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Abstract: Vegetation phenology is that branch of science that describes periodic plant life cycle events
across the growing seasons. Remote sensing typically monitors these significant events by means of
time series of vegetation indices, permitting to characterize vegetation dynamics. It is well known
that vegetation in urban areas, i.e., green spaces in general, may benefit human health mainly by
mitigating noise and air pollution, promoting physical or social activities, and improving mental
health. Based on the influence that green space exposure seems to exert on Public Health and using
a multidisciplinary approach, we mapped phenological behavior of urban green areas to explore
yearly persistence of their potential favorable effect, such as heat reduction, air purification, noise
mitigation, and promotion of physical/social activities and improvement of mental health. The study
area corresponds to the municipality of Torino (about 800,000 inhabitants, NW, Italy). Renouncing
to a rigorous at-species level phenological description, this work investigated macro-phenology of
vegetated areas for the 2018, 2019 and 2020 years with reference to the new free and open Copernicus
HR-VPP dataset. Vegetation type, deduced with reference to the 2019 BDTRE official technical map
of the Piemonte Region, was considered and related to the correspondent macro-phenology using
a limited number of metrics from the HR-VPP dataset. Investigation was aimed at exploring their
capability of providing synthetic and easy-to-use information for urban planners. No validation
was achieved about phenological metrics values (assuming their accuracy correspondent to the
nominal one reported in the associated manuals). Nevertheless, a spatial validation was operated
to investigate the capability of the dataset to properly recognize vegetated areas, thus providing
correspondent metrics. Preliminary results showed a spatial inconsistency related to the HR-VPP
dataset, that greatly overestimates (about 50%) vegetated areas in the city, assigning metric values
to pixels that, if compared with technical maps, do not fall within vegetated areas. The work found
out that, among HR-VPP metrics, LOS (Length Of Season) and SPROD (Seasonal Productivity) well
characterized vegetation patches, making it possible to clearly read vegetation behavior, which
can be effectively exploited to zone the city and make management of green areas and real estate
considerations more effective.

Keywords: HR-VPP data; Copernicus; greenness; urban planning; phenological metrics

1. Introduction

Highly populated urban areas are often critical for many aspects, like soil sealing
and degradation, urban sprawl and, in general, loss of ecosystem services [1]. GIS tools
and spatial analysis have already demonstrated to be effective in urban planning [2] and
landscape evaluation [3–6]. In the last few years, the increasing number of free digital
georeferenced data, especially remotely sensed ones, have started a new trend of spatial
analysis for land planning and management, mainly relying on the exploitation of the
time domain-related information that satellite missions can guarantee [7–9]. The spatial
distribution of environmental factors [10–12], coupled with their dynamics along time,
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are expected to improve deductions especially about those territorial features showing a
significant variability along time, i.e., vegetation.

Landscape metrics are already known to be effective in describing urban
contexts [13–15] and some experiences showed that the joint adoption of remote sens-
ing data and socio-economic techniques [16,17] can significantly improve final deductions.
In spite of a wide literature, in the most of cases, urban planning/management approaches
rely on the interpretation of mere representations (maps) and, rarely, take into consider-
ation quantitative concerns that are expected to increase the level of objectivity in urban
reading, management and planning [18,19]. Within this general framework, in the climate
change era, urban greenness is becoming a focus point in the public debate. Green areas,
are, in fact, assigned, among the others, the role of mitigating the negative impacts of
urbanization and creating more sustainable and healthier cities. Public or private vege-
tated areas—residential gardens, parks, street trees and surrounding natural areas—are
known to provide benefits ranging from surface temperature reduction, air purification,
noise mitigation, and promotion of physical/social activities and improvement of mental
health [20,21].

Greenness is strictly related to vegetation phenology. Phenology describes periodic
plant life cycle events across its growing season. Remotely sensed data have proved to be
proper for monitoring macro-phenology, enabling the identification of significant markers
along time series of maps of spectral indices.

Currently, phenology-related research in urban areas based on remotely sensed data
focuses on many different types of applications. For example, urban phenology studies
are retained useful to detect urban heat islands effects [22] and to assess climate change
impacts on urban vegetation [23]. Other studies have investigated the impact of urban-
ization on vegetation phenology, highlighting its importance in defining proper strategies
to mitigate negative environmental effects of urban growth [24,25]. Another important
research area considers phenology patterns along urban-rural gradient [26,27] and, more
in general, its impact on urban ecosystems [28,29]. The need of environmental compli-
ant development and maintenance of contemporary cities is forcing this type of research,
asking for sustainable solutions [30]. The majority of these studies mainly rely on free
and open medium/high resolution imagery. Data from the Landsat 8/9 and Sentinel
2 missions appear to be the most adopted ones [21,29,31,32], providing multispectral and
multitemporal images with a GSD (Ground Sampling Distance) of 30 and 10 m, respectively,
that is barely consistent with urban scale analysis.

Phenological studies can greatly support deductions related to the “greenness” of
urban areas, moving from a static approach to a more dynamic one, where vegetation
seasonal or inter annual processes can be easily described through the adoption of proper
spectral (vegetation) indices [31–33].

Traditional approaches to greenness were mainly based on subjective analyses based
on personal perception and self-report methods involving question-based surveys. These
were intended to investigate people feeling about vegetated areas fruition (e.g., access to
parks) and their answers were analyzed by experts basing their deductions on specific
a-priori defined criteria (e.g., presence/absence of various features) [34].

Differently, remote sensing has introduced a more objective way of reading greenness.
The majority of proposed methods rely on the adoption of various Vegetation Indices (VIs),
like EVI (Enhanced Vegetation Index), NDVI (Normalized Difference Vegetation Index)
and, more recently, PPI (Plant Phenology Index) [35].

When speaking about phenology as describable by satellite, one has to consider that
it moves a little bit from its ordinary meaning. In fact, phenology should refer to a single
vegetation species and should refer to a structured sequences of growing phases, often
standardized by proper phenological scales (e.g., BBCH, [36]). In the case of vegetation mon-
itoring by remote sensing, it would be more appropriate to speak about macro-phenology,
where a sort of both spatial and temporal “subsampling” of vegetation changes is op-
erated. This result into a description of vegetation dynamics that refers to the average
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trends of groups of species through a temporal trend that moves according to the temporal
resolution of the adopted satellite mission and of image availability (also depending on
cloud coverage).

With these premises, approaches based on satellite data work on the analysis of
local temporal profiles of spectral indices looking for synthetic markers that are generally
referred as “phenological metrics” (PM). These refer to the time (along the year) and the
strength of occurrences of particular markers (e.g., Start/End of Season, VI peak, profile
steepness, etc.) [37]. The spatial pattern of green areas is also considered when investigating
urban greenness. The distance separating green spaces from urban suburbs, the number
of green meters per inhabitant, the green space/built up area ratio and the percentage of
green areas are typical space-related parameters.

The kind of vegetation may also vary within the same urban area and the possibility
of mapping the related phenological differences is highly desirable for urban management
and planning purposes. Deriving benefits may, in fact, be different for urban suburbs,
in terms of both type and temporal duration of active vegetation along the year. With
these premises, the traditional concept of greenness can be overcome and the temporal
information introduced to somehow complete its meaning. Information about yearly
persistence of vegetation and of its strength along the year is certainly useful to measure its
potential effects, thus providing a new tool for completing the operational framework where
urban planning strategies develop. Urban managers are, in fact, interested in exploring
effectiveness of their management practices of green areas, and vegetation distribution
and its behavior in terms of strength and duration is a type of information useful for
programming requalification actions [18,38]. In the meantime this type of information can
support modelling and assessment of vegetation-related effects on both reduction of the
main air pollutants (e.g., PM10 and PM2.5, CO2) and on allergological phenomena that
are increasingly affecting urban population [39–42]. Additionally, vegetation mapping and
its potential in improving population and town welfare is a worthy information that also
economical players of the real estate market are interested about [43–45].

In this framework, the time domain assumes a strategic role. In fact, the new need for
urban planners is no longer classifying green areas, whose meaning and spatial distribution
is already well known, but, conversely, to get the most of information about vegetation
behavior along its growing season, to test the effectiveness of their choices, or calibrate the
new ones for improving local welfare. This makes it definitely desirable to operate with
remotely sensed data showing a high temporal resolution, possibly consistent with the
growing times of vegetation. These requirements make Sentinel 2 data highly preferable
with respect to the Landsat ones. Sentinel 2 images are, in fact, acquired with a temporal
resolution of 5 days against the 16 from the Landsat one. Moreover, Sentinel 2 data have a
GSD of 10 m against the 30 m of Landsat 8/9 one, making its image pixel geometrically
consistent with the size of an adult tree canopy.

A second requirement from urban planners/managers is the easiness of interpretation
and usage of information from remote sensing. In general, they are not properly skilled to
process raw data and, consequently, remote sensing experts have to preventively prepare
the information they need. Copernicus services move exactly along this direction and
the HR-VPP (High Resolution—Vegetation Phenology and productivity) dataset is a first
experience of data providing aimed at summarizing the most of information concerning
vegetation behavior along time.

Looking at this general context, in this study, authors investigate limits and potentiali-
ties of the HR-VPP dataset in supporting urban planning and management, with special
concerns about the increasing importance that, in the debate around climate change and
sustainability of cities, greenness in urban areas is assuming. Specifically, greenness size,
quality, and management are known to play an important role in supporting provision
of ecosystem services to people within highly urbanized areas. It, directly, can provide
services useful for human health like pollution reduction [46], heat islands mitigation [47],
facilitation of people leisure related activities [48], and aesthetical benefits [49]. The possibil-
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ity of continuously monitoring yearly vegetation dynamics is certainly a way for somehow
quantifying and qualifying the supplying of the most of ecosystem services within the
city, leading to immediately locate suffering areas in terms of both size and quality of the
services themselves. Moreover, vegetation monitoring can indirectly inform about related
(and complementary) natural components (i.e., soil and air) that can additionally provide
ecosystem services to local population. This makes possible to link ecosystem processes to
ecosystem services, as Fu et al. discussed in [50].

It is worth highlighting that the main goal of this work is providing a sort of “how-to”
for the exploitation of the new HR-VPP dataset in the specific context of urban man-
agement/planning with special concerns about requirements from Piemonte Region offi-
cers/technicians. Starting from the information that the HR-VPP dataset can provide, the
authors draft a simple methodology for making the dataset itself closer to the final user,
according to the users’ uptake policy of the Copernicus Program. No instance about vali-
dation of metrics is considered even if a preliminary test was done concerning the spatial
consistence of the HR-VPP dataset. Most of the work was, conversely, aimed at proposing
suggestions about the exploitation of this type of information through the integration with
existing (and updated) official technical geodatabases.

The study area corresponds to the municipality of Torino (NW, Italy), which is known
to be one of the greenest cities in Europe.

A subset of the available phenological metrics from the HR-VPP dataset (namely
the Length of the Season, LOS, and the Total Productivity, SPROD) were investigated by
integration with the so called BDTRE dataset, corresponding to the vector implementation
of the Piemonte Region official Geographic Database. SPROD and LOS were assumed
as the most representative metrics useful in the urban planning/management context,
somehow representing the strength of vegetative activity and its duration along the year,
respectively (see forward on for more complete motivations about this choice). The study
involved three years, namely, 2018, 2019, and 2020.

2. Materials and Methods
2.1. Study Area

The study area corresponds to the municipality of Torino, which is located in NW Italy
and sizes about 130 km2 (Figure 1).

Figure 1. Torino municipality localization. On the left, the BDTRE layer uploaded from the
WMS of the Piemonte Geoportal. On the right, the study area location (in red color), and the
Regional administrative boundaries as provided by the National Geoportal WFS download service
(http://www.pcn.minambiente.it/mattm/servizio-di-scaricamento-wfs/ (accessed on 12 May 2022)).
Reference system is WGS84 UTM 32N.

http://www.pcn.minambiente.it/mattm/servizio-di-scaricamento-wfs/
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Located close to the Western Italian Alps, according to the Köppen Climate Classi-
fication (https://www.weatherbase.com (accessed on 12 May 2022)), Torino presents a
mid-latitude, four seasonal humid subtropical climate. Winters are moderately cold and
dry; summers are mild over hills and quite hot in the plains. Rainfalls are frequent in
spring and autumn, while during the hottest months, they are rare, but abundant, with
frequent thunderstorms. Snowfalls are possible during winter months. Monthly average
temperature ranges from −2.5 ◦C in winter up to 27.9 ◦C in summer.

Regarding morphological characterization, the territory of Torino presents altitude
values ranging between 201 and 712 m.a.s.l., showing a variability proper of hilly territorial
contexts. About 3000 ha of municipality, located in the south-west part of the study area,
lay over hills.

The river system of Torino is made of four rivers: the Po river and three of its
tributaries—Dora Riparia, Stura di Lanzo, and Sangone. Others minor water streams
are: Gora Staretta, Ruscello Fracassa, Ruscello Sappone, and Ruscello Serralunga.

With regard to its green heritage, Torino is one of the greenest cities of Europe
and it has been among the four finalists in the “European Green Capital 2022 Award”
context (https://environment.ec.europa.eu/topics/urban-environment/european-green-
capital-award_en (accessed on 12 May 2022)) supported by the European Commission.
It is worth reminding that the main goal of the context is to recognize and reward local
efforts to improve environment, and thereby economy and quality of life within cities. The
Award is assigned yearly to a city that proved to be excellent in promoting environmentally
friendly urban living. Additionally, Torino has been, and currently still is, involved in
several other initiatives that aim at building a sustainable and resilient city. Specifically,
these projects and initiatives long for a sustainable management of green areas, and urban
mobility; specific attention is paid to climate change effects with consequent and ad hoc
urban planning solutions (http://www.comune.torino.it/verdepubblico/ (accessed on 12
May 2022)).

2.2. Available Data: Official Technical Maps

The main land use classes adopted for this work were obtained from the BDTRE
dataset [51] updated at year 2019. BDTRE is a complete geodatabase, mapping technical
features (buildings, roads, rivers, etc.) and thematic ones (cadastral, land use, building
type, etc.) and represents the official cartographic reference for regional institutions and
offices. BDTRE can be accessed and downloaded in vector format as Geopackage from the
Geoportale of Piemonte Region (https://www.geoportale.piemonte.it/cms/ (accessed on
13 May 2022)). The reference system of BDTRE is WGS84 UTM 32N and its nominal map
scale is 1:10,000.

It is worth to remind that BDTRE is yearly updated. The choice of using the 2019
release (i.e., the intermediate year among the three considered ones) was made assuming
that no significant change in urban green areas occurred one year before and one year later
the 2019 mapped situation.

According to BDTRE, 34.2% of the whole urban context of Torino corresponds to green
areas. The majority of these areas are urban parks and gardens, making up about 63%
of the class. Woodlands make up about the 35% of the class: 92.6%, 1.42%, and 0.08% of
woodlands correspond to broadleaves, shrubs, and conifers, respectively. The remaining
6% has no label assigned. Complete statistics can be found in Table 1.

Concerning other classes, it can be noticed that: (i) agricultural areas size about
the 8.44% of the study area and are mainly located in the peri-urban belt of the city;
(ii) urbanized areas size about the 55.02% (75.87% built-up areas, 22.58% road network
1.53% sport areas). Within built-up areas, the majority of mapped polygons (64.95%) are
labelled as mixed (residential and commercial), 12.29% as residential, and the 22.74% as
non-residential. Water bodies cover about the 2.14% of the study area: 85.02% are rivers,
the remaining 14.98% are lakes or ponds.

https://www.weatherbase.com
https://environment.ec.europa.eu/topics/urban-environment/european-green-capital-award_en
https://environment.ec.europa.eu/topics/urban-environment/european-green-capital-award_en
http://www.comune.torino.it/verdepubblico/
https://www.geoportale.piemonte.it/cms/
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Table 1. Main land use classes as mapped in BDTRE in the municipality of Torino.

Category BDTRE
Land Use Class

Area
(ha) Area (%) N. of Patches Mean Patch Size

(ha)

Green Areas 4443 34.20 5647 0.79
Urban green (public parks
and gardens) 2796 21.52 4476 0.62

Woodland 1648 12.68 1099 1.50
Shrubs 22 0.17 26 0.85
Broadleaves prevalence 1441 11.09 795 1.81
Conifers prevalence 1 0.01 2 0.50
Prevalence not known 92 0.71 276 0.33
Riparian formations 55 0.42 231 0.24
Tree plantations 37 0.28 112 0.33

Agricultural areas Crops, pastures, fellow fields 1096 8.44 1288 0.85

Urbanized areas 7174 55.21 84,118 0.09
Buildings 5443 41.89 80,032 0.07

Residential 670 5.16 34,665 0.02
Non residential/commercial 1238 9.53 20,858 0.06
Mix of the two 3536 27.21 24,509 0.14

Viability network 1620 12.47 3322 0.49
Sport areas 110 0.85 764 0.14

Water
surfaces 280 2.16 113 2.48

Water courses 238 1.83 86 2.77
Lakes and ponds 42 0.32 27 1.56

TOTAL 12,993 ha

With reference to the above mentioned BDTRE classes, only the vegetated ones were
considered for this work. To take care about planning instances from regional technicians,
the native vegetation classes were aggregated considering their nature and use. The goal
was to somehow differentiate natural vegetation (woodlands) from leisure-related managed
vegetation (like parks and gardens), from agriculture-devoted areas and from fallow fields
and pastures, that, due to the absence, or different, management, show a different macro-
phenological behavior. According to these criteria 6 macro-classes were generated and
used for the next analyses: (i) gardens and parks (i.e., private gardens and public parks),
(ii) woodland, (iii) riparian formations, (iv) tree plantation, (v) fallow fields and pastures,
and (vi) agricultural crops and arable land. They were summarized into a single polygon
layer (hereinafter called C). The authors recognize that the class definition they used was
something hybrid between land use and land cover. Nevertheless, the aggregated six
classes appeared to be the most proper for satisfying needs from local urban planners.

Additionally, a map locating single trees was obtained from the Piemonte Region Geo-
portal through the correspondent Web Feature Service (https://www.geoportale.piemonte.
it/geonetwork/srv/eng/catalog.search#/metadata/c_l219:a66cfe07-8883-48ec-9205-23c6
14b5c7bb, accessed on 13 May 2022). Once entirely loaded into the GIS project the layer was
exported as independent point shapefile (hereinafter called T). Attribute table fields report:
tree id, position, species, height (m), diameter (cm) ad a brief morphological description.

2.3. Available Data: The Copernicus HR-VPP Product Suite

The HR-VPP product suite consists of the Vegetation Phenology Parameters, or Metrics,
(VPPs) derived from the STs (Seasonal Trajectories) of the PPI (Plant Phenology Index) index,
on a yearly basis, after the end of the growing season. PPI formulation was developed by
Jin H. and Eklundh L. [52] and is given in Equation (1)

PPI = −K·ln
(

M − DVI
M − DVIS

)
(1)

https://www.geoportale.piemonte.it/geonetwork/srv/eng/catalog.search#/metadata/c_l219:a66cfe07-8883-48ec-9205-23c614b5c7bb
https://www.geoportale.piemonte.it/geonetwork/srv/eng/catalog.search#/metadata/c_l219:a66cfe07-8883-48ec-9205-23c614b5c7bb
https://www.geoportale.piemonte.it/geonetwork/srv/eng/catalog.search#/metadata/c_l219:a66cfe07-8883-48ec-9205-23c614b5c7bb
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where, DVI is computed from sun-sensor geometry corrected red and NIR reflectances, K
is a gain factor, M is a site-specific canopy maximum DVI, and DVIs is the DVI of the soil.
Please refer to [52] for their estimations.

Metrics are derived by processing yearly Copernicus Sentinel-2 image time series
having a nominal temporal resolution of 5 days. They are generated over the entire EEA39
region (33 member countries and 6 cooperating countries) and are available from the 2017
onwards, with yearly frequency [53]. Thirteen VPPs metrics are provided for up to two
growing seasons per year at pixel level with a GSD (Ground Sampling Distance) of 10 m.
Metrics from HR-VPP data suite are reported in Table 2. Theoretical specifications can be
found in [54].

Table 2. List of metrics as mapped in the Copernicus HR-VPP dataset [53].

Phenological Metric Description Unit Range

SOSD Day of start-of-season
day-of-year (DOY) −366 to +731EOSD Day of end-of-season

MAXD Day of maximum-of-season

SOSV Vegetation index value at SOSD

PPI value
0.0–3.0 physical range

0 to 30,000 digital range

EOSV Vegetation index value at EOSD

MINV
Average vegetation index value of
minima on left and right sides of

each season
MAXV Vegetation index value at MAXD

AMPL Season amplitude
(MAXV—MINV)

LENGTH (LOS) Length of Season (number of days
between start and end) Number of days 1–1096

LSLOPE Slope of the greening up period
PPI × day−1 0.01–0.5 physical range

100–5000 digital rangeRSLOPE Slope of the senescent period

SPROD

Seasonal productivity. The
growing season integral

computed as the sum of all daily
values between SOSD and EOSD PPI × day 0–1095 physical range

0–10,950 digital range

TPROD

Total productivity. The growing
season integral computed as sum

of all daily values minus their
base level value.

It is worth reminding that, depending on the vegetated pixel, Season 1 and Season 2
can co-exist or not. Consequently, all vegetated pixels are characterized with metrics about
Season 1, but for only few of them, the metrics of Season 2 can be provided.

It was not a goal of this work to validate HR-VPP metrics in terms of value. We,
therefore, assumed as proper accuracy values reported in the HR-VPP User’s Manual [54].
It textually reports that “the accuracy of phenology metrics (SOSD, EOSD) as compared with
ground observations shows a slight positive bias of 4 days for SOSD, and negative bias of −11 days
(anticipated end of season) for EOSD. The shorter seasons is the main issue observed which was
confirmed as compared to other datasets, resulting in a shorter length of the season of 15 (MR-VPP)
and 36 (MCD12Q2) days. Users should consider with caution (due to a possible anticipation) the
end of the season dates. Large variability can be found in phenology metrics for bare areas where no
clear temporal variations are expected”.

According to the declared goals of this work, intended for suggesting an operational
exploitation of the HR-VPP dataset useful for urban planning and management, only two
metrics, out of 13, were considered for the analysis: the length of season (LOS) and the
total productivity (SPROD). Additionally, the day of the start of season layer (SOSD) was
also obtained for area masking purposes (see forward on). All the metrics were obtained
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for the Season 1 only. These metrics were selected according to the needs as expressed
from urban planners, that appeared to be majorly interested in monitoring duration of
greenness and biomass production as the most important metrics possibly dependent on
their management actions. Other metrics, though scientifically important and crucial, were
retained poorly dependent on local urban green management policies and, therefore, not
considered in this work. Moreover, a simple and immediate information that can be easily
interpreted by ordinary technicians, working in institutional offices, is mandatory. With
these premises, selection of investigated metrics was done with no matter about scientific
soundness of choice, but under the driving push of actual needs in urban management.

LOS, SPROD, and SOSD metrics were downloaded from WEkEO, the EU’s Copernicus
DIAS reference service for environmental data (https://www.wekeo.eu/ (accessed on
13 May 2022)), through prior definition of the AOI for the years 2018, 2019, and 2020 for a
total of six raster layers (ML).

2.4. Data Processing
2.4.1. Preliminary Quality Check of HR-VPP

An important issue that had to be necessarily considered during data pre-processing
was the one related to the possibility that the same vegetated area/point (as detected in
HR-VPP) could show more than one growing season along the year (quite common in
agricultural areas). Assuming that, in the area, only agricultural fields could show a second
season and that urban green areas reasonably correspond to “natural” vegetation, only
pixels showing a single season (i.e., Season 1) were considered. Moreover, only those
pixels providing a SOSD metric of Season 1 ranging between DOY = 1 (i.e., 1 January) and
DOY = 211 (i.e., 31 July) were selected. This choice was made despite the awareness of
authors that peri-urban vegetation, often related to crops, could be of some importance in
conditioning the overall picture of city vegetation. Three masks were, therefore, obtained
for the three investigated years locating pixels that, according to HR-VPP dataset, were
vegetated and showing a single phenological season along the year starting between
1 January and 31 July.

A first control was aimed at testing if these candidate pixels containing metrics,
therefore mapped as “vegetated” in the HR-VPP dataset, were correctly corresponding
to actual vegetated areas as mapped in the BDTRE. To test this condition, not vegetated
patches (polygons) from BDTRE (complementary to C) were intersected by GIS tools (SAGA
GIS v. 7.8.2, Olaf Conrad & Volker Wichmann, [55]) with the above-mentioned masks and
the number of pixels wrongly assigned counted. Some important inconsistencies, different
depending on the year, were found (see Results and Discussions section).

Taking care about these tests, native masks were further refined excluding all those
occurrences not corresponding to vegetated areas. Discrepancies among years were then
investigated through comparison of yearly occurrences. Final masks (My, one per year)
were finally intersected to obtain a single one (namely, M) mapping all pixels verified
as permanently vegetated along the three years. M was then used for masking LOS and
SPROD layers, thus permitting to focus the analysis on those pixels reasonably associated
to a vegetated element active for all the three investigated years. A synthetic flowchart is
reported in Figure 2.

A similar test was performed for single trees. The point layer T was compared with the
yearly masks My to compute the number of trees properly/badly/missed detected in the
HR-VPP dataset. This is a mandatory operation, being a single tree size barely consistent
with HR-VPP GSD and, therefore, potentially not-detected at the spatial resolution of
Sentinel 2 data. Again, statistics were generated for all the investigated years.

https://www.wekeo.eu/
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HR-VPP layers.

2.4.2. Per Class Phenological Metrics Analysis

According to the masked LOS and SPROD layers some descriptive statistics about area
extent and number of patches were computed for the above-mentioned six macro-classes.
Moreover, mean values of LOS and SPROD metrics were computed at vegetation macro
class level for all the three investigated years and some summarizing statistics (namely,
mean, standard deviation, and coefficient of variation along the years) interpreted.

Finally, LOS and SPROD mean values were computed at patch level by zonal statistics
in SAGAGIS 8.1.1. on yearly basis, making possible to characterize all polygons of C with
the correspondent mean value of both LOS and SPROD. These new attributes permitted to
map local vegetation anomalies at polygon level for the three considered years that were
useful to averagely read the local behavior of urban vegetation for planning/management
purposes (see forward on).

2.4.3. Per Tree Phenological Metrics Analysis

As far as single trees characterization is concerned, points from T that properly corre-
sponded to a filled pixel of HR-VPP dataset were firstly equipped with the correspondent
LOS and SPROD metric value by extraction (nearest neighbor) from the correspondent
raster layers.

Even though it contained a great variety of attributes that would have could be used
to categorize tree point in T, the authors analyzed the entire dataset jointly to investigate
the average behavior of trees in terms of LOS and SPROD, with no concerns about genus,
categories or morphometric attributes.

For all the trees, the mean values of LOS and SPROD were, therefore, computed at
year level and some synthetic statistics (namely, mean, standard deviation and coefficient
of variation along the years) interpreted.

2.4.4. Interpreting Data for Understanding Urban Greening

Trying to synthesize the enormous content of the HR-VPP dataset and moving to its
exploitation in terms of urban planning and management, all the above-mentioned macro-
classes from C were considered and LOS and SPROD class metrics separately analyzed
for the 3 years. In particular, the focus was on mapping positive and negative anomalies
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of vegetation behavior over Torino in terms of both yearly duration (LOS) and potential
biomass expression (SPROD) with the aim of somehow mapping the potentiality of local
greenness to improve citizens’ wellbeing: the higher the yearly duration and biomass
expression of vegetation, the higher the expected benefits for local population. An inter-
annual comparison of anomalies was also achieved to test the degree of persistence of local
yearly anomalies.

Anomalies were computed according to Equations (2) and (3), for LOS and
SPROD, respectively.

ALOS =
LOSi
µLOS

(2)

ASPROD =
SPRODi
µSPROD

(3)

where SPRODi and LOSi are the local average patch values of SPROD and LOS, respectively;
µLOS and µSPROD are the mean metric values from all vegetated areas (independently from
the class).

LOS and SPROD anomaly assessment, aimed at suggesting operational approaches
for HR-VPP data exploitation in the urban planning/management context, was achieved
with reference to C solely, retaining an at-patch level analysis more effective and exhaus-
tive than one based on point features (trees) that, however, can be eventually recovered
for further future and more specific refinements. Results concerning single tree charac-
terization, at this point and for the goals of this work, are just intended to preliminary
demonstrate the properness of LOS and SPROD from HR-VPP dataset, in describing their
phenological behavior.

3. Results and Discussions
3.1. Preliminary Quality Check of HR-VPP

A first investigation concerned the spatial consistence of vegetated pixels from HR-
VPP with vegetated elements as mapped in the BDTRE. The yearly masks were used for
this purpose. They were tested against the not-vegetated patches obtained from the BDTRE.
A high degree of overestimation was found by HR-VPP in terms of vegetated pixels for all
the years. In particular, it was found that 51.97% (2018), 52.43% (2019), and 53.20% (2020) of
vegetated pixels in HR-VPP corresponded to different classes of BDTRE in the investigated
years. Some evidence is shown as an example in Figure 3.

A second investigation concerned the comparison between yearly masks generated
considering the above-mentioned criteria: (i) only pixels with a single season starting
between 1 January (DOY = 1) and 31 July (DOY = 211); (ii) only pixels corresponding to
vegetated element as mapped in C or T.

This analysis was aimed at testing the percentage of vegetated pixels yearly active
along all the three investigated growing seasons (2018, 2019, and 2020). It was found that
the 86.90% of pixels remained vegetated for all the three investigated years confirming a
significant stability of vegetation presence in the area. Only the 8.0% and 5.1% of pixels
were mapped as vegetated for only 2 or 1 years, respectively.

Only pixels that showed to be recognized as vegetated for all the three years and
corresponding to actual vegetated areas as mapped in BDTRE were considered to generate
the final mask M used for the next analyses.

As far as single trees from T are concerned (108,055 in the municipality of Torino),
it was found that for only 1325 out of them (about 1.2%), it was not possible to associate
the correspondent phenological metrics from HR-VPP. This means that for the remaining
98.8% of trees the corresponding metrics were available.

Moreover, while testing occurrences of the Season 2 for trees (expectation was that trees
show one season only), unexpectedly, it was found that 24.37%, 30.25%, and
22.43% of trees showed metrics of Season 2 for 2018, 2019, and 2020, respectively.
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Figure 3. Examples of errors affecting HR-VPP metrics in terms of spatial consistency. Many pixels,
mapped as “vegetated” in the HR-VPP dataset (where metric estimates are given), were erroneously
assigned to built-up areas (grey polygons in (B)). This demonstrates that the HR-VPP processing
chain, as expected for all the automatized and general data processing, can contains errors that have
to be preventively removed using existing auxiliary information. The base map in figure corresponds
to the BDTRE 2019 available as WMS (Web Map Service) from the Piemonte Region Geoportal.
Colored pixels in (A) refer about different values of the SPROD metric and are just used to show local
inconsistencies of the HR-VPP dataset. No legend was therefore reported.

3.2. Per Class Phenological Metrics Analysis

To recover the operational meaning in the urban planning/management context, LOS
and SPROD metrics were used to characterize, along the 3 years, green areas in Torino. A
first type of information one has to consider is the one related to the spatial distribution
of vegetated (macro-) classes over the area. Figure 4 shows the spatial consistence and
distribution of the vegetation macro-classes of the C layer.

Table 3 reports some statistics concerning geometric features of the vegetation classes
as mapped in C, where it can be noticed that gardens and parks are largely the prevailing
urban green areas sizing about the 50% of the total.

The hilly area located in the South-Eastern part of the city, beyond the Po River, hosts
the most of woodlands (about 28% of urban green areas). Crops and pastures jointly
capitalize about the 20%, reminding about the great importance that, still today, agriculture
plays in the urban fringe of the metropolitan area. These areas are mainly located in the flat
peri-urban belt of the city (mainly western ward), but some remainders can be found on
the hill, where woodlands enormously prevail. Even if agriculture-devoted patches would
require a deeper analysis from the phenological point of view, being exactly the ones that
possibly express two yearly growing seasons, they are retained marginal for the goals of
this work and, therefore, no further investigation is given.

As far as phenological behavior of these areas is concerned, LOS and SPROD yearly
class mean values were computed and reported in Table 4.

It can be noticed that the average duration of vegetation (LOS) in the area is half
a year (about 180 days) for all the classes with an inter-annual variability from 5 to
8 days (LOS standard deviation). Nevertheless, patches corresponding to tree planta-
tions show, averagely, a duration up to 10 days longer than the others, possibly depending
on management practices.
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Figure 4. Map of vegetation macro-classes as mapped in the BDTRE (reference frame is WGS84
UTM 32N).

Table 3. Descriptive statistics about area extent for the six investigated macro classes of urban
vegetation from C.

Vegetation Macro-Class N. of Patches Area
(ha)

Area
(%) Mean Patch Size (ha)

Gardens and Parks 4205 2795.7 50.46 0.66
Woodlands 1057 1556.6 28.10 1.47

Riparian Formations 231 54.7 0.99 0.23
Tree Plantations 112 36.6 0.66 0.32

Fallow Fields and Pastures 635 306.09 5.53 0.48
Crops and Arable Land 653 790.3 14.27 1.41

Total 6893 5539.99

Table 4. Yearly mean values of LOS and SPROD at vegetation macro-class level. Mean and stan-
dard deviation values are computed along time. CV is the correspondent coefficient of variation
(std. dev./mean × 100).

Macro Class

LOS
2018

SPROD
2018

LOS
2019

SPROD
2019

LOS
2020

SPROD
2020

LOS
Std.
Dev.

SPROD
Std.
Dev.

LOS
Mean
Value

SPROD
Mean
Value

LOS
CV

SPROD
CV

(N. of
Days)

(PPI ×
Day)

(N. of
Days)

(PPI ×
Day)

(N. of
Days)

(PPI ×
Day)

(N. of
Days)

(PPI ×
Day)

(N. of
Days)

(PPI ×
Day) (%) (%)

Gardens and
Parks 182.39 86.44 195.36 91 189.78 93.2 5.31 2.82 189.18 90.21 2.81 3.12

Woodlands 182.58 171.59 198.78 177.12 190.95 172.96 6.61 2.35 190.77 173.89 3.47 1.35
Riparian

Formations 184.89 152.75 197.3 154.26 192.33 153.87 5.10 0.64 191.51 153.63 2.66 0.42

Tree
Plantations 187.71 174.74 208.43 172.56 201.72 169.35 8.63 2.21 199.29 172.22 4.33 1.29

Fallow Fields
and Pastures 177.59 152.13 192.72 154 188.62 150.7 6.39 1.35 186.31 152.28 3.43 0.89

Crops and
Arable Land 175.21 173.06 190.65 172.25 192.17 162.76 7.66 4.68 186.01 169.36 4.12 2.76

Interesting considerations can be made if looking at SPROD. Tree-related classes show
significantly higher SPROD values, confirming that the algorithm behind the HR-VPP
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dataset works well, correctly detecting a higher biomass production (about + 14% per year)
in forested or tree-populated areas.

Additionally, SPROD value corresponding to the garden and parks class ensures about
the idea that HR-VPP estimates are, at least relatively, reasonable. In fact, this appears
to be averagely 45% lower of the other classes confirming that, these areas are constantly
managed by cuts and biomass removal.

3.3. Per Tree Phenological Metrics Analysis

After removing from T all those trees that could not be associated to a filled pixel from
HR-VPP dataset for all the three years, 106,730 trees remained out of the initial 108,055.
These were used to preliminary test the capability of HR-VPP dataset of characterizing
their behavior in terms of LOS and SPROD. Some statistics (Table 5) were extracted with
no concern about tree genus.

Table 5. Yearly mean values of LOS and SPROD at tree level (from T layer). Mean and stan-
dard deviation values are computed along time. CV is the correspondent coefficient of variation
(std. dev./mean × 100).

LOS
2018

SPROD
2018

LOS
2019

SPROD
2019

LOS
2020

SPROD
2020

LOS
Std.
Dev.

SPROD
Std.
Dev.

LOS
Mean
Value

SPROD
Mean
Value

LOS
CV

SPROD
CV

(N. of
Days)

(PPI ×
Day)

(N. of
Days)

(PPI ×
Day)

(N. of
Days)

(PPI ×
Day)

(N. of
Days)

(PPI ×
Day)

(N. of
Days)

(PPI ×
Day) (%) (%)

Mean 184.96 98.20 201.68 106.40 194.61 114.55 6.85 6.68 193.75 106.38 3.54 6.28
Std. Dev. 33.40 54.55 35.02 57.22 35.06 58.67

CV 18.06 55.55 17.36 53.78 18.02 51.22
Mean (W + TP) 185.15 173.17 203.61 174.84 196.34 171.16 7.62 2.28 195.03 173.055 3.91 1.32

Comparing metrics estimates as computed at area (from C layer) and tree (from
T layer) level, we can derive the following: (i) at-tree and at-patch level LOS mean values
are consistent; consequently, the description of the time of macro-phenology by HR-VPP
at both patch and single tree level can be assumed as reasonably reliable; (ii) SPROD as
estimated at patch level appears to be significantly higher (about + 63%) than the one from
trees. This can be related to the background effect, possibly affecting estimates at tree
level, that reasonably are derived from not-pure pixels resulting from the joint spectral
contribution of tree canopy and urban materials of roads/buildings surrounding the tree;
(iii) similarly, the coefficient of variation (along time) appears to be similar for single tree
and forest patches for LOS (around 3.7%) and significantly different for SPROD, confirming
that SPROD estimates at single tree level could be somehow unreliable.

3.4. Interpreting Data for Understanding Urban Greening

To better characterize and summarize macro-phenological behavior of vegetated areas
in Torino, LOS and SPROD anomalies were computed according to Equations (2) and (3),
and mapped. Reference mean value for anomaly computation is the one from all the
patches, independently from the vegetation class.

3.4.1. Analyzing LOS

Figure 5A shows the spatial distribution of the average LOS anomalies resulting by
averaging the three yearly values. Five classes were mapped: (i) one mapping patches
showing an average LOS anomaly < 0.0892 corresponding to those areas where the growing
season is somehow shorter more than 3 weeks with respect to the mean; (ii) one map-
ping patches having a growing season shorter up to 3 weeks with respect to the mean
(0.892–0.964); (iii) one mapping patches having an average growing season (0.964–1.036);
(iv) one mapping patches having a growing season longer up to 3 weeks with respect to
the mean (1.036–1.108); and (v) one mapping patches having a growing season longer more
than 3 weeks with respect to the mean (>1.108). Figure 5B, differently, is intended to show



Remote Sens. 2022, 14, 4517 14 of 21

those patches that constantly behave along the three investigated years always over, under
or similar to the yearly mean value of LOS. In other words, those vegetated patches that
constantly show a shorter, longer, or average duration of their growing season. In Table 5,
some summarizing statistics are reported.

Figure 5. (A) Spatial distribution of the 3-year average LOS anomaly over Torino. The anomaly is
computed according to Equation (2). Five classes were mapped: one mapping areas showing an
average LOS value more than 3 weeks shorter than the average one (<0.892); one mapping areas
showing an average LOS value up to 3 weeks shorter than the average one (0.892–0.964); one mapping
areas showing a LOS value (0.964–1.036) comprised in the range average LOS ± 1 week; one mapping
areas showing an average LOS value up to 3 weeks longer than the average one (1.036–1.108); and
one mapping areas showing an average LOS value more than 3 weeks longer than the average one
(>1.108). (B) Map showing areas that, in the three investigated years, always behaved similarly in
term of LOS anomaly (averagely shorter, equal or longer then yearly mean LOS of the area). Reference
frame is WGS84 UTM 32N. Tables 6 and 7 report some summarizing areal statistics from maps of
Figure 4.

Table 6. Areal metrics about LOS values of vegetated areas in Torino. Area values and percentages
refer to those patches showing a stable behavior in terms of LOS anomaly along the three investigated
years. These, globally, size the 50.36% of the whole vegetated area of the city (5540.11 ha).

Class ID Class Meaning Area (ha) Area (%) Patch Mean Area (ha)

1 LOS shorter than the
mean 339.24 6.12 0.47

2 LOS around the mean 1598.15 28.85 0.62

3 LOS longer than the
mean 852.37 15.39 0.30

TOTAL 50.36

Table 6 shows that: (i) about the 50% of the vegetated area of Torino show a stable
behavior in terms of LOS anomaly along the three investigated years, always vegetating
shorter, longer or similar to the local average LOS value (Figure 5B); (ii) class 2 shows the
averagely greater patch size (about 2 ha) that majorly correspond to the hilly forested area,
i.e., the most natural one.



Remote Sens. 2022, 14, 4517 15 of 21

Table 7. Areal percentages per vegetation type and stable LOS anomaly class. Reported percentages
refer to the total area of the three classes of stable LOS anomaly (about 2790 ha).

Class
Crops and

Arable Land
(%)

Tree
Plantations

(%)

Riparian
Formations

(%)

Gardens and
Parks (%)

Woodlands
(%) Pastures (%) Total

(%)

1 8.33 0.12 0.04 1.82 0.24 1.40 11.95
2 1.26 0.46 0.38 21.36 32.26 2.11 57.83
3 3.22 0.00 0.31 20.95 4.44 1.30 30.22

Total 12.81 0.58 0.73 44.13 36.94 4.81

Table 7 shows that the most stable vegetation type in terms of LOS is the mostly
managed one intended for aesthetical/leisure purposes, i.e., gardens and parks. It absorbs
the 44.13% of “stable” areas showing a dominance of classes 2 and 3; this demonstrates that
management practices (public or private) induce a longer green staying along the year for
these areas, thus improving their beneficial effects for populations.

It is also remarkable that the most stable vegetation in terms of average LOS is the one
of woodlands, i.e., natural vegetation, that possibly traces the average yearly phenological
behavior of local vegetation. As further evidence of these metrics, crops and arable lands
show a prevalence of the class 1, i.e., the one corresponding to averagely shorter growing
seasons; these values are highly reasonable if thinking about the ordinary macro-phenology
of crops, that is generally and suddenly interrupted by harvest. All these facts ensure about
LOS metrics from HR-VPP, suggesting that, at least relatively, they well fit local conditions.

While focusing on parks/garden class (Figure 6), it can be noted that the most of
patches (about 92%) shows a positive LOS anomaly, while only a minority has a negative
one, i.e., LOS value shorter than yearly mean. This can be interpreted as a result of the
good ordinary management practices for public green areas exploited by the municipality
administration. Moreover, spatial distribution of patches of LOS positive class is uniformly
spread within the city, suggesting that management practices are more conditioning LOS
than vegetation type and local urban conditions. This ensures longer lasting beneficious
effects provided by active vegetation to citizens.

Figure 6. LOS stable anomalies (green = positive, magenta = negative) of the sole urban green class
(garden and parks).
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3.4.2. Analyzing SPROD

Figure 7A shows the spatial distribution of the average SPROD anomalies resulting
by averaging the three yearly values. Five classes were mapped: (i) one mapping patches
showing an average SPROD anomaly < 0.7, corresponding to those areas where total
productivity is somehow smaller more than 30% with respect to the mean; (ii) one map-
ping patches having a total productivity smaller up to the 30% with respect to the mean
(0.7–0.95); (iii) one mapping patches having an average total productivity (0.95–1.05);
(iv) one mapping patches having a total productivity bigger up to the 30% with respect to
the mean (1.05–1.3); and (v) one mapping patches having a total productivity bigger more
than 30% with respect to the mean (>1.108).
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Figure 7. (A) Spatial distribution of the 3-year average SPROD anomaly over Torino. Anomaly
is computed according to Equation (3). Five classes were mapped: one mapping areas showing
an average SPROD value smaller than 70% of the average one (<0.7); one mapping areas showing
an average SPROD value smaller down to 70% of the average one (0.7–0.95); one mapping areas
showing a SPROD value (0.95–1.05) comprised in the range “average SPROD” ± 5%; one mapping
areas showing an average SPROD value up to 70% higher than the average one (1.05–1.3); and one
mapping areas showing an average SPROD value more than 70% higher than the average one (>1.3).
(B) Map showing areas that, in the three investigated years, always behaved similarly in term of LOS
anomaly (averagely shorter, equal, or longer then the yearly mean SPROD of the area). Reference
frame is WGS84 UTM 32N.

Figure 7B, differently, is intended to show those patches that constantly along the three
investigated years always show bigger, smaller, or similar SPROD value with respect to the
yearly mean.

Results from Tables 8 and 9 show that the SPROD mean value, computed without
considering the vegetation type, is poorly significant, since class 2 (vegetation showing a
stable behavior around the mean) just represent the 3% of the total.

Class 3 (vegetation showing a productivity significantly higher than the mean) is
the most frequent one and it majorly corresponds to forests, immediately followed by
garden/parks (Table 9). This finding is highly encouraging regarding the robustness of
the SPROD estimates, since classes that were expected to provide the highest biomass
production (woodlands and forested parks) are the most recurrent ones in class 3.
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Table 8. Areal metrics about SPROD values of vegetated areas in Torino. Area values and percentages
refer to those patches showing a stable behavior in terms of SPROD anomaly along the 3 investigated
years. These, globally, size the 76.18% of the whole vegetated area of the city (5540.11 ha).

Class ID Class Meaning Area (ha) Area (%) Patch Mean Area (ha)
1 SPROD smaller than the mean 1115.03 20.13 0.24
2 SPROD around the mean 126.19 2.28 0.39
3 SPROD higher than the mean 2978.53 53.77 0.85

Table 9. Statistics concerning comparison between patches showing stable SPROD anomaly with
vegetation type. Reported percentages refer to the total area of the 3 classes of anomaly stability for
SPROD (about 4220 ha).

Class Crops and
Arable Land

Tree
Plantations

Riparian
Formations

Gardens and
Parks Woodlands Pastures Total (%)

1 1.18 0.05 0.13 22.46 0.75 1.84 26.41
2 2.57 0.01 0.28 0.00 0.07 0.01 2.94
3 8.56 0.61 0.76 21.93 34.43 4.36 70.65

Total 12.30 0.68 1.17 44.39 35.25 6.21

With a further specific focus on the only urban green (i.e., gardens/parks class),
the analysis showed that patches are almost equally balanced in term of anomalies of
biomass production, with almost half of patches having SPROD anomalies lower than
the yearly mean and remaining half with SPROD higher than the same value. Regarding
spatial distribution of SPROD anomalies classes, these are uniformly distributed, and no
remarkable differences can be observed; there is no specific area of the city characterized
by more or less biomass production then another one (see Figure 8), and, consequently, no
specific part of the city benefits more then another one of resulting benefits.

Figure 8. SPROD stable anomalies (green = positive, magenta = negative) of the sole urban green
class (garden and parks).

4. Conclusions

In this study, the authors have proposed a simple methodology to translate phenologi-
cal metrics into planning/management concepts starting from requirements of the regional
officers/technicians. A first concern was the one related to the selection of proper and
immediate metrics from the whole HR-VPP dataset. SPROD and LOS were assumed as
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the most representative ones to face urban planning/management instances, somehow
representing the strength of vegetative activity and its duration along the year, respectively.
With reference to these metrics, the authors have, initially, tested their spatial consis-
tency with the BDTRE reference map by comparing vegetated areas from HR-VPP dataset
(i.e., pixels containing metric estimates) with the BDTRE ones. The comparison involved
two types of features: (i) areal ones, corresponding to vegetated patches as mapped in the
BDTRE regional geodatabase; and (ii) point ones, corresponding to single trees as mapped
in the available official WFS layer from the Torino Municipality administration.

As far as spatial consistency was concerned, it was found that HR-VPP dataset greatly
overestimates (about 50%) vegetated areas in the city, assigning metric values to pixels
that, if compared with technical maps, do not fall within vegetated areas. This probably
depends on the high number of occurrences of shadowy areas that, possibly, introduces
some noise during data processing, that algorithms cannot properly manage.

Concerning interpretation of metrics, it was found that LOS and SPROD well describe
the behavior of vegetated areas, making possible to properly zone the city and make
management of green areas and real estate considerations more effective.

Differently, only LOS proved to be able to reasonably describe the behavior of single
trees; corresponding SPROD values, in fact, proved to be significantly lower of the expected
values, suggesting that, only HR-VPP metrics aimed at describing the “times” of the
growing season can be somehow exploited at single tree level. Conversely, all those
quantitative metrics aimed at measuring the “strength” (biomass, vigor, etc.) of macro-
phenological events cannot be properly associated to single trees.

Among the proposed approaches aimed to translate phenological metrics into plan-
ning/management concepts, LOS and SPROD anomalies were then mapped for the consid-
ered macro classes, in order to provide a zoning of the city based on positive or negative
anomalies with respect to the yearly mean class behavior.

As expected, woodlands represented the best class in term of biomass production,
making quite attractive the surroundings urbanized areas in term of linked benefits on
health and on life quality more in general.

On the contrary, classes like tree plantations, riparian formations and pastures were,
as expected, least significant in term of duration and strength of vegetation, making the
urbanized neighboring areas less tempting from the health benefits point of view.

A specific focus was done on gardens and parks. It was noticed that the majority of
patches shows longer LOS, probably thanks to the ordinary good management practices
operated by the municipality administration. No remarkable finding, useful to improve
management, was obtained about the spatial distribution of LOS and SPROD anomalies of
parks and gardens, showing that there is no specific part of the city that benefits more than
another in term of season length or of biomass production.

An important information was the one related to the location of those patches showing
a significantly shorter LOS and/or lower SPROD; this is an important input for the munici-
pality administration to properly plan the management of these green areas, aiming at their
improvement from a phenological point of view through a prioritized approach. Ad hoc
management practices would contribute to raise the value of the neighboring urbanized
areas in term of linked benefits on life quality, with direct effect in the real estate market.
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