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Abstract

Let ≥n 3 and Rn be a 3‐polytopal graph such that for

every ≤ ≤i n3 , Rn has at least one vertex of degree i.

We find the minimal vertex count for Rn. We then

describe an algorithm to construct the graphs Rn. A

dual statement may be formulated for faces of

3‐polytopes. The ideas behind the algorithm generalise

readily to solve related problems. Moreover, given a

3‐polytope Tl comprising a vertex of degree i for all

≤ ≤i l3 , l fixed, we define an algorithm to output for

n l> a 3‐polytope Tn comprising a vertex of degree i,

for all ≤ ≤i n3 , and such that the initial Tl is a

subgraph of Tn. The vertex count of Tn is asymptotically

optimal, in the sense that it matches the aforemen-

tioned minimal vertex count up to order of magnitude,

as n gets large. In fact, we only lose a small quantity on

the coefficient of the second highest term, and this

quantity may be taken as small as we please, with the

tradeoff of first constructing an accordingly large

auxiliary graph.
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1 | INTRODUCTION

1.1 | The question

Graphs that are planar and 3‐connected have the nice property of being 1‐skeletons of
3‐polytopes, as proven by Rademacher–Steinitz (see e.g., [11, theorem 11.6]). We call these
graphs 3‐polytopal graphs, or 3‐polytopes interchangeably (sometimes in the literature the term
polyhedra is used). These special planar graphs are uniquely embeddable in a sphere
(as observed by Whitney, see e.g., [11, theorem 11.5]). Their regions are also called ‘faces’, and
are delimited by cycles (polygons) [6, proposition 4.26].

Our starting point is the following question. Let ≥n 3 andG′ be a 3‐polytopal graph such that for
every ≤ ≤i n3 , G′ has at least one i‐gonal face. What is the minimal number of faces for G′?

In what follows, we will work on the dual problem. Indeed, it is well‐known that
3‐polytopes have a unique dual graph, that is also 3‐polytopal (see e.g., [11, chapter 11]).

Definition 1. A 3‐polytope has the property n if it has at least one vertex of degree
i, for each ≤ ≤i n3 , and moreover, it has minimal order (number of vertices) among
3‐polytopes satisfying this condition.

The notation ≺H G indicates that H is a subgraph of G. Our first result is the following.

Theorem 2. Let ≥n 3 and G be a 3‐polytopal graph with at least one vertex of degree i,
for every ≤ ≤i n3 . Then the minimal number p n( ) of vertices of G is

∀ ≥







p n

n n
n( ) =

− 11 + 62

4
, 14.

2

(1)

For ≤n 13, we have the values in Table 1.
Moreover, starting from n = 14 and for every ≥n 16, Algorithm 8 constructs a

3‐polytope Rn satisfying n and the relations
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R if n
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0 (mod 4),

1 (mod 4),

2 (mod 4),

3 (mod 4)

16.n

n

n

n

n

−2

−3

−4

−5

(2)

Graphs satisfying n for ≤ ≤n3 15 are depicted in Figures 1, 2, 3A,B.

Theorem 2 will be proven in Sections 2, 3, and 4. Passing to the duals, we can answer the
original question.

TABLE 1 Values of p n( ) for ≤n 13

n ≤ ≤n3 7 8 9 10 11 12 13

p n( ) n+ 1 10 11 14 16 19 23
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Theorem 2’. If ≥n 3 and G′ is a 3‐polytopal graph with at least one i‐gonal face, for
every ≤ ≤i n3 , then the minimal number p n( ) of faces for G′ is given by (1) and Table 1.

1.2 | A related problem

In our next result, given a 3‐polytope H containing vertices of valencies l{3, 4, …, }, ≥l 5, and an
integer n l> , we aim to construct a 3‐polytope G containing a copy of H as subgraph, and
comprising vertices of degrees n{3, 4, …, }. We start with the following definition.

FIGURE 1 The 10 3‐polytopes with p n n( ) = + 1 (A) R3, (B) R4.1, (C) R4.2, (D) R5.1, (E) R5.2, (F) R6.1, (G)
R6.2, (H) R6.3, (I) R7.1, and (J) R7.2.

FIGURE 2 Examples of 3‐polytopes Rn satisfying n, for ≤ ≤n8 13 (A) R8, (B) R9, (C) R10, (D) R11, (E) R12,
and (F) R13.
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Definition 3. Let ≥n 5 be odd. We say that a 3‐polytope satisfies propertyn if there is
at least one vertex of degree 3, and moreover the polytope contains among its faces the
triangles

≤ ≤ ∕f v v v j n= [ , , ], 1 ( − 3) 2,n j n j n j n j; ; ;1 ; ;2 ; ;3 (3)

where

≤ ≤ ∕ ∪ ≤ ≤ ∕v j n v j n n{deg( ) : 1 ( − 3) 2} {deg( ) : 1 ( − 3) 2} = {4, 5, …, }n j n j; ;1 ; ;2

(4)

and for every a b, = 1, 2 and every ≤ ≤ ∕j i n1 , ( − 3) 2, ≠j a i b( , ) ( , ), we have

≠ ≠v v v v v, , .n j a n i b n j n i n i; ; ; ; ; ;3 ; ;1 ; ;2

Note that n together with minimality w.r.t. order is stronger than property n of
Definition 1.

Theorem 4. Let ≥l 5 be odd, andTl be a 3‐polytope satisfyingl. Fix an integer ≥m 14,
≡m 2 (mod 4), and let ≔n l mk+ , where k is a nonnegative integer. Then there exists a

sequence of 3‐polytopes

≥T{ } ,n n l mk k= + , 1

where each Tn satisfiesn, such that along the sequence, for all ϵ > 0, one has

≤  

 


V T

n n

m
n( )

4
−
11

4
+

5

2
+ ϵn

2

(5)

FIGURE 3 Graphs satisfying 14 and 15, respectively. (A) The 3‐polytope R14, satisfying 14; (B) a graph R15
satisfying 15, obtained from R14 (A) by deleting the dashed edge and inserting vj, ≤ ≤j27 31, and their incident
edges.
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as → ∞n . Moreover, for all ≥k 1, it holds that

≺T T .l m k l mk+ ( −1) + (6)

For chosen Tl and ≥N 1, Algorithm 13 constructs Tl mk+ for ≤ ≤k N1 .

Theorem 4 will be proven in Section 6.

Remark 5. The order (5) of the sequence of 3‐polytopes in Theorem 4 is asymptotically
optimal, in the sense that the leading term is ∕n 42 as in (1). The coefficient of the linear
term is only slightly larger than the ∕n−11 4 of (1). This difference can be taken as small
as we please if m is chosen to be large, with the tradeoff of first constructing an
accordingly large auxiliary graph Sm+3, as detailed in Sections 5 and 6.

Remark 6. In Definition 3, we could have supposed instead n even. Then accordingly
one would have taken ≤ ∕j n( − 2) 2 in (3), and the set n{3, 4, …, } on the RHS of (4). This
would have produced similar setup and ideas.

1.3 | Related literature, notation, and plan of the paper

1.3.1 | Related literature

Necessary conditions for the degree sequence of a planar graph were given in [3, 5]. On
the other hand, Eberhard [7] proved that any degree sequence where q p= 3 − 6 (p q,

being vertex and edge counts, respectively) may be made planar by inserting a sufficiently
large number of 6's. There have been numerous generalisations and extensions since, see
for example [1, 2, 9, 10, 13, 14]. In [12], the authors determine the sequences for regular,
planar graphs. This was extended in [15] to sequences with highest and lowest valencies
differing by one or two.

1.3.2 | Notation

All graphs that appear contain no loops and multiple edges. The vertex and edge sets of a graph
G are denoted by V G( ) and E G( ), respectively. The order and size ofG are the numbers  V G( )

and  E G( ) . The degree or valency vdeg ( )G of a vertex v counts the number of vertices adjacent
to v in G. We use the shorthand vdeg( ) when G is clear. The degree sequence of G is the set of
all vertex valencies.

We write ≅G H whenG H, are isomorphic graphs, and ≺H G when H is (isomorphic to) a
subgraph of G.

A graph of order k + 1 or more is said to be k‐connected if removing any set of k − 1 or
fewer vertices produces a connected graph.

Regions of a 2‐connected planar graph are cycles of length i (i‐gons) [6, proposition 4.26].
For these graphs, the terms ‘region’ and ‘face’ are interchangeable. The i‐gonal faces will be
denoted by their sets of i vertices. If a b c[ , , ] is a triangle, we call splitting the operation of adding
a vertex d and edges da db dc, , .
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1.3.3 | Plan of the paper

Theorem 2 is proven in Sections 2 (lower bound (1)), 3 (cases ≤n 13) and 4
(Algorithm 8 for ≥n 14). Section 5 is about an application of a similar flavour, that we
can tackle via a minor modification of Algorithm 8. The theory of Section 5 will also be
useful in Section 6 to prove Theorem 4. Appendix A presents another way to think about
Algorithm 8.

2 | THE LOWER BOUND

In this section, we prove the lower bound in (1).

Lemma 7. Let ≥n 3 andG n( ) be a 3‐polytopal graph with at least one vertex of degree i,
for every ≤ ≤i n3 . Then its order is at least

≥







p n

n n
( )

− 5 + 30

6
.

2

(7)

Moreover, as soon as ≥n 8, we also have

≥







p n

n n
( )

− 11 + 62

4
.

2

(8)

Proof. Let p p n= ( ), q q n= ( ) denote order and size of G n( ), and ≔d vdeg( )j j . On the
one hand, via the handshaking lemma,

≥ q i d
n n

p n
n n

p2 = +
( + 1)

2
− 3 + 3( − + 2) =

( − 2)( − 3)

2
+ 3 ,

i

n

j n

p

j

=3 = −1

where we used 3‐connectivity. On the other hand, by planarity, ≤q p3 − 6, so that
altogether

≥p
n n− 5 + 30

6

2

hence (7).
By [3, 5], for any ≤ ≤ ∕k p3 ( + 4) 3, it holds that

≤ d p k2 + 6 − 16.
i

k

i

=1

(9)

To optimise this lower bound for p, the left‐hand side should contain as many
numbers exceeding 5 as possible. We thus wish to take k n= − 5, and we may do this as
long as ≤ ≤ ∕n p3 − 5 ( + 4) 3, that is,

≥ ≥n p n8 and 3 − 19.
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By (7), these conditions certainly hold for all ≥n 8. In this case, Equation (9) with
k n= − 5 reads

≤
n n

p n
( + 1)

2
− 15 2 + 6( − 5) − 16,

and rearranging this inequality we obtain (8). □

3 | PROOF OF THEOREM 2 FOR ≤n 13

The 3‐polytopes with up to 8 faces were tabulated in [4] and [8]. For ≤ ≤n4 + 1 8, we are
looking for 3‐polytopes with at least one i‐gonal face for each ≤ ≤i n3 . We consult [8, table I],
searching where the ‘Faces’ column has the maximal n − 2 nonzero entries. It is
straightforward to find the 10 relevant cases (numbered 1, 2, 3, 4, 5, 13, 14, 15, 46, and 47 in
[8]). Passing to the dual graphs, we obtain the 10 3‐polytopes sketched in Figure 1. In
particular, for ≤ ≤n3 7, we have p n n( ) = + 1 (cf. Table 1).

Next, we wish to find examples of 3‐polytopes satisfying n for ≤ ≤n8 13. We observe that
each graph in Figure 1, save for the tetrahedron and square pyramid, may be obtained from a
previous one via a splitting operation. Our strategy is then to apply repeated splitting on the
faces of R7.1 from Figure 1, to obtain a new graph Rn. For ≤ ≤n8 13, the aim is to obtain a
subset of vertices of valencies n4, 5, …, . In the effort to minimise the resulting graph's order, we
split triangles of R7.1 containing the maximal possible number of vertices of degree 4 or more,
ideally all three of them. We thereby construct the graphs of Figure 2. Their orders match the
largest of the lower bounds (7) and (8) proven in section 2. We thus complete Table 1.

In the next section, we will combine the above with other ideas to write Algorithm 8,
proving the cases ≥n 14 of Theorem 2.

4 | PROOF OF THEOREM 2 FOR ≥n 14

4.1 | Setup

Let R14 be the graph sketched in Figure 3A. It is straightforward to check that R14 is a 3‐
polytope, and that the respective valencies of vj, ≤ ≤j1 11, are

7, 9, 11, 13, 14, 12, 10, 8, 6, 4, 5.

The order of this graph is 26, matching the lower bound (8) in the case n = 14, and there are
vertices of degree 3 as well. Theorem 2 is hence proven in this case. In the following, we
recursively construct the Rn, ≥n 16, of Theorem 2. As for R15 (Figure 3B), we obtain it from R14
via one edge deletion and again applying the ideas of section 3.

We need a preliminary definition, the operation of h‐splitting a triangle about a vertex, for
some ≥h 1 (see Figure 4). To h‐split a b c[ , , ] about c, we begin by splitting it, introducing a new
vertex c1. Then we split a b c[ , , ]1 inserting c2, and so on, until we have added the vertex ch. For
instance, referring to Figure 1, given the tetrahedron S3, 1‐splitting any face yields S4.2, while
2‐splitting any face produces S5.2.
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4.2 | The case ≡n mod2 ( 4)

We now describe the algorithm producing the Rn of Theorem 2, starting from the case
≡n 2 (mod 4). The remaining cases are covered in Section 4.3.
Algorithm 8 (Part I).
Input. An integer ≥N 16.
Output. A set of graphs ≤ ≤R n N{ : 16 }n , where each Rn has property n.
Description. For all ≥k 1, we define the graph pc k (‘kth piece’) of Figure 5. The half‐lines

and numbers in bold represent h‐splitting: for instance, face a b e[ , , ]k k k is split h k= 4 times
about the vertex ek. Letting ≔ Rpc 0 14, we label u v w, ,0 0 0 its vertices of degrees 10, 8, 6,

FIGURE 4 Notation for h‐splitting a triangle a b c[ , , ] about the vertex c

FIGURE 5 The graph pc k. Dashed lines are not edges of pc k. Half‐lines and numbers in bold represent h‐
splitting.
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respectively (v v v, ,7 8 9 is Figure 3A). The vertex (of degree 3) adjacent to these three will be
denoted by x0. Note that also in each pc k, ≥k 1, there are vertices u v w, ,k k k of degrees 10, 8, 6,
and xk of degree 3 adjacent to them. We define

∪≔ ∪ ≥ ≡
∕

R R n npc , 14, 2 (mod 4),n
k

n

k14
=1

( −14) 4

(10)

identifying in each union operation the vertices u v w x, , ,k k k k−1 −1 −1 −1 with a b c d, , ,k k k k,
respectively.

Proof of Theorem 2 for n ≥ 14, n ≡ 2 (mod4). We claim that Rn (10) has order (1) and
satisfies property n. We argue by induction. The base case n = 14 has already been
checked. The union (10) is still a 3‐polytope by construction. By the inductive hypothesis,
the graph

∪∪
∕

R R= pcn
k

n

k−4 14
=1

( −18) 4

satisfies n−4, and has order

p n
n n

( − 4) =
− 19 + 122

4
.

2

Turning to ∪ ∕R R= pcn n n−4 ( −14) 4, we record that for ≺ Rpc k n, ≥k 1, the vertices

a b c d, , ,k k k k have respective valencies

a k k

b k k

c k k

d k k

deg ( ) = 10 + 1 + 4 + 1 + 2 = 4 + 14,

deg ( ) = 8 + 1 + 4 + 3 = 4 + 12,

deg ( ) = 6 + 1 + (4 − 1) + 2 + 5 = 4 + 13,

deg ( ) = 3 + 1 + 1 + (4 − 1) + 7 = 4 + 11.

R k

R k

R k

R k

n

n

n

n

FIGURE 6 The graphs end n1; and end n0; . Half‐lines and numbers in bold represent h‐splitting (A) The
graph end n1; ; (B) the graph end n0;
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In particular,

∕ ∕

∕ ∕

a n b n

c n d n

deg ( ) = , deg ( ) = − 2,

deg ( ) = − 1, deg ( ) = − 3.

R n R n

R n R n

( −14) 4 ( −14) 4

( −14) 4 ( −14) 4

n n

n n

The degree of the remaining vertices of Rn−4 has not changed in the union. Moreover,

∕udeg ( ) = 10R n( −14) 4n
, ∕vdeg ( ) = 8R n( −14) 4n

and ∕wdeg ( ) = 6R n( −14) 4n
. As for the order,

∕pc n( −14) 4 introduces 12 new vertices plus those given by the h‐splittings, namely

∕ ∕n n n4( − 14) 4 + 2 + 4( − 14) 4 − 1 = 2 − 27. It follows that

 V R p n n
n n

( ) = ( − 4) + 12 + 2 − 27 =
− 11 + 62

4
.n

2

Therefore, Rn does indeed have property n. Moreover, it is clear from the construction
that ≺R Rn n−4 . □

4.3 | The cases ≡n mod1, 0, 3 ( 4)

Algorithm 8 (Part II). Continuing Algorithm 8, for ≥n 16, ≡n 1 (resp. ≡ 0) (mod 4), we start
by constructing Rn−3 (resp. Rn−2) as above. We then define

≔ ∪R R endn n n−3 1;

(resp. ≔ ∪R R endn n n−2 0; ) with end n1; (resp. end n0; ) given by Figure 6A (resp. 6B).
For ≡n 1, in the union ≔ ∪R R endn n n−3 1; , vertices ∕ ∕ ∕ ∕u v w x, , ,n n n n( −17) 4 ( −17) 4 ( −17) 4 ( −17) 4

are identified with a b c d, , , , respectively. For ≡n 0, in the union ≔ ∪R R endn n n−2 0; , vertices

∕ ∕ ∕ ∕u v w x, , ,n n n n( −16) 4 ( −16) 4 ( −16) 4 ( −16) 4 are identified with a b c d¯, ¯, ¯, ¯, respectively.
Finally, if ≡n 3 (mod 4), we take

≔ ∪ ∪ ∪R R Rend = end end ,n n n n n n−2 0; −5 1; −2 0;

identifying d v w x, , , of end n1; −2 with a b c d¯, ¯, ¯, ¯ of end n0; respectively.

Proof of Theorem 2 for n ≥ 16, n ≡ 1, 0, 3 (mod4). If ≡n 1, in Rn one has a ndeg( ) = ,
b ndeg( ) = − 1, and c ndeg( ) = − 2. The remaining valencies ≥4 of Rn−3 do not change

in the union Rn. Moreover, ddeg( ) = 10, vdeg( ) = 8, and wdeg( ) = 6. Lastly, by
Theorem 2 in the already proven case ≡n 2,

∕ ∕ ∕ V R p n n n n
n n

( ) = ( − 3) + 9 + ( − 11) 2 + ( − 13) 2 + ( − 15) 2 =
− 11 + 62

4
n

2

as required.
Similarly, if ≡n 0, in Rn it holds that a ndeg( ¯) = , b ndeg( ¯) = − 1, cdeg(¯) = 10,
ddeg( ¯) = 8 and wdeg( ¯ ) = 6. Further,
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 






V R p n n

n n
( ) = ( − 2) + 8 + ( − 14) =

− 11 + 62

4
.n

2

If ≡n 3, in Rn we have a ndeg( ) = − 2, b ndeg( ) = − 3, c ndeg( ) = − 4,
a ndeg( ¯) = , b ndeg( ¯) = − 1, cdeg(¯) = 10, ddeg( ¯) = 8 and wdeg( ¯ ) = 6. Via the already

proved case ≡n 1,

 






V R p n n

n n
( ) = ( − 2) + 8 + ( − 14) =

− 11 + 62

4
.n

2

The relations (2) are clear by construction. This concludes the proof of Theorem 2. □
Remark 9. The time to implement Algorithm 8 is quadratic in n, and this is optimal in
the sense that the order of Rn is itself quadratic (1). Moreover, constructing RN takes no
more time than obtaining all of

R R R R, , …, ,N N N14 18 −( mod 4+2)

(cf. (2)).

5 | ANOTHER APPLICATION

The ideas of the preceding sections have solved the problem of finding for all n a graph
satisfying n of Definition 1. The following lemma constitutes an application of the same ideas,
and it illustrates how a minor modification of Algorithm 8 allows to answer similar questions.
Moreover, the result of the lemma will be needed in Section 6.

Lemma 10. Let ≥n 17, ≡n 1 (mod 4), and H be an order p 3‐polytopal graph with at
least one vertex of degree i, ≤ ≤i n3 , and at least three vertices of degree n − 1. Then its
minimal order is

n n− 7 + 34

4
.

2

(11)

Proof. Let us show the lower bound first. Similarly to Lemma 7, we begin by imposing

≥ ≥p n n
n n

d
n n

p6 − 12 + 3( − 1) +
( − 2)( − 1)

2
− 3 +

− − 10

2
+ 3 ,

j n

p

j

= +1

2

leading to

≥p
n n− + 14

6
.

2
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Thereby, for ≥n 17, we certainly have ≤ ≤ ∕n p3 − 4 ( + 4) 3. Applying (9) with
k n= − 4 yields the inequality

≤n n
n n

p n+ 3( − 1) +
( − 2)( − 1)

2
− 21 2 + 6( − 4) − 16,

and rearranging this inequality and imposing ≡n 1 (mod 4) we obtain (11) as a lower
bound.

To show the upper bound, we will actually construct a graph Sn satisfying the
assumptions of the present lemma, of order (11). We set

≔ ∪ ≥ ≡S R n nend′ 17, 1 (mod 4)n n n (12)

where Rn was constructed in Algorithm 8 and end ′n is depicted in Figure 7.
Since ≡n 1 (mod 4),

∪ ∪S R= end end′ .n n n n−3 1;

While performing the union, we identify vertices d v w x, , , of end n1; (Figure 6A) with
a b c d′, ′, ′, ′ of end ′n in this order. Then Sn is clearly still a 3‐polytope. Further,

a n ndeg ( ′) = 10 + 2 + − 13 = − 1Sn
, b n ndeg ( ′) = 8 + 4 + − 13 = − 1Sn

, cdeg ( ′) =Sn

6 + 4 = 10, ddeg ( ′) = 3 + 5 = 8Sn
and wdeg ( ′) = 6Sn

. Since Rn has the property n, then

Sn has vertices of each degree i, ≤ ≤i n3 . The union with end ′n has inserted two more
vertices of valency n − 1. Lastly,

   V S V R n
n n n n n

( ) = ( ) + 6 + ( − 13) =
− 11 + 62 + 4 − 28

4
=

− 7 + 34

4
.n n

2 2

(13)

The proof of Lemma 10 is complete. □
Remark 11. We record the following property of the graph Sn. It plainly has degree 3
vertices, and contains among its faces the triangles

FIGURE 7 The graph end′n. Dashed lines are not edges of end′n
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≤ ≤ ∕f v v v j n= [ , , ], 1 ( − 1) 2n j n j n j n j; ; ;1 ; ;2 ; ;3 (14)

where v v ndeg( ) = deg( ) = − 1n n;1;1 ;1;2 ,

≤ ≤ ∕ ∪ ≤ ≤ ∕v j n v j n n{deg( ) : 2 ( − 1) 2} {deg( ) : 2 ( − 1) 2} = {4, 5, …, }n j n j; ;1 ; ;2

and for every a b, = 1, 2 and every ≤ ≤ ∕j i n1 , ( − 1) 2, ≠j a i b( , ) ( , ), we have

≠ ≠v v v v v, , .n j a n i b n j n i n i; ; ; ; ; ;3 ; ;1 ; ;2

This property, stronger thann of Definition 3, shall be denoted byn. Indeed for Sn,n

is easily observed by construction. For instance, we may take the pairs

≤ ≤ ∕k k k k k n

n n n n n

(7, 4), (13, 12), (9, 5), (14, 11),

(4 + 14, 4 + 12), (4 + 11, 4 + 13) for 1 ( − 17) 4,

( , − 1), ( − 2, 10), ( − 1, − 1), (8, 6)

where the notation a b( , ) means that if u v, denote two vertices of one of the triangles fn j; ,

then u adeg( ) = and v bdeg( ) = .

6 | PROOF OF THEOREM 4

6.1 | Premise

We first introduce the main ideas of the proof, via the following lemma.

Lemma 12. Let Tl be as in Theorem 4. Then we may construct a sequence of
3‐polytopes

≥T{ } ,n n l k k= +2 , 1

where ≺T Tl m k l mk+ ( −1) + for ≥k 1, and each Tn satisfiesn. Moreover along the sequence,
for all ϵ > 0, one has

≤ V T
n

n( )
4
+ (−1 + ϵ)n

2

(15)

as → ∞n .

Here we prove the first statement, relegating the proof of the second one (15) to Section 6.3.
The base case is just the assumption of the lemma. We take the inductive hypothesis that
Tl k+2( −1) verifies propertyl k+2( −1) of Definition 3. Suppose that at step k, ≤ ≤k N1 , we were
to perform 2‐splitting on each triangle

≤ ≤ ∕f j l k, 1 ( + 2( − 1) − 3) 2l k j+2( −1);
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(3) about vertex vl k j+2( −1); ;3. That would raise by 2 the degrees of a set of vertices of valencies
l k4, 5, …, + 2( − 1). However, in the resulting graph, we would not be guaranteed vertices of

degrees 4 and 5. Therefore, the 2‐splitting is taken only for

≤ ≤ ∕j l k2 ( + 2( − 1) − 3) 2

(i.e., all these faces save fl k+2( −1);1). We replace fl k+2( −1);1 with the graph S of Figure 8,
identifying v v v, ,l k l k l k+2( −1);1;1 +2( −1);1;2 +2( −1);1;3 with a b c, , respectively.

In this way, the valencies of vl k+2( −1);1;1 and vl k+2( −1);1;2 increase by 2, and they belong to the
new triangle ≔∕f a b g[ , , ]l k l k+2 ;( +2 −3) 2 . Two vertices of valencies 4 and 5 are introduced,

namely d e, . Moreover, these two belong to a triangle ≔f d e f[ , , ]l k+2 ;1 . We also set

≔ ≤ ≤ ∕






f v v v j l k, , ″ , 2 ( + 2 − 3) 2 − 1l k j l k j l k j l k j+2 ; +2( −1); ;1 +2( −1); ;2 +2( −1); ;3

where v″l k j+2( −1); ;3 is the second of the two vertices introduced in the 2‐splitting of fl k j+2( −1); . We
have thus constructed Tl k+2 satisfyingl k+2 as claimed.

In Section 6.3, it will be shown that the above produces a sequence of graphs Tn verifying
(15). Our goal is to optimise this method to asymptotically improve this upper bound
on  V T( )n .

6.2 | The algorithm

In Section 6.1 we have used the 3‐polytope S as it has the 2 triangles a b g[ , , ] and d e f[ , , ], with
vertices of appropriate valencies ddeg( ) = 5 and e a bdeg( ) = deg( ) = deg( ) = 4. A refinement
of this idea is then to pick m even and use in place of S a 3‐polytope containing ∕m( + 2) 2

triangles, where two vertices from each form a set of vertices of degrees

m m m m m m m+ 3, + 2, + 2, + 2, + 1, , − 1, …, 5, 4.

We have seen in Remark 11 that for ≥m 14, Sm+3 has the desired property m+3.
Algorithm 13.
Input. A 3‐polytopal graph Tl satisfying l, an integer ≥m 14, ≡m 2 (mod 4), and a

positive integer N .
Output. A set of graphs ≤ ≤T T k N{ = : 1 }n l mk+ , each satisfying property n, and

≺T Tl m k l mk+ ( −1) + . These are the first N entries of a sequence verifying (5).

FIGURE 8 The graph S
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Description. Starting from Tl, we perform steps ≤ ≤k N1 as follows. The graph Tl m k+ ( −1)

verifiesl m k+ ( −1), that is, it has ∕l m k( + ( − 1) − 3) 2 triangular faces

≤ ≤ ∕f v v v j l m k= [ , , ], 1 ( + ( − 1) − 3) 2l m k j l m k j l m k j l m k j+ ( −1); + ( −1); ;1 + ( −1); ;2 + ( −1); ;3

where

≤ ≤ ∕

∪ ≤ ≤ ∕

v j l m k

v j l m k l m k

{deg( ) : 1 ( + ( − 1) − 3) 2}

{deg( ) : 1 ( + ( − 1) − 3) 2} = {4, 5, …, + ( − 1)}

l m k j

l m k j

+ ( −1); ;1

+ ( −1); ;2

and for every a b, = 1, 2 and every ≤ ≤ ∕j i n1 , ( − 3) 2, ≠j a i b( , ) ( , ), we have

≠ ≠v v v v v, , .l m k j a l m k i b l m k j l m k i l m k i+ ( −1); ; + ( −1); ; + ( −1); ;3 + ( −1); ;1 + ( −1); ;2

At step k, wem‐split the fl m k j+ ( −1); about vl m k j+ ( −1); ;3, for ∕j l m k= 2, …, ( + ( − 1) − 3) 2. Next,

we replace the remaining triangle fl m k+ ( −1);1 with a copy of Sm+3 from Lemma 10, identifying

vl m k+ ( −1);1;1 and vl m k+ ( −1);1;2 with two adjacent vertices of degree m + 2 in Sm+3. This is well
defined, since ≥m + 3 17, ≡m + 3 1 (mod 4), and Sm+3 has property m+3 (Remark 11). In
this way, we have increased by m the degrees of a set of vertices of valencies

l m k4, 5, …, + ( − 1), and we have introduced m new vertices of degrees m{4, 5, …, + 3}

(applying Lemma 10). Moreover, these new vertices, together with vl m k+ ( −1);1;1 and vl m k+ ( −1);1;2,
belong pairwise to ∕m( + 2) 2 triangles, by the construction of Sm+3 (Remark 11). We have thus
obtained Tl mk+ satisfyingl mk+ . Relation (6) follows by construction.

6.3 | Concluding the proofs of Theorem 4 and Lemma 12

It remains to show (5). In Algorithm 13, starting with  V T( )l vertices, at step ≥k 1 we have
inserted m of them for each of ∕l m k( − 3 + ( − 1)) 2 − 1m‐splittings, plus  V S( ) − 3m+3 for
the operation on fl m k+ ( −1);1 (i.e., replacing this triangle with a copy of Sm+3). Therefore,

⋅

⋅ ⋅

≤

∕

∕




   


  





   




  



V T V T m
l m k

V S

V T
m

k
m l n l

m
V S

n l

m

n V S m m

m
n

( ) = ( ) +
− 5 + ( − 1)

2
+ ( ) − 3

= ( ) +
2

( − 1) +
( − 5)

2

−
+ ( ( ) − 3)

−

4
+

4 ( ) − − 10 − 12

4
+ ϵ ,

n l

k

n l m

m

l

k

n l m

m

m

=1

( − )

+3

2

=1

( − )

+3

2
+3

2

where as → ∞n we have bounded the constant terms via nϵ , for all ϵ > 0. Substituting the
value (11), we have as → ∞n

≤  

 


V T

n m

m
n( )

4
+

−11 + 10

4
+ ϵn

2

as required. The proof of Theorem 4 is complete.
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Note that m was chosen so that ≥m + 3 17 and ≡m + 3 1 (mod 4) hold, to minimise the
quantity

 V S m m

m

4 ( ) − − 10 − 12

4
m+3

2

(Lemma 10) so that ultimately the coefficient of n in (5) is as small as this method allows.
In Lemma 12, we had fixed insteadm = 2, and used the graph S (Figure 8) in place of Sm+3.

Since  V S( ) = 7, we get (15). This concludes the proof of Lemma 12.

6.3.1 | Future directions

The ideas behind Algorithms 8 and 13 are readily generalisable to tackle problems of a similar
flavour, as shown for instance in Section 5. The constructions, or a slight modification thereof, allow
to minimise the total number of vertices of a graph, where certain valencies have been fixed.
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APPENDIX A: ANOTHER WAY TO PRESENT ALGORITHM 8
The following construction of Rn may be more intuitive than Algorithm 8, albeit less apt
for implementation. We begin by fixing ≥n 9 and defining a 3‐polytope A n( ) of order n − 5 as
follows. Given an initial triangle v v v[ , , ]1 2 3 , we add in order v v v, , …, n4 5 −5 together with edges

v v v v v v i n, , , = 4, 5, …, − 5i i i i i i−1 −2 −3

(splitting operations). The resulting A n( ) for n = 14, 21 are illustrated in Figure A1.
We note that ≅A R(9) 3, ≅A R(10) 4.2, ≅A R(11) 5.2 and ≅A R(12) 6.3 from Figure 1. For all
≥n 11, the degree sequence of these graphs is

3, 4, 5, 6 , 5, 4, 3n−11

where the superscript is a shorthand indicating quantities of repeated numbers, for example,
6n−11 means n − 11 vertices of degree 6.

Assuming ≥n 14, we pass from A n( ) to another 3‐polytope B n( ) in the following way.
First, we apply the splitting operation to every face of A n( ). This has the effect of doubling all
previous vertex degrees, and introducing n2( − 5) − 4 new ones (A n( ) is a triangulation—it is
maximal planar) so that the sequence is now

6, 8, 10, 12 , 10, 8, 6, 3 .n n−11 2 −14

Second, we split either of the two faces containing v v,1 4. This yields in particular a vertex of
degree 4. To obtain one of degree 5, we split the two faces that are adjacent to one another and
that contain v v,2 5 and v v,3 5 respectively. For instance, in Figure 3A, inserting v24 raises the
valency of v10 to 4, and inserting v v,25 26 raises the valency of v11 to 5. The constructed
3‐polytope shall we denoted by B n( ). Its order is

 V B n n n n( ( )) = ( − 5) + (2( − 5) − 4) + 3 = 3 − 16, (A1)

and its sequence

7, 9, 11, 13, 14, 12, 12 , 10, 8, 6, 5, 4, 3 .n n−14 2 −13 (A2)

FIGURE A1 Illustration of the construction A n( ) (A) A (14) and (B) A (21)
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In (A2), we have purposefully isolated a subset of vertices of degree 12

≔ ⊂V V B n V B n′ ′( ( )) ( ( )), (A3)

with cardinality n − 14, keeping the remaining one aside.
We have ≅B R(14) 14 (Figure 3A). For ≥n 16 our strategy is outlined as follows. The

vertices in A n( ) have been designated to eventually correspond to ones of degree 6 or higher in
Rn. Following the ideas of Section 3, B n( ) has been constructed by splitting faces of A n( ) that
contain three of these vertices of high degree. Next, starting from B n( ), we split faces
containing two of them. We take four vertices from V ′ of (A3). Via nine repeated splitting
operations, we aim to raise their degrees to 15, 16, 17, 18. Similarly, the next four shall become
of degrees 19, 20, 21, 22, and so forth k k k k4 + 11, 4 + 12, 4 + 13, 4 + 14. This procedure ends
when there remain either 2, 3, 0, or five vertices in V ′, depending on whether ≡n 0, 1, 2, or
3 (mod 4). For ≡n 2 the algorithm stops here. In the other cases, ≡n 0, 1, 3, we look to apply
further triangle splittings, to obtain vertices of degrees

n n n n n n n n n n− 1, , − 2, − 1, , or − 4, − 3, − 2, − 1,

respectively. The details have already been presented in Section 4.
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