefore, associated to any Kähler-Ricci

flow (1.6), there exists an ODE evolving the cohomological class of the fundamental

form ωt in the direction of the first Chern class of X, i.e.

d

dt
[ωt] = −2π c1(X) , [ωt]|0 = [ω0] ,
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whose solutions are given by

[ωt] = [ω0]− 2π t c1(X)

and hence the maximal existence time of the flow cannot be greater than

T = sup{t ∈ R+ : [ω0]− 2π t c1(X) > 0} .

Notice that T only depends on the cohomological class [ω0] and on c1(X). Actually,

Tian and Zhang proved that T is the maximal existence time of the flow.

Theorem 1.18 ([118]). Let (X,ω0) be a compact Kähler manifold. Then, the max-

imal solution to the Kähler-Ricci flow (1.6) exists smoothly on [0, T ).

The Kähler-Ricci flow was used by Cao in [17] to obtain an alternative proof of

Calabi’s conjecture, firstly proved by Yau in [135].

Calabi’s conjecture. Let (X,ω) be a compact Kähler manifold and γ ∈ 2π c1(X).

Then, there exists a unique Hermitian metric ω̃ ∈ [ω] such that Ric(ω̃) = γ.

The proof proposed by Cao of this conjecture is based on the following result.

Theorem 1.19 ([17]). Let (X,ω0) be a compact Kähler manifold and γ ∈ 2π c1(X).

Then, the modified Kähler-Ricci flow

∂t ωt = −Ric(ωt) + γ , ωt|0 = ω0 ,

admits a long-time solution converging in the C∞-topology to a Kähler metric ω∞

which satisfies Ric(ω∞) = γ.

As direct consequence, one gets the following

Corollary 1.20 ([17]). Let (X,ω0) be a compact Kähler manifold with first Chern

class equal to zero. Then, under the Kähler-Ricci flow (1.6), the initial metric con-

verges to a Ricci flat metric

The following result was also proved in [17].
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Theorem 1.21 ([17]). Let (X,ω0) be a compact Kähler manifold with negative first

Chern class and let [ω0] = −c1(X). Then, the normalized Kähler-Ricci flow

∂t ωt = −Ric(ωt)− ωt , ωt|0 = ω0 ,

admits a long-time solution which converges the in C∞-topology to the unique Kähler-

Einstein metric satisfying Ric(ωKE) = −ωKE.

Remarkably, even if ω0 does not belong to the class of −c1(X), Theorem 1.21

still hold true. This slight generalization relies on Tsuji [123] and Tian-Zhang [118]

works, and we refer to [132, Thm. 4.1] for a detailed proof.

Let us mention that, the existence of Kähler-Einstein metrics on projective man-

ifolds with positive first Chern class has been recently characterized by Chen, Don-

aldson and Sun who proved, in a series of celebrated papers [20–23], the following

Theorem 1.22 ([20]). A Fano manifold X is K-stable if and only X admits a

Kähler-Einstein metric.

The proof of this statement is based on a cone singularity approach. In particular,

the authors showed that deforming Kähler-Einstein metrics over cone singularities in

a suitable way, one ends up with either a Kähler-Einstein metric over the manifold

or with a test configuration χ admitting Futaki invariant Fut(χ) = 0 (that is the

manifold is not K-stable). We refer to [116] (and the references therein) for an

overview of the ideas contained in Chen, Donaldson and Sun’s work.

Remark 1.23. The necessary part of Theorem 1.22 was already established by Tian in

[117]. Moreover, a different proof based on the Kähler-Ricci flow has been proposed

by Chen, Sun and Wang in [24].

1.2.4 Static and soliton metrics

We now recall the definitions of static and soliton metrics for a metric flow. Such

metrics are of particular interest since they give rise to self-similar solutions to the

flow and they usually appear as singularity models of the flow.
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Henceforth, we assume the tensor P in (1.3) to be both scale invariant and

diffeomorphisms invariant, i.e.

P (c g) = P (g) and P (ϕ∗g) = ϕ∗P (g) , (1.7)

for any c ∈ R and ϕ ∈ Diff(M).

A static metric to the P -flow is a Riemannian metric g satisfying the Einstein-

type equation

P (g) = c g , (1.8)

for some c ∈ R. A static metric is said to be expanding, steady or shrinking when

c < 0, c = 0 or c > 0, respectively. These definitions are justified by the following

proposition.

Proposition 1.24. Let g0 satisfy (1.8), for some c ∈ R. Then, a solution to the

P -flow (1.3) is given by

gt := (1− c t)g0 .

Therefore, the maximal interval of existence (T−, T+) of a solution gt to the P -flow

is equal to (1
c ,+∞), (−∞,+∞) or (−∞, 1

c ), depending on whether g0 is expanding,

steady or shrinking, respectively.

It is now clear that, static metrics are rather important in geometric flow theory,

since they give rise to explicit solutions to the flow. Nonetheless, such metrics do

not always exist and more general assumptions on g0 can be performed.

Definition 1.25. A soliton metric to the P -flow is a Riemannian metric g satisfying

P (g) = c g + LXg , (1.9)

for some c ∈ R and a complete vector field X on M . Here, L denotes the Lie

derivative.

Proposition 1.26. Let g0 satisfy (1.9), for some c ∈ R and X ∈ χ(M). Then,

gt := c(t)ϕ∗t g0 (1.10)
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is a solution to the P -flow (1.3), for some smooth scaling function c(t) > 0 and a

one-parameter family of diffeomorphisms ϕt : M → M . Conversely, if a solution gt

to the P -flow satisfies (1.10), then g0 is a soliton metric.

Proof. Let g0 be a soliton metric satisfying (1.9), c(t) := (1− c t) and ϕt ∈ Diff(M)

a one-parameter family of diffeomorphisms generated by X(t) := −(1 − c t)X. A

direct computation yields that gt := c(t)ϕ∗t g0 satisfies

∂

∂t
gt = −P (gt) and gt|0 = g0 .

Conversely, let gt be a solution to (1.3) satisfying gt = c(t)ϕ∗t g0, for some c(t) > 0

and ϕt ∈ Diff(M). Then, differentiating gt with respect to t and evaluating it in

t = 0, it follows

P (g0) = c g0 + LXg0 , (1.11)

where c = ċ(0) and X = c(0)X(0), being X(t) the time-dependent family of vector

fields satisfying Xϕt(p) = d
ds |s=tϕ(s)(p).

Similarly to the static case, a soliton metric is said to be expanding, steady or

shrinking when c < 0, c = 0 or c > 0, and the maximal interval of existence for gt is

given by (1
c ,+∞), (−∞,+∞) or (−∞, 1

c ), respectively.

We mention that soliton metrics are usually objects of deep investigations in

the geometric flows context. Indeed, besides their correspondence with self-similar

solutions (1.10), they often arise as limit of the solutions to the flow, under suitable

normalizations. When this occurs a soliton metric is said to be a singularity model

of the flow.

1.3 Geometric flows on homogeneous manifolds

In this section, we discuss the behaviour of the P -flow (1.3) on homogeneous man-

ifolds. In particular, we show that short-time existence and uniqueness of the so-

lutions always hold in the class of invariant metrics. We also focus on the class of

semi-algebraic solitons, which naturally arises in the homogenous case.
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We start briefly recalling the main definitions and properties of the homogeneous

manifolds. For a more detailed exposition of this topic we suggest [62, Chap. VI]

and [63, Chap. X].

Let (M, g) be a connected Riemannian manifold and let

Iso(M, g) := {ϕ ∈ Diff(M) : ϕ∗g = g}

denote its isometry group.

Definition 1.27. The Riemannian manifold (M, g) is said to be homogeneous if

Iso(M, g) acts transitively on M , that is, for any p, q ∈M there exists ϕ ∈ Iso(M, g)

such that ϕ(p) = q.

A classical result, due to Myers and Steenrod [84], states that Iso(M, g) is actually

a Lie group. Moreover, its isotropy group at a point p ∈M

Ip(M, g) := {ϕ ∈ Iso(M, g) : ϕ(p) = p}

is a closed compact subgroup of Iso(M, g), which is compact if M is compact as well.

Thus, the map

π : Iso(M, g)/Ip(M, g)→M , [ϕ] 7→ ϕ(p) , (1.12)

defines a diffeomorphism and Iso(M, g)/Ip(M, g) can be equipped with the pull-back

metric π∗g.

More generally, the isometry group Iso(M, g) may contain proper subgroups act-

ing transitively on M , making sense of the following definition.

Definition 1.28. Let G ⊂ Iso(M, g) be a closed subgroup acting transitively on M .

Then, (M, g) is said to be G-homogeneous manifold.

A homogeneous space G/K is the quotient space of a Lie group G by a closed

subgroup K ⊂ G. It is known that, there exists unique differentiable structure on

G/K making the projection π : G → G/K smooth. Moreover, if the homogenous

space G/K is equipped with a G-invariant Riemannian metric g, (G/K, g) is said to

be a homogeneous Riemannian manifold.
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Any G-homogeneous manifold (M, g) can be identified with the homogeneous

Riemannian space (G/K, π∗g), where K := G ∩ Ip(M, g) is a compact subgroup of

Ip(M, g) and π is the diffeomorphism of (1.12) restricted to G.

Notation. Henceforth, we denote by g the pull-back metric π∗g on G/K, and we

use the identification

(M, g) = (G/K, g) .

Let G/K be a homogeneous space and let us denote with g and l the Lie algebras

of G and K, respectively. Then, any X ∈ g gives rise to a Killing vector field of G/K

defined by

XaK :=
d

dt
|0 exp(tX)(aK) , for all aK ∈ G/K .

This implies that

g/l ≡ To(G/K) , o := eK ,

since Xo = 0 if and only if X ∈ l. Here, e ∈ G is the identity element of the Lie

group.

Definition 1.29. A homogeneous space G/K admits a reductive decomposition if

there exists an Ad(K)-invariant vector space p satisfying

g = l⊕ p .

When this occurs, G/K is said to be reductive.

It is well-known that the compactness of K implies the reductiveness of G/K.

Moreover, the following identification holds

p ≡ To(G/K) .

All these arguments can be used to state the following theorem, which describes the

space of G-invariant metrics on G/K.

Theorem 1.30. Let G/K be a reductive homogeneous space and g = l⊕p its reductive

decomposition. Then, G/K admits a G-invariant metric if and only if Ad(K) ∈
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GL(p) is compact. Moreover, the following bijection holdsG-invariant metrics

on G/K

←→
Ad(K)-invariant inner

products on p

 .

Remark 1.31. In Lie group context, i.e. M = G, the set of G-invariant metrics

coincides with the set of left-invariant metrics on G. By definition, a Riemannian

metric g on G is left-invariant if and only if

g(x)(X,Y ) = g(e)(dLx−1(X), dLx−1(Y )) , for all x ∈ G , X, Y ∈ TxG ,

where Lx : G → G is the multiplication-map given by Lx(a) = x · a. Consequently,

any inner product on g gives rises to a left-invariant metric and vice versa.

We are now in a position to discuss the behaviour of the P -flow (1.3) on homoge-

neous Riemannian manifolds. Our basic assumption will be the scale and diffeomor-

phisms invariance of the tensor P . Under these hypothesis, short-time existence and

uniqueness of the solutions are always guaranteed in the set of G-invariant metrics.

Let (M, g0) be a homogeneous Riemannian manifold and let (G/K, g0) be its ho-

mogeneous space representation. First assume that short-time existence and unique-

ness of the solutions hold, then the solution gt starting at g0 has to be G-invariant.

Indeed, by diffeomorphisms invariance, it follows that no symmetries are lost along

a given solution and the P -flow can be reduced to an ODE system on p given by

d

dt
〈·, ·〉t = −P (〈·, ·〉t) , 〈·, ·〉t|0 = 〈·, ·〉0 , (1.13)

where 〈·, ·〉t denotes the Ad(K)-invariant inner product on p induced by the G-

invariant metric gt. Conversely, if short-time existence and uniqueness of the so-

lutions do not hold in general, one can require the G-invariance of the solutions.

Under this assumption, the P -flow reduces again to (1.13) and short-time existence

and uniqueness of the solutions follow (in the set of G-invariant metrics). The reader

may refer to [74, 75], for more details on this topic.
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1.3.1 Semi-algebraic solitons

We now focus on a special class of soliton metrics arising in the context of homo-

geneous spaces, namely the class of semi-algebraic solitons. This class has been

investigated more generally in [74, 75] for any (suitable) geometric flow on a homo-

geneous space and it is strictly related to the algebraic structure of the homogeneous

space.

Let (G/K, g0) be a simply connected homogeneous space equipped with a G-

invariant metric, with K connected. Let g = l ⊕ p be its reductive decomposition

and let 〈·, ·〉 be the Ad(K)-invariant inner product on p induced by g0. Furthermore,

let g0 be a soliton metric, i.e.

gt = c(t)ϕ∗t g0 ,

for some scaling function c(t) > 0 and a one-parameter family ϕt ∈ Diff(G/K). If

ϕt ∈ Diff(G/K) is induced by a one-parameter family of automorphisms ϕ̃t ∈ Aut(G)

satisfying ϕ̃t(K) = K via

ϕt(aK) = ϕ̃t(a)K , for all a ∈ G ,

then there exists a derivation D =
[ ∗ ∗

0 Dp

]
∈ Der(g) and a complete vector field

XD ∈ χ(G/K) such that

dϕ̃t|e = e−tD and XD(p) =
d

dt
|0 ϕt(p) ,

for any t ∈ R and p ∈ G/K. Moreover, since dϕt|o = e−tDp ,

LXD g0 =
d

dt
|0 ϕ∗t g0 =

d

dt
|0 〈e−tDp ·, e−tDp ·〉 = −〈Dp·, ·〉 − 〈·, Dp·〉 ,

and, by means of (1.11), we have

P (g0) = c g0(·, ·)− g0(Dp·, ·)− g0(·, Dp·) , (1.14)

where c = ċ(0). On the other hand, if g0 satisfies (1.14), for some c ∈ R and

D =
[ ∗ ∗

0 Dp

]
∈ Der(g), then there exists a self-similar solution to the P -flow

gt := c(t)ϕ∗t g0 ,
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with c(t) > 0 and ϕt ∈ Diff(G/K) arising from ϕ̃t ∈ Aut(G), such that ϕ̃t(K) = K.

These results can be summarized as follows.

Proposition 1.32. The metric g0 satisfies (1.14) if and only there exists a self-

similar solution to the P -flow

gt := c(t)ϕ∗t g0 ,

with ϕt ∈ Diff(G/K) induced by ϕ̃t ∈ Aut(G), such that ϕ̃t(K) = K.

Motivated by this proposition, we have the following definition.

Definition 1.33. Let (G/K, g) be a simply connected homogeneous Riemannian

space with K connected. The metric g is said to be a semi-algebraic soliton if

P (g) = c g(·, ·) + g(Dp·, ·) + g(·, Dp·) , (1.15)

for some c ∈ R and D =
[ ∗ ∗

0 Dp

]
∈ Der(g). If further Dp is g-self-adjoint, the soliton

is said to be algebraic.

If g is an algebraic soliton, then the tensor P satisfies

P (g) = c g + 2 g(Dp·, ·) . (1.16)

Remark 1.34. Let (g, µ) be the Lie algebra of G. Then, the Lie group Aut(g) of the

automorphisms of g and its Lie algebra are given by

Aut(g) = {A ∈ GL(g) : Aµ(·, ·) = µ(A·, A·)} ,

Der(g) = {D ∈ Aut(g) : Dµ(·, ·) = µ(D·, ·) + µ(·, D·)} .

Der(g) is usally called the Lie algebra of the derivations of g.

1.3.2 Homogenous Einstein manifolds

Since their strong involved algebraic datum, homogeneous manifolds are good candi-

dates to investigate the Ricci flow. Nonetheless, existence and uniqueness of canonical

solutions, such as Einstein metrics, are still open problems in many cases.
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Let (M, g) be a G-homogeneous Riemannian manifold. Then, g is said to be

homogeneous Einstein whenever the Ricci tensor satisfies

Ric(g) = c g ,

for some c ∈ R (i.e. g is static metric in the sense of (2.1)). When this occurs (M, g)

is said to be a homogeneous Einstein manifold.

In the non-compact case, the existence of homogeneous Einstein metrics seems to

be prescribed by the Alekseevskii conjecture, a long standing open conjecture which

states

Alekseevskii conjecture. Let (M = G/K, g) be a homogeneous Einstein manifold

with negative scalar curvature. Then, K is a maximal compact subgroup of G.

When G is a linear group, the maximality of K turns out to be equivalent to

the existence of a closed solvable Lie subgroup S ⊂ G acting simply transitively on

M (see e.g. [134, Cor. 1]). Therefore, by the Alekseevskii conjecture the classifi-

cation of non-compact homogeneous Einstein manifold can be reduced to the one

of Einstein solvmanifolds (i.e. simply connected solvable Lie groups S endowed

with left-invariant Einstein metrics), since M has to be diffeomorphic to Rn with

n = dimR(M).

A first structural result in the classification of Einstein solvmanifolds has been

obtained by Lauret, who proved

Theorem 1.35 ([69]). Any homogeneous Einstein solvmanifold is standard.

An Einstein solvmanifold (M = S/Γ, g) is said to be standard if the Lie algebra

s of S satisfies

s = a⊕ [s, s] ,

where a is an abelian subalgebra of s orthogonal to [s, s]. This definition was intro-

duced by Heber in [50], who also proved that left-invariant Einstein standard metrics

on solvable Lie groups are unique up to homotheties.

Recently, Lafuente and Lauret proved that if the Alekseevskii conjecture turns

out to be true, then the following result must hold.
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Theorem 1.36 ([64]). Let (M = G/K, g) be a homogeneous Riemannian manifold

equipped with an expanding algebraic Ricci soliton metric. Then, K is a maximal

compact subgroup of G.

By definition, g is said to be an expanding algebraic Ricci soliton if its Ricci tensor

satisfies

Ric(g) = c g + g(Dp·, ·) ,

for some c < 0 and D =
[

0 ∗
0 Dp

]
∈ Der(g), where g denotes the Lie algebra of G (i.e. g

is a soliton metric in the sense of (1.16)). Thus, this result is a priori much stronger

than Alekseevskii conjecture.

Finally, in [59] Jablonksi proved that any homogeneous Ricci soliton (M, g) is

algebraic with respect to its full isometry group G = Iso(M, g).

1.4 The bracket flow

The bracket flow is a powerful tool introduced by Lauret in [70] to investigate the

Ricci flow on simply connected nilmanifolds. More precisely, Lauret used the bracket

flow technique to reduce the Ricci flow of left-invariant metrics to a new equivalent

flow on the variety of nilpotent Lie algebras, proving, in this way, long-time existence

of the solutions and their convergence (after a normalization) to Ricci solitons.

Under some minimal natural assumptions, the bracket flow technique can be

extended to many geometric flows on homogeneous spaces. We refer the reader to

[74] and [75] for more details and examples on this topic.

Let (M, g0) be a simply connected G-homogenous Riemannian manifold with

isotropy subgroup K ⊂ G and reductive decomposition g = l ⊕ p, with n := dim p

and q := dim l. Let the action of G be almost-effective, that is, the subgroup

{q ∈ G : qhK = hK , ∀h ∈ G} ⊂ K

is discrete. Then, if the tensor P is both scale and diffeomorphisms invariant, in

view of Section 1.3, we can reduce the P -flow to the ODE system

d

dt
〈·, ·〉t = −P (〈·, ·〉t) , 〈·, ·〉t|0 = 〈·, ·〉0 , (1.17)
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where 〈·, ·〉t denotes the Ad(K)-invariant inner product on p induced by the G-

invariant metric gt.

On the other hand, since the set of inner products on p is parametrized by the

symmetric space GLn(R)/On(R), there exists a smooth family {h(t)} ∈ GLn(R) such

that

〈·, ·〉t = h(t)−1 · 〈·, ·〉0 = 〈h(t)·, h(t)·〉0 ,

for any t ∈ (T−, T+). Then, the smooth family {h(t)} satisfies the ODE equation

h(t)∗
d

dt
h(t) +

(
d

dt
h(t)

)∗
h(t) = −h(t)∗ h(t) Pt ,

with h(0) = Idp. Here, Idp is the identity map on p, Pt : p → p is the operator

defined by

P (〈·, ·〉t) = 〈Pt ·, ·〉t , (1.18)

and the superscript ‘∗’ denotes the transpose taken with respect to the fixed inner

product 〈·, ·〉0. Therefore, setting Q(t) := h(t)∗ h(t), the ODE system (1.17) turns

out to be equivalent to

d

dt
Q(t) = −Q(t) Pt , Q(0) = Idp . (1.19)

Now, let µ0 be the Lie bracket of the Lie algebra g of G and adµ0 : g → g the

adjoint action induced by µ0. Then, the Lie bracket µ0 belongs to the space Cq,n,

which is given by the elements of

Vq+n := {γ : g× g→ g : γ is skew-symmetric and bilinear} ⊆ Λ2g∗ ⊗ g

satisfying

(i) γ satisfies the Jacobi identity, γ(l, l) ⊂ l and γ(l, p) ⊂ p;

(ii) if Gγ denotes the simply connected Lie group arising from (g, γ) and Kγ ⊂ Gγ
denotes the connected subgroup arising from l, then Kγ is closed in Gγ ;

(iii) 〈·, ·〉0 is adγ l-invariant (i.e. (adγZ|p)∗ = −adγZ|p for any Z ∈ l);

(iv) {Z ∈ l : γ(Z, p) = 0} = 0.
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Any γ ∈ Cq,n gives rise to a unique simply connected homogeneous space. Indeed,

let g be a vector space admitting a direct sum decomposition of the form

g = l⊕ p , n := dim p , q := dim l ,

and let 〈·, ·〉 be an inner product p. Then, by (i) and (ii), the simply connected

homogeneous Riemannian space (Gγ/Kγ , gγ) admits a Ad(Kγ)-invariant decomposi-

tion of the form g = l⊕ p (i.e. a reductive decomposition), where gγ is the invariant

metric defined by gγ(oγ) = 〈·, ·〉, with oγ := eγK and eγ ∈ Gγ identity element.

Moreover, it follows from (iii) that 〈·, ·〉 is Ad(Kγ)-invariant, while (iv) implies that

the homogenous space is almost-effective.

In view of the this correspondence, it is quite natural to wonder how the P -flow

works on Cq,n. Then, a precisely answer to this question is provided by the bracket

flow.

Let us consider the natural linear action of GLq+n(R) on Vq+n given by

A · γ(·, ·) := Aγ(A−1·, A−1·) , (1.20)

for any A ∈ GLq+n(R) and γ ∈ Vq+n. A direct computation yields that the family

µ(t) :=
[

Id 0
0 Q(t)

]
· µ0 ∈ Vq+n

solves the so called bracket flow equation

d

dt
µ(t) = −π

([
0 0
0 Pµ(t)

])
µ(t) , µ(0) = µ0 . (1.21)

Here, π is the derivative of the linear action defined in (1.20), namely

π(A)µ = Aµ(·, ·)− µ(A·, ·)− µ(·, A·) , A ∈ glq+n(R) , µ ∈ Vq+n ,

and Pµ(t) : p→ p is the map given by

Pµ(t) = Q(t) PtQ(t)−1 . (1.22)

Then, we have
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Proposition 1.37 ([75]). The space Cq,n is invariant under the bracket flow. Fur-

thermore, only µ(t)|p×p actually evolves.

More precisely, in [75] Lauret proved that whenever µ(0) ∈ Cq,n, the solution to

the bracket flow µ(t) ∈ Cq,n, for every t in the defining interval. Furthermore, the

bracket flow equation can be reduced to

d

dt
µl = µl(Pµ·, ·) + µl(·,Pµ·) ,

d

dt
µp = −π(Pµ)µp ,

where µl(0) + µp(0) = µ0|p×p. Here, µp and µl denote the p and l-components of

µ|p×p, respectively.

On the other hand, Lauret proved that there exists a relation between the homo-

geneous Riemannian spaces

(G/K, gt) and (Gµ(t)/Kµ(t), gµ(t)) ,

where gt and µ(t) are solutions to the P -flow and to the bracket flow (1.21), respec-

tively. In particular, these flows are equivalent and the following result holds.

Theorem 1.38 ([75]). There exists a time-dependent family of diffeomorphisms

ϕ(t) : G/K → Gµ(t)/Kµ(t) such that

gt = ϕ(t)∗gµ(t) ,

for every t ∈ (T−, T+). Moreover, ϕ(t) is an isometry.

Let us mention that, {ϕ(t)} is a one-parameter family of equivariant diffeomor-

phisms, which is defined via a family of Lie group isomorphisms ϕ̃(t) : G → Gµ(t)

with derivative given by

Q̃(t) :=
[

Id 0
0 Q(t)

]
: g→ g ,

where Q(t) is a solution to the ODE system (1.19). Then, by construction

〈·, ·〉t = Q(t)−1 · 〈·, ·〉0 and µ(t) = Q(t) · µ0
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solve respectively the ODE system (1.17) and the bracket flow equation (1.21).

Hence, the P -flow and the bracket flow have the same maximal interval of existence

and their solutions only differs by a time-dependent pull-back.

When the initial metric is an algebraic soliton to the P -flow, we have the following

Theorem 1.39 ([75]). Let (G/K, g0) be a homogeneous Riemannian manifold. The

following conditions are equivalent:

(i) g0 is an algebraic soliton to the P -flow;

(ii) the solution to the bracket flow starting at µ0 is given by µ(t) = c(t) · µ0, for

some scaling function c(t) > 0 satisfying c(0) = 1.

Remark 1.40. If (M, g, J) is a G-homogeneous Hermitian manifold and dimRM = 2n,

one can require the tensor P to be biholomorphisms invariant. When this occurs,

GL2n(R) has to be substituted by GL2n(R, J) = {A ∈ GL2n(R) : AJ = JA} (or

equivalently by GLn(C)). Furthermore, if the integrability condition

µp(JX, JY )− µp(X,Y )− Jµp(JX, Y )− Jµp(X, JY ) = 0 , for all X,Y ∈ p ,

is satisfied, then an analogue of Theorem 1.38 holds.

Remark 1.41. In Lie group context, i.e. M = G, one can focus on the n-dimensional

variety of Lie algebras

Ln := {γ ∈ Vn : γ satisfies the Jacobi identity} .

Clearly Ln = C0,n and the bracket flow equation (1.21) reduces to

d

dt
µ(t) = −π

(
Pµ(t)

)
µ(t) , µ(0) = µ0 . (1.23)

Here, accordingly to the above construction, Pµ(t) : g→ g is given by (1.22).

1.4.1 Regularity results

We now recall a regularity result involving the bracket flow. Clearly, by means of

Theorem 1.38, this also give rises to a regularity result for the P -flow.
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Given a homogeneous Riemannian space (G/K, g0), the metric g0 induces a inner

product 〈·, ·〉 on g. This product in turn gives rise to naturally defined scalar products

on any tensor product of g and its duals. In particular, there exists a canonical inner

product on Λ2g∗ ⊗ g given by

〈γ1, γ2〉 =
∑
〈γ1(ei, ej), γ2(ei, ej)〉 , γ1,2 ∈ Λ2g∗ ⊗ g ,

for any g0-orthonormal basis {ei} of g, which of course does not depend on the choice

of the basis.

Now, let gt be the G-invariant solution to the P -flow starting at g0 and µ(t) be

its corresponding solution to the bracket flow. Then, by standard ODEs theory, it

follows that as long as the norm ‖µ(t)‖ is bounded the solution to the bracket flow is

defined. On the other hand, Lauret proved that if the bracket flow develops a finite

time singularity, then the ‖µ(t)‖ → +∞ as t approaches to the time singularity.

More precisely, we have the following

Theorem 1.42 ([75]). Let T+ < ∞ be a finite time singularity to the bracket flow.

Then, there exists a constant C > 0 such that

‖µ(t)‖ ≥ C√
T+ − t

, for all t ∈ [0, T+) .

Thus, by means of Theorem 1.38, it directly follows

Corollary 1.43 ([75]). Let T+ <∞ be a finite time singularity to the P -flow. Then,

there exists a constant C > 0 such that

‖P (gt)‖t ≥
C√
T+ − t

, for all t ∈ [0, T+) ,

where ‖ · ‖t is the norm induced by gt.

Remark 1.44. Analogue results hold for finite time singularities T−. We refer the

reader to [75, Section 4.4].



30 Chapter 1. Preliminaries

1.4.2 Convergence in the Cheeger-Gromov topology

Let us denote by (Mk = Gk/Hk, gk) a sequence of homogeneous Riemannian spaces

and by (M = G/H, g) a fixed homogeneous Riemannian space. Let also ok and o be

the base points of Mk and M , respectively.

Definition 1.45. The sequence (Mk = Gk/Hk, gk) converges in the Cheeger-Gromov

topology to (M = G/H, g) as p→∞, if there exists

• a sequence of open neighborhoods o ∈ Ωk ⊂M exhausting M ,

• a family of embeddings ϕk : Ωk →Mk,

such that ϕk(o) = ok and ϕ∗k gk → g as k → ∞, smoothly on every compact subset

of M .

Let us now consider the space Cq,n endowed with the vector space topology in-

herited by Λ2g∗ ⊗ g. Then, the following result due to Lauret holds.

Theorem 1.46 ([72]). Let µk → λ as k →∞ in the Cq,n-topology and suppose that

infk rµk > 0, where rµk is the Lie injective radius of (Gµk/Hµk , g). Then, there exists

a subsequence of (Gµk/Hµk , gµk) which converges in the Cheeger-Gromov topology to

(Gλ/Hλ, gλ) as k →∞.

The Lie injective radius of a homogeneous Riemannian space (G/H, g) is the

largest r > 0 such that

π ◦ exp : B(0, r)→ G/H

is a diffeomorphism onto its image. Here, exp : g → G is the Lie exponential map,

π : G → G/H is the usual quotient map and B(0, r) is the Euclidean ball of radius

r in l obtained by using the inner product g(o).

As consequence of Theorem 1.46, one gets

Corollary 1.47 ([72]). Let µ(t) be a bracket flow solution and assume ck ·µ(tk)→ λ

in Cq,n, for a sequence of time tk → T± and a sequence of real numbers ck > 0. Let

the injective Lie radii satisfy infk rck·µ(tk) > 0. Then, there exists a subsequence of tk

such that (G/H, c−2
k gtk) converges in the Cheeger-Gromov topology to (Gλ/Hλ, gλ)

as k →∞.



Chapter 2

Hermitian curvature flows on

Lie groups

As we already pointed out in the previous chapter, the Ricci flow and the Kähler-

Ricci flow play a central role in the study of many geometric problems. However,

in the Hermitian non-Kähler setting the Ricci flow does not preserve the Hermitian

condition, suggesting that different suitable geometric flows have to be considered.

In the following, we focus on the study of the Hermitian curvature flow on Lie

groups. The results presented in this chapter, obtained in collaboration with Ramiro

Lafuente and Luigi Vezzoni, are also contained in [65, 97, 98, 100].

2.1 Hermitian curvature flow

The Hermitian curvature flow (HCF, for short) is a natural parabolic flow of Hermi-

tian metrics introduced by Streets and Tian in [112]. It evolves an initial Hermitian

metric in the direction of its second Chern-Ricci curvature tensor modified with some

first order terms in the torsion.

Let (X, g0) be a Hermitian metric and ∇ its Chern connection. The HCF starting

at g0 is a family of Hermitian metric {gt} satisfying

∂t gt = −S(gt) +Q(gt) , gt|0 = g0 . (2.1)

31
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Here, given a Hermitian manifold g on X, we denote by

S(g)ij̄ = glk̄Ωlk̄ij̄

its second Chern-Ricci curvature tensor and by Q(g) the (1, 1)-symmetric tensor

Q(g) :=
1

2
Q1(g)− 1

4
Q2(g)− 1

2
Q3(g) +Q4(g) ,

where the Qi-tensors are quadratic expressions of the torsion components T kij of ∇
given by

Q1
ij̄ = gk

¯̀
gmn̄Tikn̄Tj̄ ¯̀m , Q2

ij̄ = g
¯̀kgn̄mT ¯̀̄niTkmj̄ ,

Q3
ij̄ = g

¯̀kgn̄mTik ¯̀Tj̄n̄m , Q4
ij̄ =

1

2
g

¯̀kgn̄m(Tmk ¯̀Tn̄j̄i + Tn̄¯̀kTmij̄) ,
(2.2)

and

Tijk̄ := glk̄T
l
ij , (gij̄) := (gij̄)

−1 .

Henceforth, in order to simplify the notation, we will denote by

K(g) := S(g)−Q(g) (2.3)

the HCF tensor of any Hermitian metric g on X.

The following results, which deeply motivate the study of this flow, were obtained

by Streets and Tian in [112].

Theorem 2.1 ([112]). Let (X, g0) be a compact Hermitian manifold. Then, there

exists a unique solution gt to the HCF (2.1) on the interval [0, ε) for some ε > 0.

Furthermore, if g0 is a Kähler metric, then the HCF reduces to the Kähler-Ricci flow.

Theorem 2.2 ([112]). Let (X, g0) be a compact n-dimensional Hermitian manifold.

Then, there exists a constant c(n) > 0 such that the solution gt to the HCF (2.1) is

defined for

t ∈
[
0,

c(n)

max{|Ω|C0(g0), |∇T |C0(g0), |T |2C0(g0)
}
]
.

Moreover, if the solution gt is defined on [0, ε) for some ε <∞, then

lim
t→ε

sup max{|Ω|C0(gt), |∇T |C0(gt), |T |
2
C0(gt)

} =∞ .



2.2. HCF on complex unimodular Lie groups 33

Theorem 2.3 ([112]). Let (X, gKE) be a compact Kähler-Einstein manifold with first

Chern class c1(X) ≤ 0. Then, there exists a constant ε = ε(gKE) such that given a

Hermitian metric g̃ on X satisfying |g̃ − gKE |C∞ < ε, the HCF (2.1) starting at g̃

exists for all positive times and converges to a Kähler-Einstein metric.

It is worth noting that, the HCF (2.1) naturally arises by the variational formulas

of the functional

F(g) :=

∫
M
k dV , k := trgK(g) .

Indeed, F(g) is the unique second-order functional admitting the traceless part of

S(g) as leading term of the associated Euler-Lagrange equation [112]. Moreover, in

the compact case, critical points to this functional are automatically static metrics

to the HCF [112, Prop. 3.3], i.e.

K(g) = c g ,

for some c ∈ R.

Remarkably, Theorem 2.1 and Theorem 2.2 hold true for other choices of the

tensor Q, which can be performed in order to preserve conditions either in the torsion

(see [111]) or in the curvature (see [128]).

2.2 HCF on complex unimodular Lie groups

The main goal of this section is the study of the HCF on complex unimodular Lie

groups. We start investigating the long-time behaviour of the flow. Then, we prove

some results on the existence and uniqueness of semi-algebraic solitons to the flow.

We also study the HCF on low-dimensional complex Lie groups by doing explicit

computations.

2.2.1 The HCF tensor on Lie groups

Let G be a Lie group equipped with a left-invariant complex structure J and left-

invariant Hermitian metric g. We denote by g the Lie algebra of G and by

µ ∈ Λ2g∗ ⊗ g
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its Lie bracket. In the following, we compute the components of the HCF tensor in

terms of the components of µ.

Let {Z1, . . . , Zn} be a left-invariant g-unitary frame of G. Since the Chern con-

nection∇ is the unique Hermitian connection with vanishing (1,1)-part of the torsion,

it follows that

∇Z̄kZ` = ∇Z`Z̄k + µ(Z̄k, Z`)

or, in terms of the Christoffel symbols of ∇,

Γrk̄` = µrk̄` , Γr̄k ¯̀ = µr̄k ¯̀ .

On the other hand, since ∇J = ∇g = 0, it follows

g(∇ZkZi, Z̄j) = −g(Zi,∇Zk Z̄j) = −g(Zi, µ(Zk, Z̄j))

and hence

Γjkr = −µr̄kj̄ . (2.4)

By definition, we have

Ωkl̄ij̄ = g(∇Zk∇Z̄`Zi, Z̄j)− g(∇Z̄`∇ZkZi, Z̄j)− g(∇µ(Zk,Z̄`)
Zi, Z̄j) ,

with
g(∇Zk∇Z̄`Zi, Z̄j) = Γr¯̀iΓ

j
kr = −µr¯̀iµ

r̄
kj̄ ,

g(∇Z̄`∇ZkZi, Z̄j) = ΓrkiΓ
j
¯̀r

= −µīkr̄µ
j
¯̀r
,

g(∇µ(Zk,Z̄`)
Zi, Z̄j) = µrk ¯̀Γ

j
ri + µr̄k ¯̀Γ

j
r̄i = −µrk ¯̀µ

ī
rj̄ + µr̄k ¯̀µ

j
r̄i .

Therefore

Ωk ¯̀ij̄ = −µr¯̀iµ
r̄
kj̄ + µīkr̄µ

j
¯̀r

+ µrk ¯̀µ
ī
rj̄ − µ

r̄
k ¯̀µ

j
r̄i

and the second Chern-Ricci curvature S takes the form

Sij̄ = −µrk̄iµ
r̄
kj̄ + µīkr̄µ

j

k̄r
+ µrkk̄µ

ī
rj̄ − µ

r̄
kk̄µ

j
r̄i .

Moreover, since Tij := ∇ZiZj −∇ZjZi − µ(Zi, Zj), we have

T kij = −µj̄
ik̄

+ µījk̄ − µ
k
ij
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and so

Tijm̄ = −µj̄im̄ + µījm̄ − µmij .

Therefore, by means of (2.2), it follows that the components of the Qi-tensors are

given by

Q1
ij̄ =Tikr̄Tj̄k̄r =

(
−µk̄ir̄ + µīkr̄ − µrik

)(
−µkj̄r + µj

k̄r
− µr̄j̄k̄

)
=µk̄ir̄µ

k
j̄r − µ

k̄
ir̄µ

j

k̄r
+ µk̄ir̄µ

r̄
j̄k̄ − µ

ī
kr̄µ

k
j̄r + µīkr̄µ

j

k̄r
− µīkr̄µr̄j̄k̄ + µrikµ

k
j̄r − µ

r
ikµ

j

k̄r
+ µrikµ

r̄
j̄k̄ ,

Q2
ij̄ =Tk̄r̄iTkrj̄ =

(
−µrk̄i + µkr̄i − µīk̄r̄

)(
−µr̄kj̄ + µk̄rj̄ − µ

j
kr

)
=µrk̄iµ

r̄
kj̄ − µ

r
k̄iµ

k̄
rj̄ + µrk̄iµ

j
kr − µ

k
r̄iµ

r̄
kj̄ + µkr̄iµ

k̄
rj̄ − µ

k
r̄iµ

j
kr + µīk̄r̄µ

r̄
kj̄ − µ

ī
k̄r̄µ

k̄
rj̄ + µīk̄r̄µ

j
kr ,

Q3
ij̄ = Tikk̄Tj̄r̄r =

(
−µk̄ik̄ + µīkk̄ − µ

k
ik

)(
−µrj̄r + µjr̄r − µr̄j̄r̄

)
= µk̄ik̄µ

r
j̄r − µ

k̄
ik̄µ

j
r̄r + µk̄ik̄µ

r̄
j̄r̄ − µ

ī
kk̄µ

r
j̄r + µīkk̄µ

j
r̄r − µīkk̄µ

r̄
j̄r̄ + µkikµ

r
j̄r − µ

k
ikµ

j
r̄r + µkikµ

r̄
j̄r̄ ,

2Q4
ij̄ =µk̄rk̄µ

j
r̄i − µ

k̄
rk̄µ

r
j̄i + µk̄rk̄µ

ī
r̄j̄ − µ

r̄
kk̄µ

j
r̄i + µr̄kk̄µ

r
j̄i − µ

r̄
kk̄µ

ī
r̄j̄ + µkrkµ

j
r̄i − µ

k
rkµ

r
j̄i + µkrkµ

ī
r̄j̄

+µkr̄kµ
ī
rj̄ − µ

k
r̄kµ

r̄
ij̄ + µkr̄kµ

j
ri − µ

r
k̄kµ

ī
rj̄ + µrk̄kµ

r̄
ij̄ − µ

r
k̄kµ

j
ri + µk̄r̄k̄µ

ī
rj̄ − µ

k̄
r̄k̄µ

r̄
ij̄ + µk̄r̄k̄µ

j
ri .

Since the above formulas are rather hard to handle, further conditions on G have

to be imposed in order to simplify the computations.

Definition 2.4. A complex Lie group is the datum of a complex manifold G admit-

ting the group structure and holomorphic group operations.

A Lie group G is a complex Lie group if and only if its complex structure J is

bi-invariant, i.e.

Jµ(·, ·) = µ(J ·, ·) .

On the other hand, if the bi-invariance of J holds, it follows that

µ(g1,0, g0,1) = 0 , (2.5)

where gC = g1,0 ⊕ g0,1 is the complexification of g.
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Lemma 2.5 ([65]). Let (G, g) be a complex Lie group equipped with a left-invariant

Hermitian metric. The components of HCF tensor, with respect to a left-invariant

g-unitary frame, are given by

Kij̄ = −1

2
µrikµ

r̄
j̄k̄ +

1

4
µīk̄r̄µ

j
kr +

1

2
µkikµ

r̄
j̄r̄ −

1

2

(
µkrkµ

ī
r̄j̄ + µjriµ

k̄
r̄k̄

)
. (2.6)

Proof. The claim directly follows by (2.5) and the previous computations. Indeed,

under our assumptions, we obtain S = 0 and

Q1
ij̄ = µrikµ

r̄
j̄k̄ , Q2

ij̄ = µīk̄r̄µ
j
kr , Q3

ij̄ = µkikµ
r̄
j̄r̄ , Q4

ij̄ =
1

2

(
µkrkµ

ī
r̄j̄ + µjriµ

k̄
r̄k̄

)
.

We now use the above formulas to show how the HCF tensor and the Ricci

curvature tensor are related on complex Lie groups. According to [9, Cor. 7.33], the

Ricci curvature tensor of a left-invariant metric g on a Lie group G can be written

as

Ric = M− 1
2 B− S(adH) ,

where, for any X,Y in g,

M(X,Y ) = −1

2
g(µ(X,Xk), µ(Y,Xk)) +

1

4
g(µ(Xk, Xj), X)g(µ(Xk, Xj), Y ) , (2.7)

{Xr} being an orthonormal basis. Moreover,

B(X,Y ) = tr(adXadY )

denotes the Killing form of g, H is the mean curvature vector, uniquely determined

by the relation

g(H,X) = tr adX , for any X ∈ g ,

and

S(adH)(X,Y ) =
1

2

[
g(µ(H,X), Y ) + g(µ(H,Y ), X)

]
.

Then, we have



2.2. HCF on complex unimodular Lie groups 37

Lemma 2.6 ([65]). Let (G, g) be a complex Lie group equipped with a left-invariant

Hermitian metric. Then, the tensors M and S(adH) are of type (1, 1), while B is of

type (2, 0) + (0, 2). In particular,

Ric1,1 = M− S(adH) , Ric2,0+0,2 = −1

2
B .

Moreover, the HCF tensor is given by

K = Ric1,1 +
1

2
Q3 .

Proof. Let {X1, . . . , X2n} be a J-invariant orthonormal basis of g, where J is the

complex structure of G. We directly compute

M(JX, JY ) = − 1

2
g(µ(JX,Xk), µ(JY,Xk)) +

1

4
g(µ(Xk, Xj), JX)g(µ(Xk, Xj), JY )

= − 1

2
g(Jµ(X,Xk), Jµ(Y,Xk)) +

1

4
g(µ(JXk, Xj), X)g(µ(JXk, Xj), Y )

= − 1

2
g(µ(X,Xk), µ(Y,Xk)) +

1

4
g(µ(Xk, Xj), X)g(µ(Xk, Xj), Y )

= M(X,Y ) ,

for every X,Y ∈ g, and hence M is of type (1, 1) by definition. On the other hand,

since

S(adH)(JX, JY ) =
1

2

[
g(µ(H,JX), JY ) + g(µ(H,JY ), JX)

]
=

1

2

[
g(Jµ(H,X), JY ) + g(Jµ(H,Y ), JX)

]
= S(adH)(X,Y )

and

B(JX, JY ) = tr(adJXadJY ) = tr(J2adXadY ) = −B(X,Y ) ,

the first claim follows.

Let now {Zr} be a g-unitary frame. Then, a direct computation yields

M(Zi, Zj̄) = −1

2
µrikµ

r̄
j̄k̄ +

1

4
µīk̄r̄µ

j
kr,

and

S(adH)(Zi, Zj̄) =
1

2

[
g(µ(H,Zi), Zj̄) + g(µ(H,Zj̄), Zi)

]
=

1

2

(
Hkµ

j
ki +Hk̄µ

ī
k̄j̄

)
.



38 Chapter 2. HCFs on Lie groups

Finally, since

Hk = g(H,Zk̄) = tr adZ̄k = µ
¯̀

k̄ ¯̀ ,

we infer

S(adH)(Zi, Zj̄) =
1

2

(
µ

¯̀

k̄ ¯̀µ
j
ki + µlklµ

ī
k̄j̄

)
and (2.6) implies the second part of the statement.

As direct consequence of Lemma 2.6, we have

Corollary 2.7 ([65]). Let G be a complex semisimple Lie group. Then, the Ricci

tensor of a left-invariant Hermitian metric on G is never of type (1, 1). In particular

G has no left-invariant Hermitian metrics which are also Einstein.

Next we focus on complex unimodular Lie groups.

Definition 2.8. A Lie group G is unimodular if tr adX = 0, for every X ∈ g.

If G is a 2n-dimensional Lie group equipped with a left-invariant Hermitian struc-

ture, the unimodular condition reads in terms of a left-invariant unitary frame as

µrir + µr̄ir̄ = 0 , i = 1, . . . , n .

Moreover, when G is a complex Lie group, the unimodular condition simply reduces

to

µrir = 0 , i = 1, . . . , n . (2.8)

Proposition 2.9 ([65]). Let (G, g) be a complex Lie group equipped with a left-

invariant Hermitian metric. Let sc denote the Riemannian scalar curvature of g.

The following facts are equivalent:

1. sc = k;

2. G is unimodular;

3. K = Ric1,1.

Moreover, if one of these holds, then K = Ric if and only if the Killing form of g

vanishes.
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Proof. By means of Lemma 2.6, it follows

k = trgK = trg Ric1,1 +
1

2
trg Q

3 = sc +
1

2
trg Q

3 .

On the other hand, since

trg Q
3 = µkikµ

r̄
īr̄ ,

we have

Q3 = 0 ⇐⇒ trg Q
3 = 0

and the equivalences follow.

Finally, let (G, g) be a complex unimodular Lie group equipped with a left-

invariant Hermitian metric. Then, by means of (2.6) and (2.8), the HCF tensor

reduces to

Kij̄ = −1

2
µrikµ

r̄
j̄k̄ +

1

4
µīk̄r̄µ

j
kr , (2.9)

with respect to a left-invariant g-unitary frame, and we have the following

Corollary 2.10 ([65]). Let G be a complex unimodular Lie group equipped with a

left-invariant Hermitian metric g0. Then, the HCF starting at g0 reduces to

d

dt
gt = −M(gt) , g|t=0 = g0 , (2.10)

where M is defined via (2.7). We will refer to (2.10) as to the M-flow.

Proof. This immediately follows from Proposition 2.9 and Lemma 2.6, since on uni-

modular Lie groups we have H = 0.

We mention that a similar result holds for the Ricci flow on nilpotent Lie groups

(see [70]). Consequently, the M-flow models both the HCF on complex unimodular

Lie groups and the Ricci flow on simply-connected nilpotent Lie groups.
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2.2.2 The long-time behaviour of the HCF

Now we focus on the long-time behaviour of the HCF on complex Lie groups. We

show that under the unimodular assumption any left-invariant solution to the HCF

is immortal. Moreover, such solutions always converge to a non-flat algebraic soliton

to the HCF, once they are suitable normalized.

Our main results is the following

Theorem 2.11 ([65]). For a complex unimodular Lie group G, the maximal solution

gt to the HCF (2.1) starting from a left-invariant Hermitian metric satisfies

d

dt
gt = −Ric1,1(gt) ,

where Ric(gt) is the Ricci tensor. The family of left-invariant Hermitian metrics gt

is defined for all t ∈ (−ε,∞) for some ε > 0, and (1 + t)−1gt subconverges as t→∞
to a non-flat algebraic HCF-soliton (Ḡ, ḡ), in the Cheeger-Gromov topology.

By definition, (G, gt) converges to (Ḡ, ḡ) in the Cheeger-Gromov topology if there

exists a family of biholomorphisms ϕt : Ωt ⊂ Ḡ→ ϕt(Ωt) ⊂ G mapping the identity

of Ḡ into the identity of G, such that the open sets {Ωt} exhaust Ḡ, and in addition

ϕ∗t gt → ḡ as t→∞, in the C∞-topology uniformly over compact subsets.

The limit space Ḡ in Theorem 2.11 might not be diffeomorphic to G. Nonetheless,

by the assumptions on the starting group G, we have that the Lie group Ḡ has to

be complex and unimodular.

Remark 2.12. The assumption on G to be unimodular cannot generally be dropped

in Theorem 2.11. In fact, when G is non-unimodular, the solutions to the HCF may

develop finite time singularities (see Proposition 2.30).

As direct consequence of Theorem 2.11, we get

Corollary 2.13 ([65]). Let (M, g0) be a compact Hermitian manifold and let gt be

the maximal solution to the HFC starting at g0. Assume that the holonomy group of

the Chern connection of g0 is trivial. Then, the holonomy of the Chern connection

of gt is trivial for any t, gt is immortal and satisfies

∂tgt = −Ric1,1(gt) .
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Proof. A compact complex manifold admits a Hermitian metric g0 with trivial Chern

holonomy if and only if it is the compact quotient of a complex unimodular Lie group

G by a lattice Γ and g0 lifts to a left-invariant metric ĝ0 on G (see [13]).

Let ĝt be the left-invariant HCF solution on G starting at ĝ0. Then, by Theorem

2.11, ĝt is defined for all t ∈ (−ε,∞) for some ε > 0. Moreover, ĝt is still invariant

under the action of Γ ≤ G, and thus induces a HCF solution on M = Γ\G which by

uniqueness coincides with gt, concluding the proof.

Remark 2.14. Before to prove Theorem 2.11, we need to recall some fundamental

results from real geometric invariant theory. Once that is done, Theorem 2.11 will

follow by more a general discussion on the long-time behaviour of the M-flow (2.10)

on Lie groups (see Theorem 2.20).

GIT on Lie groups

In view of Proposition 2.10, the tensor M have a central role in the study of the HCF

on complex Lie groups. Therefore, we now recall some remarkable properties of M

which follow by the real geometric invariant theory (or shortly GIT). We refer the

reader to [83] for a more detailed exposition on this topic (see also [11]).

Let (G, g) be a n-dimensional Lie group equipped with a left-invariant metric,

and let µ0 be the Lie bracket of the Lie algebra g of G. Moreover, let us denote

by M the tensor induced by (g, µ0) via (2.7), and by Mg : g → g the associated

endomorphism

g(Mg·, ·) = M(·, ·) .

Then, since the Lie bracket µ0 is an element of the variety of Lie algebras

Ln =
{
µ ∈ Λ2g∗ ⊗ g : µ satisfies the Jacobi identity

}
(see Remark 1.41), we can define a new map

Ln → End(g) , µ 7→ Mµ ,

which satisfies

Mµ0 = Mg . (2.11)
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Remark 2.15. The Lie group GLn(R) acts canonically on Λ2g∗ ⊗ g via

A · µ(·, ·) := Aµ(A−1·, A−1·)

and its Lie algebra representation

π : gln(R)→ End(Λ2g∗ ⊗ g)

is given by

π(A)µ = Aµ(·, ·)− µ(A·, ·)− µ(·, A·) . (2.12)

Therefore, by definition

D ∈ Der(g) ⇐⇒ π(D)µ = 0 . (2.13)

We are now in a position to state a remarkable property of the tensor M, firstly

observed by Lauret in [67] for the case of the complexified representation of Gln(C),

and then extended to the real setting in [68]. This result will be fundamental in the

study of the long-time behaviour of the M-flow.

Proposition 2.16 ([68]). The map

Λ2g∗ ⊗ g \ {0} → End(g) , µ 7→ 4

‖µ‖2
Mµ ,

is a moment map for the linear Gln(R)-action on Λ2g∗ ⊗ g, in the sense of GIT.

That is

〈Mµ, E〉 =
1

4
〈π(E)µ, µ〉 , (2.14)

for any E ∈ End(g) and µ ∈ Λ2g∗ ⊗ g \ {0}.

Here, the scalar products 〈·, ·〉 are the ones induced by g. Specifically, for any

A,B ∈ End(g) we can define

〈A,B〉 := trAB∗ ,

where the transpose B∗ is taken with respect to g; while, for any γ1,2 ∈ Λ2g∗ ⊗ g

〈γ1, γ2〉 :=
∑
〈γ1(ei, ej), γ2(ei, ej)〉 ,

where {ei} is a g0-orthonormal basis of g.
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Proof of Proposition 2.16. Let {er} be a g0-orthonormal basis for g. Since the state-

ment to prove is linear in E, we may assume without loss of generality that E = Eij ,

where Eij denotes the zero matrix with 1 in the ij-entry. Moreover, let us denote by

µkrs the structure coefficients of a bracket µ with respect to {er}. Then, the left-hand

side of (2.14) equals to

g0(Mµej , ei) = g(A−1AMgA
−1ej , A

−1ei) = g(Mg ẽj , ẽi) = M(g)(ẽi, ẽj),

where ẽr := A−1er is a g-orthonormal basis for g. By (2.7), using Xr = ẽr, we have

M(g)(ẽi, ẽj) = −1

2
g(µ0(ẽi, ẽr), µ0(ẽj , ẽr)) +

1

4
g(µ0(ẽr, ẽs), ẽi) g(µ0(ẽr, ẽs), ẽj)

= −1

2
g0(µ(ei, er), µ(ej , er)) +

1

4
g0(µ(er, es), ei) g0(µ(er, es), ej)

= −1

2
µkirµ

k
jr +

1

4
µirsµ

j
rs.

On the other hand, the right-hand side equals

1

4
g0

(
(π(E)µ)(er, es), ek

)
g0

(
µ(er, es), ek

)
=

1

4
g0

(
Eµ(er, es), ek

)
g0

(
µ(er, es), ek

)
− 1

4
g0

(
µ(Eer, es), ek

)
g0

(
µ(er, es), ek

)
− 1

4
g0

(
µ(er, Ees), ek

)
g0

(
µ(er, es), ek

)
=

1

4

(
µjrsµ

i
rs − µkisµkjs − µkriµkrj

)
,

which, by the skew-symmetry of µ, coincides with the formula for 〈Mµ, E〉 obtained

above.

Next, we recall a stratification result involving Λ2g∗⊗g proved by Lauret in [69].

Let us fix a basis in g and denote by µkij the components of any element µ ∈ Λ2g∗⊗g.

Moreover, let

N := {µ ∈ Ln : µ is nilpotent}

be the variety of nilpotent Lie algebras,

t+ := {β = diag(a1, . . . , an) ∈ t : a1 ≤ . . . ≤ an}

and αkij := Ekk−Eii−Ejj , where Eij is the zero matrix with 1 in the ij-entry. Here,

t denotes the maximal torus algebra in gln(R) given by the n× n diagonal matrices.
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Theorem 2.17 ([69]). There exists a finite subset B ⊂ t+ such that every β ∈ B
satisfies trβ = −1 and

Λ2g∗ ⊗ g\{0} =
⋃
β∈B

Sβ (disjoint union) ,

where {Sβ}β∈B is a family of GLn(R)-invariant subsets of V. Given µ ∈ Sβ, we have

β + ‖β‖2Id is positive definite for all β ∈ B such that Sβ ∩N 6= ∅ , (2.15)

〈[β,D], D〉 ≥ 0 , for all D ∈ Der(µ) (equality holds ⇔ [β,D] = 0), (2.16)

and

‖β‖ ≤ 4

‖µ‖2
‖Mµ‖ . (2.17)

Moreover, if µ ∈ Sβ satisfies

min{〈β, αkij〉 : µkij 6= 0} = ‖β‖2 , (2.18)

then

〈π(β + ‖β‖2Id)µ, µ〉 ≥ 0 (2.19)

and

trβD = 0, for all D ∈ Der(µ) . (2.20)

The equality in (2.19) holds if and only if β + ‖β‖2Id ∈ Der(µ).

Remark 2.18. The condition (2.18) is always satisfied by some element in the O(n)-

orbit of µ. If condition (2.18) is satisfied and µ ∈ Sβ, then

β = mcc{αkij : µkij 6= 0} .

Here with mcc(X) we mean the unique element of minimal norm in the convex hull

CH(X) of a subset X ⊂ t (see [69]).
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The long-time behaviour of the M-flow

Let (G, g) be a Lie group equipped with a left-invariant metric and g its Lie algebra.

The metric g is said to be a semi-algebraic M-soliton if its M tensor satisfies

M(g) = c g(·, ·) +
1

2

[
g(D·, ·) + g(·, D·)

]
, (2.21)

for some c ∈ R and D ∈ Der(g). If further D is g-symmetric, i.e.

M(g) = c g(·, ·) + g(D·, ·) , (2.22)

the soliton is called algebraic.

Remark 2.19. In view of Subsection 1.3.1, every semi-algebraic M-soliton is in one-

to-one correspondence with a self-similar solution gt := (1 − c t)ϕ∗t g to the M-flow,

where ϕt ∈ Aut(G) is the unique authomorphism such that dϕt|e = e−tD/2 (see

Proposition 1.32).

Theorem 2.20 ([65]). Let G be a Lie group with Lie algebra g. Then, for any initial

left-invariant metric g0 the solution to

d

dt
gt = −M(gt) , g|t=0 = g0 ,

exists for all t ∈ [0,∞), and the rescaled metrics (1 + t)−1gt subconverge as t→∞to

a non-flat algebraic M-soliton (Ḡ, ḡ), in the Cheeger-Gromov topology.

Proof. Let µ(t) be the maximal solution to the bracket flow (1.23), with Pµ(t) = Mµ(t).

By the equivalence of the bracket flow and the original flow, it suffices to prove that

µ(t) is defined for all t ∈ [0,∞). By looking at how the norm of µ(t) evolves, we see

that
d

dt
‖µ‖2 = 2 〈 ddtµ, µ〉 = −2 〈π(Mµ)µ, µ〉 = −8 ‖Mµ‖2 ≤ 0 ,

where in the last equality we used Proposition 2.16. Then, by means of Theorem

1.42, the solution µ(t) is defined for all positive times.

The proof of the last part of the statement will follow from three claims. The

first one is that the norm-normalized bracket flow µ(t)/‖µ(t)‖ converges to a soliton
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bracket µ̄. The second one is that ‖µ(t)‖ ∼ t−1/2, thus up to a constant the metrics

corresponding to the normalized brackets µ(t)/‖µ(t)‖ are asymptotic to the family

(1 + t)−1gt (since scaling the metric by a factor c > 0 is equivalent to scaling the

corresponding bracket by c−1/2 [73, §2.1]). The third claim is that convergence of

the brackets yields subconvergence in the Cheeger-Gromov topology for the corre-

sponding family of left-invariant metrics.

In order to prove the first claim, we recall that by [6, Lemma 2.5], after a time

reparameterization, the normalized solution ν(t) := µ(t)/‖µ(t)‖ solves the so called

normalized bracket flow equation

d

dt
ν = −π(Mν + rν Idg)ν, (2.23)

where rν := 〈π(Mν)ν, ν〉 = 4 ‖Mν‖2 by Proposition 2.16. On the other hand, by

means of [11, Lemma 7.2], this last flow is (up to a constant and a time rescaling)

the negative gradient flow of the real-analytic functional

F : Λ2g∗ ⊗ g \ {0} → R, ν 7→ ‖Mν‖2

‖ν‖4

(see also [6, Cor. 3.5] and [70]). Then, the family of unit norm brackets {ν(t)}t∈[0,∞)

must have an accumulation point ν̄ by compactness. Now  Lojasiewicz’s theorem on

real-analytic gradient flows [79] implies that ν(t)→ ν̄ as t→∞, and in particular ν̄

is a fixed point of (2.23), that is

π(Mν̄ + rν̄ Idg)ν̄ = 0 .

This directly implies that the corresponding metric is an algebraic M-soliton (see

Remark 2.15).

Finally, the second claim is proved in the second paragraph of the proof of [6,

Thm. A], and the last claim is a consequence of Theorem 1.46. Thus, the theorem

follows.

Proof of Theorem 2.11. The theorem directly follows by Lemma 2.6 and Theorem

2.20.
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2.2.3 Solitons to the HCF

We already emphasized the relevance of static and soliton solutions in geometric

flows theory (see Subsection 1.2.4). In the following, we investigate their existence

and uniqueness in the HCF setting.

Our main results is

Theorem 2.21 ([65]). A complex unimodular Lie group G has at most one semi-

algebraic soliton to the HCF up to homotheties. Moreover, G has a static left-

invariant metric if and only if it is semisimple, and in this case the ‘canonical met-

rics’ (in the sense of Definition 2.25) induced by the Killing form of g are static with

c < 0.

Actually, Theorem 2.21 can be improved by means of

Proposition 2.22 ([65]). Any semi-algebraic soliton to the HCF on a non-abelian

complex unimodular Lie group is expanding and algebraic.

These two statements will follow by more general results involving the M-flow, in

the same fashion as Theorem 2.11.

Soliton to the M-flow

Let (G, g) be a Lie group equipped with a left-invariant metric and let (g, µ) be its

Lie algebra. Then, we have

Proposition 2.23 ([65]). If G is non-abelian, then every semi-algebraic M-soliton

is expanding (i.e. c < 0) and algebraic.

Proof. Let g be a left-invariant metric satisfying the semi-algebraic soliton condition

(2.21). By means of Proposition 2.16 and (2.11), it follows

tr MgE =
1

4
〈π(E)µ, µ〉 , for all E ∈ End(g) . (2.24)

Moreover, let us consider E := [D,D∗]. Then, since π is a Lie algebra morphism,

π(E∗) = π(E)∗ and π(D)µ = 0 holds by (2.13), we have

4 tr Mg[D,D
∗] = 〈π

(
[D,D∗]

)
µ, µ〉 = 〈

[
π(D), π(D∗)

]
µ, µ〉 =

∥∥π(D∗)µ
∥∥2
.
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On the other hand, g is a semi-algebraic soliton if and only if

Mg = c Idg +D +D∗ , (2.25)

where the transpose D∗ is taken with respect to g. Now, substituting (2.25) in the

above equation we obtain∥∥π(D∗)µ
∥∥2

= 4 c tr[D,D∗] + 4 trD[D,D∗] + 4 trD∗ [D,D∗] = 0 .

This in turn implies that D∗ is a derivation of g and hence g is algebraic.

Finally, to show that c < 0 we first assume that D = 0. In such a case (2.22) and

(2.24) directly imply

n c = tr Mg =
1

4
〈π(Id)µ, µ〉 = −1

4
‖µ‖2 < 0 ,

since π(Id)µ = −µ. On the contrary, let us suppose D 6= 0. Then

c trD + trD2 = tr MgD =
1

4
〈π(D)µ, µ〉 = 0 . (2.26)

Using that trD2 = trDD∗ > 0, the claim will follow once we show that trD > 0.

To that end, notice that by tracing (2.22) we obtain

c = − 1

n

(1

4
‖µ‖2 + trD

)
,

and substituing this into (2.26) yields

trD2 − 1

n
(trD)2 =

1

4n
‖µ‖2 trD .

Finally, the left-hand-side is non-negative by Cauchy-Schwarz, with equality if and

only if D = k Id, for some k 6= 0. Nonetheless, since D is a derivation and g is

non-abelian, we cannot have equality and hence trD > 0.

To characterize the Lie groups admitting static metrics to the M-flow we need

the following lemma due to Dotti.

Lemma 2.24 ([27]). Let i ⊂ g be an abelian ideal. Then,

trg M(g)|i×i ≥ 0 .

In particular, if G admits a left-invariant metric g with M(g) < 0, then G is semisim-

ple.
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Proof. Let {Wi} be an orthonormal basis of i and extend it to an orthonormal basis

{Wi} ∪ {Yj} of g. Since µ(g, i) ⊂ i, µ(i, i) = 0, formula (2.7) for X = Y = W ∈ i can

be written as

M(W,W ) = −1

2
g(µ(W,Yj), Zi)g(µ(W,Yj),Wi) +

1

2
g(µ(Wi, Yj),W )g(µ(Wi, Yj),W )

+
1

4
g(µ(Yj , Yk),W )g(µ(Yj , Yk),W ) .

Summing as W ranges through the basis {Wi} we get

trg M(g)|i×i = M(Wi,Wi) =
1

4
g(µ(Yj , Yk),Wi)g(µ(Yj , Yk),Wi) ≥ 0 .

Finally, the last claim follows from the fact that a Lie algebra is semisimple if and

only if it has no abelian ideals.

We now introduce the notion of ‘canonical metric’ of a semisimple Lie algebra.

Any semisimple Lie algebra g admits a Cartan decomposition g = k⊕ p, i.e. a vector

space decomposition such that

[k, k] ⊂ k , [k, p] ⊂ p , [p, p] ⊂ k .

Then, with respect to such a decomposition, the Killing form B of g is negative

definite on k, positive definite on p and B(k, p) = 0. Therefore, by switching the sign

of B on k we obtain an inner product on g.

Definition 2.25. A left-invariant metric on a semisimple Lie group G is a canonical

metric if it induces on g the above defined inner product.

The construction described above depends of course on the choice of Cartan

decomposition, but since any two Cartan decompositions differ only by an auto-

morphism (see e.g. [61]), any two canonical metrics 〈·, ·〉 and 〈·, ·〉′ on g are related

by

〈·, ·〉 = 〈ϕ ·, ϕ ·〉′, ϕ ∈ Aut(g) .

Thus, the left-invariant metrics induced on G by two such inner products on g are

isometric and hence any semisimple Lie group admits a canonical metric, which is

unique up to isometry.
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In the particular case of a complex semisimple Lie algebra g, a Cartan decompo-

sition is obtained by considering a compact real form gR and setting k = gR, p = igR

(see [61, Thm. 6.11]). Recall that gR is a real form of g if

g = gR ⊕ i gR

and the Lie bracket of g is the C-linear extension of the Lie bracket of gR. The

compact real Lie algebra gR is also semisimple and its Killing form BgR is negative

definite. Clearly, the Killing form Bg of g is negative definite on gR, positive definite

on i gR, and Bg(gR, igR) = 0. By switching the sign on gR we thus obtain a positive

definite inner product on g.

Theorem 2.26 ([51, 66]). Up to homotheties, there exists at most one left-invariant

metric g on G satisfying the algebraic M-soliton equation

M(g) = c g(·, ·) + g(D·, ·) , c ∈ R, D ∈ Der(g) .

Moreover, if G is not abelian, the Einstein-type equation

M(g) = c g , c ∈ R

has a solution if and only if G is semisimple, and in this case c < 0 and a solution

is given by the ‘canonical metric’ induced by the Killing form of g.

Proof. Let us fix g as background metric. Then, the algebraic soliton equation is

equivalent to

Mµ = c Idg +D, D ∈ Der(g) .

From the proof of Theorem 2.20 it follows that µ is an algebraic M-soliton if and

only if it is a critical point of the functional F (µ) = ‖Mµ‖2/‖µ‖4 (cf. also [67, Prop.

3.2]). Critical points for the norm of the moment map have been extensively studied

in GIT, and they enjoy a number of nice properties which are analogous to those

satisfied by minimal vectors (i.e. the zeroes of the moment map). In particular, by

the uniqueness result [11, Cor. 9.4] two critical points in a fixed orbit Gl(g) · µ must

lie in fact in the same O(g)-orbit. Since brackets in the same O(g)-orbit correspond

to isometric left-invariant metrics on G, this finishes the proof of the first claim.
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Regarding the second claim, for the canonical metric g on a semisimple Lie algebra

with Cartan decomposition g = k ⊕ p we have that adX is skew-symetric for X ∈ k

and symmetric for X ∈ p. Thus, if {Xk} is an orthonormal basis for g which is the

union of basis for k and p, then for X ∈ k by (2.7) we have

M(g)(X,X) = −1

2
g(µ(X,Xk), µ(X,Xk)) +

1

4
g(µ(Xj , Xk), X)g(µ(Xj , Xk), X)

= −1

2
tr adXad∗X +

1

4
g(Xk, µ(Xj , X))g(Xk, µ(Xj , X))

= −1

4
tr adXad∗X =

1

4
B(X,X) = −1

4
g(X,X),

and analogously for X ∈ p, and hence M(g) = −1
4g.

Conversely, if G non-abelian and admits a metric satisfying M(g) = c g, then

trg M(g) = −1

4
‖µ‖2 ≤ 0 ,

which in turn implies c < 0. Finally, since M(g) < 0 and Lemma 2.24 holds, the

group G is semisimple.

Now, Theorem 2.21 directly follows by Theorem 2.26, while Proposition 2.22 is

an immediate consequences of Proposition 2.23.

2.2.4 The HCF on complex 3-dimensional Lie groups

We now investigate the HCF on complex 3-dimensional Lie groups. In particular,

we show how the above stated results adapt to these Lie groups. We also exhibit an

example of shrinking algebraic soliton in the non-unimodular case.

In complex dimension 3 there exist three non-abelian unimodular simply-connected

complex Lie groups (see e.g. [86]), namely: SL(2,C), H3(C) and S3,−1.

• SL(2,C)

This is a simple Lie group and admits a left-invariant (1, 0)-frame {Z1, Z2, Z3} such

that

µ(Z1, Z2) = Z3 , µ(Z1, Z3) = −Z2 , µ(Z2, Z3) = Z1 .
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In matrix notation we can consider the frame {Z1, Z2, Z3}

Z1 =
1

2

(
0 i

i 0

)
, Z2 =

1

2

(
0 1

−1 0

)
, Z3 =

1

2

(
−i 0

0 i

)
.

According to Theorem 2.21, a direct computation yields that the “standard” metric

gstd = ζ1 � ζ̄1 + ζ2 � ζ̄2 + ζ3 � ζ̄3 ,

is static with c = −3
2 . Here {ζk} denotes the dual frame to {Zk}.

Let us now consider a left-invariant diagonal metric

g = a ζ1 � ζ̄1 + b ζ2 � ζ̄2 + c ζ3 � ζ̄3 , a, b, c > 0 ,

and its HCF tensor

K(g) = −−a
2 + b2 + c2

2bc
ζ1 � ζ̄1 − a2 − b2 + c2

2ac
ζ2 � ζ̄2 − a2 + b2 − c2

2ab
ζ3 � ζ̄3 .

Then, the HCF on SL(2,C) starting from the diagonal metric

g0 = a0 ζ
1 � ζ̄1 + b0 ζ

2 � ζ̄2 + c0 ζ
3 � ζ̄3

is governed by the following ODEs system

ȧ =
−a2 + b2 + c2

2bc
, ḃ =

a2 − b2 + c2

2ac
, ċ =

a2 + b2 − c2

2ab
,

a(0) = a0 , b(0) = b0 , c(0) = c0 ,

which admits an explicit solution. Indeed, from the system equations it follows

ȧ

a
+
ḃ

b
=

c

ab
,

ȧ

a
+
ċ

c
=

b

ac
,

ḃ

b
+
ċ

c
=

a

bc
,

which implies

˙(ab) = c , ˙(ac) = b , ˙(bc) = a . (2.27)

Then, by substituting the last equation in the first two, we get

˙(bc)b =

∫
c dt and ˙(bc)c =

∫
b dt ,
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and

˙(bc)b = γ , ˙(bc)c = β ,

where β and γ are primitives of b and c, respectively. This in turn implies

b

c
=
γ

β
,

i.e. ββ̇ = γγ̇, and hence ˙(β2) = ˙(γ2). By arguing in the same way, we have

˙(α2) = ˙(β2) = ˙(γ2) ,

where α is a primitive of a, which implies

aα = bβ = cγ.

On the other hand, from (2.27) it follows

ab− a0b0 = γ , ac− a0c0 = β , bc− b0c0 = α ,

and

abc− a0b0c = γc , abc− a0c0b = βb , abc− b0c0a = αa .

Finally, keeping in mind that aα = bβ = cγ, we have

a

a0
=

b

b0
=

c

c0
.

Therefore, the ODEs system simplifies to

ȧ = −1

2

a2
0

b0c0
+

1

2

b0
c0

+
1

2

c0

b0
=: A0 ,

ḃ =
1

2

a0

c0
− 1

2

b20
a0c0

+
1

2

c0

a0
=: B0 ,

ċ =
1

2

a0

b0
+

1

2

b0
a0
− 1

2

c2
0

a0b0
=: C0 ,

and its solution is given by

a(t) = A0 · t+ a0 , b(t) = B0 · t+ b0 , c(t) = C0 · t+ c0 .
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• H3(C)

This Lie group, also known as complex Heisenberg Lie group, is a 2-step nilpotent

Lie group defined by

H3(C) =
{[

1 z1 z3
0 1 z2
0 0 1

]
: z1, z2, z3 ∈ C

}
.

The group admits a left-invariant (1, 0)-frame {Z1, Z2, Z3} such that

µ = ζ1 ∧ ζ2 ⊗ Z3 + ζ̄1 ∧ ζ̄2 ⊗ Z̄3 , (2.28)

where {ζ1, ζ2, ζ3} denotes the dual frame of {Z1, Z2, Z3} and µ is the Lie bracket on

h3(C).

Proposition 2.27 ([65]). Any left-invariant Hermitian metric on H3(C) is a soliton

to the HCF.

Proof. Let g be a left-invariant Hermitian metric onH3(C). Moreover, let {W1,W2,W3}
be a unitary frame of g such that

W1 ∈ 〈Z1, Z2, Z3〉 , W2 ∈ 〈Z2, Z3〉 , W3 ∈ 〈Z3〉 ,

where {Z1, Z2, Z3} is the left-invariant (1, 0)-frame of (2.28). With respect to this

new frame µ can be written as

µ = aα1 ∧ α2 ⊗W3 + ā ᾱ1 ∧ ᾱ2 ⊗ W̄3 , a ∈ C\{0} ,

and hence, by means of (2.9), it follows

K = −1

2
|a|2α1 ⊗ ᾱ1 − 1

2
|a|2α2 ⊗ ᾱ2 +

1

2
|a|2α3 ⊗ ᾱ3 ,

where {αk} denotes the dual frame to {Wk}. On the other hand, let

D := diag(λ1, λ2, λ3)

be a diagonal automorphism of h3(C). Then, for any X = xiWi and Y = ykWk in

h3(C), we have

Dµ(X,Y )− µ(DX,Y )− µ(X,DY ) = a (λ3 − λ1 − λ2) (x1y2 − x2y1)W3 ,
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and D is a derivation if and only if

λ3 = λ1 + λ2 .

Therefore, given

c := −3

2
|a|2 ,

K − c Id is a derivation of h3(C) and the claim follows.

• S3,−1

This is a 2-step solvable Lie group whose Lie bracket can be written in terms of a

suitable (1, 0)-frame {Z1, Z2, Z3} as

µ = ζ1 ∧ ζ2 ⊗ Z2 − ζ1 ∧ ζ3 ⊗ Z3 + ζ̄1 ∧ ζ̄2 ⊗ Z̄2 − ζ̄1 ∧ ζ̄3 ⊗ Z̄3 . (2.29)

Proposition 2.28 ([65]). A left-invariant Hermitian metric g on S3,−1 is an alge-

braic HCF-soliton if and only if g(Z2, Z̄3) = 0.

Proof. Let {W1,W2,W3} be a g-unitary frame of s3,−1 such that

W1 ∈ 〈Z1, Z2, Z3〉 , W2 ∈ 〈Z2, Z3〉 , W3 ∈ 〈Z3〉 .

With respect to this new frame, we have

µ(W1,W2) = sW2 + aW3 , µ(W1,W3) = −sW3 , µ(W2,W3) = 0 , (2.30)

for some s, a ∈ C with s 6= 0, and the matrix associated to K(g) is given by

Kg =
1

2


−|a|2 − 2|s|2 2as̄ 0

2ās −|a|2 0

0 0 |a|2

 . (2.31)

Now, let D be a derivation of the Lie algebra such that

Kg = c Id +D , D∗ = D . (2.32)

Setting

DWk = DikWi ,
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from the structure equations (2.30) we have that

Dµ(W1,W3)− µ(DW1,W3)− µ(W1, DW3) = 0

if and only if

−sD13W1 − 2sD23W2 + (sD11 − aD23)W3 = 0 .

Since s 6= 0, we deduce

D11 = D13 = D23 = 0 .

Similarly

Dµ(W1,W2)− µ(DW1,W2)− µ(W1, DW2) = sD12W1 + a(D33 −D22)W3 = 0

implies

D12 = 0 .

Therefore, D has to be a diagonal derivation. On the other hand, since (2.31) holds,

D is diagonal ⇐⇒ a = 0 ⇐⇒ g(Z2, Z̄3) = 0 ,

which prove one implication.

Let us now suppose g(Z2, Z̄3) = 0. Then, a = 0 and hence (2.31) reduces to

Kg =


−|s|2 0 0

0 0 0

0 0 0

 = −|s|2 Id +D ,

with D := diag(0, |s|2, |s|2). Finally, since

Dµ(W1,W2)− µ(DW1,W2)− µ(W1, DW2) = 0 ,

D is a derivation and the claim follows.
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A complex non-unimodular example

We now study the HCF on the family of complex Lie groups S3,λ admitting a left-

invariant (1,0)-frame {Z1, Z2, Z3} such that

µ = ζ1 ∧ ζ2 ⊗ Z2 + λ ζ1 ∧ ζ3 ⊗ Z3 + ζ̄1 ∧ ζ̄2 ⊗ Z̄2 + λ̄ ζ̄1 ∧ ζ̄3 ⊗ Z̄3 ,

where λ ∈ C and 0 < |λ| ≤ 1. Here {ζ1, ζ2, ζ3} is the dual frame of {Z1, Z2, Z3}.

Remark 2.29. This is a family of 2-step solvable Lie groups and S3,−1 is its unique

unimodular Lie group.

Proposition 2.30 ([65]). Let λ be a positive real number. Then, any diagonal left-

invariant metric g on S3,λ is a shrinking algebraic soliton to the HCF.

Proof. Let us consider a left-invariant diagonal metric on S3,λ given by

g := a0 ζ
1 � ζ̄1 + b0 ζ

2 � ζ̄2 + c0 ζ
3 � ζ̄3 , a0, b0, c0 > 0 .

By means of (2.6), a direct computation yields that

Kg =


λ 0 0

0 − b0
a0

(1 + λ) 0

0 0 − c0
a0

(λ+ λ2)

 .

On the other hand, arguing in the same way as Proposition 2.28, one can prove that

D := Kg − c I

is a derivation of the Lie algebra s3,λ if and only if D11 = 0. Thus, setting

c := λ

the claim follows.

As direct consequence of this proposition, we get that neither Theorem 2.11 nor

Proposition 2.22 hold in the complex non-unimodular setting.
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2.3 Expanding solitons to the HCF on complex Lie groups

In this section, motivated by Theorem 2.11 and Theorem 2.21, we investigate the

algebraic structure of complex Lie groups admitting expanding semi-algebraic soli-

tons to the HCF. In particular, we show that the Lie algebras of such Lie groups

decompose in the semidirect product of a reductive Lie subalgebra with their nilrad-

icals. It turns out that the restriction of the soliton metric to the nilradical is also

an expanding algebraic HCF-soliton. Finally, we use our results to construct explicit

examples of expanding solitons on 4-dimensional complex Lie groups.

Let (G, g) be a complex Lie group equipped with a left-invariant Hermitian metric

and consider the orthogonal splitting of its Lie algebra g in

g = r⊕ n ,

where n is the nilradical of g. If gn is the pull-back of g to the Lie group N of n, then

we have the following

Theorem 2.31 ([97]). The metric g is an expanding (i.e. c < 0) semi-algebraic

soliton to the HCF if and only if gn is an expanding algebraic soliton to the HCF on

N , r is a reductive Lie subalgebra,
∑

[adri |n, ad∗r̄i |n] = 0 for any unitary basis {ri} of

r, and

K(gr)(X, Ȳ ) = cgr(X, Ȳ ) +
1

2
tr(adX |nad∗Ȳ |n)−

1

2
tr adX · tr adȲ ,

for any X,Y ∈ r, where gr is the pull-back of g to the Lie group of r.

When G is unimodular, the expression of K(gr) in Theorem 2.31 simplifies to

K(gr)(X, Ȳ ) = cgr(X, Ȳ ) +
1

2
tr(adX |nad∗Ȳ |n) .

Moreover, in the solvable case we can improve Theorem 2.31 by giving an explicit

description of gr.

Corollary 2.32 ([97]). Assume G unimodular and solvable. Then, g is an expand-

ing algebraic soliton to the HCF if and only if gn is an expanding algebraic soliton
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to the HCF on N , the Lie group G is standard (i.e. g = r ⊕ n with r abelian),∑
[adri |n, ad∗r̄i |n] = 0 for any unitary basis {ri} of r, and

gr(X, Ȳ ) = − 1

2c
tr(adX |nad∗Ȳ |n) ,

for any X,Y ∈ r.

The proof of Theorem 2.31 is mainly based on GIT, in the same fashion as Lauret

did in [69].

We mention that similar results, concerning the Ricci flow on different homo-

geneous spaces, have been obtained in [64] and [71]. However, as pointed out by

Lafuente and Lauret in [64], for the Ricci flow there exists a limitation given by

Alekseevskii’s conjecture. Indeed, if Alekseevskii’s conjecture were confirmed, then

any Ricci flow expanding algebraic soliton (G/H, g) should be diffeomorphic to an

Euclidean space and thus, accordingly, only solvmanifolds could admit expanding

algebraic solitons to the Ricci flow (see Subsection 1.2.2). Nonetheless, in the HCF

case such a limitation does not exist, since also semisimple complex Lie groups admit

soliton metrics by Theorem 2.21. Thus, we have a wider set of expanding algebraic

solitons for the HCF, with algebraic structures completely classified by Theorem 2.31

in the case of complex Lie groups.

2.3.1 Structure of solitons on Lie groups

Although our goal is to study soliton solutions to the HCF on complex Lie groups,

by means of Lemma 2.6, we can focus on left-invariant solutions gt to the K-flow

∂tgt = −K(gt) , g|t=0 = g0 , (2.33)

on Lie groups, where

K := M− S(adH) + Q̂ (2.34)

and

Q̂(X,Y ) :=
1

2
tr adX · tr adY

(see Subsection 2.1).
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Let (G, g) be a Lie group equipped with a left-invariant metric. Let (g, [·, ·]) be

the Lie algebra of G and 〈·, ·〉 the inner product induced by g on g. Let

g = r⊕ n

be the orthogonal decomposition of g, where n is the nilradical of g, and

λ := [·, ·]|r×r , σ := [·, ·]|r×n , µ := [·, ·]|n×n .

Note that, λ can be further decomposed in λ0 : r × r → r and λ1 : r × r → n.

Moreover, let β in Theorem 2.17 be such that µ ∈ Sβ, and define Eβ ∈ End(g) by

Eβ|r = 0 and Eβ|n = β + ‖β‖2Id ,

where Id is the identity of n. Then, we have the following lemma.

Lemma 2.33 ([64]). Assume that (n, µ) satisfies (2.18). Then,

〈π(Eβ)[·, ·], [·, ·]〉 ≥ 0

and

〈π(Eβ)[·, ·], [·, ·]〉 =〈π(β + ‖β‖2I)µ, µ〉

+
∑
〈(β + ‖β‖2I)[ri, rj ], [ri, rj ]〉

+
∑

2〈[β, adri |n], adri |n〉 ,

with {ri} orthonormal basis of r. Moreover, each term is non-negative.

Henceforth, when confusion cannot occur, we identify the tensor K with its asso-

ciated endomorphism Kg. Also the K-tensor components will be identify with their

associated endomorphisms. In particular, we denote by Mn : n → n the endomor-

phism of n defined by using (2.7) and, when r is a subalgebra of g, we denote by

Mr : r → r the endomorphism of r. The following lemma (whose proof is a direct

computation) will be useful in the sequel.
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Lemma 2.34 ([97]). Assume [r, r] ⊂ r. Then, for any A,B ∈ r and Z,W ∈ n,

〈MZ,W 〉 =〈MnZ,W 〉+
1

2

∑
〈[adri |n, ad∗ri |n]Z,W 〉 ,

〈MA,B〉 =〈MrA,B〉 −
1

2
tr(adA|nad∗B|n) ,

〈MA,W 〉 =− 1

2
tr(adA|nad∗W |n) ,

where {ri} is an orthonormal basis of r.

Remark 2.35. Note that under the assumptions of Lemma 2.34, in matrix notation

we have

Mg =
1

2

[
2Mr − B̃ −B̃
−B̃ 2Mn +

∑
[adri |n, ad∗ri |n]

]
, (2.35)

where B̃ is the operator given by 〈B̃X, Y 〉 = tr(adX |nad∗Y |n), for all X,Y ∈ g, and

the blocks are in terms of g = r⊕ n.

Now, let us assume g to be a semi-algebraic expanding K-soliton, i.e.

Kg = c Id +
1

2
(D +D∗), c < 0 , D ∈ Der(g) ,

where Kg : g→ g denotes the endomorphism given by

g(Kg·, ·) = K(g)(·, ·) .

Moreover, let us set

F := S(adH +D) ,

where S(A) is the symmetrization of A ∈ End(g).

Lemma 2.36 ([97]). We have

c trF + trF 2 = 0 . (2.36)

Proof. Let E := adH +D, then E ∈ Der(g) and

tr(c Id− Q̂+ F )E = tr MgE =
1

4
〈π(E)[ , ], [ , ]〉 = 0 ,
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from (2.14). Since Q̂ is invariant under automorphisms of g, it follows

e−tD̃
∗
Q̂e−tD̃ = Q̂ ,

for any derivation D̃ ∈ Der(g). Differentiating at t = 0, we have D∗Q̂ + Q̂D = 0,

which implies

0 = tr(D∗Q̂+ Q̂D) = 2 tr Q̂D ,

and the claim follows.

Then, we have

Proposition 2.37 ([97]). The orthogonal complement r of the nilradical n is a re-

ductive Lie subalgebra of g and

g = rn n .

Proof. Without loss of generality we can suppose that condition (2.18) holds, since

the claimed condition is preserved by the O(n)-action on (n, µ) (see [64] for more

details).

To prove the statement, we study separately the case when either n is abelian or

not. In the former case, i.e. µ = 0, let E ∈ End(g) be given by E|r = 0 and E|n = Id.

Since trF = trF |n ([64], Lemma 2.6), by (2.14) we have

c n+ trF = tr(c Id− Q̂+ F )E = tr MgE =
1

4
|λ1|2 , (2.37)

where n := dim(n). Clearly, if n = 0 the claim follows. Otherwise, from (2.36) and

(2.37) we have

c n+ trF ≥ 0 and trF 2 ≤ n−1(trF )2 ,

which force λ1 = 0, F |r = 0 and F |n = t Id, for some t ≥ 0.

Now assume n non-abelian and recall that (2.18) holds. Then, in view of Lemma

2.33, we have

〈π(Eβ)[·, ·], [·, ·]〉 =〈π(Eβ)λ0, λ0〉+ 〈π(Eβ)λ1, λ1〉

+ 2〈π(Eβ)σ, σ〉+ 〈π(Eβ)µ, µ〉 ≥ 0 ,
(2.38)
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which implies

c trEβ + trFEβ = tr(c Id− Q̂+ F )Eβ = tr MgEβ ≥ 0 , (2.39)

since (2.14) holds and tr Q̂Eβ = 0. Hence, the following equalities hold (since

trβ = −1):

trE2
β =‖β‖2 trEβ and trFEβ =‖β‖2 trF ,

and using the above formulas we have

trF 2trE2
β ≤ (trFEβ)2(≤ trF 2trE2

β) ,

which in turn implies

F = tEβ , for some t ≥ 0 .

Moreover, since (2.36) and (2.38) hold, we have

c trEβ + trFEβ = 0

and λ1 = 0. Hence, the claim follows.

From the proof of Proposition 2.37 we can easily deduce the following result.

Proposition 2.38 ([97]). Assume µ 6= 0 and satisfying (2.18). Then

(i) [β, adr|n] = 0,

(ii) β + ‖β‖2Id ∈ Der(n),

(iii) F = t Eβ, where t = trF |n
−1+‖β2‖dim n

.

While, for µ = 0 it follows F |r = 0 and F |n = t Id, where t = trF |n
dim n .

Proof. Items (i) and (ii) respectively follow from (2.16) and (2.19), since

〈π(Eβ)[·, ·], [·, ·]〉 = 0 .

The other claims follow directly by the previous proof.
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Remark 2.39. Let a be the center of r. In view of Proposition 2.37, r is a reductive

Lie algebra and consequently it decomposes as

r = h⊕ a ,

with h := λ(r, r) semisimple Lie algebra. Hence, we can write g as

g = (h⊕ a) nθ n ,

where θ(X) := adX |n, for all X ∈ r. However, since a is an abelian subalgebra of g,

we can also write

g = hnθ (anθ n) ,

with θ(X) := adX |a⊕n and θ(X)A = 0 for any X ∈ h and A ∈ a.

With the notations of Proposition 2.37 in mind, we have the following

Lemma 2.40 ([97]). We have

ad∗X |n ∈ Der(n) ,

for any X ∈ r, and ∑
[adri |n, ad∗ri |n] = 0 ,

where {ri} is an orthonormal basis of r.

Proof. If n is abelian, i.e. µ = 0, then the claims trivially follow. Let us assume

µ 6= 0 and satisfying (2.18). It follows from Proposition 2.37 and Proposition 2.38

that F = tEβ for some t ≥ 0. Since trF |2n = trF 2, we have

t = − c

‖β‖2
and F |n = −c Id− c

‖β‖2
β .

Thus, from Lemma 2.34 and K|n = c Id + 1
2(D|n +D∗|n) it follows

Mn +
1

2

∑
[adri |n, ad∗ri |n] +

c

‖β‖2
β = 0 . (2.40)

By tracing the left-hand side of (2.40) and taking into account trβ = −1 we obtain

c = −1

4
‖β‖2‖µ‖2 .
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Moreover, since π is a Lie algebra morphism and π(adX)∗ = π(ad∗X), for all X ∈ g,

we have

tr Mn[adri |n, ad∗ri |n] =
1

4
〈π(adri |n)π(ad∗ri |n)µ, µ〉

=
1

4
〈π(ad∗ri |n)µ, π(adri)

∗|nµ〉

=
1

4
‖π(ad∗ri |n)µ‖

2 ,

(2.41)

for any ri ∈ {ri}, and multiplying (2.40) by Mn

0 =tr M2
n +

1

8

∑
‖π(ad∗ri |n)µ‖

2 +
c

‖β‖2
tr Mnβ

=
1

8

∑
‖π(ad∗ri |n)µ‖

2 +
‖µ‖2

4

(
4

‖µ‖2
‖Mn‖2 − 〈Mn, β〉

)
.

Then, by (2.17) we have

〈Mn, β〉 ≤
4

‖µ‖2
‖Mn‖2

and ∑
‖π(ad∗ri |n)µ‖

2 = 0 ,

which implies ad∗ri |n ∈ Der(n), for all i, and the first claim follows.

To prove the second claim it is enough to observe that Mn and β are orthogonal

to any derivation of n, and applying (2.40)

∑
[adri |n, ad∗ri |n] = 0 .

Remark 2.41. By (2.41), given a metric Lie algebra g,

∑
[adri |n, ad∗ri |n] = 0 , for any orthonormal basis {ri} of r ,

implies

ad∗X |n ∈ Der(n) , for any X ∈ r .



66 Chapter 2. HCFs on Lie groups

2.3.2 Proof of the structural result

The next proposition implies our Theorem 2.31.

Proposition 2.42 ([97]). Let (G, g) be a Lie group equipped with a left-invariant

metric and g its Lie algebra. Let g = r ⊕ n be the orthogonal decomposition of g,

where n is the nilradical of g, and let gn be the pull-back of g to the Lie group N of

n. Then, g is an expanding semi-algebraic K-soliton if and only if

(i) g = rn n, with r reductive Lie subalgebra and n nilradical of g;

(ii) gn is an expanding algebraic K-soliton on N;

(iii)
∑

[adri |n, ad∗ri |n] = 0, where {ri} is an orthonormal basis of r;

(iv) for any X,Y ∈ r

K(gr)(X,Y ) = c gr(X,Y ) +
1

2
tr(adX |nad∗Y |n)−

1

2
tr adX · tr adY ,

where gr is the pull-back of g to the Lie group of r.

Proof. Let (G, g) be an expanding semi-algebraic K-soliton with

Kg = c Id +
1

2
(D +D∗) ,

for some D ∈ Der(g), and denote with B̃ : g→ g the endomorphism defined by

〈B̃X, Y 〉 = tr(adX |nad∗Y |n) .

Items (i) and (iii) follow from Proposition 2.37 and Lemma 2.40, respectively. Item

(iv) follows from Proposition 2.37 and Lemma 2.34, since

M|r + Q̂|r = c Id|r and Mr = M|r +
1

2
B̃|r .

Finally, item (ii) follows from Lemma 2.34 and Lemma 2.40. Indeed,

(c Id + S(D))|n = M|n − S(adH)|n = Mn − S(adH)|n = Kgn − S(adH)|n ,

where Kgn denotes the K-operator of the Lie algebra n. Thus, the claim follows and

it turns out that the derivation associated to gn is given by D1 = S(adH +D)|n.
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Vice versa, suppose that (i)-(iv) hold. Let n = n1 ⊕ . . . ⊕ nr be an orthogonal

decomposition of n such that

[n, n] = n2 ⊕ . . .⊕ nr , [n, [n, n]] = n3 ⊕ . . .⊕ nr

and so on. Since adX |n and ad∗X |n are both derivations by Remark 2.41, we have

adX(ni) ⊂ ni and adZ(ni) ⊂ ni+1, for any X ∈ r and Z ∈ n. Thanks to Lemma 2.34

and (iii), under these assumptions we have

M =

[
Mr − 1

2B̃ 0

0 Mn

]
and K =

[
∗ 0

0 ∗

]
,

where the block representations are with respect to g = r⊕ n.

Now, let D1 be the derivation characterizing gn and D := −adH +
[

0 0
0 D1

]
. Since

r is reductive and (iv) holds, we have

K|r = M|r − S(adH)|r + Q̂|r = Mr −
1

2
B̃|r − S(adH)|r + Q̂|r ,

which implies K|r = c Id− S(adH). Similarly,

K|n = M|n − S(adH)|n = Mn − S(adH)|n

and K|n = c Id + S(−adH +D1), since (ii) holds.

It only remains to show that D ∈ Der(g). To prove the claim it is enough that[
0 0
0 D1

]
∈ Der(g), or equivalently [D1, adX |n] = 0, for any X ∈ r. However, since

Kgn = Mn = c Id + D1 and Mn commutes with any derivation of n whose transpose

is also a derivation (see [64, Rem. 2.5]), the claim follows.

Now, Corollary 2.32 follows since in the solvable case r is abelian and, conse-

quently, K(gr) = 0.

Remark 2.43. When G is unimodular the derivation D := Kg − c Id only acts on the

nilradical n of g, since H = 0 by definition.
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2.3.3 Applications

In this section we use our results to construct explicit examples of expanding algebraic

solitons to the HCF on complex Lie groups.

We work on 4-dimensional solvable (non-nilpotent) complex unimodular Lie al-

gebras, which are classified by the following list (see e.g. [16]):

• s3,−1 ⊕ C, with structure equations

[Z1, Z2] = Z2 , [Z1, Z3] = −Z3 ;

• g1(−2), with structure equations

[Z1, Z2] = Z2 , [Z1, Z3] = Z3 , [Z1, Z4] = −2Z4 ;

• g4, with structure equations

[Z1, Z2] = Z3 , [Z1, Z3] = Z4 , [Z1, Z4] = Z2 ;

• g7, with structure equations

[Z1, Z2] = Z3 , [Z1, Z3] = Z2 , [Z2, Z3] = Z4 ;

• g3(α), with structure equations

[Z1, Z2] = Z3 , [Z1, Z3] = Z4 , [Z1, Z4] = α(Z2 + Z3) , α ∈ C∗ .

We show that in the first four cases (s3,−1 ⊕ C, g1(−2), g4, g7) there exists a

soliton to HCF on the corresponding Lie group, which is unique up to homotheties

by Theorem 2.21. In the last case the existence of a soliton remains an open question.

• s3,−1 ⊕ C

Let g be a Hermitian inner product on s3,−1⊕C. We can find a g-unitary basis {Wi}
such that

W1 ∈ 〈Z1, Z2, Z3, Z4〉 , W2 ∈ 〈Z2, Z3, Z4〉 , W3 ∈ 〈Z3, Z4〉 , W4 ∈ 〈Z4〉 .
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With respect to this new basis, we have

[W1,W2] = pW2 + qW3 + rW4 , [W1,W3] = −pW3 + sW4 ,

for some p, q, r, s ∈ C with p 6= 0, and

s3,−1 ⊕ C = r⊕ n ,

where r = 〈W1〉 and n = 〈W2,W3,W4〉.
Since the nilradical n is an abelian ideal, gn trivially induces an expanding al-

gebraic soliton to the HCF on the Lie group of n. Therefore, by Corollary 2.32, g

induces an expanding algebraic soliton to the HCF on the Lie group of s3,−1 ⊕ C if

and only if

[adW1 |n, ad∗W̄1
|n] = 0 and g(W1, W̄1) = − 1

2c
tr(adW1 |nad∗W̄1

|n) .

It is straightforward to show that the first condition holds if and only if q, r, s = 0;

while, since {Wi} is a g-unitary basis, we have

1 = g(W1, W̄1) = − 1

2c
tr(adW1 |nad∗W̄1

|n) = −|p|
2

c
,

which implies c = −|p|2. Thus in matrix notation, with respect to {Wi}, we have

Kg = −|p|2Id +D ,

where D := diag(0, |p|2, |p|2, |p|2).

Finally, we note that

g(Z2, Z̄3) = g(Z2, Z̄4) = g(Z3, Z̄4) = 0 ⇐⇒ q = r = s = 0 ,

and we have the following result.

Proposition 2.44 ([97]). A Hermitian inner product g on s3,−1 ⊕ C induces an

expanding algebraic soliton to the HCF on the corresponding (simply connected) Lie

group if and only if g(Z2, Z̄3) = g(Z2, Z̄4) = g(Z3, Z̄4) = 0.

Remark 2.45. This result can be viewed as a natural generalization of Proposition

2.28.
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• g1(−2)

Given a Hermitian inner product g on g1(−2), there exists a g-unitary basis satisfying

W1 ∈ 〈Z1, Z2, Z3, Z4〉 , W2 ∈ 〈Z2, Z3, Z4〉 , W3 ∈ 〈Z3, Z4〉 , W4 ∈ 〈Z4〉 .

With respect to this new basis, we have

[W1,W2] = pW2 + qW3 + rW4 , [W1,W3] = sW3 + tW4 , [W1,W4] = uW4 ,

for some p, q, r, s, t, u ∈ C, where p+ s+u = 0 and p, s, u 6= 0. Then, g1(−2) splits in

g1(−2) = r⊕ n ,

where r = 〈W1〉 and n = 〈W2,W3,W4〉, and gn gives rise to an expanding algebraic

soliton to the HCF on the Lie group of n, since n is an abelian ideal.

Now, a direct computation yields that

[adW1 |n, ad∗W̄1
|n] = 0 if and only if q, r, t = 0 ;

while

1 = g(W1, W̄1) = − 1

2c
tr(adW1 |nad∗W̄1

|n) = −|p|
2 + |s|2 + |u|2

2c
,

since {Wi} is a g-unitary basis. Therefore, if q, r, t = 0 and c = −(|p|2 + |s|2 + |u|2)/2,

the assumptions in Corollary 2.32 are satisfied and, in matrix notation with respect

to {Wi}, we have

Kg = c Id +D ,

where D := −diag(0, c, c, c).

Noting that

g(Z2, Z̄3) = g(Z2, Z̄4) = g(Z3, Z̄4) = 0 ⇐⇒ q = r = t = 0 ,

we obtain the following result.

Proposition 2.46 ([97]). A Hermitian inner product g on g1(−2) induces an ex-

panding algebraic soliton to the HCF on the corresponding (simply connected) Lie

group if and only if g(Z2, Z̄3) = g(Z2, Z̄4) = g(Z3, Z̄4) = 0.
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• g4

Let g̃ be a Hermitian inner product on g4 such that Z2, Z3, Z4 are orthogonal to each

other. Let {Wi} be a g̃-unitary basis satisfying

W1 ∈ 〈Z1, Z2, Z3, Z4〉 , W2 ∈ 〈Z2〉 , W3 ∈ 〈Z3〉 , W4 ∈ 〈Z4〉 .

Then, we have

[W1,W2] = pW3 , [W1,W3] = qW4 , [W1,W4] = rW2 ,

and we assume p, q, r ∈ R+\{0}. Hence, g4 splits as

g4 = r⊕ n ,

where r = 〈W1〉 and n = 〈W2,W3,W4〉.
Since n is an abelian ideal, g̃n induces an expanding algebraic soliton to the HCF

on the Lie group of n. Moreover, by Corollary 2.32, g̃ induces an expanding algebraic

soliton to the HCF on the Lie group of g4 if and only if

[adW1 |n, ad∗W̄1
|n] = 0 and 1 = g(W1, W̄1) = − 1

2c
tr(adW1 |nad∗W̄1

|n) .

The first condition is equivalent to require p = q = r, while the second one is satisfied

if and only if c = −3
2p

2. Hence, in matrix notation with respect to {Wi}, we obtain

Kg̃ = −3

2
p2Id +D ,

where D := 3
2diag(0, p2, p2, p2).

Finally, we note that

g̃(Z2, Z̄2) = g̃(Z3, Z̄3) = g̃(Z4, Z̄4) ⇐⇒ p = q = r ,

and we have the following result:

Proposition 2.47 ([97]). A Hermitian inner product on g4 induces an expanding

algebraic soliton to the HCF on the corresponding (simply connected) Lie group if and

only if it is homothetically equivalent to a Hermitian inner product g on g4 satisfying

g(Z2, Z̄2) = g(Z3, Z̄3) = g(Z4, Z̄4) and g(Z2, Z̄3) = g(Z2, Z̄4) = g(Z3, Z̄4) = 0.
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• g7

Let g̃ be the standard Hermitian inner product on g7. Then, g7 splits in

g7 = r⊕ n ,

where r = 〈Z1〉 and n = 〈Z2, Z3, Z4〉 is isomorphic to h3(C), the Lie algebra of the

3-dimensional complex Heisenberg Lie group H3(C).

In view of Proposition 2.27, any left-invariant Hermitian metric on H3(C) is an

expanding soliton to the HCF. Therefore g̃n induces an expanding algebraic soliton

to the HCF on the Lie group of n, and a straightforward computation yields that

[adZ1 |n, ad∗Z̄1
|n] = 0 and tr(adZ1 |nad∗Z̄1

|n) = 2 .

Then, the assumptions in Corollary 2.32 are satisfied if and only if c = −1, and in

such a case we have

Kg̃ = −Id +D ,

where D := diag(0, 1, 1, 1). Hence, we can claim the following

Proposition 2.48 ([97]). A Hermitian inner product on g7 induces an expanding

algebraic soliton to the HCF on the corresponding (simply connected) Lie group if

and only if it is homothetically equivalent to g̃.

2.4 A modified HCF preserving curvature conditions

In [128] Ustinovskiy introduced a new flow in the HCFs family preserving various

curvature conditions (see also [126]). More precisely, Ustinovskiy’s flow evolves a

Hermitian metric via

∂t gt = −S(gt)−
1

2
Q2(gt) , gt|0 = g0 , (2.42)

where S(g) denotes the second Chern-Ricci curvature tensor of g and Q2(g) is the

(1, 1)-tensor defined in (2.2). In the following, we will refer to (2.42) as HCFU and

U(g) := S(g) +
1

2
Q2(g) ,

will denote the HCFU-tensor.
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Theorem 2.49 ([128]). Let (X, g0) be a Hermitian manifold and gt a solution to the

HCFU (2.42). If the Chern curvature Ω(g0) is Griffiths non-negative, i.e.

Ω(g0)(ξ, ξ̄, η, η̄) ≥ 0 , for any ξ, η ∈ T 1,0X ,

then Ω(gt) is Griffiths non-negative for any t in the maximal interval of existence of

the solution.

This result traces the one of Mok, who proved that the Kähler-Ricci flow preserves

the non-negativity of the holomorphic bisectional curvature [82]. Moreover, as an

application of the HCFU results, Ustinovskiy proved the following

Theorem 2.50 ([128]). Let (X, g) be a compact Hermitian manifold of complex

dimension n. Let the Chern curvature Ω(g) be Griffiths non-negative on X and

strictly positive at some point x ∈ X. Then, X is biholomorphic to the projective

space CPn.

2.4.1 The modified HCF on complex 2-step nilmanifolds

We now investigate the behaviour of the HCFU on complex 2-step nilpotent Lie

groups. We mention that, in [127] Ustinovskiy studied the HCFU on complex ho-

mogeneous manifolds for a set of distinguished metrics called submersion metrics,

i.e. right-invariant metrics on the complex Lie group G turning the usual projection

π : G→ G/H into a Hermitian submersion.

Let (G, g) be a complex Lie group equipped with a left-invariant Hermitian met-

ric. Moreover, let g be the Lie algebra of G and µkij the components of the Lie bracket

µ. Then, by means of Subsection 2.2.1, the HCFU-tensor reduces to

Uij̄ =
1

2
µīk̄r̄µ

j
kr , (2.43)

with respect to a left-invariant g-unitary frame {Zi} of G.

As direct consequence of (2.43), we get

Lemma 2.51. Any HCFU-static metric on a non-abelian complex Lie group is

shrinking (i.e. c > 0). Moreover, every ‘canonical metric’ (in the sense of Defi-

nition 2.25) on a complex semisimple Lie group is a static metric to the HCFU.
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Proof. The proof traces the ones of Proposition 2.22 and Theorem 2.21.

From now on, let us assume G to be a complex 2-step nilpotent Lie group. Then,

our main result is the following theorem.

Theorem 2.52 ([98]). Any solution gt to the HCFU (2.42) starting from a left-

invariant Hermitian metric on G is immortal. Moreover, the normalized solution

(1 + t)−1gt subconverges as t → ∞ to a non-flat algebraic HCFU-soliton (Ḡ, ḡ), in

the Cheeger-Gromov topology.

To prove this result we need to better understand the nature of the HCFU-

tensor on complex 2-step nilmanifolds. Let z be the center of (g, µ) and z⊥ be its

g-orthogonal complement. Then, in view of (2.43), it follows

U(g)(X, ·) = 0 , for every X ∈ z⊥ ,

and hence the solution gt to the HCFU starting at g preserves the splitting g = z⊥⊕z,
since

d

dt
gt(X, ·) = 0 , for every X ∈ z⊥ .

Moreover, if Ug denotes the endomorphism of g given by

g(Ug·, ·) = U(g)(·, ·) ,

with respect to the block representation g = z⊥ ⊕ z, we have

Ug =

[
0 0

0 ∗

]
.

Now, let {A(t)} ∈ End(g) be the one-parameter family such that

gt(·, ·) = g(A(t)·, A(t)·)

and

µ(t)(·, ·) := A(t)µ(A(t)−1·, A(t)−1·)

solves the associated bracket flow equation

d

dt
µ(t) = −π(Uµ(t))µ(t) , µ(0) = µ , (2.44)

with Uµ(t) := A(t)UgtA(t)−1. Then, we have the following
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Lemma 2.53. The endomorphisms Uµ satisfies

〈π(Uµ)µ, µ〉 = 2‖Uµ‖2 .

Proof. The claim follows by a straightforward computation.

Let us now denote by

Ln := {γ ∈ Λ2g∗ ⊗ g : γ(γ(·, ·), ·) = 0 and Jγ(·, ·) = γ(J ·, ·)}

the variety of complex 2-step nilpotent Lie algebras (see Remark 1.41). The following

lemma will be fundamental to prove the convergence claim in Theorem 2.52.

Lemma 2.54. The gradient of the real-analytic functional

F : Ln → R , µ 7→ ‖Uµ‖2 ,

is given by ∇F (µ) = 2π(Uµ)µ.

Proof. Let µ, γ ∈ Ln and t ∈ R. Then, a direct computation yields that

d

dt
|t=0F (µ+ tγ) =

1

2

d

dt
|t=0〈π(Uµ+tγ)(µ+ tγ), µ+ tγ〉 = Re

[
γ īr̄p̄µ

j
rpµ

i
sqµ

j̄
s̄q̄

]
.

On the other hand, we have

〈π(Uµ)µ, γ〉 = 〈Uµµ(Zr, Zp), Zī〉〈γ(Zr̄, Zp̄), Zi〉 =
1

2
γ īr̄p̄µ

l
rpµ

l̄
s̄q̄µ

i
sq

and the claim follows.

We are now in a position to prove Theorem 2.52.

Proof of Theorem 2.52. Let gt be the solution to the HCFU (2.42) and µ(t) the so-

lution to the bracket flow (2.44). Then, since Lemma 2.53 holds, we have

d

dt
‖µ‖2 = 2〈 ddtµ, µ〉 = −2〈π(Uµ)µ, µ〉 = −4‖Uµ‖2 ≤ 0 ,

which in turn implies the long-time existence of gt by Theorem 1.42.
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Now, let ν(t) := µ(t)/‖µ(t)‖ be the norm-normalized bracket flow. Then, by [6,

Lemma 2.3], ν(t) solves the normalized bracket flow equation

d

dt
ν(t) = −π(Uν(t) + rν(t) Idn)ν(t) , (2.45)

where rν := 〈π(Uν)ν, ν〉 = 2‖Uν‖2. On the other hand, by means of Lemma 2.54, the

normalized bracket flow is the negative gradient flow (up to a constant and a time

reparameterization) of the real-analytic functional

F̂ : Ln\{0} → R , ν 7→ ‖Uν‖
2

‖ν‖4
.

Thus, since ν(t) exists for all t ≥ 0 and the space of unitary bracket is compact,

there must exist an accumulation point ν̄ of ν(t). Then, by  Lojasiewicz’s theorem

on real-analytical gradient flow, ν(t)→ ν̄ as t→∞ and

π(Uν̄ + rν̄ Idn)ν̄ = 0 ,

i.e. ν̄ is a fixed point of (2.45). This implies that the metric ḡ corresponding to ν̄ is

an algebraic HCFU-soliton (see Remark 2.15). Moreover, since

sc(ḡ) = trUν̄ = −1

2
,

the soliton is non-flat.

Finally, arguing in the same fashion as [6, Thm. A], it is not hard to prove that

‖µ(t)‖ ∼ t−1/2 as t→∞. Then, since scaling the metric by a factor c > 0 is equiva-

lent to scaling the corresponding bracket by c−1/2 (see [73, §2.1]), the subconvergence

of the normalized metric to the soliton follows by Theorem 1.46.

Remark 2.55. The second claim in Lemma 2.51 also follows by [127, Thm. 5.5].

Moreover, in view of [127], any left-invariant solution to the HCFU (2.42) on a com-

plex solvable Lie group is immortal.
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2.4.2 Algebraic solitons on low-dimensional complex Lie groups

• R2

This is the Lie group of the filiform Lie algebra, which admits a left-invariant (1, 0)-

frame {Z1, Z2} satisfying

µ(Z1, Z2) = Z1 .

Proposition 2.56. Every left-invariant Hermitian metric on R2 is a steady algebraic

HCFU-soliton.

Proof. Let g be a left-invariant Hermitian metric on R2. Then, there exists a g-

unitary (1,0)-frame {W1,W2} such that

µ(W1,W2) = sW1 , for some s ∈ C\{0} .

With respect to this new frame, we have

Ug =
1

2

(
|s|2 0

0 0

)
.

Setting D := Ug − c Id, then

DW1 = D11W1 , DW2 = D22W2 ,

for some Dii ∈ R. Moreover, D ∈ Der(r2) is a derivation if and only if

Dµ(W1,W2)− µ(DW1,W2)− µ(W1, DW2) = D22W2 = 0 .

On the other hand,

D22 = 0 ⇐⇒ c = 0 ,

and the claim follows.

• H3(C)

This Lie group is 2-step nilpotent and admits a left-invariant (1, 0)-frame {Z1, Z2, Z3}
such that

µ(Z1, Z2) = Z3 .
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Proposition 2.57 ([98]). Every left-invariant Hermitian metric on H3(C) is an

expanding algebraic HCFU-soliton.

Proof. Let g be a left-invariant Hermitian metric on H3(C). Then, there exists a

g-unitary (1,0)-frame {W1,W2,W3} such that

µ(W1,W2) = sW3 , for some s ∈ C\{0} .

With respect to this new frame, we have

Ug =
1

2


0 0 0

0 0 0

0 0 |s|2

 .

If we set D := Ug − c Id, then

DW1 = D11W1 , DW2 = D22W2 , DW3 = D33W3 ,

for some Dii ∈ R. On the other hand, D is a derivation if and only if

Dµ(W1,W2)− µ(DW1,W2)− µ(W1, DW2) = (D33 −D11 −D22)W3 = 0 .

Therefore, setting

c = −1

2
|s|2 ,

D is a derivation and the claim follows.

• S3,−1

This is a 2-step solvable Lie group admitting a left-invariant (1, 0)-frame {Z1, Z2, Z3}
such that

µ(Z1, Z2) = Z2 and µ(Z1, Z3) = −Z3 .

Proposition 2.58. A left-invariant metric g on S3,−1 is an algebraic HCFU-soliton

if and only if g(Z2, Z̄3) = 0. Moreover, the soliton is steady.
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Proof. Let {W1,W2,W3} be a g-unitary (1, 0)-frame of G such that

W1 ∈ 〈Z1, Z2, Z3〉 , W2 ∈ 〈Z2, Z3〉 , W3 ∈ 〈Z3〉 .

Then, it follows

µ(W1,W2) = pW2 + qW3 , µ(W1,W3) = −pW3 , µ(W2,W3) = 0 ,

for some p, q ∈ C, with p 6= 0. Moreover, with respect to this new frame, we have

Ug =
1

2


0 0 0

0 |p|2 p̄q

0 pq̄ |p|2 + |q|2

 .

Now, let us set

D := Ug − c Id .

Then, D ∈ Der(s3,−1) if and only if

Dµ(W1,W3)− µ(DW1,W3)− µ(W1, DW3) = 0

and

Dµ(W1,W2)− µ(DW1,W2)− µ(W1, DW2) = 0.

On the other hand, the above equalities hold if and only if

q = 0 and D23 = D11 = 0 ,

where DWk = DikWi. Finally, since

D11 = 0 ⇐⇒ c = 0 ,

D = diag(0, |p|2, |p|2) is a derivation of s3,−1 and the claim follows by

q = 0 ⇐⇒ g(Z2, Z̄3) = 0 .
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2.5 The pluriclosed flow

The pluriclosed flow (PCF for short) is a parabolic flow of Hermitian metric intro-

duced by Streets and Tian in [111]. The flow preserves the pluriclosed condition and

it has been an active area of research in recent years. In particular, regularity results

[108, 114] and connections with generalized Kähler geometry [108, 109, 113] were

found.

Let (X, g0) be a Hermitian manifold equipped with a pluriclosed metric (or SKT,

see Subsection 1.1.3), that is ∂∂̄ω0 = 0. Then, the evolution equation of the PCF

starting at g0 is given by

∂t gt = −S(gt) +Q1(gt) , gt|0 = g0 , (2.46)

where S(g) denotes the second Chern-Ricci curvature tensor of g and Q1(g) is the

(1, 1)-tensor defined in (2.2).

In [114], Streets and Tian proved that the evolution equation of the PCF (2.46)

is equivalent to

∂t ωt = −ρB(ωt)
1,1 , ωt|0 = ω0 , (2.47)

where ρB(ωt)
1,1 is the (1, 1)-part of the Bismut-Ricci form associated to ωt.

Let us now denote by

H1,1

∂+∂̄
:=
{Ker ∂∂̄ : Λ1,1

R → Λ2,2
R }

{∂α+ ∂̄ᾱ : α ∈ Λ0,1
R }

the (1, 1)-Aeppli cohomology group and by

P∂+∂̄ := {[φ] ∈ H1,1

∂+∂̄
: [φ] > 0}

its positive cone. Then, as consequence of (2.47), one gets

Proposition 2.59 ([114]). Let (X, g0) be a compact Hermitian manifold equipped

with a pluriclosed metric and

τ := sup
t≥0
{t ∈ R+ : [ω0]− t c1(X) ∈ P∂+∂̄} .

Then, the maximal solution to the PCF exist smoothly on [0, T ) with T ≤ τ .
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Clearly, this result traces the one of the Kähler-Ricci flow (see Subsection 1.2.2).

Nonetheless, it is still an open question if τ is actually the maximal existence time.

If this would be the case, this would lead to strong implications on complex surfaces

by [14, Main Thm.].

2.5.1 The PCF on 2-step nilmanifolds

Since their strongly involved algebraic datum, nilmanifolds have always been a good

candidate to investigate certain problems related to the SKT structures and many

results appeared in the years (see e.g. [28, 29, 39, 102] and the reference therein). On

the other hand, all known examples of nilpotent Lie groups admitting left-invariant

SKT structures are 2-step and some results concerning the PCF appeared in this

setting. In particular, Enrietti, Fino and Vezzoni proved that any invariant solution

to the PCF on a 2-step nilmanifold is immortal and it becomes more and more flat

as t→∞ [30]. Moreover, by Arroyo and Lafuente [6], once suitable normalized such

a solution converges to a pluriclosed soliton.

In the following, we give a simplified proof of the long-time existence result ob-

tained in [30]. To this end, we will show that the Bismut-Ricci form is always

seminegative definite on 2-step nilmanifolds. This in turn implies the non-existence

of left-invariant static metrics to the PCF on 2-step nilmanifolds.

The Bismut-Ricci form on 2-step SKT nilmanifolds

Let (G, g, J) be a 2n-dimensional Lie group equipped with a left-invariant Hermitian

structure and let g be its Lie algebra. Then, the Bismut-Ricci form ρB can be written

as

ρB(X,Y ) = −i
n∑
r=1

{
g([[X,Y ]1,0, Zr], Z̄r)

−g([[X,Y ]0,1, Z̄r], Zr)− g([X,Y ], [Zr, Z̄r])
}
,

(2.48)

for any X,Y ∈ g and any left-invariant g-unitary frame {Zr} of G (see e.g. [129]).

Let us now assume G to be a 2-step nilmanifold. Then, the Bismut-Ricci form
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(2.48) reduces to

ρB(X,Y ) = i
n∑
r=1

g([X,Y ], [Zr, Z̄r]) , for any X,Y ∈ g , (2.49)

and we have the following

Proposition 2.60 ([100]). The Bismut-Ricci form is seminegative definite on G,

i.e.

ρB(Z, Z̄) = −i
n∑
r=1

‖[Z, Z̄r]‖2 , for all Z ∈ g1,0 .

In particular, for all X ∈ g

ρB(X, JX) ≤ 0 .

Proof. Let us consider Z,W ∈ g1,0. Then, a direct computation yields

∂∂̄ω(Z, Z̄,W, W̄ ) =− ∂̄ω([Z, Z̄],W, W̄ ) + ∂̄ω([Z,W ], Z̄, W̄ )− ∂̄ω([Z, W̄ ], Z̄,W )

− ∂̄ω([Z̄,W ], Z, W̄ ) + ∂̄ω([Z̄, W̄ ], Z,W )− ∂̄ω([W, W̄ ], Z, Z̄)

=− ∂̄ω([Z, Z̄]0,1,W, W̄ ) + ∂̄ω([Z,W ], Z̄, W̄ )− ∂̄ω([Z, W̄ ]0,1, Z̄,W )

− ∂̄ω([Z̄,W ]0,1, Z, W̄ ) + ∂̄ω([Z̄, W̄ ], Z,W )− ∂̄ω([W, W̄ ]0,1, Z, Z̄)

=− ω([Z, Z̄]0,1, [W, W̄ ]1,0) + ω([Z,W ], [Z̄, W̄ ])− ω([Z, W̄ ]0,1, [Z̄,W ]1,0)

− ω([Z̄,W ]0,1, [Z, W̄ ]1,0) + ω([Z̄, W̄ ], [Z,W ])− ω([W, W̄ ]0,1, [Z, Z̄]1,0)

= + ig([Z, Z̄]0,1, [W, W̄ ]1,0) + ig([Z,W ], [Z̄, W̄ ]) + ig([Z, W̄ ]0,1, [Z̄,W ]1,0)

+ ig([Z̄,W ]0,1, [Z, W̄ ]1,0)− ig([Z̄, W̄ ], [Z,W ]) + ig([W, W̄ ]0,1, [Z, Z̄]1,0)

= + ig([Z, Z̄], [W, W̄ ]) + ig([Z, W̄ ], [Z̄,W ]) .

Therefore, the SKT assumption ∂∂̄ω = 0 implies

g([Z, Z̄], [W, W̄ ]) = −g([Z, W̄ ], [Z̄,W ])

and, by means of (2.49), we get

ρB(Z, Z̄) = i
n∑
r=1

g([Z, Z̄], [Zr, Z̄r]) = −i
n∑
r=1

g([Z, Z̄r], [Z̄, Zr]) ,

being {Zr} a left-invariant g-unitary frame. Thus, the claim follows.
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In general the Bismut-Ricci form ρB is not seminegative definite if we drop the

assumption on G to be 2-step nilpotent or on the metric to be SKT.

Example 2.61 ([100]). Let g be the solvable unimodular Lie algebra with structure

equations

de1 = 0, de2 = −e13 , de3 = e12, de4 = −e23 ,

equipped with the complex structure

Je1 = e4 , Je2 = e3 ,

and the SKT metric

g =
4∑
r=1

er ⊗ er +
1

2
(e1 ⊗ e3 + e3 ⊗ e1)− 1

2
(e2 ⊗ e4 + e4 ⊗ e2) .

Then, in view of (2.48), a direct computation yields

ρB =
2

3
e12 − 2

3
e13 +

4

3
e23 ,

with respect to any g-unitary frame {Zr}. In particular

ρB(e2, Je2) =
4

3
and ρB(4e1 + e2, J(4e1 + e2)) = −4

3
,

which implies that ρB is not seminegative definite as (1, 1)-form.

Example 2.62 ([100]). Let (g, J) be the 2-step nilpotent Lie algebra with structure

equations

de1 = de2 = de3 = 0 , de4 = e12, de5 = −e23, de6 = e13 .

Let (g, J) be equipped with the complex structure

Je1 = e2 , Je3 = e4 , Je5 = e6 ,

and the non-SKT metric

g =
6∑
r=1

er ⊗ er +
1

2
(e3 ⊗ e6 + e6 ⊗ e3)− 1

2
(e4 ⊗ e5 + e5 ⊗ e4) .

Again, by means of (2.48), with respect to a g-unitary frame {Zr} it follows

ρB = −e12 − 1

2
e23 ,

which implies that ρB is not seminegative definite as (1, 1)-form.
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Non-existence of left-invariant static solutions to the PCF

We now use Proposition 2.60 to prove that on a 2-step nilpotent Lie group G there

are no left-invariant static solutions to the PCF. This result was already known: the

steady static case was studied in [28], while the shrinking and expanding cases follow

from [29].

Let (G,ω, J) be a 2-step nilpotent (non-abelian) Lie group equipped with a left-

invariant SKT structure. Let ω be static to the PCF, i.e.

ρB(ω)1,1 = c ω ,

for some c ∈ R. Then, since the center of G in not trivial, by (2.49) it follows c = 0.

On the other hand, by means of Proposition 2.60, we have

[g1,0, g0,1] = 0 .

Therefore, if {ζk} denotes a unitary co-frame in g, we have

∂̄ζk = 0

and hence

∂ζk = ckrsζ
r ∧ ζs .

for some ckrs ∈ C. Finally, since

∂∂̄ω = i∂∂̄

(
n∑
k=1

ζk ∧ ζ̄k
)

= −i
n∑
k=1

ckab c
k̄
r̄s̄ ζ

a ∧ ζb ∧ ζ̄r ∧ ζ̄s ,

the SKT assumption implies that all the ckrs’s vanish. However, since we assumed G

to be non-abelian, this is not possible and hence G does not admit any left-invariant

static solution to the PCF.

Long-time existence of the PCF on 2-step nilmanifolds

We now use Proposition 2.60 together with the bracket flow technique to prove the

long-time existence of left-invariant solutions to the PCF on 2-step nilmanifold.
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Let (G,ω0, J) be a 2-step nilpotent Lie group equipped with a left-invariant SKT

structure. Let (g, µ0) be the Lie algebra of G and ωt a solution to the PCF (2.47)

starting from ω0. Moreover, let z be the center of (g, µ). In view of (2.49), it follows

that

ρB(ωt)(X, ·) = 0 , for every X ∈ z ,

and hence

ωt(X, ·) = ω0(X, ·) .

Therefore, if z⊥ denotes the ω0-orthogonal complement to z in g, we have

d

dt
ωt(X, ·) = 0 , for every X ∈ z ,

and the solution ωt preserves the splitting g = z⊕ z⊥. Moreover, if {A(t)} ∈ End(g)

is a one-parameter family such that

ωt(·, ·) = ω0(A(t)·, A(t)·) ,

then {A(t)} preserves the splitting g = z⊕ z⊥, i.e.

A(t)|z = Idz .

On the other hand, by means of (1.19), the family {A(t)} satisfies the ODE

d

dt
A(t) = −A(t)Pωt , A(0) = Id , (2.50)

where Pωt ∈ End(g) is defined by

ωt(PωtX,Y ) =
1

2

(
ρBωt(X,Y ) + ρBωt(JX, JY )

)
.

Now, let us consider the bracket flow solution

µ(t)(·, ·) := A(t)µ0(A(t)−1·, A(t)−1·)

associated to ωt. Since (g, µ0) is 2-step nilpotent, it follows that µ(X,Y ) ∈ z, for

every X,Y ∈ g, and hence

µ(t)(X,Y ) = µ0(A(t)−1X,A(t)−1Y ) . (2.51)
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This implies

d

dt
µ(t)(X,Y ) =− µ0(A(t)−1Ȧ(t)A(t)−1X,A(t)−1Y )

− µ0(A(t)−1X,A(t)−1Ȧ(t)A(t)−1Y )

and, by means of (2.50) and (2.52), we get

d

dt
µ(t)(X,Y ) =µ(t)(Pµ(t)X,Y ) + µ(t)(X,Pµ(t)Y ) ,

with Pµ(t) = A(t)PωtA(t)−1. Therefore, the bracket flow equation reduces to

d

dt
µ(t)(·, ·) = µ(t)(Pµ(t)·, ·) + µ(t)(·, Pµ(t)·) , µ(0) = µ0 , (2.52)

and, by looking at the evolution of ‖µt‖ via (2.52), we have

d

dt
‖µ‖2 = 2 〈 ddtµ, µ〉 = 8

2n∑
r,s=1

g(µ(Pµer, es), µ(er, es)) ,

where {er} is arbitrary ω0-orthonormal frame.

Finally, since all the eigenvalues of any Pµt are nonpositive by Proposition 2.60,

it follows that

d

dt
‖µ‖2 = 8

2n∑
r,s=1

arg(µ(er, es), µ(er, es)) ≤ 0 ,

being {er} an orthonormal basis of eigenvectors of Pµ, and hence the solution to the

bracket flow µt is definite for every t ∈ [0,+∞). This in turn implies

Theorem 2.63 ([30]). Let (M,ω0, J) be a 2-step nilmanifold equipped with an in-

variant SKT structure. Then, the solution ωt to the PCF (2.47) starting at ω0 is

immortal.

2.6 Static left-invariant metrics on nilpotent Lie groups

In this section we focus on nilpotent Lie groups G equipped with a left-invariant

Hermitian structure. We already mentioned that on non-abelian 2-step nilpotent Lie
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groups there are no static solutions to the PCF. In the following, we generalize this

result to a class of flows in the HCFs family.

Let (X, g) be a Hermitian manifold and x := (x1, x2, x3, x4) ∈ R4. If we denote

with

Kx := S − x1Q
1 − x2Q

2 − x3Q
3 − x4Q

4

and with

∂tgt = −Kx(gt) , gt|0 = g0 ,

the corresponding geometric flow in the HCFs family, it follows that

• for x = (1/2,−1/4,−1/2, 1) the flow corresponds to the HCF (2.1);

• for x = (1, 0, 0, 0) the flow corresponds to the PCF (2.47);

• for x = (0,−1/2, 0, 0) the flow corresponds to the modified HCFU (2.42).

From now on, let (G, J) be a Lie group equipped with a left-invariant complex

structure. Moreover, let (g, µ) be the Lie algebra of G and z its center. Then, we

have

Lemma 2.64 ([65]). Fix x ∈ R4 such that

x1 ≤ 1 , x2 , x3 ≤ 0 , x1 + x2 > 0 , x3 + x4 ≥ 0 ,

and let us assume z ∩ J(z) 6= 0. Then, every left-invariant Hermitian metric g on

(G, J) such that

trg S ≤ 0 and Kx(g) = c g , (2.53)

for some c ∈ R, is Kähler Ricci-flat.

Proof. Let g be a left-invariant Hermitian metric of (G, J). Then, with respect to a

g-unitary frame, we have

Q1
īi = Tikm̄Tīk̄m , Q2

īi = Tk̄m̄iTkmī ,

Q3
īi = Tikk̄Tīm̄m , Q4

īi =
1

2
(Tmkk̄Tm̄īi + Tm̄k̄kTmīi) ,

q1 = q2 = ‖T‖2 , q3 = q4 = ‖w‖2 ,
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where qi := trg Q
i and wi = gjk̄Tijk̄.

Let us now consider a left-invariant g-unitary frame {Zi} such that Z1 ∈ z ⊗ C,

which always exists since z ∩ J(z) 6= 0 holds. Then, by means of Section 2.2.1, it

follows

S11̄ = µ1̄
kr̄µ

1
k̄r

and

Q1
11̄ = µ1̄

kr̄µ
1
k̄r , Q2

11̄ = µ1̄
k̄r̄µ

1
kr ,

Q3
11̄ = µ1̄

kk̄µ
1
r̄r , Q4

11̄ = 0 .

Therefore, we have

Kx
11̄ = µ1̄

kr̄µ
1
k̄r − x1µ

1̄
kr̄µ

1
k̄r − x2µ

1̄
k̄r̄µ

1
kr − x3µ

1̄
kk̄µ

1
r̄r ,

and by the assumption on x it follows Kx(Z1, Z̄1) ≥ 0. Moreover, since (2.53) holds,

we get

trgK
x = nKx(Z1, Z1̄) ≥ 0 .

On the other hand, by setting s := trg S ≤ 0, it follows

0 ≤ trgK
x = s− xiqi = s− (x1 + x2)q1 − (x3 + x4)q3 ≤ 0 .

Therefore, the equality must hold and qi = 0. This in turn implies

T = 0 and Qi = 0 ,

and hence g is Kähler. Finally, since c = 0 and S(g) = Kx(g) + xiQ
i(g) = 0, g has

to be Ricci flat.

Remark 2.65. The assumptions in Lemma 2.64 imply in particular that z 6= 0. Notice

that condition z ∩ J(z) 6= 0 cannot be in general dropped, as the examples of HCF-

static left-invariant metrics on SL(2,C) show.

As consequence of Lemma 2.64 we get the non-existence of left-invariant static

metrics on non-abelian nilpotent Lie groups satisfying z ∩ J(z) 6= 0.
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Proposition 2.66 ([65]). Fix x ∈ R4 such that

x1 ≤ 1 , x2 , x3 ≤ 0 , x1 + x2 > 0 , x3 + x4 ≥ 0 .

If G is a nilpotent non-abelian Lie group and z ∩ J(z) 6= 0 holds, then there are no

left-invariant Hermitian metrics on (G, J) satisfying the static equation

Kx(g) = c g ,

for some c ∈ R.

Proof. Since G is nilpotent, the Chern scalar curvature s of every left-invariant Her-

mitian metric on G vanishes (see e.g. [76, Prop. 2.1]). Finally, Lemma 2.64 and the

theorem of Benson and Gordon [8] imply the statement.

Proposition 2.66 implies the already known result about the non-existence of

left-invariant static solutions to the PCF on nilpotent Lie groups [29], since the

pluriclosed condition forces J(z) = z (see [29, Prop. 3.1]). Finally, this proposition

also applies to the HCF (2.1) and we have

Corollary 2.67 ([65]). Let (G, J) be a non-abelian nilpotent Lie group with a left-

invariant complex structure. Let us assume that z ∩ J(z) 6= 0. Then, there are no

left-invariant Hermitian metrics on (G, J) which are static with respect to the HCF.

Remark 2.68. The assumption z∩ J(z) 6= 0 is not always satisfied on a nilpotent Lie

group. For instance, the nilpotent Lie algebras with structure equations given by

de1 = de2 = 0 , de3 = e12 , de4 = e13 , de5 = e23 , de6 = e14 + e25

or

de1 = de2 = de3 = 0 , de4 = e13 , de5 = e23 , de6 = e14 + e25

and complex structures Je1 = e2, Je3 = e6, Je4 = e5 do not satisfy the above

hypothesis (see e.g. [103]).
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2.7 Hermitian metrics compatible with abelian complex

structures

In this last section, we study the evolution of left-invariant Hermitian metrics which

are compatible with an abelian complex structure on a Lie group G.

Let G be a Lie group and g its Lie algebra. A left-invariant complex structure J

on G is said to be abelian if g1,0 is an abelian Lie algebra, i.e.

[g1,0, g1,0] = 0 ,

with gC = g1,0⊕g0,1. In particular, Andrada, Barberis and Dotti proved the following

Lemma 2.69 ([3]). Let (G, J) be a Lie group equipped with an abelian Lie algebra.

Then, the following properties hold:

1. the center of g is J-invariant;

2. for any X ∈ g, adJX = −adXJ ;

3. the commutator g1 = µ(g, g) is abelian or, equivalently, g is 2-step solvable;

4. Jg1 is an abelian subalgebra of g;

5. g1 ∩ Jg1 is contained in the center of the subalgebra g1 + Jg1.

The following proposition concerns the existence of static metrics to the HCF

compatible with an abelian complex structure.

Proposition 2.70 ([65]). Let (G, J) be a unimodular Lie group equipped with a left-

invariant abelian complex structure. Assume that the center of G is not trivial. Then

(G, J) does not admit any static metric to the HCF, unless it is abelian.

Proof. By means of [129, Prop. 4.2], the Chern scalar curvature s of a left-invariant

abelian balanced Hermitian structure is always vanishing. Moreover, since the center

of g is non-trivial, the assumptions of Lemma 2.64 are satisfied and every static metric

to the HCF on (G, J) has to be Kähler. Nonetheless, a unimodular non-abelian Lie

group with an abelian complex structure does not admit any left-invariant Kähler

metric (see [3, Cor. 4.3]) and the claim follows.
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We now consider left-invariant balanced metrics compatible with abelian com-

plex structures. Let us recall that a Hermitian metric is said to be balanced if its

fundamental form is coclosed. We mention that balanced Hermitian metrics on Lie

algebras with abelian complex structures were studied in [2].

Theorem 2.71 ([65]). Let (G, J) be a unimodular Lie group equipped with a left-

invariant abelian complex structure. Then, a left-invariant Hermitian metric g on

(G, J) is balanced if and only if the trace of K and the Riemannian scalar curvature

coincide, and in the balanced case we have K = Ric1,1. Furthermore, the parabolic

flow d
dt gt = −Ric1,1(gt) specified by the (1, 1)-component of the Ricci tensor has

always a long-time solution for every left-invariant initial Hermitian metric.

Proof. Let us consider a left-invariant Hermitian metric g on (G, J). Moreover, let

(g, µ) be the Lie algebra of G and {Z1 , . . . , Zn} a left-invariant g-unitary frame of

G. Then, by means of Section 2.2.1, we have

Q1
ij̄ =µk̄ir̄µ

k
j̄r − µ

k̄
ir̄µ

j

k̄r
− µīkr̄µkj̄r + µīkr̄µ

j

k̄r
,

Q2
ij̄ = 2µrk̄iµ

r̄
kj̄ − µ

r
k̄iµ

k̄
rj̄ − µ

k
r̄iµ

r̄
kj̄ ,

Q3
ij̄ =µīkk̄µ

j
r̄r ,

2Q4
ij̄ = − µr̄kk̄µ

j
r̄i + µr̄kk̄µ

r
j̄i − µ

r
k̄kµ

ī
rj̄ + µrk̄kµ

r̄
ij̄ .

On the other hand, the unimodular assumption together with the abelian condition

and the Jacobi identity imply

µr̄ik̄µ
l
r̄j = µr̄jk̄µ

l
r̄i . (2.54)

Thus, the above formulas simplify to

Q1
ij̄ =µk̄ir̄µ

k
j̄r − µ

k̄
ir̄µ

j

k̄r
− µīkr̄µkj̄r + µīkr̄µ

j

k̄r
,

Q2
ij̄ = 2µrk̄iµ

r̄
kj̄ ,

Q3
ij̄ =µīkk̄µ

j
r̄r ,

2Q4
ij̄ = − µr̄kk̄µ

j
r̄i + µr̄kk̄µ

r
j̄i − µ

r
k̄kµ

ī
rj̄ + µrk̄kµ

r̄
ij̄ ,

which in turn imply

Kij̄ =
1

2

(
−µrk̄iµ

r̄
kj̄ + µīkr̄µ

j

k̄r
− µk̄ir̄µkj̄r + µīkk̄µ

j
r̄r − µr̄kk̄µ

r
j̄i − µ

r
k̄kµ

r̄
ij̄

)
. (2.55)
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Let us now denote by D the Levi-Civita connection of g, Γkij its Christoffel symbols

and

Ricij̄ =(Γlrr̄ + Γlr̄r)Γ
j
il + (Γl̄rr̄ + Γl̄r̄r)Γ

j

il̄
− (Γlir + µr̄il̄)Γ

j
r̄l − (Γlir̄ + µril̄)Γ

j
rl − Γl̄ir̄Γ

j

rl̄

the (1, 1)-component of the Ricci tensor. Then, the abelian condition together with

Koszul formula imply

Γlkr =
1

2
(−µk̄rl̄ + µr̄l̄k) , Γlk̄r =

1

2
(µlk̄r − µ

k
rl̄) , Γl̄k̄r =

1

2
(µl̄k̄r + µr̄lk̄) ,

Γlkr̄ =
1

2
(µlkr̄ + µrl̄k) , Γl̄kr̄ =

1

2
(µl̄kr̄ − µk̄r̄l) .

In particular, since G is unimodular, we have

Γlrr̄ = Γl̄rr̄ = 0 , Γlir + µr̄il̄ = −1

2
(µīrl̄ + µr̄l̄i) , Γlir̄ + µril̄ =

1

2
(µlir̄ − µrl̄i) .

and the formula of the Ricci tensor simplifies to

Ricij̄ =
1

4

(
µīrl̄µ

j
r̄l + µr̄l̄iµ

j
r̄l − µ

ī
rl̄µ

r
lj̄ − µ

r̄
l̄iµ

r
lj̄ + µlir̄µ

r̄
lj̄ − µ

r
l̄iµ

r̄
lj̄

− µlir̄µl̄j̄r + µrl̄iµ
l̄
j̄r − µl̄ir̄µ

j

rl̄
+ µīr̄lµ

j

rl̄
− µl̄ir̄µlj̄r + µīr̄lµ

l
j̄r

)
.

Finally, by using (2.54), we obtain

Ricij̄ =
1

2

(
µīrl̄µ

j
r̄l − µ

r̄
l̄iµ

r
lj̄ − µ

r
l̄iµ

r̄
lj̄

)
.

Therefore

Kij̄ − Ricij̄ =
1

2

(
µīkk̄µ

j
r̄r − µr̄kk̄µ

r
j̄i − µ

r
k̄kµ

r̄
ij̄

)
and

trgK − trgRic =
1

2

(
µīkk̄µ

i
r̄r − µr̄kk̄µ

r
īi − µ

r
k̄kµ

r̄
īi

)
= −1

2
µrk̄kµ

r̄
īi .

Since G is unimodular, by [2, Lemma 2.1] it follows that the metric g is balanced if

only if the sum
∑

k µ(Zk, Z̄k) is vanishing and the first part of the claim follows.

To prove the long-time existence of the flow d
dt gt = −Ric1,1(gt) we again use the

bracket flow technique. Hence, let µ(t) be the bracket flow solution associated to gt

solving the bracket flow equation

d

dt
µ(t) = −π(Pµ(t))µ(t) , µ(0) = µ ,
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where

(Pµ)ji =
1

2

(
µīrl̄µ

j
r̄l − µ

r̄
l̄iµ

r
lj̄ − µ

r
l̄iµ

r̄
lj̄

)
Then, if α : g→ g is a real endomorphism which commutes with J , a direct compu-

tation yields

−π(α)µ(Zi, Z̄j) = (αki µ
r
kj̄ + αk̄j̄µ

r
ik̄ − µ

k
ij̄α

r
k)Zr + (αki µ

r̄
kj̄ + αk̄j̄µ

r̄
ik̄ − µ

k̄
ij̄α

r̄
k̄)Z̄r

and

〈α, Pµ〉 = 2Re(αji (Kµ)ji ) = 2
n∑
i=1

Re
{
αji (−µ

r̄
kīµ

r
k̄j + µik̄rµ

j̄
kr̄ − µ

k
īrµ

k̄
jr̄)
}
.

Moreover, if θ ∈ Λ2g∗ ⊗ g satisfies θ(J ·, J ·) = θ(·, ·), then

〈µ, θ〉 = 2Re
{
µkij̄θ

k̄
īj + µk̄ij̄θ

k
īj

}
and hence

〈π(α)µ, µ〉 = 4Re
{
αki µ

r
kj̄µ

r̄
īj + αki µ

r̄
kj̄µ

r
īj − α

r
kµ

k
ij̄µ

r̄
īj

}
.

This in turn implies

〈π(α)µ, µ〉 = 2〈α, Pµ〉 .

In particular, we have

d

dt
‖µ‖2 = −2〈π(Pµ)µ, µ〉 = −4‖Pµ‖2

and the second claim follows by Theorem 1.42.

Remark 2.72. Notice that if a unimodular Lie group G admits a left-invariant (1, 0)-

frame {Z1, . . . , Zn} such that µ(Zi, Z̄i) = 0 for every fixed index i, then every diagonal

left-invariant metric is balanced

Example 2.73 ([65]). Let g be the 2-step nilpotent Lie algebra with structure equa-

tions

de1 = de2 = de3 = de4 = 0 , de5 = e13 − e24 , de6 = e14 + e23

and J the abelian complex structure given by

Je1 = −e2 , Je3 = e4 , Je5 = e6 .
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If we set

Z1 :=
1√
2

(e1 − iJe1) , Z2 :=
1√
2

(e2 − iJe2) , Z3 :=
1√
2

(e3 − iJe3) ,

then the bracket can be written as

µ = −
√

2 ζ1 ∧ ζ̄2 ⊗ Z̄3 −
√

2 ζ̄1 ∧ ζ2 ⊗ Z3 ,

with {ζi} dual frame of {Zi}. In particular, every diagonal metric

g = a ζ1 � ζ1 + b ζ2 � ζ2 + c ζ3 � ζ3

is balanced and (2.55) implies

K(g) = −c
b
ζ1 � ζ̄1 − c

a
ζ2 � ζ̄2 +

c2

ab
ζ3 � ζ̄3 = Ric1,1(g) .

Then, the HCF starting from g0 = ζ1 � ζ1 + ζ2 � ζ2 + ζ3 � ζ3 is equivalent to the

following ODEs system

ȧ =
c

b
, ḃ =

c

b
, ċ = − c

2

ab
, a(0) = b(0) = c(0) = 1 ,

which admits an explicit solution given by

gt = 3
√

3t+ 1 ζ1 � ζ 1̄ + 3
√

3t+ 1 ζ2 � ζ 2̄ +
1

3
√

3t+ 1
ζ3 � ζ 3̄ .



Chapter 3

Hermitian curvature flow on

complex locally homogeneous

surfaces

One of the main reasons in studying new geometric flows in Hermitian geometry

is to refine the Enriques-Kodaira classification of compact complex surfaces, since

these flows can be used to detect canonical Hermitian metrics as limit points (see

e.g. [110]). Motivated by this, in the following, we carry out an analysis of the HCF

(2.1) on locally homogeneous non-Kähler compact complex surfaces. In particular,

we investigate the long-time behaviour of the solutions to the flow, computing the

Gromov-Hausdorff limit of immortal solutions after a suitable normalization. Our

results will follow by a case-by-case analysis of the flow on each complex model

geometry. Moreover, we exhibit the first example of compact complex manifold

admitting a finite time singularity for the HCF (2.1).

The result presented in this chapter have been obtained in [88] in collaboration

with Francesco Pediconi.

95
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3.1 Main results

Our first result completely characterizes the long-time behaviour of locally homoge-

neous non-Kähler solutions, namely

Theorem 3.1 ([88]). Let X be a compact complex surface and g0 a locally homoge-

neous non-Kähler metric on X. If the solution to the HCF starting from g0 develops

a finite time singularity, then X is a Hopf surface. Conversely, any locally homoge-

neous solution to the HCF on a Hopf surface collapses in finite time.

Notice that we restricted our analysis to non-Kähler metrics since the behaviour

of Kähler solutions is already known (see e.g. [19, 106, 118]).

Our second result concerns the Gromov-Hausdorff limits of immortal normalized

solutions to the HCF. In particular, we have

Theorem 3.2 ([88]). Let X be a compact complex surface, g0 a locally homogeneous

non-Kähler metric on X and gt the solution to the HCF starting from g0.

(i) If X is either a hyperelliptic or Kodaira surface, then
(
X, (1+t)−1gt

)
converges

to a point in the Gromov-Hausdorff topology as t→∞.

(ii) If X is a non-Kähler properly elliptic surface, then
(
X, (1+t)−1gt

)
converges

to its base curve (C, gKE) in the Gromov-Hausdorff topology as t → ∞, where

Ric(gKE) = −gKE.

(iii) If X is an Inoue surface, then
(
X, (1+t)−1gt

)
converges to a circle in the

Gromov-Hausdorff topology as t→∞.

We mention that similar results have been obtained by Boling in the context of

the PCF (see [12]). Nonetheless, the dynamical systems arising from the PCF and

the HCF are rather different and, in contrast with Theorem 3.1, locally homogenous

non-Kähler solutions to the PCF on compact complex surfaces never develop finite-

time singularities [12, Thm. 1.1].

These results can be thought as a first step in the study of the HCF on complex

non-Kähler surfaces. In the same spirit of [12] and [80], we expect the blowdown of

any immortal locally homogeneous solution to converge to an expanding soliton.
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Remark 3.3. The argument used to prove (ii) and (iii) in Theorem 3.2 is analogue

to the one used by Tosatti and Weinkove in [120] for the Chern-Ricci flow (see also

[31, 121, 122]), and the limit spaces arising in our contest are the same.

3.1.1 Complex model geometries

In this subsection we recall some basics about the geometry of locally homogeneous

Hermitian manifolds. In particular, we focus on compact locally homogeneous Her-

mitian surfaces.

A Hermitian manifold (X, g) is said to be locally homogeneous if the pseudogroup

of local automorphism of (X, g) acts transitively on X, i.e. for any choice of x, y ∈ X
there exist neighborhoods Ux, Uy ⊂ X of x and y, respectively, and a holomorphic

local isometry f : Ux → Uy such that f(x) = y. If in addiction (X, g) is compact,

then its universal Hermitian covering (X̃, g) is globally homogeneous (see [105]) and

hence it admits a left coset presentation X̃ = G/H for some closed subgroup G ⊂
Aut(X̃, g).

Notation. Henceforth, with a slight abuse of notation, we denote by g both the

Hermitian metric on X and its pullback on the universal cover X̃.

Definition 3.4. A complex model geometry of dimension n is a pair (X̃,G) given

by a connected, simply connected, n-dimensional complex manifold X̃ and a real

connected Lie group G such that:

• G acts properly, transitively and almost-effectively by biholomorphisms on X̃;

• G contains a discrete subgroup Γ ⊂ G with Γ\X̃ compact.

If G is a minimal group with such properties, then the complex model geometry is

said to be minimal.

Let (X̃,G) be a complex model geometry. A Hermitian manifold (X, g) has

geometric structure of type (X̃,G) if X̃ is the universal cover of X and the pulled-

back metric g on X̃ is invariant under the action of G. Of course, if (X, g) has a
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geometric structure of such a type, then it is locally homogeneous. On the other hand,

any compact locally homogeneous Hermitian manifold admits a geometric structure

(X̃,G) for some minimal complex model geometry (X̃,G).

By the Riemann Uniformization Theorem, it is known that there exist exactly

three minimal complex model geometries of dimension 1, that are

(C,C) , (CP1, SU(2)) , (CH1, SU(1, 1)) .

Here, the group G acts on the respective space X̃ in the standard way.

Subsequently, in [130, 131] Wall classified all complex model geometries of di-

mension 2. In particular, we have

Theorem 3.5 ([130, 131]). If (X̃,G) is a minimal complex model geometry of di-

mension 2, then one of the following cases occurs:

(i) (X̃,G) = (X̃1 × X̃2, G1 × G2) is the product of two complex model geometries

of dimension 1.

(ii) (X̃,G) = (CP2, SU(3)) or (X̃,G) = (CH2,SU(2, 1)), both considered endowed

with the standard action of G on X̃.

(iii) X̃ = (G, J) where G acts on itself by left translations and J is a left-invariant

complex structure.

Remark 3.6. If (X̃,G) is one of the model geometry listed in (i) or (ii) above, then

any Hermitian G-invariant metric on X̃ is necessarily Kähler-Einstein.

3.1.2 Gromov-Hausdorff convergence

We collect here some basic facts about the Gromov-Hausdorff convergence of compact

metric spaces. We refer to [15, Sec. 7.3.2] and [101] for more details.

Let Z = (Z, dZ) be a metric space and X,Y ⊂ Z two compact subsets. The

Hausdorff distance between X and Y is given by

distZ
H

(X,Y ) := inf
{
ε > 0 : X ⊂ Bε(Y ) , Y ⊂ Bε(X)

}
,
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where Bε(X) := {x ∈ Z : dZ(x,X) < ε} is the ε-tube of X in Z. The pair(
{compact subsets of Z},distZ

H

)
is also a metric space and it is compact if and only if Z is compact as well.

Let now X = (X, dX), Y = (Y, dY ) be two compact metric spaces. The Gromov-

Hausdorff distance between X and Y is defined as

distGH(X,Y ) := inf
{

distZ
H

(φ1(X), φ2(Y ))
}
,

where the infimum is taken with respect to all metric spaces Z and all pairs (φ1, φ2)

of isometric embeddings φ1 : X → Z and φ2 : Y → Z. Letting X denote the set of

isometric classes of compact metric spaces, it turns out that (X , distGH) is a complete

metric space. Therefore, given a one-parameter family {Xt}t∈[0,T ) and an element Y

both in X , whenever limt→T− distGH(Xt, Y ) = 0 we write

Xt
GH−−→ Y as t→ T−

and we say that Xt convergences in the Gromov-Hausdorff topology to Y .

Finally, a GH ε-approximation between two metric spaces X,Y ∈ X , with ε > 0,

is a pair of non-necessarily continuous maps ϕ : X → Y and ψ : Y → X satisfying

for any x, x′ ∈ X and y, y′ ∈ Y∣∣dX(x, x′)− dY (ϕ(x), ϕ(x′))
∣∣ < ε , dX(x, (ψ ◦ ϕ)(x)) < ε ,∣∣dY (y, y′)− dX(ψ(y), ψ(y′))
∣∣ < ε , dY (y, (ϕ ◦ ψ)(y)) < ε .

Remarkably, if there exists a GH ε-approximation (ϕ,ψ) between X and Y , then

distGH(X,Y ) ≤ 3
2ε (see e.g. [101, Lemma 1.3.3]).

3.2 The HCF tensor on complex model geometries

The aim of this section is to compute the HCF tensor of any 2-dimensional complex

model geometry (X̃,G) endowed with an invariant metric g. By means of Remark 3.6,

we restrict our discussion to those minimal complex model geometries arising from
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(iii) in Theorem 4.25. Hence, following [12, Sec. 2.2], we list below all the connected,

simply connected, real 4-dimensional Lie groups which admit a left-invariant complex

structure, their compact quotients according to Enriques-Kodaira classification and

their HCF tensors. We mention that all the computations were made with the help

of the software Maple.

Let (G, J) be a simply connected, 4-dimensional real Lie group equipped with

a left-invariant complex structure. Given a fixed left-invariant (1, 0)-frame {Z1, Z2}
and its dual frame {ζ1, ζ2}, any left-invariant Hermitian metric g on (G, J) can be

written as

g = x ζ1 � ζ̄1 + y ζ2 � ζ̄2 + z ζ1 � ζ̄2 + z̄ ζ2 � ζ̄1 , (3.1)

with x, y ∈ R and x, y > 0, z ∈ C and xy − |z|2 > 0.

Complex tori

The Lie group is G = R4, which is abelian and admits a unique left-invariant com-

plex structure Jst. In this case, the HCF tensor of any left-invariant metric on

C2 = (R4, Jst) is just K = 0. Compact quotients of C2 are complex tori.

Hyperelliptic surfaces

The Lie group is G = S̃E(2) × R, where S̃E(2) is the universal cover of the special

Euclidean group SE(2) := SO(2) n R2. It admits a unique left-invariant complex

structure J and the structure constants µ of its complexified Lie algebra are

µ(Z1, Z2) = Z1 , µ(Z1, Z̄2) = −Z1 .

The HCF tensor of a left-invariant Hermitian metric on
(
S̃E(2)× R, J

)
is given by

K11̄ =
x2|z|2

(xy − |z|2)2
, K22̄ =

|z|4

(xy − |z|2)2
, K12̄ =

x2yz

(xy − |z|2)2
.

Compact quotients of
(
S̃E(2)×R, J

)
are hyperelliptic surfaces, which admit Kähler

metrics.
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Hopf surfaces

The Lie group is G = SU(2)× R. It admits a one-parameter family of left-invariant

complex structures Jλ, where λ ∈ R, and with respect to Jλ the structure constants

µ = µλ of its complexified Lie algebra are

µ(Z1, Z2) = Z2 , µ(Z1, Z̄2) = −Z̄2 ,

µ(Z2, Z̄2) = (−1 +
√
−1λ)Z1 + (1 +

√
−1λ)Z̄1 .

The HCF tensor of a left-invariant Hermitian metric on
(
SU(2)× R, Jλ

)
is given by

K11̄ =
x4(1 + λ2) + |z|2(2x2 + |z|2)

(xy − |z|2)2

K22̄ =
(1 + λ2)x2|z|2 + 2(xy − |z|2)2 + |z|2(y2 + 2|z|2)− 2(1 + λ2)x2(xy − |z|2)

(xy − |z|2)2

K12̄ =
xz(λ2x2 + (x+ y)2)

(xy − |z|2)2

.

Compact quotients of
(
SU(2)× R, Jλ

)
are Hopf surfaces, which are non-Kähler.

Non-Kähler properly elliptic surfaces

The Lie group is G = S̃L(2,R)×R, where S̃L(2,R) is the universal cover of SL(2,R).

It admits a one-parameter family of left-invariant complex structure Jλ, where λ ∈ R,

with respect to which the structure constants µ = µλ of its complexified Lie algebra

are
µ(Z1, Z2) =

√
−1Z1 , µ(Z1, Z̄2) =

√
−1Z̄1 ,

µ(Z1, Z̄1) = (−λ+
√
−1)Z2 + (λ+

√
−1)Z̄2 .

The HCF tensor of a left-invariant Hermitian metric on
(
S̃L(2,R) × R, Jλ

)
is given

by

K11̄ =
(1 + λ2)y2|z|2 − 2(xy − |z|2)2 + |z|2(x2 − 2|z|2)− 2(1 + λ2)y2(xy − |z|2)

(xy − |z|2)2

K22̄ =
λ2y4 + (y2 − |z|2)2

(xy − |z|2)2

K12̄ =
yz(λ2y2 + (x− y)2)

(xy − |z|2)2

.
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Compact quotients of
(
S̃L(2,R)× R, Jλ

)
are non-Kähler properly elliptic surfaces.

Primary Kodaira surfaces

The Lie group is G = R×H3(R), where H3(R) is the three-dimensional real Heisen-

berg group. It admits a unique left-invariant complex structure J and the structure

constants µ of its complexified Lie algebra are

µ(Z1, Z̄1) =
√
−1(Z2 + Z̄2) .

The HCF tensor of a left-invariant Hermitian metric on
(
R×H3(R), J

)
is

K11̄ =
−2y2(xy − |z|2) + y2|z|2

(xy − |z|2)2
, K22̄ =

y4

(xy − |z|2)2
, K12̄ =

y3z

(xy − |z|2)2
.

Compact quotients of
(
R×H3(R), J

)
are primary Kodaira surfaces, which are non-

Kähler.

Secondary Kodaira surfaces

The Lie group is G = R n H3(R). It admits two different left-invariant complex

structures J± and the structure constants µ = µ± of its complexified Lie algebra are

µ(Z1, Z2) = εZ1 , µ(Z1, Z̄2) = −εZ1 , µ(Z1, Z̄1) = −
√
−1ε(Z2 + Z̄2) ,

with ε = ±1. The HCF tensor of a left-invariant Hermitian metric on
(
RnH3(R), J±

)
is given by

K11̄ =
|z|2(x2 + y2)− 2y2(xy − |z|2)

(xy − |z|2)2
, K22̄ =

y4 + |z|4

(xy − |z|2)2
, K12̄ =

yz(x2 + y2)

(xy − |z|2)2
.

Compact quotients of
(
R n H3(R), J±

)
are secondary Kodaira surfaces, which are

non-Kähler.

Inoue surfaces of type S0

The group G = Sol40 is a solvable 4-dimensional real Lie group which admits a two-

parameters family Ja,b of left-invariant complex structures, where a, b ∈ R, and with
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respect to Ja,b the structure constants µ = µa,b of its complexified Lie algebra are

µ(Z1, Z2) = −(b+
√
−1a)Z1 , µ(Z1, Z̄2) = (b+

√
−1a)Z1 ,

µ(Z2, Z̄2) = −2
√
−1a(Z2 + Z̄2) .

The HCF tensor of a left-invariant Hermitian metric on
(
Sol40, Ja,b

)
is given by

K11̄ =
x2|z|2(b2 + 9a2)

(xy − |z|2)2

K22̄ =
|z|4(a2 + b2) + 16|z|2a2xy − 8a2x2y2

(xy − |z|2)2

K12̄ =
x2yz(b2 + 9a2)

(xy − |z|2)2

.

Notice that
(
Sol40, Ja,b

)
does not always admit a co-compact lattice. When such a

lattice does exist, the quotient is an Inoue surface of type S0, which is non-Kähler.

Inoue surfaces of type S±

The group G = Sol41 is a solvable 4-dimensional real Lie group which admits two

different left-invariant complex structures J1,2. The structure constants µ = µ1 of

the complexified Lie algebra of
(
Sol41, J1

)
are

µ(Z1, Z2) = −Z2 , µ(Z1, Z̄2) = −Z2 , µ(Z1, Z̄1) = −Z1 + Z̄1

and the HCF tensor of a left-invariant Hermitian metric on
(
Sol41, J1

)
is given by

K11̄ = −3− |z|
2(z − z̄)2

(xy − |z|2)2

K22̄ = − y2(z − z̄)2

(xy − |z|2)2

K12̄ =
y(z(z̄2 − z2)− 2xy(z̄ − z))

(xy − |z|2)2

.

On the other hand, the structure constants µ = µ2 of the complexified Lie algebra

of
(
Sol41, J2

)
are

µ(Z1, Z2) = −Z2 , µ(Z1, Z̄2) = −Z2 , µ(Z1, Z̄1) = −Z1 + Z̄1 + Z2 − Z̄2
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and the HCF tensor of a left-invariant Hermitian metric on
(
Sol41, J2

)
is given by

K11̄ = −3− |z|
2(z + z̄)2 + 2y2(xy − |z|2)− y2|z|2

(xy − |z|2)2

K22̄ = −y
2((z − z̄)2 − y2)

(xy − |z|2)2

K12̄ =
y(z(z̄2 − z2)− 2xy(z̄ − z) + y2z)

(xy − |z|2)2

.

Compact quotients of
(
Sol41, J1

)
are Inoue surfaces of type S±, while compact quo-

tients of
(
Sol41, J2

)
are Inoue surfaces of type S+. In both cases, these surfaces are

non-Kähler.

3.3 The HCF on locally homogeneous surfaces

In this section we study the behaviour of locally homogeneous solutions to the HCF

on the family of compact complex surfaces we listed in Section 3.2. Furthermore,

whenever a solution to the HCF is immortal, we determine the Gromov-Hausdorff

limit of its normalization (1+t)−1gt as t→ +∞.

Let X be a compact complex surface covered by a connected, simply connected,

4-dimensional real Lie group G and Γ ⊂ G a co-compact lattice such that X = Γ\G.

By construction, all left-invariant tensor fields on G factorize through X. This yields

a one-to-one correspondence between locally homogeneous solutions to the HCF on

X and solutions to the corresponding ODE on G

d

dt
gt = −K(gt) , gt|0 = g0 ,

where g0 denotes the pull-back of the starting metric on G and K the HCF tensor

given in (2.3). Moreover, since the standard left-action of G on itself does not always

factorize through X = Γ\G, the quotient Γ\G is not globally G-homogeneous in

general.

Notation. Any left-invariant Hermitian metric g on (G, J) will be considered in the

form of (3.1). For the sake of shortness, we set D := xy − |z|2 and u := |z|2.
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3.3.1 Hyperelliptic surfaces

The HCF on
(
S̃E(2)× R, J

)
reduces to the following ODEs system:

ẋ = −x
2u

D2
, ẏ = − u

2

D2
, u̇ = −2

x2yu

D2
.

Proposition 3.7 ([88]). Let g0 be a locally homogeneous Hermitian metric on a

hyperelliptic surface X. Then, the solution gt to the HCF starting from g0 exists for

all t ≥ 0. Moreover (
X, (1+t)−1gt

) GH−−→ {point} as t→∞ .

Proof. A direct computation yields that

Ḋ =
xu

D
≥ 0 ,

that is the determinant of gt is always increasing. On the other hand, since x, y, u

decrease, the first claim follows. The last claim follows directly from the fact that

(1+t)−1x(t) , (1+t)−1y(t) , (1+t)−1u(t)→ 0

as t→ +∞.

It is easy to show that a left-invariant metric g on
(
S̃E(2)×R, J

)
is Kähler if and

only if z = 0 and in that case it is also flat. Hence, we have the following

Corollary 3.8 ([88]). Any locally homogeneous solution gt to the HCF on a hyper-

elliptic surface X converges exponentially fast to a flat Kähler metric g∞.

Proof. We recall that gt is immortal and Ḋ(t) > 0, x(t) < x0, y(t) < y0, u(t) < u0

for any t ≥ 0. Moreover

u̇ ≤ −2
u

y0
,

which implies u(t) ≤ u0e
− 2
y0
t

for all t ≥ 0. Finally, since

lim
t→+∞

D(t) = D∞ ∈ (D0,+∞) ,

it follows that x(t)→ x∞ ∈ (0, x0) and y(t)→ y∞ ∈ (0, y0) as t→ +∞.
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3.3.2 Hopf surfaces

The HCF on
(
SU(2)× R, Jλ

)
reduces to the ODEs system

ẋ = −cx
4 + u(2x2 + u)

D2

ẏ = −2 +
2cx2D − cx2u− u(y2 + 2u)

D2

u̇ = −2
xu(cx2 + 2xy + y2)

D2

, (3.2)

with c := 1 + λ2.

Proposition 3.9 ([88]). Let g0 be a locally homogeneous Hermitian metric on a Hopf

surface X. Then, the solution gt to the HCF starting from g0 develops a finite time

singularity T <∞ and (X, gt) collapses as t→ T−.

Proof. Let T ∈ (0,+∞] be the maximal existence time of the flow. Then for any

t ∈ [0, T ) we have

Ḋ =
c x3 − 2x2y + (4x+ y)u

D
,

ẋ < 0 , u̇ < 0 =⇒ x(t) ≤ x0 , u(t) ≤ u0 .

(3.3)

Let us suppose by contradiction that T = +∞. Under this assumption, it necessarily

holds

lim
t→+∞

ẋ(t) = 0 =⇒ lim
t→+∞

(c− 1)
(x2

D

)2
= lim

t→+∞

x2 + u

D
= 0

lim
t→+∞

u̇(t) = 0 =⇒ lim
t→+∞

u

x
(c− 1)

(x2

D

)2
= lim

t→+∞
xu
(x+ y

D

)2
= 0 .

(3.4)

On the other hand

ẏ + 2 =
2cx2D − cx2u− u(y2 + 2u)

D2
≤ 2c

x2

D
≤ 2c

x2 + u

D
,

and so by means of (3.4)

lim
t→+∞

ẏ(t) ≤ −2

which is absurd. Thus gt develops a finite time singularity T <∞.



3.3. The HCF on locally homogeneous surfaces 107

In order to prove the last claim, let us suppose by contradiction that D →∞ as

t→ T−. Then

lim
t→T−

ẋ(t) = 0 and lim
t→T−

ẏ(t) < −2 ,

this in turn imply limt→T− D 6=∞, which is not possible. On the other hand, since

the solution cannot be extended over t = T , the limit limt→T− D cannot be positive

and finite. Therefore, limt→T− D = 0 and the thesis follows.

Next, we exhibit an explicit solution to the HCF starting from a diagonal metric

on
(
SU(2)× R, Jλ

)
.

Example 3.10 ([88]). Let g0 be a left-invariant diagonal Hermitian metric on(
SU(2)× R, Jλ

)
. Then, the ODEs system (3.2) reduces to

ẋ = −cx
2

y2
, ẏ = −2

y − cx
y

. (3.5)

It is worth noting that

ẍ = −4c
x2

y2

(
y − 3

2
cx
)
, ÿ = +4c

x

y3

(
y − 3

2
cx
)
. (3.6)

Now suppose that y0 = 3
2cx0 and that the solution to (3.5) starting from g0 satisfies

y(t) =
3

2
c x(t) , for all t ∈ [0, T ) .

Then, by means of (3.6), we would get

ẍ(t) = ÿ(t) = 0 ,

which in turn implies

x(t) = x0 + kt , y(t) = 3
2cx0 + 3

2ckt (3.7)

for some k ∈ R. A direct computation yields that (3.7) solves (3.5) if and only if

k = − 4
9c . Notice that the maximal existence time for this solution is T = 9

4cx0 .
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3.3.3 Non-Kähler properly elliptic surfaces

The HCF on
(
S̃L(2,R)× R, Jλ

)
reduces to the ODEs system

ẋ =2 +
2cy2D − cy2u− ux2 + 2u2

D2

ẏ =− cy4 − 2y2u+ u2

D2

u̇ =− 2
yu(x2 − 2xy + cy2)

D2

, (3.8)

with c := 1 + λ2.

Proposition 3.11 ([88]). Let g0 be a locally homogeneous Hermitian metric on a

non-Kähler properly elliptic surface X. Then, the solution gt to the HCF starting

from g0 exists for all t ≥ 0. In particular, x(t) ∼ 2t and y(t) < y0, u(t) < u0 for any

t > 0.

Proof. Let T ∈ (0,+∞] be the maximal existence time of the flow. Then, for any

t ∈ [0, T ), we have

Ḋ =
cy3 + 2y(D − u) + xu

D
,

ẏ < 0 , u̇ < 0 =⇒ y(t) ≤ y0 , u(t) ≤ u0 .

(3.9)

We now prove that Ḋ(t) > 0 for any t ∈ [0, T ). Let us suppose by contradiction that

there exists t∗ ∈ [0, T ) such that Ḋ(t∗) ≤ 0. Then using (3.9) we get

− x(t∗)u(t∗) ≥ cy(t∗)
3 − 2y(t∗)(u(t∗)−D(t∗)) . (3.10)

On the other hand, since D(t) = x(t)y(t)− u(t) and u̇(t∗) < 0, it necessarily holds

ẋ(t∗)y(t∗) + x(t∗)ẏ(t∗) ≤ 0 . (3.11)

Moreover, by means of (3.10), a straightforward computation yields that

D(t∗)
2ẋ(t∗)y(t∗) ≥ 4D(t∗)

2y(t∗) + 3cy(t∗)
3D(t∗) (3.12)

and

D(t∗)
2x(t∗)ẏ(t∗) ≥ 4y(t∗)u(t∗)D(t∗)− cy(t∗)

3D(t∗) . (3.13)
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Finally, (3.11), (3.12) and (3.13) imply

4D(t∗)y(t∗) + 2cy(t∗)
2 + 4y(t∗)u(t∗) ≤ D(t∗)(ẋ(t∗)y(t∗) + x(t∗)ẏ(t∗)) ≤ 0 ,

which is not possible. Hence the determinant D satisfies

Ḋ > 0 =⇒ D(t) ≥ D0 , for all t ∈ [0, T ) . (3.14)

On the other hand, it holds

ẋ ≤ 2 +
2cy2D + 2u2

D2
≤ 2
(

1 + c
y2

0

D0
+
u2

0

D2
0

)
which implies

x(t) ≤ 2
(

1 + c
y2

0

D0
+
u2

0

D2
0

)
t+ x0 , (3.15)

and hence from (3.9), (3.14) and (3.15) we get T = +∞.

We are now ready to prove the second part of the proposition. To do this, we

use again a contradiction argument. Let us denote with

u∞ := lim
t→+∞

u(t) , y∞ := lim
t→+∞

y(t) ,

and suppose by contradiction that u∞ > 0. Since

lim
t→+∞

ẏ(t) = 0 =⇒ lim
t→+∞

(c− 1)
(y2

D

)2
= lim

t→+∞

y2 − u
D

= 0 ,

lim
t→+∞

u̇(t) = 0 =⇒ lim
t→+∞

u

y
(c− 1)

(y2

D

)2
= lim

t→+∞
yu
(x− y

D

)2
= 0 ,

we have, by means of (3.9), that

lim
t→+∞

y(x− y)

D
= lim

t→+∞

y2 − u
D

= 0

and hence

lim
t→+∞

y
x −

u
xy

1− u
xy

= lim
t→+∞

1− y
x

1− u
xy

= 0 . (3.16)

In view of (3.16), we have two cases depending on whether limt→∞ |1− u
xy | is bounded

or not. If we suppose that limt→∞ |1− u
xy | <∞, then

lim
t→+∞

xy = u∞ and lim
t→+∞

D = 0 .
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On the other hand, if limt→∞ |1− u
xy | =∞, then

lim
t→+∞

xy = 0 and lim
t→+∞

D = −u∞ .

Since both cases lead to an absurd, it comes

u∞ = 0 . (3.17)

Finally, we use (3.17) to prove that x(t) ∼ 2t as t → ∞. Let us suppose by con-

tradiction that x(t)→ x∞ < +∞ as t → +∞. Under this assumption, we have

D(t) → D∞ = x∞y∞ ∈ (D0,+∞) as t → +∞, and hence it must holds x∞ > 0.

Moreover, by means of (3.9), it follows

lim
t→+∞

Ḋ(t) = 0 =⇒ cy3
∞ + 2y∞D∞ = 0 =⇒ y∞ = 0 =⇒ D∞ = 0

which is not possible. Therefore, we must have x(t) → ∞ as t → ∞. On the other

hand, since

ẋ = 2 + 2c
y2

D
− cu

( y
D

)2
− ux2

D2
+ 2

u2

D2

and
y2

D
→ 0 , u

( y
D

)2
→ 0 ,

ux2

D2
→ 0 ,

u2

D2
→ 0 ,

the thesis follows.

In view of this result, we have the following

Proposition 3.12 ([88]). Let X be a non-Kähler properly elliptic surface and gt be

a locally homogeneous solution to the HCF on X. Then(
X, (1+t)−1gt

) GH−−→ (C, gKE) as t→∞ ,

where C is the base curve of X and gKE is the Kähler-Einstein metric on C with

Ric(gKE) = −gKE.

The proof of this statement follows the same argument used in [120, Thm 1.6

(c)]. For this reason, we just recall the main points.
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Proof. By definition, a properly elliptic surface is a compact complex surface X with

Kodaira dimension κ(X) = 1 and odd first Betti number b1(X), which admits an

elliptic fibration π : X → C over a compact complex curve C of genus g(C) ≥ 2.

Moreover, by the Riemann Uniformization Theorem, C admits a unique Kähler-

Einstein metric gKE with Ric(gKE) = −gKE . Note that, this metric also satisfies

π∗gKE = 2ζ1 ⊗ ζ̄1.

On the other hand, the fibers of the elliptic fibration π : X → C are spanned

by the real and imaginary parts of Z2, which shrinks to zero along (1+t)−1gt as

t → ∞. Therefore, if we consider a not necessarily continuous function f : C → S

satisfying π ◦ f = id, then for any ε > 0 there exists t∗(ε) > 0 such that (π, f) is

a GH ε-approximation between
(
X, (1+t)−1gt

)
and (C, gKE) for any t > t∗(ε). This

concludes the proof.

3.3.4 Primary Kodaira surfaces

The HCF on
(
R×H3(R), J

)
reduces to the ODEs system

ẋ =
2y2D − y2u

D2
, ẏ = − y

4

D2
, u̇ = −2

y3u

D2
. (3.18)

Proposition 3.13 ([88]). Let g0 be a locally homogeneous Hermitian metric on a

primary Kodaira surface X. Then, the solution gt to the HCF starting from g0 exists

for all t ≥ 0. Moreover,(
X, (1+t)−1gt

) GH−−→ {point} as t→∞ .

Proof. Let T ∈ (0,+∞] denote the maximal existence time of the flow. Then, for

any t ∈ [0, T ), it holds that

Ḋ =
y3

D
> 0 =⇒ D(t) ≥ D0 ,

ẏ < 0 , u̇ < 0 =⇒ y(t) ≤ y0 , u(t) ≤ u0

(3.19)

and hence

Ḋ ≤ y3
0

D
=⇒ D(t) ≤

√
2ty3

0 +D2
0 ,

ẋ ≤ 2y2
0

D0
=⇒ x(t) ≤

(2y2
0

D0

)
t+ x0 .

(3.20)
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Therefore, the long-time existence of the solution follows from (3.19) and (3.20). For

the second claim, we notice that

lim
t→+∞

ẏ(t) = 0 =⇒ lim
t→+∞

y2

D
= 0 ,

lim
t→+∞

u̇(t) = 0 =⇒ lim
t→+∞

y3u

D2
= 0 .

(3.21)

Now, let us suppose by contradiction that y2u
D2 → δ > 0, as t → +∞. Then, from

this assumption and (3.21), it follows that

ẋ ∼ −y
2u

D2
as t→∞

and hence there exist 0 < δ′ < δ and t∗ > 0 such that, for any t ∈ [t∗,+∞), we have

ẋ ≤ −δ′ =⇒ x(t) ≤ −δ′t+ x(t∗) ,

which is not possible. As a consequence, we get that ẋ(t) → 0 as t → +∞. Now,

from this last claim, arguing again by contradiction, we also get (1+t)−1x(t)→ 0 as

t→ +∞ and the claim follows.

3.3.5 Secondary Kodaira surfaces

The HCF on
(
Rn H3(R), J

)
reduces to the ODEs system

ẋ =
2y2D − u(x2 + y2)

D2
, ẏ = −y

2 + u2

D2
, u̇ = −2

yu(x2 + y2)

D2
. (3.22)

Proposition 3.14 ([88]). Let g0 be a locally homogeneous Hermitian metric on a

secondary Kodaira surface X. Then, the solution gt to the HCF starting from g0

exists for all t ≥ 0. Moreover(
X, (1+t)−1gt

) GH−−→ {point} as t→∞ .

Proof. Let T ∈ (0,+∞] be the maximal existence time of the solution. Then, for

any t ∈ [0, T ) it holds

Ḋ =
y3 + xu

D
> 0 =⇒ D(t) ≥ D0 ,

ẏ < 0 , u̇ < 0 =⇒ y(t) ≤ y0 , u(t) ≤ u0 .
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Moreover, since

ẋ <
2y2

D
≤ 2y2

0

D0
=⇒ x(t) ≤

(2y2
0

D0

)
t+ x0 ,

it follows that T = +∞. For the second claim, we firstly suppose by contradiction

that u(t)→ u∞ > 0 as t→ +∞. Thus, since

lim
t→+∞

ẏ(t) = 0 =⇒ lim
t→+∞

y

D
= lim

t→+∞

u

D
= 0 ,

lim
t→+∞

u̇(t) = 0 =⇒ lim
t→+∞

x2yu

D2
= 0 ,

(3.23)

we have

0 ≤ u∞
D
≤ u

D
→ 0 =⇒ lim

t→+∞
D(t) = +∞ =⇒ lim

t→+∞
x(t)y(t) = +∞ .

On the other hand, it follows by (3.23)

x2yu

D2
=

1

1− u
xy

· u · 1

y − u
x

→ 0 =⇒ y − u

x
→ +∞

which is not possible, and hence u(t)→ 0 as t→ +∞.

Finally, let us assume by contradiction that x2u
D → δ > 0 as t → +∞. Then we

get

ẋ ∼ −x
2u

D2
as t→∞

and so there exist 0 < δ′ < δ and t∗ > 0 such that, for any t ∈ [t∗,+∞), we have

ẋ < −δ′ =⇒ x(t) ≤ −δ′t+ x(t∗) ,

which is absurd. Consequently, it follows ẋ(t) → 0 as t → +∞. Arguing again by

contradiction, we finally get (1+t)−1x(t)→ 0 as t→ +∞.

3.3.6 Inoue surfaces of type S0

The HCF on
(
Sol40, Ja,b

)
reduces to the ODEs system

ẋ = −(9a2 + b2)
x2u

D2

ẏ = 8a2 − (9a2 + b2)
( u
D

)2

u̇ = −2(9a2 + b2)
x2u

D2
y

. (3.24)
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Proposition 3.15 ([88]). Let g0 be a locally homogeneous Hermitian metric on an

Inoue surfaces X of type S0. Then, the solution gt to the HCF starting from g0 exists

for all t ≥ 0. In particular, y(t) ∼ 8a2 t and x(t) < x0, u(t) < u0 for any t > 0.

Proof. Let T ∈ (0,+∞] denotes the maximal existence time of the solution. For any

t ∈ [0, T ) we have

Ḋ = 8a2x+ (9a2 + b2)
xu

D
> 0 , =⇒ D(t) ≥ D0 ,

ẋ < 0 , u̇ < 0 =⇒ x(t) ≤ x0 , u(t) ≤ u0 .

Moreover, since

ẏ ≤ 8a2xy

D
<

8a2x0y

D0
=⇒ y < y0e

kt ,

with k := 8a2x0
x0y0−|z0|2 , it follows that T = +∞.

For the second claim, let us assume by contradiction that u
D → δ > 0, i.e.

u → u∞ > 0 and D → D∞ < ∞. Then, there exists a finite time t∗ > 0 and a

constant k1 > 1 such that, for any t ≥ t∗,

−k1x(t)2 ≤ ẋ(t) ≤ − 1
k1
x(t)2

and hence
1

k1(t− t∗) + 1
x(t∗)

≤ x(t) ≤ 1
1
k1

(t− t∗) + 1
x(t∗)

(3.25)

Up to enlarge t∗, we can also assume that there exists k2 > 1 such that

−k2x(t) ≤ u̇(t) ≤ − 1
k2
x(t) for any t ≥ t∗

and so, by means of (3.25)

−k2
1

1
k1

(t− t∗) + 1
x(t∗)

≤ u̇(t) ≤ − 1
k2

1

k1(t− t∗) + 1
x(t∗)

,

for any t ≥ t∗. This leads us to

u(t∗)− k1k2 log
(x(t∗)

k1
(t− t∗) + 1

)
≤ u(t) ≤ u(t∗)− 1

k1k2
log
(
k1x(t∗)(t− t∗) + 1

)
,
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for any t ≥ t∗, and hence limt→+∞ u(t) = −∞, which is not possible. Therefore,
u
D → 0 must hold and we have

ẏ(t)→ 8a2

as t→ +∞.

Then, in view of this result, we have

Proposition 3.16 ([88]). Let X be an Inoue surface of type S0 and gt be a locally

homogeneous solution to the HCF on X. Then

(
X, (1+t)−1gt

) GH−−→ S1
(√

2a
π

)
as t→∞ ,

where S1
(√

2a
π

)
=
{
z ∈ C : |z| =

√
2a
π

}
is the circle of length 2

√
2a.

In order to prove this statement, we begin recalling the underlying geometry of

the Inoue surfaces of type S0. Let a, b ∈ R, with a > 0 and b 6= 0, and A ∈ SL(3,Z)

be a matrix with eigenvalues

e2
√

2a , e
√

2(−a+
√
−1b) , e

√
2(−a−

√
−1b) .

The pair Ga,b :=
(
Sol40, Ja,b

)
can be realized as the group of complex 3× 3 matrices

of the form

Ga,b =

M(p, q, r, s) :=


es
√

2(−a+
√
−1b) 0 p+

√
−1q

0 es2
√

2a r

0 0 1

 : p, q, r, s ∈ R

 .

Indeed, let {Eij} denote the standard basis of gl(3,C). Then, the Lie algebra of Ga,b

ga,b ⊂ gl(3,C)

is the R-span of

X1 := (1−
√
−1)E1

3 , X2 := (1 +
√
−1)E1

3 , X3 := E2
3 ,

X4 :=
√

2(−a+
√
−1b)E1

1 + 2
√

2aE2
2 .
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Since the structure constants of ga,b with respect to {Xi} are given by

[X1, X4] =
√

2aX1−
√

2bX2 , [X2, X4] =
√

2bX1+
√

2aX2 , [X3, X4] = −2
√

2aX3 ,

setting

Z1 :=
X1 −

√
−1X2√
2

, Z2 :=
X3 −

√
−1X4√
2

,

we obtain the structure constants given in Section 3.2. Let now (v1, v2, v3)t ∈ R3 and

(w1, w2, w3)t ∈ C3 be the eigenvectors of e2
√

2a and e
√

2(−a+
√
−1b), respectively, and

consider the lattice Γa,b ⊂ Ga,b generated by

h0 :=


e
√

2(−a+
√
−1b) 0 0

0 e2
√

2a 0

0 0 1

 , hi :=


1 0 wi

0 1 vi

0 0 1

 , i = 1, 2, 3 .

Then, the left action of Γa,b on Ga,b is explicitly given by the matrix multiplication

of hi with M(p, q, r, s), and the quotient

X = Γa,b\Ga,b

is an Inoue surface of type S0.

Proof of Proposition 3.16. Let X = Γa,b\Ga,b be an Inoue surface of type S0 and gt

a locally homogeneous solution to the HCF on X. By the left action of Γa,b on Ga,b,

the projection

Ga,b → R , M(p, q, r, s) 7→ s

factorizes to a map π : X → S1 = R/Z, which is a fibration with standard fiber T 3

(see [55]). On the other hand, the path

R→ Ga,b , s 7→M(0, 0, 0, s)

factorizes to a section γ : S1 = R/Z→ X whose length with respect to gt is

`gt(γ) =
√
y(t) . (3.26)
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Notice also that, by Proposition 3.15

(1+t)−1gt → g̃∞ :=

(
0 0

0 8a2

)
as t→∞ .

Moreover, in analogy with [120, Lemma 5.2], the kernel of g̃∞ is the integrable

distribution D spanned by X1, X2, which is dense inside any fiber of π. Finally, the

claim follows by (3.26) and this last observation (see e.g. [12, Cor 3.18]).

3.3.7 Inoue surfaces of type S±

The HCF on
(
Sol41, J1

)
reduces to the ODEs system

ẋ = 3− u|z − z̄|2

D2
, ẏ = −y

2|z − z̄|2

D2
, u̇ = −2xy2|z − z̄|2

D2
. (3.27)

Proposition 3.17 ([88]). Let g0 be a locally homogeneous Hermitian metric on an

Inoue surfaces X of type S± obtained by
(
Sol41, J1

)
. Then, the solution gt to the HCF

starting from g0 exists for all t ≥ 0. In particular, x(t) ∼ 3t and y(t) < y0, u(t) < u0

for any t > 0.

Proof. Let T ∈ (0,+∞] be the maximal existence time of the flow. Then, for any

t ∈ [0, T ), we have

Ḋ = 3y +
y|z − z̄|2

D
≥ 0 ,

ẏ < 0 , u̇ < 0 =⇒ y(t) ≤ y0 , u(t) ≤ u0 .

(3.28)

On the other hand

ẋ = 3− u|z − z̄|2

D2
≤ 3 =⇒ x(t) ≤ 3t+ x0

and the long-time existence follows, i.e. T = +∞. Finally, to conclude the proof it

is enough to show

lim
t→∞

|z − z̄|
D

= 0 . (3.29)

Let us assume by contradiction that |z−z̄|D → ε > 0. Then, by the means of (3.27)

and (3.28), there exists t∗ > 0 and a constant k1 > 1 such that

−k1y(t)2 ≤ ẏ(t) ≤ − 1

k1
y(t)2 for any t ≥ t∗ .
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This in turn implies, for any t ≥ t∗,

1

k1(t− t∗) + 1
y(t∗)

≤ y(t) ≤ 1
1
k1

(t− t∗) + 1
y(t∗)

. (3.30)

Besides, up to enlarge t∗, there also exists a constat k2 > 1 such that

−k2y(t) ≤ u̇(t) ≤ − 1
k2
y(t) for any t ≥ t∗ .

Therefore, since (3.30) holds, for any t ≥ t∗ we have

−k2
1

1
k1

(t− t∗) + 1
y(t∗)

≤ u̇(t) ≤ − 1

k2

1

k1(t− t∗) + 1
y(t∗)

and

u(t∗)− k1k2 log

(
y(t∗)

k1
(t− t∗) + 1

)
≤ u(t) ≤ u(t∗)−

1

k1k2
log (k1y(t∗)(t− t∗) + 1) .

Nonetheless, this would imply limt→+∞ u(t) = −∞, which is not possible. Hence,

(3.29) holds and x ∼ 3t follows.

The HCF on
(
Sol41, J2

)
reduces to the ODEs system

ẋ = 3 +
u|z + z̄|2 + 2y2D − y2u

D2

ẏ = −y
2(|z − z̄|2 + y2)

D2

u̇ = −2y2(x|z − z̄|2 + yu)

D2

. (3.31)

Proposition 3.18 ([88]). Let g0 be a locally homogeneous Hermitian metric on an

Inoue surfaces X of type S+ obtained by
(
Sol41, J2

)
. Then, the solution gt to the HCF

starting from g0 exists for all t ≥ 0. In particular, x(t) ∼ α t for some α ≥ 3 and

y(t) < y0, u(t) < u0 for any t > 0.

Proof. Let T ∈ (0,+∞] denote the maximal existence time of the solution. Then, a

direct computation yields that

Ḋ = 3y +
y(|z − z̄|2 + y2)

D2
≥ 0 ,

ẏ < 0 , u̇ < 0 =⇒ y(t) ≤ y0 , u(t) ≤ u0 .

(3.32)
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On the other hand, since

ẋ ≤ 3 +
4u2

D2
+

2y2

D
≤ 3 +

4u2
0

D2
0

+
2y2

0

D0
,

we have T = +∞ and the first part of the claim follows. To conclude the proof it is

enough to show that

lim
t→∞

u|z + z̄|2 + 2y2D − y2u

D2
= k ,

is necessarily non negative. By the means of (3.32), we can have either

lim
t→+∞

D(t) = +∞ or lim
t→+∞

D(t) < +∞ ,

but the former case directly implies k = 0, while the latter implies y(t) → 0 for

t→∞. Thus k ≥ 0 and the claim follows.

In view of the above results, we have

Proposition 3.19 ([88]). Let X be an Inoue surface of type S± and gt be a locally

homogeneous solution to the HCF on X. Then(
X, (1+t)−1gt

) GH−−→ S1(ρ) as t→∞ ,

where S1(ρ) = {z ∈ C : |z| = ρ} is the circle of length 2πρ, for some ρ ≥
√

3
2π .

We briefly recall the construction of Inoue surfaces of type S+. Let N ∈ SL(2,Z)

be a unimodular matrix with real positive eigenvalues given by λ and λ−1, with

λ > 1. It is well known that any S+ surface can be realized as the quotient of the

group

G+ :=

M+(r, q, v, u) :=


1 u v

0 q r

0 0 1

 : r, v, u ∈ R, q ∈ R>0

 .

by a lattice Γ+ := 〈f0, f1, f2, f3〉, where fi ∈ G+ are defined starting from N (see

[55]).

Inoue surfaces of type S± enjoy nearly the same properties of surfaces of type

S0 (see [55]). In particular, they do not contain complex curves and any S+ surface
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is diffeomorphic to a bundle over S1. Moreover, since any S− surface admits an

unramified double cover given by a S+ surface, it is enough to prove the statement

for Inoue surfaces of type S+.

Proof of Proposition 3.19. Let X = Γ+\G+ be an Inoue surface of type S+ and gt a

locally homogeneous solution to the HCF on X. The application

G+ → R , M+(r, q, v, u) 7→ log q
log λ

factorizes to a map π : X → S1, which is a locally trivial fibration (see [55]). On the

other hand, the path

R→ G+ , s 7→M+(0, λs, 0, 0)

factorizes to a section γ : S1 → X whose length with respect to gt is

`gt(γ) =
√
x(t) .

Now, in view of the above results

(1+t)−1gt → g̃∞ :=

(
α 0

0 0

)
as t→∞ ,

for some α ≥ 3. Again, the kernel of g̃∞ is the integrable distribution D spanned

by the real and imaginary part of Z2, which is dense inside any fiber of π (see [120,

Lemma 6.2]). In analogy with the case of S0 surfaces, the claim follows by setting

ρ :=
√
α

2π .

We are now in a position to prove Theorem 3.1 and Theorem 3.2.

Proof of Theorem 3.1 and Theorem 3.2. Let X be a compact complex surface and g0

a locally homogeneous non-Kähler metric on X. Then, by Theorem 3.5 and Remark

3.6, X is a quotient of the form Γ\G, where G is one of the Lie groups listed in

Section 3.2, i.e.

S̃E(2)×R , SU(2)×R , S̃L(2,R)×R , R×H3(R) , RnH3(R) , Sol40 , Sol41 ,

and Γ ⊂ G is a co-compact lattice.
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Let us now denote by T ∈ (0,+∞] the maximal existence time of the HCF solu-

tion starting from g0. Then, by means of Proposition 3.7, Proposition 3.9, Proposi-

tion 3.11, Proposition 3.13, Proposition 3.14, Proposition 3.15, Proposition 3.17 and

Proposition 3.18, we have that T <∞ if and only if G= SU(2)× R and this in turn

implies Theorem 3.1.

Finally, Theorem 3.2 directly follows by Proposition 3.7, Proposition 3.12, Propo-

sition 3.13, Proposition 3.14, Proposition 3.16 and Proposition 3.19.





Chapter 4

The Anomaly flow on a class of

nilpotent Lie groups

In this last chapter, we investigate the behaviour of the Anomaly flow on 2-step nilpo-

tent Lie groups. In particular, we show that under some assumptions the Anomaly

flow always reduces to a prescribed model problem, which allows us to predict the

behaviour of the flow when it starts from left-invariant initial data.

The results of this chapter, obtained with Luis Ugarte, will be included in [99].

4.1 The Anomaly flow

The Anomaly flow is a coupled flow of Hermitian metrics introduced by Phong,

Picard and Zhang in [92] and further investigated in [33, 35, 93–96].

Let (X,ω0) be a compact 3-dimensional Hermitian manifold equipped with a

nowhere vanishing (3, 0)-form Ψ and a complex vector bundle E → X. Let H0 be

a Hermitian metric along the fibers of E. The Anomaly flow is the coupled flow of

Hermitian metrics (ωt, Ht) given by

∂t(‖Ψ‖ωt ω2
t ) = i ∂∂ωt −

α′

4
(tr(Rτt ∧Rτt )− tr(Aκt ∧Aκt )) ,

H−1
t ∂tHt =

ω2
t ∧Aκt
ω3
t

,

(4.1)

123
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with initial conditions ωt|0 = ω0 and Ht|0 = H0. Here, Rτ and Aκ are the curvature

tensors of Gauduchon connections ∇τ on (X,ω) and ∇κ on (E,H), α′ ∈ R is the

so-called slope parameter, and

‖Ψ‖2ω := i
Ψ ∧Ψ

ω3
.

The Anomaly flow is a fundamental tool in the study of the Hull-Strominger

system [52, 53, 115]

Aκ ∧ ω2 = 0 , (Aκ)2,0 = (Aκ)0,2 = 0 ,

i ∂∂ω =
α′

4
(tr(Rτ ∧Rτ )− tr(Aκ ∧Aκ)) ,

d(‖Ψ‖ω ω2) = 0 ,

(4.2)

where ω is a Hermitian metric on X and H is a Hermitian metric along the fibers of

E, since its stationary points are solution to the system (see the Introduction).

In an attempt to understand the general behaviour of the Anomaly flow (4.1),

in [93] Phong, Picard and Zhang proposed a simplified version of the Anomaly flow

considering just the evolution equation of the metric ωt, namely

d

dt
(‖Ψ‖ωt ω2

t ) = i∂∂ωt −
α′

4
tr(Rτt ∧Rτt ) . (4.3)

In the following, we investigate the behaviour of the Anomaly flows (4.1) and

(4.3) on 2-step nilpotent Lie groups with first Betti number b1 ≥ 4, admitting a left-

invariant non-parallelizable complex structure. In particular, we assume the trace

tr(Aκt ∧Aκt ) to be of special type.

4.2 Preliminaries on 2-step nilpotent Lie groups

4.2.1 Adapted basis

Let G be a 6-dimensional Lie group equipped with a left-invariant complex structure

J and a left-invariant Hermitian metric ω. Let {Z1, Z2, Z3} be a left-invariant (1,0)-

frame on G and let {ζ1, ζ2, ζ3} be its dual frame. Then, we can always write

2ω = i
(
r2ζ11̄ + s2ζ22̄ + k2ζ33̄

)
+ u ζ12̄ − ū ζ21̄ + v ζ23̄ − v̄ ζ32̄ + z ζ13̄ − z̄ ζ31̄ , (4.4)
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where r, s, k ∈ R∗, u, v, z ∈ C,

r2s2 > |u|2 , s2k2 > |v|2 , r2k2 > |z|2 , (4.5)

and

8i detω = r2s2k2 + 2 Re(iūv̄z)− k2|u|2 − r2|v|2 − s2|z|2 > 0 . (4.6)

Here

detω =
1

8
det


i r2 u ū

−u i s2 v

−z −v i k2

.
It follows from [124] that, if G is a 2-step nilpotent with first Betti number b1 ≥ 4

and J is not complex parallelizable, then there exists a left-invariant (1,0)-coframe

{ζj}3j=1 on G satisfying

dζ1 = dζ2 = 0 , dζ3 = ρ ζ12 + ζ11̄ + λ ζ12̄ +D ζ22̄ , (4.7)

where D ∈ C, λ ∈ R with λ ≥ 0, and ρ ∈ {0, 1}.

Our next result shows that we can always find a preferable (real) left-invariant

coframe {e1, . . . , e6} on G associated to any left-invariant Hermitian structure (J, ω).

Proposition 4.1 ([99]). Let G be a 2-step nilpotent Lie group of dimension 6 with

first Betti number b1 ≥ 4. Let J be a left-invariant non-parallelizable complex struc-

ture on G and ω a left-invariant J-Hermitian metric. Then, there exists a (real)

left-invariant coframe {e1, . . . , e6} on G, which we call adapted basis, such that

(a) Je1 = −e2, Je3 = −e4, Je5 = −e6 and ω = e12 + e34 + e56.

(b) The coframe satisfies the following structure equations

de1 =de2 = de3 = de4 = 0 ,

de5 = ke
∆e

(ρ+ λ) e13 − ke
∆e

(ρ− λ) e24 + 2 ke
∆2
e

(
r2
e y − λue1

)
e34 ,

de6 =− 2ke
r2e
e12 + 2keue1

r2e∆e
e13 + ke

r2e∆e

(
r2
e(ρ− λ) + 2ue2

)
e14

+ ke
r2e∆

(
r2
e(ρ+ λ)− 2ue2

)
e23 + 2keue1

r2e∆e
e24 ,

− 2 ke
r2e∆2

e

(
r4
e x− λ r2

e ue2 + u2
e1 + u2

e2

)
e34,

(4.8)
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where x+i y =: D ∈ C, λ ∈ R with λ ≥ 0, and ρ ∈ {0, 1}. Here, the coefficients

re, se, ke, ue1, ue2 ∈ R satisfy

r2
e , s

2
e, k

2
e > 0 and r2

es
2
e > u2

e1 + u2
e2 ,

while ∆e =:
√
r2
es

2
e − u2

e1 − u2
e2.

(c) The 4-form e1234 is a positive multiple of ζ121̄2̄, i.e.

e1234 =
2i detω

k2
ζ121̄2̄ , (4.9)

where {ζ1, ζ2, ζ3} satisfies (4.7).

(d) If v = z = 0 in (4.4), then re = r, se = s, ke = k and ue = u.

Proof. Let {ζ1, ζ2, ζ3} be a left-invariant (1, 0)-coframe satisfying (4.7) and ω a

Hermitian metric given by (4.4). Then, the left-invariant (1,0)-coframe

σ1 := ζ1 , σ2 := ζ2 , σ3 := ζ3 − iv

k2
ζ2 − iz

k2
ζ1 ,

preserves the structure equations (4.7), i.e.dσ1 = dσ2 = 0,

dσ3 = ρ σ12 + σ11̄ + λσ12̄ +Dσ22̄,
(4.10)

and the fundamental form ω can be written as

2ω = i (r2
σ σ

11̄ + s2
σ σ

22̄ + k2
σ σ

33̄) + uσ σ
12̄ − uσ σ21̄,

with new metric coefficients

r2
σ := r2 − |z|

2

k2
, s2

σ := s2 − |v|
2

k2
, k2

σ := k2, uσ := u− iv̄z

k2
, (4.11)

satisfying by means of (4.5)

r2
σ, s

2
σ, k

2
σ > 0 and r2

σs
2
σ > |uσ|2 .

Let us now consider the left-invariant (1, 0)-coframe

τ1 := rσ σ
1 +

i ūσ
rσ

σ2, τ2 :=
∆σ

rσ
σ2, τ3 := kσ σ

3,
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with ∆σ :=
√
r2
σs

2
σ − |uσ|2. Then, a direct calculation yields that ω can be written

as

ω =
i

2
τ11̄ +

i

2
τ22̄ +

i

2
τ33̄

and, by using (4.10), the structure equations become
dτ1 = dτ2 = 0,

dτ3 = ρ kσ
∆σ

τ12 + kσ
r2σ
τ11̄ + kσ

r2σ∆σ

(
iuσ + λr2

σ

)
τ12̄ − ikσūσ

r2σ∆σ
τ21̄

+ kσ
r2σ∆2

σ

(
|uσ|2 − ir2

σūσλ+ r4
σD
)
τ22̄.

(4.12)

Finally, let us consider the real left-invariant coframe {e1, . . . , e6} given by

τ1 := e1 + i e2, τ2 := e3 + i e4, τ3 := e5 + i e6. (4.13)

Then, with respect to this coframe, (a) follows.

Now, let us set D := x + i y and uσ := uσ1 + i uσ2. Then, a direct computation

by means of (4.12) yields that the structure equations in terms of {e1, . . . , e6} are

given by

de1 = de2 = de3 = de4 = 0,

de5 = kσ
∆σ

(ρ+ λ) e13 − kσ
∆σ

(ρ− λ) e24 + 2 kσ
∆2
σ

(
r2
σ y − λuσ1

)
e34,

de6 = −2kσ
r2σ

e12 + 2kσuσ1
r2σ∆σ

e13 + kσ
r2σ∆σ

(
r2
σ(ρ− λ) + 2uσ2

)
e14

+ kσ
r2σ∆σ

(
r2
σ(ρ+ λ)− 2uσ2

)
e23 + 2kσuσ1

r2σ∆σ
e24

− 2 kσ
r2σ∆2

σ

(
r4
σ x− λr2

σuσ2 + u2
σ1 + u2

σ2

)
e34 .

Therefore, setting re := rσ, se := sσ, ke := kσ, ue1 := uσ1 and ue2 := uσ2 we get

(4.8), and (b) follows.

In order to prove (c), it is enough to notice that

4 e1234 = τ121̄2̄ = ∆2
σ ζ

121̄2̄,

where ∆2
σ = r2

σs
2
σ − |uσ|2 = 1

k2

(
r2s2k2 + 2 Re(iūv̄z)− k2|u|2 − r2|v|2 − s2|z|2

)
> 0.

Then, (4.9) directly follows.

Finally, (d) is a direct consequence of (4.11).
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4.2.2 Trace of the curvature

Let G be a 6-dimensional Lie group equipped with a left-invariant complex structure

J and a left-invariant Hermitian metric ω. Let {e1, . . . , e6} be an adapted basis to

the Hermitian structure, i.e.

Je1 = −e2 , Je3 = −e4 , Je5 = −e6 and ω = e12 + e34 + e56 ,

and let {e1, . . . , e6} be its dual.

Definition 4.2. The connection 1-forms (στ )ij associated to a canonical Hermitian

connection ∇τ are given by

(στ )ij(ek) := ω(∇τekej , Jei) ;

or, equivalently, ∇τXej = (στ )1
j (X) e1 + · · ·+ (στ )6

j (X) e6.

Definition 4.3. The curvature 2-forms (Rτ )ij associated to a canonical Hermitian

connection ∇τ are given by

(Rτ )ij := d(στ )ij +
∑

1≤k≤6

(στ )ik ∧ (στ )kj .

Then, the trace of the 4-form Rτ∧Rτ can be defined via

tr(Rτ ∧Rτ ) :=
∑

1≤i<j≤6

(Rτ )ij ∧ (Rτ )ij . (4.14)

Remarkably, the connection 1-forms (στ )ji associated to a canonical connection

∇τ in Gauduchon family can be explicitly obtained as follows. Let us denote by ckij

the structure constants of {e1, . . . , e6}, i.e.

dek =
∑

1≤i<j≤6

ckij e
ij , k = 1, . . . , 6 .

Then, a direct computation by using (1.2) yields that

(στ )ij(ek) =(σLC)ij(ek)−
1− τ

4
T (ei, ej , ek)−

1 + τ

4
C(ei, ej , ek)

=
1

2
(cijk − ckij + cjki)−

1− τ
4

T (ei, ej , ek)−
1 + τ

4
C(ei, ej , ek)

=
1

2
(cijk − ckij + cjki) +

1− τ
4

dω(Jei, Jej , Jek)−
1 + τ

4
dω(Jei, ej , ek) ,
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where (σLC)ij are the connection 1-forms of the Levi-Civita connection satisfying

(σLC)ij(ek) =− 1

2
(−ω(Jei, [ej , ek]) + ω(Jek, [ei, ej ])− ω(Jej , [ek, ei]))

= +
1

2

(
cijk − ckij + cjki

)
.

We are now in a position to compute the trace of Rτ∧Rτ for our class of nilpo-

tent Lie groups. To simplify the computations, we will work with an adapted basis

{e1, . . . , e6}.

Proposition 4.4 ([99]). Let G be a 2-step nilpotent Lie group of dimension 6 with

first Betti number b1 ≥ 4. Let J be a left-invariant non-parallelizable complex struc-

ture and ω a left-invariant Hermitian metric on G. Moreover, let {ζ1, ζ2, ζ3} be a

left-invariant (1, 0)-coframe satisfying (4.7). Then, for any Gauduchon connection

∇τ , it follows

tr(Rτ ∧Rτ ) = − 2(τ − 1) k4

(r2s2 − |u|2)3

{
[

(ρ−λ2+5x)(s4−2λs2u2+2x|u|2)−3λ2x(u21−u22)−6λu1y(s2−λu2)+6y2|u|2

+τ(ρ+λ2−2x)(s4−2λs2u2+2x|u|2)

+τ2
(

(−2ρ+x)(s4−2λs2u2+2x|u|2)−λ2x(u21−u22)−2λu1y(s2−λu2)+2y2|u|2
)]

+ r2 λ
[

(ρ−λ2+2x)(λs2−2u2x−2u1y)−6u2(x2+y2)

+τ(ρ+λ2−2x)(λs2−2u2x−2u1y)

+τ2
(
−2ρ(λs2−2u2x−2u1y)−2u2(x2+y2)

)]
+ r4(x2 + y2)

[
(ρ−λ2+5x)+τ (ρ+λ2−2x)+τ2 (−2ρ+x)

]} 2i detω

k2
ζ121̄2̄ .

Proof. Let {e1, . . . , e6} be an adapted basis of (ω, J) obtained by Proposition 4.1.

Since ∇τ is compatible with the U(3)-structure (ω, J), the non-zero connection 1-

forms στ satisfy the relations (στ )ij = −(στ )ji . Moreover, a direct computation yields

that

(στ )2
3 = −(στ )1

4 , (στ )2
4 = (στ )1

3 , (στ )2
5 = −(στ )1

6 , (στ )2
6 = (στ )1

5 ,

(στ )4
5 = −(στ )3

6 , (στ )4
6 = (στ )3

5 ,
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where

(στ )1
2 =− k

r2
(τ−1) e6 ,

(στ )1
3 = λ k

2
√
r2s2−|u|2

(τ−1) e5 + k u1
r2
√
r2s2−|u|2

(τ−1) e6 ,

(στ )1
4 =− k(λ r2−2u2)

2r2
√
r2s2−|u|2

(τ−1) e6 ,

(στ )1
5 =− k

2r2
(τ+1) e1 + k

2r2
√
r2s2−|u|2

(
ρr2(τ−1)+(u2−λr2)(τ+1)

)
e3 − k u1

2r2
√
r2s2−|u|2

(τ+1) e4 ,

(στ )1
6 = k

2r2
(τ+1) e2 − k u1

2r2
√
r2s2−|u|2

(τ+1) e3 + k

2r2
√
r2s2−|u|2

(
ρr2(τ−1)−(u2−λr2)(τ+1)

)
e4 ,

(στ )3
4 =− k (λu1−r2y)

r2s2−|u|2 (τ−1) e5 − k (|u|2−λ r2u2+r4x)
r2(r2s2−|u|2)

(τ−1) e6 ,

(στ )3
5 =− k (ρ r2 (τ−1)−u2 (τ+1))

2r2
√
r2s2−|u|2

e1 + k u1(τ+1)

2r2
√
r2s2−|u|2

e2 − k (|u|2−λ r2u2+r4x)
2r2(r2s2−|u|2)

(τ+1) e3

+ k (λu1−r2y)
2(r2s2−|u|2)

(τ+1) e4 ,

(στ )3
6 = k u1(τ+1)

2r2
√
r2s2−|u|2

e1 − k (ρ r2 (τ−1)+u2 (τ+1))

2r2
√
r2s2−|u|2

e2 + k (λu1−r2y)
2(r2s2−|u|2)

(τ+1) e3

+ k (|u|2−λ r2u2+r4x)
2r2(r2s2−|u|2)

(τ+1) e4 .

Finally, by means of (4.9) and (4.14), the result follows.

As a consequence of this proof, we get

Corollary 4.5 ([99]). The connection ∇τ , with τ 6= 1, is compatible with the SU(3)-

structure (ω, J,Ψ), with

Ψ := (e1 + i e2) ∧ (e3 + i e4) ∧ (e5 + i e6) ,

if and only if

0 = − k (τ − 1)

r2s2 − |u|2
(

(λu1 − r2y) e5 + (s2 − λu2 + r2x) e6
)
,

which is equivalent to require the metric ω to be balanced.

4.3 Evolution of ωt on 2-step nilpotent Lie groups via

the Anomaly flow

Let G be a 6-dimensional 2-step nilpotent (real) Lie group with first Betti number

b1 ≥ 4 equipped with a left-invariant non-parallelizable complex structure J . Fix a
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left-invariant (1, 0)-coframe {ζj}3j=1 on G satisfying (4.7) and let ωt be a smooth

curve of left-invariant Hermitian metrics on G. Then, according to the notation

introduced in (4.4), we can express ωt as

ωt =
i

2

(
r(t)2ζ11̄ + s(t)2ζ22̄ + k(t)2ζ33̄

)
+

1

2
u(t) ζ12̄ − 1

2
u(t) ζ21̄

+
1

2
v(t) ζ23̄ − 1

2
v(t) ζ32̄ +

1

2
z(t) ζ13̄ − 1

2
z(t) ζ31̄ .

(4.15)

Lemma 4.6 ([99]). We have

i∂∂̄ωt =
1

2
k(t)2(λ2 − (D + D̄) + ρ)ζ121̄2̄ ,

where D ∈ C and ρ ∈ {0, 1} arise from (4.7).

Proof. By using (4.7) and (4.15), we have

∂∂̄ωt =
i

2
k(t)2(∂̄ζ3 ∧ ∂ζ 3̄ − ∂ζ3 ∧ ∂̄ζ 3̄) =

i

2
k(t)2(−λ2 + (D + D̄)− ρ)ζ121̄2̄ ,

and the claim follows.

From now on, let Ψ be a left-invariant complex volume form on G. Moreover, let

us assume that one of the following two conditions hold:

1) ωt solves the Anomaly flow (4.3) with respect to the Gauduchon connection

∇τ ;

2) there exists a curve of left-invariant Hermitian metrics Ht on E such that

(ωt, Ht) solves the Anomaly flow (4.1), and tr(Aκt ∧ Aκt ) is a multiple of the

(2, 2)-form ζ121̄2̄.

Under these assumptions, Lemma 4.6 and Proposition 4.4 directly imply the following

Proposition 4.7 ([99]). We have

d

dt
(‖Ψ‖ωt ω2

t ) = K(t, α′, τ, κ) ζ121̄2̄ , (4.16)

where K(t, α′, τ, κ) also depends on the structure equations of G.
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Since

ω2
t =

1

2

(
r(t)2s(t)2 − |u(t)|2

)
ζ121̄2̄ − i

2

(
r(t)2v(t)− i z(t)u(t)

)
ζ121̄3̄

+
1

2

(
−u(t)v(t) + i s(t)2z(t)

)
ζ122̄3̄ +

i

2

(
r(t)2v(t) + i u(t)z(t)

)
ζ131̄2̄

+
1

2

(
r(t)2k(t)2 − |z(t)|2

)
ζ131̄3̄ − i

2

(
k(t)2u(t)− i z(t)v(t)

)
ζ132̄3̄

− 1

2

(
u(t)v(t) + i s(t)2z(t)

)
ζ231̄2̄ +

i

2

(
k(t)2u(t) + i v(t)z(t)

)
ζ231̄3̄

+
1

2

(
s(t)2k(t)2 − |v(t)|2

)
ζ232̄3̄ ,

we have that (4.16) can be written as

d

dt

(
‖Ψ‖ωt(r(t)2s(t)2 − |u(t)|2)

)
= K(t, α′, τ, κ), (4.17)

and

d

dt

(
‖Ψ‖ωt(r(t)2k(t)2 − |z(t)|2)

)
= 0 =⇒ r(t)2k(t)2 − |z(t)|2 =

c1

‖Ψ‖ωt
(4.18)

d

dt

(
‖Ψ‖ωt(s(t)2k(t)2 − |v(t)|2)

)
= 0 =⇒ s(t)2k(t)2 − |v(t)|2 =

c2

‖Ψ‖ωt
(4.19)

d

dt

(
‖Ψ‖ωt(r(t)2v(t)− i z(t)u(t))

)
= 0 =⇒ r(t)2v(t)− i z(t)u(t) =

c3

‖Ψ‖ωt
(4.20)

d

dt

(
‖Ψ‖ωt(s(t)2z(t) + i u(t)v(t))

)
= 0 =⇒ s(t)2z(t) + i u(t)v(t) =

c4

‖Ψ‖ωt
(4.21)

d

dt

(
‖Ψ‖ωt(k(t)2u(t)− i z(t)v(t))

)
= 0 =⇒ k(t)2u(t)− i z(t)v(t) =

c5

‖Ψ‖ωt
(4.22)

for some constants c1, c2 ∈ R, c1, c2 > 0 and c3, c4, c5 ∈ C.

Proposition 4.8 ([99]). If ω0 is balanced, then ωt remains balanced.

Proof. In view of [124, Prop. 25], a left-invariant Hermitian metric

2ω = i
(
r2ζ11̄ + s2ζ22̄ + k2ζ33̄

)
+ u ζ12̄ − ū ζ21̄ + v ζ23̄ − v̄ ζ32̄ + z ζ13̄ − z̄ ζ31̄

on G (with {ζj}3j=1 satisfying (4.7)) is balanced if and only if

s2k2 − |v|2 +D
(
r2k2 − |z|2

)
= λ

(
ik2 ū− vz̄

)
. (4.23)
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Now, the relations (4.18)–(4.22) imply that if ω0 satisfies (4.23), then ωt remains

balanced and the claim follows.

By means of Proposition 4.1, up to change the coframe {ζj}3j=1, we may always

assume ω0 to be almost diagonal, i.e.

ω0 =
i

2

(
r2

0 ζ
11̄ + s2

0 ζ
22̄ + k2

0 ζ
33̄
)

+
1

2
u0 ζ

12̄ − 1

2
ū0 ζ

21̄ .

Theorem 4.9 ([99]). The Anomaly flows (4.1) and (4.3) preserves the almost diag-

onal condition. Moreover, if ω0 is almost diagonal, then ωt evolves as

ωt =
i

2

(
r(t)2ζ11̄ +

c2

c1
r(t)2ζ22̄ +

c1c2−|c5|2

8
ζ33̄

)
+

1

2

c5

c1
r(t)2 ζ12̄ − 1

2

c5

c1
r(t)2 ζ21̄,

(4.24)

where c1, c2 > 0 and c5 ∈ C satisfy c1 c2 > |c5|2, and

‖Ψ‖ωt =
8 c1

(c1 c2 − |c5|2) r(t)2
.

Proof. Since equations (4.20) and (4.21) hold, the functions v(t) and z(t) satisfy

v(t) =
c3 s(t)

2 + i c4 u(t)

‖Ψ‖ωt(r(t)2s(t)2 − |u(t)|2)
, z(t) =

−i c3 u(t) + c4 r(t)
2

‖Ψ‖ωt(r(t)2s(t)2 − |u(t)|2)
,

for any t in the defining interval. On the other hand, by v0 = z0 = 0 it follows

c3 = c4 = 0 ,

and hence v(t) = 0 and z(t) = 0. Thus, the solution remains almost diagonal.

Let us now focus on the second part of the statement. As a direct consequence

of (4.18), (4.19) and (4.22), it follows

(r(t)2s(t)2 − |u(t)|2)k(t)4 =
c1c2 − |c5|2

‖Ψ‖2ωt
,

which implies

‖Ψ‖2ωt =
c1c2 − |c5|2

(r(t)2s(t)2 − |u(t)|2)k(t)4
,
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with c1c2 − |c5|2 > 0 by the positive definiteness of the metric. Moreover, by the

definition of ‖Ψ‖2ωt , we have

‖Ψ‖2ωt =
8

(r(t)2s(t)2 − |u(t)|2)k(t)2

and hence

k(t) =

√
c1 c2 − |c5|2

8

is constant. Finally, by means of (4.18), (4.19) and (4.22), we have

0 = c2 r(t)
2k(t)2 − c1 s(t)

2k(t)2 = (c2 r(t)
2 − c1 s(t)

2)k(t)2

and

0 = c5 r(t)
2k(t)2 − c1 u(t)k(t)2 = (c5 r(t)

2 − c1 u(t))k(t)2 ,

which respectively imply

s(t)2 =
c2

c1
r(t)2 and u(t) =

c5

c1
r(t)2 ,

and the claim follows.

When the initial metric ω0 is diagonal, that is u0 = v0 = z0 = 0, the above result

simplifies to

Corollary 4.10 ([99]). The Anomaly flows (4.1) and (4.3) preserves the diagonal

condition. Moreover, we have

ωt=
i

2

(
r(t)2ζ11̄ +

c2

c1
r(t)2ζ22̄ +

c1c2

8
ζ33̄

)
,

where c1, c2 > 0, and

‖Ψ‖ωt =
8

c2 r(t)2
.

4.3.1 Evolution of ωt via (4.3)

In the following, given a family of left-invariant Hermitian metrics ωt on G solving

(4.3), we improve the results stated above.
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In our setting, by means of Theorem 4.9 and Proposition 4.7, it follows that the

coefficient r(t) of ωt in (4.24) evolves as

d

dt
r(t)2 =

c1

8
K(t, α′, τ) ,

where the right-hand side is given by

K(t, α′, τ) ζ121̄2̄ = i∂∂ωt −
α′

4
tr(Rτt ∧Rτt ) .

On the other hand, by Lemma 4.6 and Theorem 4.9, we have

i∂∂ωt = K̃1 ζ
121̄2̄ ;

while, by means of Proposition 4.4, it follows

tr(Rτt ∧Rτt ) =
K̃2

r(t)4
ζ121̄2̄ ,

for some constants K̃1, K̃2 ∈ R. Therefore, we get

Theorem 4.11 ([99]). The Anomaly flow (4.3) is equivalent to the “model problem”

d

dt
r(t)2 = K1 +

K2

r(t)4
, (4.25)

where K1,K2 ∈ R are constants depending on K1 = K1(ω0) and K2 = K2(ω0, α
′, τ).

Remark 4.12. In view of [58, Lemma 3.7] and [58, Prop. 3.8], in our setting

(i) ω0 balanced implies K1 > 0.

(ii) ω0 pluriclosed implies K1 = 0.

(iii) ω0 locally conformally Kähler implies K1 < 0.

Now, we investigate the qualitative behaviour of the model problem (4.25), which

can be rewritten as

ḣ(t) = K1 +
K2

h(t)2
, h(t) > 0 . (4.26)

Note that, when either K1 = 0 or K2 = 0 the ODE (4.26) can be solved explicitly,

otherwise we work as follows
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• K1 > 0 and K2 > 0

Proposition 4.13 ([99]). Any solution h(t) to (4.26) is immortal. In particular,

h(t) ∼ K1 · t as t→ +∞.

Proof. Let h(t) be a solution to (4.26). Since

ḣ(t) = K1 +
K2

h(t)2
> 0 ,

it follows that h(t) ≥ h(0), for every t ∈ [0, T+). On the other hand,

ḣ(t) ≤ K1 +
K2

h(0)2

and the long-time existence follows, since h(t) ≤ c t+ h(0) with c := K1 + K2
h(0)2

.

Let us now assume by contradiction that ḣ(t)→ 0 as t→ +∞. Then, this would

imply

lim
t→∞

K1 +
K2

h(t)2
= 0 ,

which is not possible since K1,K2 > 0. Therefore, we have

lim
t→∞

ḣ(t) = K1

and hence h(t) ∼ K1 · t as t → +∞. Finally, a similar argument shows that if the

solution exists backward in time for all t < 0, then

h(t) ∼ K1 · t as t→ −∞ ,

which is not possible since h(t) > 0.

• K1 > 0 and K2 < 0

Let us denote by h0 :=
√
−K2/K1. Then, we have

Proposition 4.14 ([99]). Let h(t) be a solution to (4.26):

(i) if h(0) = h0, then h(t) ≡ h(0);

(ii) if h(0) > h0, then h(t) is eternal and h(t) ∼ K1 · t as t→ +∞;
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(iii) if h(0) < h0, then h(t) is ancient.

Furthermore, h(t) tends to h0 as t→ −∞.

Proof. Let h(t) be the solution to (4.26). Then, a direct computation yields that h0

is the unique stationary point to the flow, and hence the first claim follows.

Now, let us suppose h(0) > h0. Then, there exists ε > 0 such that

h(0) =

√
−K2

K1
+ ε .

This implies

ḣ(0) =
εK2

1

−K2 + εK1
> 0 ,

and hence ḣ(t) > 0, for every t ∈ (T−, T+). On the other hand,

ḣ(t) ≤ K1 =⇒ h(t) ≤ K1 t+ h(0) for any t ≥ 0 ,

and the long-time existence follows. Moreover, since h(t) is always increasing and h0

is the unique stationary point to the flow, it follows h(t) → h0 as t → −∞. Thus,

the solution h(t) is eternal. Finally, let us assume by contradiction that ḣ(t)→ 0 as

t→ +∞. Then, this would be equivalent to require

lim
t→∞

K1 +
K2

h(t)2
= 0 ,

which is not possible since h(0) > h0, and hence

lim
t→∞

ḣ(t) = K1

proves the second claim.

Now, let us assume

h(0) =

√
−K2

K1
− ε < h0 ,

for some ε > 0. Then, a direct computation yields that

ḣ(0) =
−εK2

1

−K2 + εK1
< 0 , (4.27)
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which implies ḣ(t) < 0, for every t ∈ (T−, T+). On the other hand, it follows

h(t) ≤ −εK2
1

−K2 + εK1
t+ h(0) ,

for any t ≥ 0, and hence T+ < +∞. Moreover, since h(t) is decreasing, we have

lim
t→T+

ḣ(t) = lim
t→T+

K1 +
K2

h(t)2
= −∞ . (4.28)

Finally, since the solution is always decreasing and there exists a unique stationary

point to the flow, we have h(t)→ h0 as t→ −∞, and hence the last claim follows.

Remark 4.15. As far as we know, the Anomaly flow is the second example of a metric

flow admitting invariant solutions both with T+ < +∞ and T+ = +∞ on the same

homogeneous space (the first example was found by Arroyo and Lafuente for the

pluriclosed flow [6]).

• K1 < 0 and K2 < 0

Under these assumptions, we have

Proposition 4.16 ([99]). Any solution h(t) to (4.26) is ancient. In particular,

h(t) ∼ −K1 · t as t→ −∞.

The proof of this result can be obtained by using the same argument as in Propo-

sition 4.13.

• K1 < 0 and K2 > 0

Arguing in the same way of Proposition 4.14, we get

Proposition 4.17 ([99]). Let h(t) be a solution to (4.26). It follows that

(i) if h(0) = h0, then h(t) ≡ h(0);

(ii) if h(0) > h0, then h(t) is eternal and h(t) ∼ −K1 · t as t→ −∞;

(iii) if h(0) < h0, then h(t) is immortal.

Furthermore, h(t) tends to h0 as t→ +∞.
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4.4 An explicit example

In this section we study the Anomaly flow (4.1) on the simply-connected Lie group N ,

which admits a left-invariant (1, 0)-coframe {ζj}3j=1 satisfying the structure equationsdζ1 = dζ2 = 0,

dζ3 = ζ11̄ − ζ22̄ .
(4.29)

This is the unique Lie group in the class we are considering which admits a solution

to the Hull-Strominger-Ivanov system (see e.g. [36]).

In this case, we assume that the holomorphic vector bundle E is given by T 1,0N

and that the initial left-invariant Hermitian metrics (ω0, H0) are both diagonal, i.e.

ω0 =
i

2

(
r2

0 ζ
11̄ + s2

0 ζ
22̄ + k2

0 ζ
33̄
)

and

H0 =
i

2

(
r̃2

0 ζ
11̄ + s̃2

0 ζ
22̄ + k̃2

0 ζ
33̄
)
.

Our first result is the following

Proposition 4.18 ([99]). The metrics ωt and Ht remain diagonal along the flow

and the coefficients of Ht evolve via

d

dt
r̃(t)2 =

1

3c1c2

[
2(κ+ 1)2r(t)2k̃(t)2 + c1(κ− 1)(c1 − c2)r̃(t)2

] k̃(t)2

r(t)4r̃(t)2
,

d

dt
s̃(t)2 =

1

3c1c2

[
2(κ+ 1)2r(t)2k̃(t)2 − c1(κ− 1)

(
c1 − c2

)
s̃(t)2

] k̃(t)2

r(t)4s̃(t)2
,

d

dt
k̃(t)2 =

2

3c1c2

[
− (κ+ 1)2

(
r̃(t)4 + s̃(t)4

)] k̃(t)6

r(t)2r̃(t)4s̃(t)4
.

(4.30)

To prove our statement, we need the following lemma.

Lemma 4.19 ([99]). Under the hypotheses of Proposition 4.18, we have

tr(Aκ0 ∧Aκ0) = C0 ζ
121̄2̄,



140 Chapter 4. The Anomaly flow on a class of nilpotent Lie groups

where C0 = C0(ω0, H0, κ) is a constant depending both on the Hermitian structures

and the connection ∇κ.

Proof. In view of Subsection 4.2.2, the connection 1-forms (σκ)ĩ
j̃

associated to the

connection ∇κ are given by

∇ẽk ẽj = (σκ)1̃
j̃
(ẽk) ẽ1 + · · ·+ (σκ)6̃

j̃
(ẽk) ẽ6 .

where {ẽl}6l=1 is the basis dual to the adapted basis {ẽl}6l=1 of (J,H0) (see Proposi-

tion 4.1). On the other hand, if {el}6l=1 is the adapted basis associated to (ω0, J),

{el}6l=1 is its dual basis and M := (Mp
j ) denotes the change-of-basis matrix from {el}

to {ẽl}, i.e.

ẽj = Mp
j ep, for every 1 ≤ j ≤ 6 ,

then we have

∇ẽk ẽj = ∇Mp
k ep

(M q
j eq) = Mp

k M
q
j N

i
l (σκ)lq(ep)ẽi ,

where N := M−1, and hence

(σκ)ĩ
j̃
(ẽk) = g(∇ẽk ẽj , ẽi) = Mp

k M
q
j N

i
l (σκ)lq(ep) . (4.31)

Now, in view of (4.13), the following relations hold

e1 + i e2 = r0 ζ
1 , r̃0 ζ

1 = ẽ1 + i ẽ2 ,

e3 + i e4 = s0 ζ
2 , s̃0 ζ

2 = ẽ3 + i ẽ4 ,

e5 + i e6 = k0 ζ
3 , k̃0 ζ

3 = ẽ5 + i ẽ6 .

Therefore, the change-of-basis matrix M from {el} to {el̃} is given by the diagonal

matrix

M := diag

(
r0

r̃0
,
r0

r̃0
,
s0

s̃0
,
s0

s̃0
,
k0

k̃0

,
k0

k̃0

)
and, by means of (4.31), we get

(σκ)ij(ek) = M i
i N

j
j N

k
k (σκ)ĩ

j̃
(ẽk) ,
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or, equivalently,

(σκ)ij = M i
i N

j
j N

k
k (σκ)ĩ

j̃
(ẽk) e

k .

Moreover, since the 1-forms (σκ)ĩ
j̃

are given in the proof of Proposition 4.4, we have

that

(σκ)1
2 =− k̃2

0

k0 r̃2
0

(κ− 1) e6 , (σκ)1
5 = − k̃2

0

2 k0 r̃2
0

(κ+ 1) e1 ,

(σκ)1
6 =

k̃2
0

2 k0 r̃2
0

(κ+ 1) e2 , (σκ)3
4 =

k̃2
0

k0 s̃2
0

(κ− 1) e6 ,

(σκ)3
5 =

k̃2
0

2 k0 s̃2
0

(κ+ 1) e3 , (σκ)3
6 = − k̃2

0

2 k0 s̃2
0

(κ+ 1) e4 ,

(σκ)1
3 =(σκ)1

4 = (σκ)2
3 = (σκ)2

4 = (σκ)5
6 = 0 ,

(4.32)

together with the following relations

(στ )2
5 = −(στ )1

6 , (στ )2
6 = (στ )1

5 , (στ )4
5 = −(στ )3

6 , (στ )4
6 = (στ )3

5 .

Thus, by means of (4.3), the connection 2-forms Aκ of ∇κ are given by

(Aκ)1
2 =− (κ+ 1)2r2

0k̃
4
0 − 4(κ− 1)k2

0 r̃
2
0k̃

2
0

2r2
0k

2
0 r̃

4
0

e12

(Aκ)1
3 =

(κ+ 1)2k̃4
0

4k2
0 r̃

2
0 s̃

2
0

(e13 + e24) ,

(Aκ)1
4 =

(κ+ 1)2k̃4
0

4k2
0 r̃

2
0 s̃

2
0

(e14 − e23) ,

(Aκ)1
5 =− (κ2 − 1)k̃4

0

2k2
0 r̃

4
0

e26 ,

(Aκ)1
6 =− (κ2 − 1)k̃4

0

2k2
0 r̃

4
0

e16 ,

(Aκ)3
4 =

2(κ− 1)k2
0 s̃

2
0k̃

2
0

r2
0k

2
0 s̃

4
0

e12 −

(
(κ+ 1)2s2

0k̃
2
0 − 4(κ− 1)k2

0 s̃
2
0

)
k̃2

0

2s2
0k

2
0 s̃

4
0

e34 ,

(Aκ)3
5 =− (κ2 − 1)k̃4

0

2k2
0 s̃

4
0

e46 ,

(Aκ)3
6 =− (κ2 − 1)k̃4

0

2k2
0 s̃

4
0

e26 ,

(Aκ)5
6 =

(κ+ 1)2r2
0 s̃

4
0k̃

4
0

2r2
0k

2
0 r̃

4
0 s̃

4
0

e12 +
(κ+ 1)2s2

0r̃
4
0k̃

4
0

2s2
0k

2
0 r̃

4
0 s̃

4
0

e34 ,

(4.33)
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together with the following relations

(Aκ)2
3 = −(Aκ)1

4 , (Aκ)2
4 = (Aκ)1

3 , (Aκ)2
5 = −(Aκ)1

6 , (Aκ)2
6 = (Aκ)1

5 ,

(Aκ)4
5 = −(Aκ)3

6 , (Aκ)4
6 = (Aκ)3

5 .

Finally, in view of (4.14) we have

tr(Aκ ∧Aκ) =
(κ− 1) k̃4

0

2k2
0 r̃

6
0 s̃

6
0

{
− (κ− 1)

(
r̃4

0 + s̃4
0

)
k2

0 r̃
2
0 s̃

2
0

+ (κ+ 1)2
(
s2

0r̃
6
0 + r2

0 s̃
6
0

)
k̃2

0

}
ζ121̄2̄ ,

(4.34)

which implies the claim.

Proof of Proposition 4.18. Let us focus on the evolution of Ht via

H−1
t ∂tHt =

ω2
t ∧Aκt
ω3
t

. (4.35)

We first show that there exists T̃ > 0 such that Ht holds diagonal for any t ∈ (0, T̃ ),

for which is enough to prove that ω2
t ∧ (Aκt )i

j̄
= 0 for any i 6= j and t = 0. Let H and

ω be two left-invariant diagonal Hermitian metrics on G given by

H =
i

2

(
r̃2 ζ11̄ + s̃2 ζ22̄ + k̃2 ζ33̄

)
, s̃2, r̃2, k̃2 > 0 ,

and

ω =
i

2

(
r2 ζ11̄ + s2 ζ22̄ + k2 ζ33̄

)
, s2, r2, k2 > 0

If we consider {e1, . . . , e6} a left-invariant coframe on G such that

δ1 ζ
1 = e1 − i J(e1) , δ2 ζ

2 = e3 − i J(e3) , δ3 ζ
3 = e5 − i J(e5) ,

with δ1 = r, δ2 = s and δ3 = k, then we get

(Aκ)ij̄ =
1

δiδj

(
(Aκ)e

i

ej + i (Aκ)e
i

J(ej) − i (Aκ)
J(ei)

ej
+ (Aκ)

J(ei)

J(ej)

)
,

where (Aκ)e
i

ej
are the curvature 2-forms of ∇κ explicitly computed in the proof of

Lemma 4.19. Thus, the only non-zero entries in the right-hand side of (4.35) are
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given by

ω2 ∧ (Aκ)1
1̄

ω3
=

1

12

k̃2

r4s2k2r̃4

[
r2s2k̃2(κ+ 1)2 + 4k2r̃2(κ− 1)(r2 − s2)

]
,

ω2 ∧ (Aκ)2
2̄

ω3
=

1

12

k̃2

r4s2k2s̃4

[
r2s2k̃2(κ+ 1)2 − 4k2s̃2(κ− 1)

(
r2 − s2

) ]
,

ω2 ∧ (Aκ)3
3̄

ω3
=

1

12

k̃4

r4s2k2r̃4s̃4

[
− (κ+ 1)2r2s2

(
r̃4 + s̃4

) ]
,

(4.36)

and hence our claim follows, since ω0 and H0 are both diagonal.

On the other hand, by means of Lemma 4.19 and Corollary 4.10, there also exists

T̂ > 0 such that ωt holds diagonal for any t ∈ [0, T̂ ]. Thus, by the existence of T̂ > 0

and T̃ > 0, it follows that ωt and Ht hold diagonal for any t along the flow.

Finally, the evolution equations in (4.30) are a direct consequence of (4.36) and

Corollary 4.10.

Remark 4.20. Under the assumptions of Proposition 4.18, we have that

tr(Aκt ∧Aκt ) = Ct ζ
121̄2̄,

where Ct = Ct(ωt, Ht, κ) is a one-parameter function depending both on the Hermi-

tian structures and the connection ∇κ.

Now, let us consider the setting of Proposition 4.18 in the special case κ = 1, i.e.

∇κ is the Chern connection on (T 1,0N,Ht). Then, we have

Theorem 4.21 ([99]). If κ = 1, then the coefficients of ωt and Ht evolve via the

ODEs system 

d

dt
r(t)2 =

c2
1c2

25
+ α′(1− τ)(τ2 − 2τ + 5)

c3
1(c2

1 + c2
2)

211 r(t)4
,

d

dt
r̃(t)2 =

8

3c1c2

k̃(t)4

r(t)2r̃(t)2
,

d

dt
s̃(t)2 =

8

3c1c2

k̃(t)4

r(t)2s̃(t)2
,

d

dt
k̃(t)2 = − 8

3c1c2

(
r̃(t)4 + s̃(t)4

) k̃(t)6

r(t)2r̃(t)4s̃(t)4
.

(4.37)
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Moreover, if ω0 and H0 are both balanced, then Ht evolves as

Ht =
i

2
r̃(t)2ζ11̄ +

i

2
r̃(t)2ζ22̄ +

i

2

r̃4
0k̃

2
0

r̃(t)4
ζ33̄ ,

where the function r̃(t)2 satisfies

d

dt
r̃(t)2 =

8

3c2
1

r(0)8k(0)4

r(t)2r̃(t)10
(4.38)

In particular, for any connection ∇τ with τ 6= 1 (i.e. different from the Chern

connection), there exists a convenient choice of α′ such that the solution to the system

is given by ωt ≡ ω0 and r̃(t) = 12
√
A t+B, with A =

16 r̃80 k̃
4
0

c21 r
2
0

and B = r̃12
0 .

Proof. By means of Proposition 4.7, the first equation of the Anomaly flow (4.1)

reduces to
d

dt
r(t)2 =

c1

4
K(t, α′, τ) , (4.39)

where K(t, α′, τ) is given by

K(t, α′, τ) ζ121̄2̄ = i∂∂ωt −
α′

4

(
tr(Rτt ∧Rτt )− tr(A1

t ∧A1
t )
)
.

By Corollary 4.10 and Proposition 4.4, a direct computation yields that

i∂∂ωt =
c1c2

23
ζ121̄2̄ ,

tr(Rτt ∧Rτt ) = (τ − 1)(τ2 − 2τ + 5)
c2

1 + c2
2

27

c2
1

r(t)4
ζ121̄2̄ ,

while, by means of (4.34), we have tr(A1
t ∧ A1

t ) = 0. Therefore, by using (4.39) and

(4.30) for κ = 1, ρ = y = 0 and x = −1, one gets the ODEs system (4.37).

Let ω0 and H0 be both balanced. By means of (4.23) and (4.18)–(4.22), the

balanced condition implies that

c2 = c1 and s̃2
0 = r̃2

0 .

The latter equality, together with the fact that the functions r̃(t)2 and s̃(t)2 satisfy

similar equations in (4.37), leads to s̃(t)2 = r̃(t)2. Therefore, the ODEs system (4.37)
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reduces to 

d

dt
r(t)2 =

c3
1

25
+ α′(1− τ)(τ2 − 2τ + 5)

c5
1

210 r(t)4
,

d

dt
r̃(t)2 =

8

3c2
1

k̃(t)4

r(t)2r̃(t)2
,

d

dt
k̃(t)2 = − 16

3c2
1

k̃(t)6

r(t)2r̃(t)4
.

(4.40)

By considering the quotient of d
dt r̃(t)

2 with d
dt k̃(t)2, we get∫

1

r̃(t)2
dr̃(t)2 = −1

2

∫
1

k̃(t)2
dk̃(t)2 ,

which implies

k̃(t) =
r̃2

0k̃0

r̃(t)2

and hence (4.38) follows.

Finally, for any value of r2
0 and τ 6= 1, there exists a convenient the value of α′

making the right hand side of the first equation in (4.40) equal to zero. In this case

we can explicitly solve the system with

r̃(t) = 12
√
A t+B,

where A =
16 r̃80 k̃

4
0

c21 r
2
0

and B = r̃12
0 .

In the same spirit, we now consider the setting of Proposition 4.18 in the special

case κ = −1, i.e. when ∇κ is the Bismut connection on (T 1,0N,Ht). In this case, if

ω0 is balanced, it turns out that (Ht, A
−1
t ) is an instanton with respect to ωt, i.e.

A−1
t ∧ ω2

t = 0 , (A−1
t )2,0 = (A−1

t )0,2 = 0 .

Moreover, there also exists a solution to the Hull-Strominger-Ivanov system, that

is, a solution (ωt, Ht) to the Hull-Strominger system (4.2) for which ωt is also an

instanton.
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Theorem 4.22 ([99]). If κ = −1, then the coefficients of ωt and Ht evolve via the

ODEs system

d

dt
r(t)2 =

c2
1c2

25
+ α′(1− τ)(τ2 − 2τ + 5)

c3
1(c2

1 + c2
2)

84 r(t)4
− α′ c1

2

k̃(t)4(r̃(t)4 + s̃(t)4)

r̃(t)4s̃(t)4
,

d

dt
r̃(t)2 =

2

3c2
(c2 − c1)

k̃(t)2

r(t)4
,

d

dt
s̃(t)2 =

2

3c2
(c1 − c2)

k̃(t)2

r(t)4
,

d

dt
k̃(t)2 = 0 .

(4.41)

If the initial metric ω0 is balanced, then Ht = H0 is constant, its Bismut connection

∇−1 is an instanton with respect to any ωt, and the Anomaly flow reduces to the

ODE
d

dt
r(t)2 = K1 +

K2

r(t)4
, (4.42)

where K1 = K1(ω0, α
′, H0) and K2 = K2(ω0, α

′, τ) (see (4.43) bellow).

Moreover, when ω0 is balanced, we have the following

(i) If α′ < 0, then there exists a stationary point to the Anomaly flow which solves

the Hull-Strominger system with non-trivial instanton, for any Gauduchon con-

nection with τ < 1.

(ii) If α′ > 0, then H0 can be conveniently chosen in order to obtain K1 < 0, = 0

or > 0 in (4.42). Moreover, there always exists a convenient choice of H0 such

that the Anomaly flow admits a stationary point solving the Hull-Strominger

system with non-trivial instanton.

(iii) If α′ 6= 0 and τ = −1 (i.e. ∇τ is the Bismut connection of (N3, ωt)), then

(ωt, R
−1
t ) is an instanton with respect to ωt. Therefore, there exists a stationary

point to the Anomaly flow which solves the Hull-Strominger-Ivanov system with

non-trivial instanton.

Proof. The first part of the statement follows the same argument of Theorem 4.21.

We just mention that by means of (4.34) for κ = −1, ρ = y = 0 and x = −1, we
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have

tr(A−1
t ∧A

−1
t ) = −8

r̃(t)4 + s̃(t)4

r̃(t)4s̃(t)4
k̃(t)4 ζ121̄2̄ .

Hence, the ODEs system (4.41) is obtained from (4.30).

Now, let us assume ω0 balanced. By means of (4.23) and (4.18)–(4.22), we have

c1 = c2 ,

and hence the ODEs system (4.41) reduces to r̃(t), s̃(t), k̃(t) constant (i.e. Ht = H0),

and
d

dt
r(t)2 = K1 +

K2

r(t)4
,

with

K1 :=
c2

1c2

25
−α′ c1

2

k̃4
0(r̃4

0 + s̃4
0)

r̃4
0 s̃

4
0

, K2 := α′(1−τ)(τ2−2τ+5)
c3

1(c2
1 + c2

2)

211
. (4.43)

Therefore, we get that ω2
t ∧ A−1 = 0 for any t ∈ (T−, T+) and, moreover, by means

of the curvature forms given in the proof of Lemma 4.19, a direct computation yields

that the curvature of the Bismut connection satisfies

(A−1)2,0 = (A−1)0,2 = 0 . (4.44)

Hence, ∇−1 is an instanton for any ωt, with t ∈ (T−, T+).

Finally, the last three claims are a direct consequences of (4.43), (4.44) and

Section 4.3.1 arguments.
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