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Abstract

Background Parameters of body composition have prognostic potential in patients with oncologic diseases. The aim of
the present study was to analyse the prognostic potential of radiomics-based parameters of the skeletal musculature
and adipose tissues in patients with advanced hepatocellular carcinoma (HCC).
Methods Radiomics features were extracted from a cohort of 297 HCC patients as post hoc sub-study of the SORAMIC
randomized controlled trial. Patients were treated with selective internal radiation therapy (SIRT) in combination with
sorafenib or with sorafenib alone yielding two groups: (1) sorafenib monotherapy (n = 147) and (2) sorafenib and
SIRT (n = 150). The main outcome was 1-year survival. Segmentation of muscle tissue and adipose tissue was used
to retrieve 881 features. Correlation analysis and feature cleansing yielded 292 features for each patient group and
each tissue type. We combined 9 feature selection methods with 10 feature set compositions to build 90 feature sets.
We used 11 classifiers to build 990 models. We subdivided the patient groups into a train and validation cohort and
a test cohort, that is, one third of the patient groups.
Results We used the train and validation set to identify the best feature selection and classification model and applied
it to the test set for each patient group. Classification yields for patients who underwent sorafenib monotherapy an ac-
curacy of 75.51% and area under the curve (AUC) of 0.7576 (95% confidence interval [CI]: 0.6376–0.8776). For pa-
tients who underwent treatment with SIRT and sorafenib, results are accuracy = 78.00% and AUC = 0.8032 (95%
CI: 0.6930–0.9134).
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Conclusions Parameters of radiomics-based analysis of the skeletal musculature and adipose tissue predict 1-year sur-
vival in patients with advanced HCC. The prognostic value of radiomics-based parameters was higher in patients who
were treated with SIRT and sorafenib.
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Introduction

Hepatocellular carcinoma (HCC) is the fifth most common
malignant tumour disease in the world.1 Cross-sectional
imaging, especially computed tomography (CT) and magnetic
resonance imaging (MRI), plays an essential role in the diag-
nosis and local staging of HCC. Moreover, imaging can also
provide data regarding tumour behaviour and prognosis.

For example, skeletal muscle condition has been identi-
fied as an important factor in patients with HCC in the study
by Chang et al. (2018).2 Their study also showed that low
skeletal muscle mass (LSMM) could predict relevant out-
comes in patients with HCC.2 For instance, LSMM was asso-
ciated with all-cause mortality in patients with HCC (crude
hazard ratio [HR] = 2.04, 95% confidence interval [CI]:
1.74–2.38; adjusted HR = 1.95, 95% CI: 1.60–2.37).2 LSMM
can also predict lower objective response rate (odds ratio
[OR] = 0.37, 95% CI: 0.17–0.81, P = 0.012) and more drug-re-
lated adverse events (OR = 2.23, 95% CI: 1.17–4.28,
P = 0.015).3 In addition, adipose tissue (AT), especially
visceral adipose tissue (VAT), plays an important role in
HCC. For instance, it was reported that preoperative visceral
adiposity predicted poor outcomes after hepatectomy in
patients with HCC.4 High VAT area reportedly affects survival
in patients with advanced HCC treated with tyrosine kinase
inhibitors.5

Some recent reports indicate that modern analysis of
radiological images can provide more information about
tissue composition. So far, radiomics is a modern analysis
technique that quantitatively extracts features, including
shape, size, intensity and texture of analysed tissue.6–8

According to the literature, radiomics parameters quantita-
tively visualize the heterogeneity of analysed tissues and re-
flect underlying pathophysiological changes.9–11 Radiomics
parameters can predict tumour behaviour and prognosis,
particularly in HCC.10 Presumably, radiomics features of
body compartments like skeletal muscles and AT may be
more sensitive for prediction of unfavourable prognosis
in HCC in comparison with conventional analysis of body
composition.

The purpose of the presented work was to investigate a
possible predictive role of radiomics-based body composition
parameters in patients with HCC undergoing palliative
treatment.

Material and methods

Patient data

This is a sub-study of the SORAMIC trial, a prospective, ran-
domized-controlled, phase II trial performed at 38 sites in
12 countries in Europe and Turkey.12 The present study was
performed within the palliative part of SORAMIC, where pa-
tients were randomized to receive sorafenib monotherapy
or selective internal radiation therapy (SIRT) and sorafenib.12

In short, patients were eligible if they had preserved liver
function (Child-Pugh ≤ B7), an Eastern Cooperative Oncology
Group performance status (ECOG PS) ≤ 2 and unresectable
tumours not eligible for curative treatment or transarterial
chemoembolization (TACE). For this sub-study, a post hoc
analysis of the prospective trial was conducted and the end-
point was the 1-year survival.

Overall, there were 422 patients involved in the palliative
part of SORAMIC. In 53 patients, no CT images were available
in our institution and they were excluded from the present
analysis. Furthermore, 72 patients were excluded because
image artefacts or low image quality hindered the subse-
quent image segmentation. Therefore, the final cohort com-
prised 297 patients. There were 38 women (12.8%) and 259
men (87.2%) with a mean age of 67.0 ± 8.1 years, median
age of 67 years, ranging from 46 to 85 years. After 1 year,
139 patients were alive and 158 deceased. We created two
subgroups: Subgroup 1 comprises 147 patients with sorafenib
monotherapy, and Subgroup 2 comprises only patients re-
ceiving sorafenib and SIRT (n = 150). Baseline patient charac-
teristics are summarized in Table 1.

Methods

In the following, we describe the preprocessing of the
medical image data, the radiomics-based feature extraction,
the selection process to build various feature sets and the
training of classifiers. The proposed workflow is illustrated
in Figure 1.

Tissue segmentation
Based on the CT image data, skeletal muscle area (SMA) and
AT were segmented at the height of the L3 vertebrae
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(see Figure 2). The segmentations were obtained
semi-automatically with the freely available ImageJ software
1.48v (National Institutes of Health Image programme). For
further analysis, axial CT images at the L3 level in the soft tis-
sue window (window, 45–250 HU) during portal venous
phase were used. The segmentation comprised four tissue
types: the SMA, which covers the musculus rectus abdominis,
abdominal wall muscles, musculus psoas major, musculus
quadratus lumborum and musculus erector spinae, as well
as the AT subdivided into intramuscular adipose tissue
(IMAT), subcutaneous adipose tissue (SAT) and VAT. For prog-
nostic evaluation of radiomics analysis, we analysed two
combinations: SMA and AT, as well as SMA and SAT, IMAT
and VAT.

Radiomic feature extraction
For extraction of radiomic features, we used the pyradiomics
library (https://pyradiomics.readthedocs.io/en/latest/), which
is a Python-based implementation,13 and applied it to the CT
data. All datasets were normalized to�1024 and 1000 HU fol-
lowing the pyradiomics normalization steps. Tissue labels
were created from the medical expert’s segmentation. We
used the settings that were recommended for CT data and au-
tomatically extracted 881 features for each of the four seg-
mented tissue types (SMA, IMAT, SAT and VAT), as well as all
fatty tissue labels combined for the fifth tissue type (AT). The

results were stored in a large Excel file for subsequent analysis
with MATLAB 2021a (The MathWorks, Natick, MA, USA; www.
mathworks.com).

Feature cleansing
A correlation analysis was performed via MATLAB. In order to
account for non-normal features, we opted for Spearman’s
correlation instead of Pearson’s correlation. We removed
correlating features with correlation larger than 0.85 if the
correlated feature pair was present in all tissue types. The
first feature of the feature pair is removed, and the second
one is kept until no correlating features exist. Feature cleans-
ing reduced the feature number to 292 features for each
patient and each tissue type.

Feature selection
For feature ranking, we applied nine feature selection
methods, which are listed in Table 2. The classifiers comprise
infinite latent feature selection (ILFS),14,15 feature selection
via eigenvector centrality (ECFS), ReliefF algorithm, mutual
information (MI), laplacian, fisher score, dependence-guided
unsupervised feature selection (DGUFS), unsupervised fea-
ture selection with ordinal locality (UFSOL) and least absolute
shrinkage and selection operator (LASSO).16 We utilized the
MATLAB framework Feature Selection Code Library (FSLib)
for this step.14–16

Afterwards, we built feature sets using different feature
set sizes (n_feature_count = {5,10,15,20,25}). A feature count
of 5 means that the 5 highest ranked features (based on one
of the feature ranking algorithms) are selected to build a
feature set. We opted for the two tissue subdivisions:

1. extracting features for SMA and AT; and
2. extracting features for SMA, IMAT, SAT and VAT.

For example, applying a feature count of 5, this results in 10
features (5 from SMA and 5 from AT) for the first option and
20 features (5 from SMA, 5 from IMAT, 5 from SAT and 5
from VAT) for the second option. Using the different feature
counts, we obtain 5 combinations for the 2 options and the 9
feature selection methods yielding a total of 90 feature sets.
The feature sets are also illustrated in Figure 1, Step #7
Feature Selection.

Training of classifiers
For the classification based on the ranked feature sets, we
trained 11 classifiers, similar to a previous study,17 but added
linear logistic regression (LogReg). The classifiers are listed in
Table 3. The classifiers Adaptive boosting classifier (ADAC),
bagging classifier (BAGC), decision tree classifier (DTC), K
nearest neighbourhood classifier (KNNC), random forest clas-
sifier (RFC), support vector machine classifier (SVMC) and
LogReg were implemented via MATLAB’s Statistics and Ma-
chine Learning Toolbox. For Bernoulli Naïve Bayesian (BNB),
stochastic gradient descent classifier (SGDC) and extreme
gradient boosting classifier (XGBC), the publicly available

Table 1 Clinical baseline characteristics of the two subgroups

Characteristics

Subgroup 1
Sorafenib
(n = 147)

Subgroup 2
Sorafenib + SIRT

(n = 150)

Age, years, median (range) 68 (46–85) 67 (50–84)
Male/female (%) 86.4/13.6 88.0/12.0
BCLC stage (%)
A 1.3 3.3
B 32.0 31.3
C 66.7 65.4

Aetiology, n (%)
AIH 1 (0.7) 0 (0)
Alcohol 54 (36.7) 59 (39.3)
Alcohol + viral 4 (2.7) 10 (6.7)
HBV 13 (8.8) 11 (7.3)
HCV 29 (19.7) 29 (19.3)
HC 1 (0.7) 6 (4.0)
NAFLD 10 (6.8) 6 (4.0)
NASH 8 (5.4) 13 (8.7)
NS 4 (2.7) 3 (2.0)
Cryptogenic 23 (15.6) 13 (8.7)
NAT 0 1 (0.7)

ECOG (%) 0: 73.4 0: 69.3
1: 25.9 1: 28.7
2: 0.7 C: 2.0

Abbreviations: AIH, autoimmune hepatitis; BCLC, Barcelona Clinic
Liver Cancer; ECOG, Eastern Cooperative Oncology Group; HBV,
hepatitis B virus; HC, haemochromatosis; HCV, hepatitis C virus;
NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic stea-
tohepatitis; NAT, non-alcoholic toxic; NS, not specified; SIRT, selec-
tive internal radiation therapy.
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Figure 1 Pipeline illustrating our workflow. AT, adipose tissue subdivided into intramuscular adipose tissue (IMAT), subcutaneous adipose tissue (SAT)
and visceral adipose tissue (VAT); CC, correlation coefficient; CT, computed tomography; HCC, hepatocellular carcinoma; SIRT, selective internal radi-
ation therapy; SMA, skeletal muscle area.
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MATLAB third-party toolboxes were adapted to our require-
ments and integrated in our workflow.18–20

As illustrated in Figure 1, each classifier was trained for the
90 feature sets yielding 990 trained models. We split each pa-

tient group into a training and validation set, comprising two
thirds of the patients, and a test set, comprising one third of
the patients. Performance for training and validation was
measured based on five-fold cross-validation and averaging
over the individual folds’ accuracies.

Next, we evaluated the classifiers’ performance for the test
sets for Subgroup 1, that is, patients who underwent sorafe-
nib monotherapy, and Subgroup 2, that is, patients who
underwent SIRT and sorafenib treatment.

Results

We applied the presented pipeline to 297 patients, where 139
patients were alive and 158 deceased after 1 year. Subgroup
1 comprises 147 patients with sorafenib monotherapy, and
Subgroup 2 comprises only patients (n = 150) receiving soraf-
enib and SIRT. For the trained models, linear logistic
regression performed best for the subgroup treated with
sorafenib with an accuracy of 75.51%. The accuracy was
78.00% for the subgroup treated with SIRT and sorafenib
based on the ADAC classifier. True positive (TP), true negative
(TN), false positive (FP) and false negative (FN) values are il-
lustrated in Figure 3.

The resulting receiver operating characteristic (ROC)
curves for the two patient groups are presented in Figures 4
and 5. The ROC yields an area-under-the-curve (AUC) value of
0.7576 with a 95% CI of 0.6376–0.8776 for Subgroup 1. For
Subgroup 2, AUC was 0.8032 (95% CI: 0.6930–0.9134).

For all the 990 trained models, the best classification result
was achieved by a feature set comprising SMA and AT and
applying the ReliefF feature selection method.

Figure 2 Labelled ground truth data with skeletal muscle mass (SMA) and adipose tissue (left) and SMA, intramuscular adipose tissue, subcutaneous
adipose tissue and visceral adipose tissue (right).

Table 2 Feature selection methods for extraction of feature ranking

Number Abbreviation Algorithm

1 ILFS Infinite latent feature selection
2 ECFS Feature selection via eigenvector

centrality
3 ReliefF ReliefF
4 MI Mutual information
5 laplacian Laplacian
6 fisher Fisher’s score
7 DGUFS Dependence-guided unsupervised

feature selection
8 UFSOL Unsupervised feature selection with

ordinal locality
9 LASSO Least absolute shrinkage and

selection operator

Table 3 Machine learning algorithms for 1-year survival classification

Number Abbreviation Algorithm

1 ADAC Adaptive boosting classifier
2 BAGC Bagging classifier
3 BNB Bernoulli Naïve Bayesian
4 DTC Decision tree classifier
5 GNBC Gaussian Naïve Bayesian classifier
6 KNNC K nearest neighbourhood classifier
7 RFC Random forest classifier
8 SGDC Stochastic gradient descent classifier
9 SVMC Support vector machine classifier
10 XGBC Extreme gradient boosting classifier
11 LogReg Linear logistic regression
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Figure 3 (A, B) Depiction of class versus prediction including true positive, false positive, false negative, true negative, sensitivity and specificity.
Positive class (1) indicates that 1-year survival is positive, that is, the patients live, and negative class (2) indicates that 1-year survival is negative, that
is, the patients are deceased.

Figure 4 Depiction of the receiver operating characteristic (ROC) curve for Subgroup 1, that is, patients who underwent sorafenib monotherapy. AUC,
area under the curve.
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Discussion

As already mentioned, parameters of body composition are
of prognostic significance in HCC. So far, in curative setting
(hepatectomy), LSMM predicted lower overall survival (OS)
(HR = 2.17, 95% CI: 1.48–3.19, P < 0.00001).21 Interestingly,
LSMM was also associated with lower recurrence-free sur-
vival after tumour resection (HR = 1.79, 95% CI: 1.28–2.50,
P < 0.00001).21 Furthermore, in palliative setting, sarcopenic
patients with HCC treated with kinase inhibitors like sorafe-
nib or lenvatinib showed lower OS (HR = 2.24, 95% CI:
1.60–3.14, P < 0.00001) than patients without sarcopenia.21

Also, AT plays an important role in HCC. Patients with high
subcutaneous adipose tissue index (SATI) had significantly
better progression-free survival (P = 0.0093) and OS
(P = 0.032) than those with low SATI.22 In contrast, patients
with high VAT had shorter OS (HR = 1.35, 95% CI: 1.09–
1.66, P < 0.005).23 Finally, high VAT to SAT ratio also pre-
dicted negative OS (HR = 1.57, 95% CI: 1.22–2.01,
P < 0.001).4

Importantly, the quality of the skeletal musculature and
AT also plays a significant role. In fact, tumour patients
with low density of the skeletal musculature had a 75%
higher mortality risk than patients with high or normal
muscle density (HR = 1.75, 95% CI: 1.60–1.92,
P < 0.00001).24 Moreover, in HCC, low skeletal muscle den-
sity was stronger associated with mortality risk (HR = 1.88,
95% CI: 1.40–2.52, P < 0.00001).24 Furthermore, high density
of SAT and VAT correlated negatively with survival in patients
with HCC.25,26

Therefore, a deep analysis of the quality of the skeletal
musculature and AT may provide novel relevant parameters
that can have predictive values in HCC. Our results confirm
this hypothesis. The present work is the first report about
the prognostic role of radiomics parameters of body compo-
sition compartments in HCC. As shown in the presented
study, radiomics features of the skeletal musculature and
AT can predict 1-year survival, with an accuracy value of
75.51% (AUC = 0.7576, 95% CI: 0.6376–0.8776) for patients
who underwent sorafenib monotherapy and an accuracy

Figure 5 Depiction of the receiver operating characteristic (ROC) curve for Subgroup 2, that is, patients who underwent selective internal radiation
therapy (SIRT) and sorafenib treatment. AUC, area under the curve.
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value of 78.00% (AUC = 0.8032, 95% CI: 0.6930–0.9134) for
patients who underwent treatment with SIRT and sorafenib.

Our values for the radiomics-based analysis of the two
subgroups are superior to those reported for the conven-
tional analysis of body composition. For example, Hou et al.27

showed that sarcopenia can predict 1-year survival in HCC
with an AUC value of 0.7. In addition, there was no relevant
association of body composition parameters with OS either
in the sorafenib monotherapy subgroup or in the sorafenib
and SIRT treatment subgroup.28

The identified significant influence of the quality of the skel-
etal muscles and fat investigated by radiomics-based parame-
ters on survival in patients with HCC is multifactorial.29 The
skeletal musculature significantly influences the immune
system.30 For instance, skeletal muscles produce several cyto-
kines (myokines) with immune effects.31 So far, interleukin
(IL)-15 is a myokine that stimulates proliferation and activa-
tion of natural killer (NK) cells and CD8+ T lymphocytes, which
have an important antitumoural effect.32 Interestingly, intra-
venous administration of IL-15 induced a significant increase
of circulating CD8+ T and NK cells in patients with different
tumours.33 Presumably, reduced and/or altered musculature
may synthesize a smaller number of myokines. AT also plays
an important role in immune anticancer activity. VAT secrets
proinflammatory cytokines tumour necrosis factor-α and IL-
6.34 Furthermore, VAT correlated with circulating leptin
level.35 Leptin promotes the growth and proliferation of tu-
mour cells by activating various signalling pathways.36 In
HCC, leptin promotes invasion and migration of HCC cells.37

We hypothesize that texture analysis parameters of the
skeletal musculature and AT may reflect deep changes and
metabolic activity of the tissues.

Our study has several limitations. The manual segmenta-
tion of SMA, IMAT, SAT and VAT is error-prone and could
be improved by additional readers. However, as the
radiomics features are due to structural or textural peculiar-

ities, the influence of smaller components or small variations
within the segmentation is considered to be very small.
Future work can replace the manual segmentations with
automatic ones.38,39

In addition, although the present data are based on a mul-
ticentre cohort, the postprocessing was performed unicentric,
that is, a single university hospital. Therefore, we subdivided
the data into a test cohort and a training and validation
cohort. In future work, we plan to extend our approach to a
multicentre study, as conducted by Feng et al.40

In conclusion, parameters of radiomics-based analysis of
the skeletal musculature and AT predict 1-year survival in pa-
tients with advanced HCC. The prognostic value of
radiomics-based parameters was higher in patients who
were treated with SIRT and sorafenib.
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