
05 May 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Big data and Official Statistics: some evidences

Publisher:

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

Pearson

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1874161 since 2022-10-09T10:25:04Z



 

 

Big Data and Official Statistics: some evidences 
Big Data e Statistiche Ufficiali: alcune evidenze 

Paolo Righi, Natalia Golini, Gianpiero Bianchi 

Abstract The paper compares two classes of estimators exploiting a Big Data 
source. Both classes rely on a probabilistic sampling. Nevertheless, while the first 
class of estimators uses the Big Data as auxiliary information, the latter uses the 
probabilistic sample as auxiliary information. We denote this second class as 
pseudo-calibration estimators, since it applies the calibration to a not random 
sample. We present an original application of the jackknife method for the variance 
estimation for the pseudo calibration estimators. Finally, an empirical evaluation on 
a real survey and Big Data compares several estimators of the two classes with a 
standard design-based survey estimator. 
Abstract Il lavoro confronta due classi di stimatori che sfruttano una fonte Big 
Data. Entrambe le classi si affidano su un campione probabilistico. Ma, mentre la 
prima classe usa i Big Data come informazione ausiliaria, la seconda classe usa il 
campione probabilistico come informazione ausiliaria. Denotiamo la seconda 
classe come stimatori di pseudo- calibrazione, poiché ai applica la calibrazione a 
un campione non casuale. Si presenta una applicazione originale del metodo 
jackknife per la stima della varianza per gli stimatori pseudo-calibrati. Infine, si 
confrontano empiricamente su dati di indagine e di Big Data reali alcuni stimatori 
delle due classi con uno stimatore standard design-based. 
 
Key words: Calibration, Big Data, Official Statistics. 

1 Informative context and notation  

New sources of data have emerged and are the result of more and more 
interactions with digital technologies by citizens and business units and the 
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increasing capability of these technologies to provide digital trails. These sources 
commonly referred to as Big Data, offer new challenges from the statistical 
viewpoint in particular generated by a paradigm shift: from designed data for 
planned statistics to data-oriented or data-driven statistics. Beyond the descriptive 
statistics, it is necessary to determine under which conditions make valid inference 
using Big Data. The aim to produce Official Statistics with high-quality standards 
has stimulated the definition of suitable statistical frameworks (among others: 
Eurostat, 2018; the American Association for Public Opinion Research (AAPOR) 
task Force on Big Data, 2015) and quality frameworks (UNECE, 2014).  

The paper compares two classes of estimators that use the Big Data source for 
producing Official Statistics. The two sets of estimators rely on a probabilistic 
survey but different approach to the inference. The former class concerns a design-
based framework, while the latter a model-based framework although an automatic 
calibration procedure, typical of a model-assisted estimator is carried out. Both 
classes of estimators apply the calibration techniques and make the estimators 
appealing to the National Statistical Institutes (NSIs), being these techniques well 
known by the NSIs. Section 2 introduces the basic notation and the informative 
context. Section 3 shows the first class of estimators, denoted as data integration 
estimators (Kim and Tam, 2021). Section 4 illustrates the second class of estimators, 
referred to this paper as pseudo-calibrated estimator (Righi et all., 2021) or 
calibration adjustment (Lee and Valliant, 2009). Section 5 shows an empirical 
evaluation on real survey and Big Data. Finally, Section 6 gives some conclusions.      

2 Informative context and notation  

Let 𝑈 be the target population of size 𝑁 and 𝑈! ⊂ 𝑈	be the sub-population of size 
𝑁!.  
We denote with 𝑈! a Big Data source. In 𝑈! are collected or predicted by a statistical 
model (with a model error) the random variable Y. Let us denote with 𝑦" the 
collected value on the unit 𝑘 ∈ 𝑈! and with 𝑦("	the predicted value. We use 
𝑦"∗ 	notation to indicate either 𝑦" or 𝑦(". In case of more than one variable collected 
or predicted in the Big Data source, we have the 𝐲"∗ = (𝑦"$∗, … , 𝑦"%∗… . , 𝑦"&∗)′	vector, 
being 𝑦"%∗ the values of ℎth variable collected or predicted in the Big Data. 
Furthermore, let 𝑈!'  be the set of units without information from the Big Data source 
being 𝑈! ∪ 𝑈!' = 𝑈 and 𝑈! ∩ 𝑈!' = ∅. Let 𝛿" indicate the Big Data membership 
variable, with 𝛿" = 1 when 𝑘 ∈ 𝑈! and 𝛿" = 0 when ∈ 𝑈!' . Along with 𝑈!, let 𝑠 be 
the reference survey sample, in which a probabilistic sample is drawn from 𝑈. This 
is a multi-purpose survey collecting 𝐲" and a vector 𝐳" = (𝑧"$, … , 𝑧"

( , … , 𝑧"))′ of 𝑀 
variables for each 𝑘 ∈ 𝑠. In this setting we assume to know the value of 𝛿" and we 
can define 𝑠 = 𝑠! ∪ 𝑠!'  with 𝑠! ∩ 𝑠!' = ∅, with 𝑠! ⊂ 𝑈! and 𝑠!' ⊂ 𝑈!' . Unit 
nonresponses could affect the reference survey sample. We indicate with 𝑟 the 
sample of respondents. 



Big Data and Official Statistics: some evidences   

 

Finally, let 𝐱" = (𝑥"$, … , 𝑥"
*, … , 𝑥"+)′ be the value vector of the P auxiliary 

variables known for each 𝑘 ∈ 𝑈. The target parameter is the total  
 

𝑌 = ∑ 𝑦", 	.                                            (2.1) 
 

We also consider the total for the domain 𝑈(.) ⊂ 𝑈 (𝑑 = 1,… , 𝐷),  
 

𝑌(.) = ∑ 𝑦", 𝜆"(.),	                                  (2.2) 
 

with 𝜆"(.) = 1 if 	𝑘 ∈ 𝑈(.) and  𝜆"(.) = 0 otherwise. We indicate with  
𝛌" = (𝜆"($), … , 𝜆"(.), … 𝜆"(0))′ the domain indicator variable vector. 

3 Data Integration estimators 

We compare two classes of estimators that use in a different way the information 
coming from the Big Data source. We refer to the first class of estimators as Data 
Integration (DI) estimators (Kim and Tam, 2021). These estimators define a general 
tool for making proper use of the Big Data sources for finite population inference 
by combining the sources with a probabilistic survey. 

The DI estimators are design-based, and the Big Data variables are used as 
auxiliary variables. It is worthy to note that the making design-based inference is an 
appealing property for the NSIs that usually apply this kind of approach for data 
production of Official Statistics. The general form of the DI estimators is the 
Regression DI (RegDI) estimator. By specifying the terms of the RegDI estimators, 
we can obtain the different DI estimators. Therefore, we focus on the general RegDI 
estimator. Kim and Tam (2021) give insight on the specific estimators.  

The standard survey regression adjusts the survey weights to respect some 
known totals. In particular the following optimization problem is performed 
 

  G
𝑚𝑖𝑛	 ∑ 𝑄(𝑑" , 𝑤")1
∑ 𝐱"	𝑤"1 = 𝐗	 ,    (3.1) 

 
where 𝑑"	is the base sampling weight, 𝑤" is the weight of calibration, 𝐗 = ∑ 𝐱",  is 
a vector of totals, that we assume as known or estimated by a large and accurate 
survey (e.g., Dever and Valliant, 2010, 2016) with 𝐱" known for each 𝑘 ∈ 𝑠.  
and, 
 

𝑄(𝑑" , 𝑤") =N 𝑑"(
𝑤"
𝑑"

− 1)2
1

. 

 
The RegDI estimator augments the number of auxiliary variables with 𝛿" and 

𝛿"𝑦"∗. The estimator is   
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𝑌P34506 = ∑ 𝑦"𝑤"1    (3.2) 
 
with ∑ 𝛿"𝑤"1 = 𝑁! and ∑ 𝛿"𝑦"∗ 	1 = ∑ 𝑦"∗ 	,! . 
 

The domain estimator is given by  
 

𝑌P34506(.) = ∑ 𝛿"𝑦"∗𝑤"1 𝜆"(.)   (3.3) 
 
 
REMARK 4.1: Kim and Tam (2021) deal with the case of unknown 𝛿"	for 𝑘 ∈ 𝑠. We 
do not analyse this setting in this work.  
REMARK 4.2: The 𝑌P34506 (3.2)-(3.3) is variable-specific. A more general expression 
can calibrate the weights on the auxiliary vector (𝐱" , 𝛿" , 𝛿"𝐲"∗). 

4 Pseudo-calibration estimators  

The second class of estimators uses the Big Data source as the large non-probability 
sample. A critical issue when using a non-probability sample is to dealt with the 
unknown sample selection mechanism. In particular, since 𝑈! ⊂ 𝑈 the no data 
observations in 𝑈!'  (missing data) weakens the representativeness of the Big Data 
sample with respect to the target population. According to Buelens et al. (2014), 
representativeness is defined as follows: “A subset of a finite population is said to 
be representative of that population with respect to some variable, if the distribution 
of that variable within the subset is the same as in the population. A subset that is 
not representative is referred to as selective.” Meng (2018) underlines that among 
the different terms generating the selection bias the most important is the correlation 
between Y and 𝛿. When the variable are not correlated, we do not have selection 
bias. In presence of correlation, there are several approaches for adjusting the 
selection bias in Big Data. For instance, Kim and Wang (2019), Chen et all. (2020), 
Elliot and Valliant (2017). Here we focus on the estimation process denoted as 
calibration weighting (Kim, 2022), calibration adjustment (Lee and Valliant, 2009) 
or pseudo-calibration estimator (Righi et all., 2019). 

The estimator calibrates the Big Data distributions on the auxiliary variables 
related to the target variable so that after this step, these distributions are coherent 
with the distributions on the target population. 

To achieve this objective the calibration process assigns to each unit of the Big 
Data a final weight acting to satisfy the calibration constraints.  

The final weights are obtained by the solution of the following optimization 
problem: 

 

Q
𝑚𝑖𝑛	 ∑ 𝑑(𝑝" , 𝑤"),!
∑ 𝐱"	𝑤",! = 𝐗	 ,    (4.1) 
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where 𝑑(. ) is a convex function, denoted as a distance function, (Deville and 
Särndal, 1992), 𝑝" is the initial weight, 𝑤" is the weight of calibration, 𝐗 = ∑ 𝐱",  
is a vector of totals, that we assume as known or estimated by a large and accurate 
survey (e.g., Dever and Valliant, 2010, 2016) with 𝐱" known for each 𝑘 ∈ 𝑈!.  

We can fix the 𝑝" values in different ways. If we perform a propensity 
adjustment (Kim, 2022, Elliot and Valliant, 2017, Lee and Valliant, 2009), 𝑝" is the 
propensity of each unit to be included in the Big Data source. A statistical model 
estimates this propensity.  

In the simplest form 𝑝" = 𝑁/𝑁!. When 𝑝" = 𝑝, ∀	𝑘 ∈ 𝑈! and varying 𝑝 the 
solution of the optimization problem does not change. So that, with 𝑝" = 1 or 𝑝" =
𝑁/𝑁! the calibrated weights, 𝑤", are the same. 

Considering 𝑝" = 1 we define a statistical framework where 𝑈	is a take-all 
sample (census) with 𝑝𝑟(𝛿" = 1) = 1 for ∀	𝑘 ∈ 𝑈. Nevertheless, 𝑈 is affected by a 
kind of unit non-response (alternatively 𝑈!	under-covers 𝑈). The inclusion 
probabilities of the respondents, the units in 𝑈!, are adjusted for reducing 
nonresponse bias by a calibration approach (Little and Rubin, 2007). 

4.1 Observe the target variable in the Big Data source 

When we collect 𝑦" for 	∈ 𝑈!, the pseudo-calibrated estimator is given by  
 

𝑌P+7,! = ∑ 𝛿"𝑦"𝑤",     (4.2) 
 
being 𝑤" = 0 when 𝛿" = 0. We apply the calibration algorithm (Deville and 
Särndal, 1992) to solve the optimization problem in (4.1).  

The domain estimator is 𝜆"(.)  
 

𝑌P+7,!(.) = ∑ 𝛿"𝑦"𝑤", 𝜆"(.)   (4.3) 
 

Further discussion on the 𝑌P+7,!	estimator is given in Righi et all. (2019). 
 
REMARK 5.1: The proposed estimator has a simple and straight implementation. It 
leverages well-known and widely used statistical calibration tools in the NSIs.  
REMARK 5.2: The proposed estimator is model-based. However, it applies the same 
process for adjusting unit non-response. The calibration will be generally based on 
a usual set of auxiliary variables exploited for calibrating or adjusting for non-
response the probabilistic sample. The similarity of the process facilitates the 
consistency of the estimates on the same target population and the estimation 
computed using either the Big Data or a standard survey based on a probabilistic 
sample.  
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4.2 Predict the target variable in the Big Data source 

The 𝑌P+7,! is applicable when we collect 𝑦" in 𝑈!. In some case, we have from a Big 
Data source a prediction of 𝑦(". An example of predicted data is the remote sensing 
for agricultural statistics (on land use, crop type, crop yield) using the satellite 
imageries. Another example of predicted data comes from business statistics on the 
services and functionalities of the enterprise’s websites. To count the websites 
offering specific services (e-commerce, link to social media, job advertisement) we 
can apply a web-scraping technique by collecting text documents on the website and 
predicting the presence of the functionalities and services in the website by 
performing a text analysis and classification by machine learning techniques. 

In this case, the estimator (4.2) or (4.3) has to be refined plugging-in the 𝑦(" 
synthetic values for 𝑦", 

 
𝑌P+7,!+ = ∑ 𝛿"𝑦("𝑤", ,    (4.4) 

 
where 	𝑦U" is null for 𝛿" = 0. The estimator for the domain 𝑈(.) adds the terms 
𝜆"(.)	in the (4.4). 

The estimator (4.4) assumes the form of the projection estimator. Kim and Rao 
(2012) define a model-assisted framework of the estimator (4.4) with 𝑦(" = 𝜉(𝐚"𝛄Y) 
being 𝜉 a known function, 𝐚" a vector of auxiliary variable known for 𝑘 ∈ 𝑈 and 
the 𝛄Y vector the estimate of the model parameter vector obtained from a second 
survey (the reference survey) using the data set {(𝑦" , 𝐚"): 𝑘 ∈ 𝑠 ⊂ 𝑈} and the survey 
weights. Kim and Rao (2012) define the conditions to have unbiased estimates. 
When the conditions are not satisfied, an unbiased estimator is  
 

𝑌P+7,!0 = 𝑌P+7,!+ + ∑ 𝛿"(𝑦" − 𝑦(")𝑓"1⊂, ,	         (4.5) 
 
in which the second term of the right-hand side of the (4.5) is the bias correction 
term, where 𝑓" are the final sampling weights of the reference survey adjusted for 
the nonresponse in 𝑈! . We assume that the 𝑦" and 𝛿" are observed for 𝑘 ∈ 𝑠. Breidt 
and Opsomer (2017) denote the (4.5) as a difference estimator and consider the 
estimator (4.5) based on statistical non-parametric learning techniques such as 
Kernel methods and regression-tree (Hastie, Tibshirani and Friedman, 2001). In the 
latter case, the estimation process follows these steps: i) the survey-weighted 
regression tree method is applied to the second survey data {(𝑦" , 𝐚"): 𝑘 ∈ 𝑠 ⊂ 𝑈} 
where 𝐚" represents the auxiliary variable value vector observed in the Big Data 
source; ii) a partition of covariate space in H strata, denoted as Endogenous Post 
Strata (Breidt and Opsomer, 2008), is defined as  

 

𝐚(" = _1:;"#$%&(𝐳))+,"<
`
%=$

&
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where the {𝜏%}%=>&  are known breakpoints; iii) 𝑦("=𝐚("? 𝑩c is computed, where 𝑩c ? =
d@$
@A$
, … , @"

@A"
, … , @-

@A-
e	 with 𝑁c% = ∑ (1/𝜋")"∈% . Breidt and Opsomer (2017) introduce 

in the discussion the use of random forests (Breiman, 2001) instead of a tree-based 
method without a definitive conclusion. Tipton, Opsomer and Moisen (2013) show 
empirical evaluations of the (4.5) when using the random forest.  

5 Variance estimators  

DI estimators are design based. For variance estimation, standard linearisation 
methods (Särndal et all., 1992) or replication methods (Wolter, 2007) for the 
regression estimator can be applied. 

Pseudo-calibration estimator is model-based. We propose to use a replication 
method. Specifically, we can apply the Delete a Group Jackknife (DAGJK) method 
(Kott, 2001; Kott, 2006) which is suitable for treating very large sample.  

The DAGJK defines 𝐺 random replication groups drawn from the parent sample, 
i.e 𝑈!. Then, 𝐺 estimation processes are carried out using the sample data without 
the units of one random replication group. 

For the difference estimator (4.5) we apply two independent DAGJK variance 
estimations respectively for the two components of the estimator. Since 𝑈! and 𝑠! 
are independent samples the variance of the difference estimator is equal to the sum 
of the variances of its two components. 

The estimation process does not consider the re-computation of the 𝑦(". 

6 Empirical evaluation on European Community survey on ICT 
usage and e-commerce in enterprises  

We implement the above classes of estimator on the real data of the 2018 European 
Community Survey on ICT usage and e-commerce in enterprises (ICT survey) and 
Internet data scraped from the enterprise websites. The ICT survey’s principal aim 
is to supply users with indicators on Internet connections and usage (website, social 
media, cloud computing). The target population of the ICT survey is referred to the 
enterprises with 10 and more persons employed working in the industry and non-
financial market services. The frame population is the Italian Business register 
(Asia) updated to 2 years before the survey reference period. For the 2018 ICT 
survey, this population has 199,914 units. The design is a stratified sampling. Four 
classes of the number of persons employed (0-9; 10-19; 20-249; 250 or more), 
economic activities (24 Nace groups) and geographical breakdown (21 
administrative regions at NUTS 2 level) define the strata. The strata including the 
fourth size class (the enterprises with 250 and more persons employed) are take-all. 
The number of units in these strata are 3,342. The 2018 sample of respondents is of 
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22,097 units. The 2018 ICT survey asked the enterprise, among others, if a) the 
website gives the possibility to make online ordering or reservation or booking; b) 
there are links to social media on the website. We refer to the two questions as 
WEBORD and WEBSM variables. The current ICT survey estimator is a calibration 
estimator. It calibrates on the number of enterprises and persons employed by 
economic activity, size class and administrative region according to a complex 
combination of these variables. We uses the Internet data as Big Data sources. We 
start with the text documents collected by a web-scraping procedure from the 
enterprises websites. In particular, we have 93,848 (= 𝑁!) scraped websites. Note 
that the total number of websites in target population is unknown. The ICT survey 
estimate is 134,655.82 enterprises with a relative error of about 1% (Table 6.1). The 
web-scraping step returns information retrieval for the WEBSM variable. That 
means we observe the variable with 𝑦" = 1 when the website has a link to a social 
media and with 𝑦" = 0 otherwise. Using the text document of each website we 
predict with a machine learning technique (Random Forest) the WEBORD variable 
Bianchi et all., 2018; Bianchi and Bruni, 2019), . That means we predict the variable 
with 𝑦(" = 1 when the website has online ordering or reservation or booking 
functionalities and with 𝑦(" = 0 otherwise. The prediction is a value in the interval 
[0; 1]. Righi et all. (2019) give insights on the ICT survey and web-scraping and 
machine learning procedure. 

6.1 Estimators 

We compare a simplified version of the ICT survey estimator, denoted as T0, with 
three different RegDI estimators (T1, T2, T3) and three model-based pseudo 
calibration estimators (M1, M2, M3). T0 calibrates on the number of enterprises and 
employed persons for four enterprise size classes (0-9; 10-19; 20-249; +249) and for 
three macro-regions (aggregation of NUTS 2 regions, Centre, North and South). We 
have 𝐱" = (1, 𝑒")′ being 𝑒" the number of employed persons in the unit 𝑘. The T1 
calibration variables are (𝐱𝒌? 𝛌𝒌? ; 𝛿"𝛌𝒌? ) and it calibrates on 𝐗(𝒅) = ∑ 𝐱𝑘𝑈 𝜆𝑘(𝑑)	 and 
𝑁!(.) = ∑ 𝛿𝑘𝑈 𝜆𝑘(𝑑)	. The T2 calibration variables are (𝐱𝒌? 𝛌𝒌? ; 𝛿"𝛌𝒌? ; 𝛿"𝑦("𝛌𝒌? ) and it 
calibrates on 𝐗(𝒅), 𝑁!(.) and ∑ 𝑦("	𝜆𝑘(𝑑),! . The T3 calibration variables are 
(𝐱𝒌? 𝛌𝒌? ; 𝛿"𝛌𝒌? ; 𝛿"𝑦"𝛌𝒌? ) and it calibrates on 𝐗(𝒅), 𝑁!(.) and ∑ 𝑦"𝜆𝑘(𝑑)	,! . The T4 
calibration variables are (𝐱𝒌? 𝛌𝒌? ; 𝛿"𝛌𝒌? ; 𝛿"𝑦("𝛌𝒌? , 𝛿"𝑦"𝛌𝒌? ) and it calibrates on 𝐗(𝒅), 
𝑁!(.), ∑ 𝑦("𝜆𝑘(𝑑)	,!  and ∑ 𝑦"𝜆𝑘(𝑑)	,! . The M1 estimator calibrates the weights on the 
estimated totals of enterprise and number of employed persons for four size classes 
and three macro-regions. We use the estimates of T0 of the above totals. The M1 
corresponds to the estimator (4.2) for WEBSM and to the estimator (4.4) for 
WEBORD. The M2 and M3 are difference estimators for WEBORD total. The 𝑓" 
in M2 is the sampling calibrated weight adjusted by the factor ∑ 𝑧"E /	∑ 𝛿"E  , with 
𝑧" = 1 when the enterprise has the website and	𝑧" = 0 otherwise. The M3 estimator 
uses the factor ∑ 𝑧"𝑤"1E /	∑ 𝛿"𝑤"1E  where 𝑤"1 is the calibrated sampling weight of 
the ICT survey estimator. 
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6.2 Results 

The estimates at the national level (Table 6.1) gives us some preliminary results. 
The T1 estimator has not effect on the Coefficient of Variation (CV) of the estimates 
with respect to the T0. The T2 and T3 estimators reduce the CV for the variable 
involved in the calibration. We have to consider the T4 estimator for improving the 
standard errors of both WEBORD and WEBSM variables. The M1 estimator gives 
two main results: i) the two estimates are outside the 95% Confidence Interval (CI) 
of T0. We have to understand if this is a bias evidence or not; ii) the CIs of both 
estimates are very narrow. We apply the difference estimators, M2 and M3, for the 
WEBORD total estimate. The value is inside the T0 estimator CI. We can assume 
to have adjusted the bias for the measurement error of the Big Data target variable. 
Still, the CV increases with respect to M1 but it is smaller than the CV of T0 and 
the other DI estimators. As far as the bias of WEBSM total is concerned, Table 6.1 
shows that M1 is consistent with T3 and T4 estimators that are design-unbiased. We 
could assume that T0 produces a downward WEBSM estimation. 
 
Table 6.1: Estimates at the national level 

Esti-
mator Variable Total 

CI(95%) 
Lower 
bound 

CI(95%) 
Upper 
bound 

Estimate not 
in T0 

CI(95%) 
CV 

T0 
WEB 134,655.82 131,831.46 137,480.18   1.07% 
WEBORD 26,451.41 24,473.67 28,429.14   3.81% 
WEBSM 68,221.35 65,157.69 71,285.01   2.29% 

M1 WEBORD 30,120.58 29,956.38 30,284.78 ** 0.27% 
WEBSM 79,123.88 78,625.52 79,622.24 ** 0.31% 

M2 WEBORD 26,860.18 25,740.40 28,361.63   2.47% 
M3 WEBORD 26,817.45 26,009.59 27,625.31   1.54% 

T1 WEBORD 27,150.30 25,092.20 29,208.40   3.87% 
WEBSM 70,520.33 67,388.36 73,652.30   2.27% 

T2 WEBORD 27,387.05 25,806.85 28,967.25   2.94% 
WEBSM 70,684.85 67,577.39 73,792.32   2.24% 

T3 WEBORD 28,313.23 26,225.65 30,400.82   3.76% 
WEBSM 77,021.37 74,646.39 79,396.34 ** 1.57% 

T4 WEBORD 27,541.93 25,989.47 29,094.39   2.88% 
WEBSM 77,022.19 74,647.43 79,396.96 ** 1.57% 

 
We compare the estimates by size class domains (Figure 6.1) and macro-regions 

domains (Figure 6.2). The DI estimator CIs always overlap the T0 estimator CI. The 
length of CIs looks similar even though the DI CIs are a little bit smaller for some 
domains (size class 0-9 for WEBORD and WEBSM). The pseudo-calibration 
estimators gives the shortest intervals. For some domains, the WEBSM estimates 
are significantly different from the T0 (0-9 size class, Center and North macro-
regions). The difference estimator adjusts the WEBORD estimates that are within 
the T0 estimator CI or at least the CIs of the two estimators overlap. Figures 6.1 and 
6.2 include the Tb estimator which is a naïve pseudo-calibration estimator defined 
as j𝑁cF 𝑁!⁄ l∑ 𝑦"∗,! , where 𝑁cF is the survey-based estimate of the number of units 
with the website. Table 6.3 and 6.4 investigates the sampling errors of the estimators 
of the cross-classified domains size class by macro-region (12 domains). We 



Big Data and Official Statistics: some evidences   

 

consider two groups of domains: six domains with a sample size between 344 and 
547 units (Group 1) and six domains with a sample size between 1,558 and 8,299 
sample units (Group 2). Table 6.2 and Table 6.3 show the average CV (%) 
respectively for WEBORD and WEBSM. The findings point out that the pseudo-
calibration estimator are more efficient.  

 
Figure 6.1: Estimator CIs (95%) by size class for WEBORD total (right) and WEBSM total (left). 

  
 
Figure 6.2: Estimator CIs (95%) by macro-regions for WEBORD total (right) and WEBSM total (left). 

  
 
Table 6.2: CV of the estimators for size classes by macro region domain of WEBORD total  

Domains  Average CV(%) 
 T0 M2 M3 T1 T2 T3 T4 

Group 1 12.91 6.18 6.11 13.59 14.36 13.95 14.54 
Group 2 7.50 3.73 3.75 7.85 6.26 7.68 6.23 
 
The DI estimators are more efficient than T0 for Group 2 (large domains). Instead, 
the average of the CV for Group 1 (small domains) is greater than T0. 
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We explain these findings with the increased number of calibration constraints some 
units to end up with extreme weights, which will lead to the production of higher 
variance estimates. This effect is more evident in the small sample size domains. 
 
Table 6.3: CV of the estimators for size classes by macro region domain of WEBSM total 

Domains Average CV(%) 
 T0 M1 T1 T2 T3 T4 

Group 1 8.00 3.18 8,47 8.58 9.16 9.26 
Group1 2 4.78 1.05 7,02 4.75 3.59 3.59 

7 Conclusions 

Big Data sources properly used can improve the accuracy of the estimates. In this 
paper, we introduce, discuss and compare two classes of estimators exploiting the 
information coming from a Big Data source. The first class takes the Big Data as a 
source of auxiliary variables into account while a probabilistic survey sample collect 
the target variables. When the Big Data variables are strictly correlated with survey 
target variables, the design-based estimates can benefit and the standard errors have 
a large reduction. The inference approach of these estimators, referred to as Data 
Integration, is model-assisted. Estimation bias is in the background and depends on 
the nonresponse issues affecting the survey.  

The second class of estimators changes the role of the Big Data. In this case, we 
directly use the Big Data variables for producing the estimates. Big Data source is a 
non-probabilistic sample and a probabilistic survey sample focused on the same 
target population (reference survey) supports the inference. The reference survey 
needs to: deal with the selection bias of the non-probabilistic survey; adjust the 
estimates when we have a measurement error on the Big Data target variables. The 
inference approach of these estimators, referred to this paper as pseudo-calibration 
estimators, is model-based. Nonetheless, the estimators of this class apply a 
calibration procedure and the model diagnostic is quite reduced. Variance estimation 
is computed by means of a replication method. The pseudo-calibration estimators 
can be biased due to a model failure. On the other hand, the pseudo-calibration 
estimators increases the real sample size, because they use the non-probabilistic Big 
Data sample size and the sampling errors can be much smaller than the sampling 
error of reference survey. The pseudo-calibration estimator sampling errors increase 
with measurement errors in the Big Data target variables. Both the class of 
estimators rely on the calibration procedure fostering the practical applicability in 
the NSIs, in which an automatic estimation process like calibration facilitate the 
production of the statistics. The experimentation on survey data shows that the 
sample size make the difference on the sampling errors. The pseudo-calibration 
estimators based on a large non-probabilistic sample have the best results in terms 
of precision even though we have to evaluate carefully the risk of bias.  
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