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Abstract: Arm swinging is a typical feature of human walking: Continuous and rhythmic movement
of the upper limbs is important to ensure postural stability and walking efficiency. However, several
factors can interfere with arm swings, making walking more risky and unstable: These include
aging, neurological diseases, hemiplegia, and other comorbidities that affect motor control and
coordination. Objective assessment of arm swings during walking could play a role in preventing
adverse consequences, allowing appropriate treatments and rehabilitation protocols to be activated for
recovery and improvement. This paper presents a system for gait analysis based on Microsoft Azure
Kinect DK sensor and its body-tracking algorithm: It allows noninvasive full-body tracking, thus
enabling simultaneous analysis of different aspects of walking, including arm swing characteristics.
Sixteen subjects with Parkinson’s disease and 13 healthy controls were recruited with the aim of
evaluating differences in arm swing features and correlating them with traditional gait parameters.
Preliminary results show significant differences between the two groups and a strong correlation
between the parameters. The study thus highlights the ability of the proposed system to quantify
arm swing features, thus offering a simple tool to provide a more comprehensive gait assessment.

Keywords: arm swing; gait analysis; Azure Kinect; Parkinson’s disease; spatiotemporal parameters;
center of mass sway; asymmetry; movement analysis

1. Introduction

The rhythmic and symmetrical swinging of the arms is one of the primary pieces of
evidence of healthy walking. It is so important that several studies have focused on why
and how this pendulum-like movement occurs and its effects on walking [1]. The reason
and origin of this oscillation are not yet entirely clarified [2]. For a long time, arm swing
during walking was considered a merely passive phenomenon. Only later, a more in-depth
analysis of the shoulder joints also suggested active muscle involvement, a hypothesis that
was confirmed by studies using electromyography [3]. However, the debate on whether it
is a purely passive, totally active, or only partially controlled phenomenon is still open [4,5].
Consequently, the analysis of arm oscillations during walking is a topic of great interest,
especially in pathological conditions that may alter normal motor behavior [2].

According to some studies, arm swinging contributes to stability and optimization
of energy expenditure during walking. The study by Ortega et al. [6] showed that arm
swing helps balance the angular momentum of the body during walking, thus reducing
the inherent lateral sway of the body’s center of mass and providing greater stability,
whereas [7] investigated the effects of arm swing on local trunk stability during gait. In
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addition, a good arm swing contributes to better recovery after an external perturbation
during walking, as demonstrated by [8]. Finally, a good arm swing minimizes energy
consumption during walking, as demonstrated in [9]: In this study, the reduced arm swing
was correlated with increased oxygen consumption and heart rate. All these findings are
extremely relevant in diseases characterized by upper limb dysfunction since they have a
direct impact on walking efficiency, stability, and fatigability of walking over long distances.
Recently, increasing attention is being paid to arm movement during gait rehabilitation,
especially in some neurological diseases such as Parkinson’s disease (PD), to improve gait
patterns [10,11]. Several studies have shown that impaired arm movements during gait
are common in PD [12,13]: Asymmetry, reduced amplitude and speed, altered rhythm
and coordination, and a low number of arm swings are associated with clinical severity
scores [14] and increased risk of fall [15], and are also a possible prodromal marker of
the pathological condition since differences in arm swing have been detected between
parkinsonian subjects and healthy controls [16,17]. Given the importance and implications
of this aspect in walking patterns, interest in evaluating arm swing characteristics and
effects has grown in recent years, moving from a primarily qualitative to a more quantitative
analysis.

An in-depth analysis of the consequences of constrained arm swinging on healthy
young adults was conducted in [18]. The main findings suggest that restriction of the arm
swing, in one arm or both, worsens walking abilities in this population, as evidenced by a
reduction in some relevant spatiotemporal parameters. A similar study was conducted in
children with cerebral palsy [19], showing a reduction in walking speed associated with
restricted arm movements under preferred and high-speed conditions. In [20], the effect
of arm swing variation in unilateral trans-humeral amputees was evaluated, whereas [21]
investigated the effects of restricted arm swing on the vertical displacement of the body’s
center of mass as associated with excessive energy expenditure. In [22], the impact of age
and gender on arm swing speed was analyzed, whereas [23] focused on the effects of arm
swing on balance improvement in post-stroke subjects.

Regarding PD, the analysis of arm swing during walking mainly focuses on asymmetry
and reduced amplitude with different purposes. As mentioned above, ref. [17] aimed to
check whether changes in arm swing are related to genetic mutations as a prodromal marker
of PD. Instead, ref. [16] focused on the analysis of arm swing alterations in early PD and
its utility for differential diagnosis, ref. [24] investigated the improvements in arm swing
due to dopaminergic medication and the changes associated with task complexity, and [25]
investigated the relationship between arm swing asymmetry and gait parameters. Ref. [26]
studied the effects of dopaminergic therapies on arm swing asymmetry and amplitude,
ref. [27] used arm swing as an index of gait worsening under dual-task conditions, ref. [12]
explored whether arm swing stimuli could improve walking patterns, and [11] had the
same goal but using weights on arms.

Most of these studies used traditional instrumented gait-analysis systems (e.g., opto-
electronic systems), which are the gold standard for motion capture in clinical settings due
to their precision and accuracy [8,11,19,21,25,27,28].

On the other hand, several recent studies aimed to quantitatively measure arm swing
features through cost-effective and minimally invasive devices that can be used in unsu-
pervised environments or where traditional motion-capture systems are not applicable.
Among them, refs. [29-31] used wearable sensors to compare arm swing features of PD
subjects and healthy controls, ref. [32] used a smartphone to quantify arm swing and
generate musical feedback to improve it, and [33] used ultrasound emitters to study the
effects of age and mental load on arm swing.

Other approaches use contactless solutions to analyze gait patterns: They rely pri-
marily on optical sensors and video analysis techniques to estimate walking features as
traditional gait analysis. In particular, RGB-Depth sensors such as Microsoft Kinect® (Mi-
crosoft Corporation, Redmond, WA, USA) have proven to be an alternative to wearable
sensors in low-cost motion capture and analysis for clinical and rehabilitation purposes.
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These optical sensors have been used extensively for motion analysis [34-37] and rehabilita-
tion goals [38-40] due to the availability of body-tracking algorithms capable of capturing
body movements comprehensively, noninvasively, and in real time, generating a three-
dimensional skeletal model from which to derive functional parameters for specific motor
tasks, including gait analysis [41-46]. Recent developments in computer vision techniques
and progress in computational resources (including processors and graphic cards) have
led to new body-tracking methodologies based on neural networks to improve accuracy in
human motion capture and pose estimation. This novel approach was used, for example,
in [47-49] for gait analysis and fall detection, with the limitation of being a 2D approach
that prevents 3D measurements. However, the same methodology has been integrated into
the body-tracking algorithm of the third generation of Kinect sensors (i.e., Microsoft Azure
Kinect DK), enabling 3D motion capture due to distance (i.e., depth) estimation provided
by the optical sensor. Several studies have verified and validated the performance of the
new device compared to its predecessors [50], demonstrating its higher accuracy in terms
of on-board sensor and body tracking [51,52] and its suitability for motion analysis [53-56]
even compared to gold reference systems.

However, only a few studies have analyzed arm swing during gait using optical
approaches [57-60]. However, to our knowledge, none have exploited the potential of the
new Azure Kinect and its improved 3D body-tracking algorithm in this context, which
is particularly important, for the reasons mentioned above, for the early detection of any
alterations that could affect walking safety.

To fill this gap, in this study, we propose integrating arm swing into gait analysis
for a more comprehensive evaluation of walking patterns, using a motion-capture sys-
tem based on the new Azure Kinect, as in [56]. Indeed, the potential for body tracking
provided by the optical sensor makes it possible to capture the movement of all body
segments simultaneously and to evaluate different aspects of gait accordingly, unlike, for
example, wearable sensors limited to the segments on which they are placed. Using the
same approach as in other studies [41,46,55], the system is able to estimate a subset of
spatiotemporal parameters, as in traditional instrumented gait analysis, and parameters
related to center-of-mass (COM) sway during gait that explains the main features of walk-
ing patterns. Possible parameters related to arm swing can contribute to the complete and
comprehensive characterization of walking. For this purpose, the proposed system and
methodology were applied to groups of healthy subjects and subjects with PD.

The main objectives of this study include verifying the system’s ability to measure
arm swing-related parameters during walking and detecting differences between the two
groups of subjects, as well as for spatiotemporal and COM-related parameters; defining
objective indicators of the asymmetry and synchrony of arm swing movements that could
easily detect transition to pathological gait over time; and verifying the correlation between
arm swing parameters and others that characterize walking pattern (i.e., spatiotemporal
and COM-related parameters). In this phase, the present study does not aim to assess the
correlation between parameter changes and disease severity.

Preliminary results suggest that the system allows for comprehensive and quantitative
assessment of walking strategies and characteristics.

2. Materials and Methods
2.1. Kinect-Based Motion-Capture System

The motion-capture system used in this study includes three elements: a processing
unit (which can be a mini-PC or a laptop), a single RGB-Depth camera (i.e., the Microsoft
Azure Kinect DK [61]), and a monitor (or TV screen) for displaying the system’s graphical
user interface (GUI) and providing visual feedback of body movements for interaction
with the system. The optical device provides synchronized color, depth, and infrared video
streams with a maximum frame rate of 30 fps (frames per second). Other parameters are
configurable during device initialization: For this study, we set a 1080p resolution for color
stream and narrow field of view (NFW) for depth stream to ensure accurate body tracking
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at a distance compatible with the needs of gait analysis. Two native software development
kits (SDKs) provide access to the device and body-tracking capabilities. Specifically, the
body-tracking algorithm uses a deep-learning approach based on neural networks to
reconstruct a 3D skeletal model (32 virtual joints) that maps human body movements in
real time [62]. This approach is expensive in terms of computational resources, so the
processing unit was chosen with hardware features that meet the requirements for real-time
body-tracking operations. Specifically, the following hardware was used for this study:
mini-pc ZOTACO (Zotac, Fo Tan, New Territories, Hong Kong, China) ZBOX EN52060-
V model, 9th generation Intel® Core™ processor (2.4 GHz quad-core), 16 GB of RAM,
NVIDIA GeForce RTX 2060 6GB GDDR6. The mini-PC is equipped with an HDMI port to
connect an external monitor and some USB3 ports for connecting the Azure Kinect sensor.
The system has Windows 10 as its operating system.

In addition, custom software in C#, developed in Unity® (Unity Technologies, San
Francisco, CA, USA), runs on the system, both to manage the acquisition procedure (i.e., the
process of collecting and saving data on the skeletal model) and to implement the human-
machine interaction and related GUI. The system saves information about each joint in
the skeletal model (including positions, rotations, and confidence) in JSON format files for
the next step, which analyzes 3D trajectories to estimate gait features. The user interface,
suitable even for people with low technological skills, makes the system easy and intuitive
to use: Each GUI includes a few interactive buttons (to manage data acquisition and saving
procedures) and audio and text messages that guide the patient while performing the gait
task. The layout of the GUI (including object location, font size, and colors) and the size of
the monitor (at least 26 inches) make the system suitable in case of sight problems typical
of the elderly population. The proposed system and an example of the GUI are shown in
Figures 1a and 1b, respectively.
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Figure 1. (a) The proposed system with the mini-PC, Azure Kinect, and a monitor; (b) GUI for the
acquisition of gait trials.

2.2. Recruitment Procedure and Experimental Protocol

For this preliminary study, approved by the internal ethical committee of Istituto
Auxologico Italiano, we recruited 16 subjects with PD among patients in the Division
of Neurology and Neurorehabilitation at San Giuseppe Hospital, Istituto Auxologico
Italiano, Piancavallo (Verbania), Italy. The recruitment procedure established inclusion
and exclusion criteria. General inclusion criteria included the ability to walk 10 meters
without aids (the use of canes or other supportive tools, typical in more impaired subjects,
was avoided because it interferes with the assessment of arm swing) and to understand
the instructions provided by the system and supervisor during the experimental session.
Specific inclusion criteria for PD subjects are related to tremor severity (<1, according to
the Unified Parkinson’s Disease Rating Scale [63]) and the Hohen and Yahr (H&Y) score in
the range of 1-3. These constraints were also set to identify potential subjects with PD who
could benefit from remote monitoring in the home environment. General exclusion criteria
included previous neurosurgical interventions, neurological and musculoskeletal disorders
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due to other diseases, cognitive disorders assessed by Mini-Mental State Examination
(MMSE < 27/30), and cervical-dorsal or shoulder—upper limb comorbidities that could
affect the outcome of the analysis. In contrast, no criteria related to age, sex, therapy, or
side dominance were included in the recruitment procedure.

For the study objectives, we also recruited 13 healthy control subjects among the
caregivers and relatives of the subjects with PD. The same general inclusion and exclusion
criteria were applied to the healthy subjects, except, of course, the specific inclusion criteria
for subjects with PD.

All selected participants signed the informed consent form after a detailed explanation
of the experimental procedure and before the start of the data acquisition campaign, which
was conducted in accordance with the Institute’s ethical standards, the Declaration of
Helsinki, and its amendments.

The experimental setup was the same as in our previous studies [41,46] to ensure the
accuracy of the body-tracking algorithm within a virtually defined gait analysis path (GAP)
on a traditional 10-meter walkway. The experimental campaign took place in a hospital
setting, under the supervision of clinical and technical staff who managed data acquisition
using the proposed system according to the experimental protocol: Both groups performed
the test session under the same conditions.

According to the experimental protocol, the test session consisted of two phases. In
the first, each subject was instructed by the supervisor to perform three walking trials along
the 10-meter walkway to become familiar with and understand the acquisition procedure.
No data were collected at this stage. In contrast, data were collected during the second
phase, in which the subject was asked to maintain an upright posture for a few seconds
before walking, at a normal pace, toward the optical device (i.e., Azure Kinect) placed at the
end of the walkway: The subject, in this way, entered the GAP at maximum walking ability.
Each participant performed three repetitions of walking at this stage, with a 1-minute break
between each. At the end of each walking test, the system saved data in JSON format files
for further processing and analysis.

2.3. Data Analysis

Data analysis relies on offline processing of 3D joint trajectories acquired during gait
tests and saved in JSON files, and the analysis procedure includes two stages. The first
stage involves preprocessing the collected data using resampling and filtering techniques.
Since the variable framerate (about 30 fps) of the optical sensor introduces jitter into the
timestamp of the data, 50 Hz resampling (cubic interpolation) is used to obtain a uniform
time baseline: Up-sampling of the data was preferred to increase the density of the samples
and better refine the 3D trajectories. Then, a low-pass filter (8 Hz) was applied to the
resampled data to remove high-frequency noise: The cutoff threshold allows movements
to be captured during gait in healthy and pathological subjects [64,65]. The second stage
consists of custom MATLAB scripts that work on preprocessed trajectories and analyze the
three main aspects of gait: spatiotemporal, body sway, and arm swing features.

Regarding spatiotemporal and body sway features, the analysis procedure was the
same as described in [41,46]. Precisely, a subset of traditional spatiotemporal parameters
was estimated through the step segmentation algorithm that works on the 3D trajectories
of the left (ANK] ) and right (ANKR) ankle joints of the skeletal model to analyze the gait
performance within the GAP. The analysis of the body sway relies on the 3D trajectories
of the left (HIP ) and right (HIPR) hip joints of the skeletal model from which to calculate
the 3D segment midpoint (COMpyjp) and evaluate body sway along the mediolateral and
vertical directions during walking.

Arm swing analysis consists of linear and angular measurements of arm movements
within the GAP zone and aims primarily to quantify arm swing amplitude (or magnitude).
Linear measures are calculated by separately considering the X, y, and z components of the
left wrist (WRIST ) and right wrist (WRISTR) joints of the skeletal model: This information
is used to estimate the displacement of the wrists relative to the pelvis (PELVIS) joint of the
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skeletal model along the mediolateral, anteroposterior, and up—down directions [16,27,59].
Angular measures are calculated by considering the left arm (SHOULDER -WRISTy)) and
right arm (SHOULDERR-WRISTR) segments of the skeletal model: This information is
used to estimate the relative angle between the arm segments and the vertical segment of
the same side, which are the (SHOULDER| -HIP; ) and (SHOULDERR-HIPR) segments,
respectively [11,17]. Linear and angular measures are also estimated separately for the
anterior (i.e., forward) and posterior (i.e., backward) phases of the full swing motion in
order to provide a more in-depth analysis [11,24,59].

Another relevant feature of arm swing is asymmetry. Several methods are commonly
used to quantify asymmetry in the arm swing, but one of the most applied is the symmetry
angle (SA) proposed in [66]: This index expresses the relationship between the discrete
measurements relative to the left and right sides of the body. Zero values indicate perfect
symmetry; increasing values indicate increasing asymmetry. In this study, we used an
absolute measure of symmetry angle as in [11,16,17,26,59] and defined as in Equation (1):

ASA = abs ((450 — arctan (PMORE /PLEss))/9OO) x 100 (O/o), (1)

where Pyjorp and Pppsg are the parameter values associated with major and minor arm
swing, respectively. As mentioned above, both linear and angular measurements of arm
swing amplitude are estimated and, therefore, the ASA index was calculated for some
representative parameters.

Finally, we included another potentially relevant feature: the synchrony index (SI)
between the trajectories of the left and right arms (arm—arm) and between the trajectories
of the arm and opposite leg (arm-leg) during walking, which could provide further infor-
mation about the walking pattern. In fact, we expected there to be a relationship between
the arm—arm and arm-leg movements, and that the lack of such synchrony may indicate a
gait disturbance. For this assessment, we used a simple Pearson correlation between the
arm segment (SHOULDER-WRIST) and the opposite leg segment (HIP-ANKLE): Higher
correlation coefficients indicate greater synchrony between limb movements and, probably,
a better and more efficient walking pattern.

We calculated the same synchrony index between left and right arm trajectories,
specifically considering only the z-component (i.e., anteroposterior direction), which is
the most significant during walking. We also expected there to be a relationship between
the movements of the two arms (in particular, a negative relationship, since they move in
opposition): Higher correlation coefficients (as absolute values) should indicate greater
synchrony between arm movements and, probably, a better and more efficient walking
pattern. If this proves to be true, SI could become an indicator for detecting the transition
from healthy to impaired gait.

The next section describes the estimated parameters for gait characterization according
to the three aspects that have been mentioned: arm swing, spatiotemporal features, and
sway of the body center of mass.

2.4. Characterization of Gait through Objective Parameters

From the 3D joint trajectories and body segments collected during the walking trials,
the analysis procedure estimated specific parameters related to arm swing, center-of-mass
sway, and walking pattern (i.e., spatiotemporal parameters). The following tables identify
the estimated parameters for each aspect: They were computed for each walking trial of the
experimental campaign. Table 1 shows the arm swing linear and angular measurements.

The SWAY_ANT parameters were estimated from the WRIST, and WRISTR, trajecto-
ries and represent the maximum anterior sway relative to the PELVIS joint. Similarly, the
SWAY_POS parameters represent the maximum backward sway relative to the PELVIS
joint. These parameters were estimated separately along the three directions of motion
(anteroposterior, mediolateral, and up-down). The SWAY_RANGE parameters represent
the maximum amplitude of full-arm swing, i.e., the peak-to-peak distance between max-
imum anterior and maximum posterior swing. The PATHtot parameter is the total 3D
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distance traveled by the wrist within the GAP zone, whereas the SWAY_AREA is the area
determined by the convex hull enclosing the wrist motion along the AP and ML directions.
Considering that the motion along the AP direction probably is the most representative
of the arm swing, only the maximum velocity along the AP direction was considered
(SPEED_AP). The ANGLE_ANT parameters were estimated, for the left and right arms,
from the SHOULDER-WRIST and SHOULDER-HIP segments and represent the maximum
anterior angle between them. Similarly, the ANGLE_POS parameters represent the maxi-
mum posterior angle between the two segments. The ANGLE_RANGE parameters are the
maximum angle range, i.e., the peak-to-peak distance between the maximum anterior angle
and the maximum posterior angle. The ASA parameters were calculated from Equation
(1) for the maximum anterior angle (ASAanGLE), the path traveled (ASAparh), and the
maximum anterior sway along the AP direction (ASAap.raNGE): The ASA values were
obtained by substituting the generic Pyporp and Pj gsg elements of the equation with the
largest and the smallest values of the considered parameter, respectively. Instead, Table 2
shows the subset of parameters relative to gait analysis, as in [41,46].

Table 1. Parameters related to arm swing.

Parameter Meaning Unit
SWAY_ANTApuDML

Anterior max arm sway 12 mm

SWAY_POSApuD,ML Posterior max arm sway 12 mm
SWAY_RANGEApUD,ML Range of arm sway 12 mm
PATHtor Total distance travelled inside GAP 2 mm
SWAY_AREA Area of arm movement (AP-ML) 2 mm?
SPEED sp Maximum speed on AP 2 mm/s
ANGLE_ANT Max anterior angle 2 deg
ANGLE_POS Max posterior angle 2 deg
ANGLE_RANGE Range of arm angle 2 deg
ASAANGLE Asymmetry of ANGLE_ANT %o
ASApaTH Asymmetry of PATHTtot Y%
ASAAP-RANGE Asymmetry of SWAY_RANGEsp %
SIARM-LEG Synchrony index of arm and opposite leg > -
SIARMS Synchrony index of arms -

1 On anteroposterior (AP), mediolateral (ML), and up—-down (UD) directions. 2 Computed separately for left and
right arm.

Table 2. Spatiotemporal and COMyyp parameters related to gait analysis.

Parameter Meaning Unit
STEP1gNn Step length 1 m
STEPwIDTH Step width ! m
STEPvEL Step velocity ! m/s
STEPTME Duration of step 1 S
STRIDE; gn Length of gait cycle ! m
DOUBLEgypp Duration of double support 1 s
STANCEpyr Duration of stance phase ! % of gait cycle
GAITygL Gait velocity m/s
CADENCE Gait cadence steps/min
STEPNUM Number of steps #
STRIDENUM Number of strides #
MLgway Mediolateral sway of COMpyp mm
Vsway Vertical sway of COMpyyp mm

1 Computed separately for left and right legs.

As in traditional gait analysis, some parameters were estimated separately for the left
and right sides of the body; other parameters, however, were calculated as representative
of the entire gait. All the spatiotemporal parameters were estimated from the ANKLE} and
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ANKLER trajectories within the GAP zone through the step segmentation algorithm using
the z-component of the 3D joint positions exclusively: the z-component reflects the motion
in the anteroposterior direction toward the optical device.

The STEP; gN, STEPwipTH, STEPVEL, and STEPT\g parameters were averaged over
the number of left and right steps, respectively, detected within the GAP zone. The same
applies to the gait cycle parameters (i.e., STRIDE] g, DOUBLEgypp, STANCEpRyR), which
were averaged over the number of full left and right strides detected within the GAP zone.
STEPnumM and STRIDENyM are the total numbers of steps and complete gait cycles (i.e.,
the sum of left and right sides) detected within the GAP zone. GAITyg| is a more general
parameter that characterizes gait and represents overall speed calculated as the ratio of the
length of the GAP zone to the time taken to travel through it (i.e., from the time the body
enters the GAP to the time it leaves the GAP). CADENCE is also an overall gait parameter
and represents an estimation of the number of steps in a minute.

The MLgway and Vsway parameters were estimated from the trajectory of COMiyp
within the GAP zone and represent the maximum absolute lateral and vertical oscillations
from the straight walking to the optical sensor.

2.5. Statistical Analysis

The arm swing, center of mass, and spatiotemporal parameters were estimated for
two of the three walking tests collected on all participants.

Due to the small size of the collected dataset, the Shapiro-Wilk test was used to check
the distribution normality of each estimated parameter. Thus, the statistical analysis in-
cluded parametric or non-parametric tests depending on the individual case. Since the
Shapiro-Wilk normality test showed a non-normal distribution for all parameters, we
continued the statistical analysis using mainly nonparametric tests. Notably, all the pa-
rameters in Table 1 deviated significantly from the normality hypothesis: many of them
with p < 0.001, some with p < 0.01 (i.e., SWAY_ANTyp, SWAY_RANGE);, SPEEDsp, AN-
GLE_POS), and others with p < 0.05 (i.e., SWAY_ANT ap, SWAY_POSap, SWAY_RANGEp,
ANGLE_ANT, ANGLE_RANGE). Regarding Table 2, almost all parameters deviated sig-
nificantly from the normal distribution hypothesis with p < 0.001, except for STEP; gy,
STEPVEL, STRIDELEN, GAITVEL, and VSWAY/ which showed p< 0.01.

Next, the estimated parameters for the two groups were compared through the non-
parametric Mann-Whitney U test for independent samples to detect a statistical difference
between them: The median values with related first and third quartiles were calculated
for each parameter. However, considering that the two groups were borderline to be
considered large samples, we also used the Student’s t-test (parametric) to support the
statistical significance analysis of the parameters.

Spearman’s rank correlation (also a nonparametric test) was used to study the correla-
tion existing between the three categories of parameters (arm swing, spatiotemporal, and
center of mass). The analysis was performed separately for the control group and the PD
group to see whether there were similarities or differences in the relationship between the
parameter categories for the two groups. However, considering that the two groups were
borderline to be considered large samples, we also used the Pear