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Abstract: The brain–computer interfaces (BCI) are interfaces that put the user in communication
with an electronic device based on signals originating from the brain. In this paper, we describe a
proof of concept that took place within the context of BciAi4Sla, a multidisciplinary project involving
computer scientists, physiologists, biomedical engineers, neurologists, and psychologists with the
aim of designing and developing a BCI system following a user-centered approach, involving domain
experts and users since initial prototyping steps in a design–test–redesign development cycle. The
project intends to develop a software platform able to restore a communication channel in patients
who have compromised their communication possibilities due to illness or accidents. The most
common case is the patients with amyotrophic lateral sclerosis (ALS). In this paper, we describe
the background and the main development steps of the project, also reporting some initial and
promising user evaluation results, including real-time performance classification and a proof-of-
concept prototype.

Keywords: user-centered brain–computer interaction; amyotrophic lateral sclerosis; user-centered design

1. Introduction

The brain–computer interfaces (BCIs) are interfaces that put the user in communication
with an electronic device based on signals originating from the brain. There are two general
classes of brain imaging technologies: invasive technologies, in which sensors are implanted
directly on or in the brain, and non-invasive technologies, which measure brain activity
using external sensors [1]. Non-invasive BCIs are mainly based on electroencephalographic
(EEG) signals. In these systems, users are enabled to manipulate their own brain activity
to produce signals that will then be used to control computers or communication devices
without the aid of motor movements. EEG-based interfaces use an alteration of the brain’s
electrical activity as an input signal, which is defined as event-related synchronization
or desynchronization (for a review of EEG-based BCI paradigms, see [2]). The change in
brain activity may be caused by stimuli triggered by external events (exogenous) or stimuli
voluntarily produced by the user, for instance, while imagining something (endogenous) [3].
In addition to voluntary signals, involuntary physiological or passive signals can also
be used in BCIs (for a review, see [4]). In this case, brain activity is an expression of
the spontaneous cognitive and affective states of the user: spontaneous brain activity
represents the (implicit) input from which the system derives its output to assist the user in a
given task [5].

Endogenous stimuli can be used by a larger sample of subjects that could benefit from
this technology since they do not require to move body parts or perform physical activities.
Cognitive tasks are, indeed, the most used, and they consist of the effort produced through
a mental task where the user is asked to imagine or do something.
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BCIs can offer promising applications for assistance to patients with reduced or absent
mobility, as in the case of patients with amyotrophic lateral sclerosis (ALS). EEG-based BCIs
use sensor-equipped headsets positioned on the scalp and/or forehead, which are able to
monitor the alterations of the brain waves that correspond to certain forms of thought. For
this purpose, the users are explicitly invited to perform some mental tasks (i.e., endogenous
tasks), such as motor imagery (MI), concentration, relaxation, induction of emotions, etc.,
thus voluntarily manipulating their brain activity to produce signals which can then be
used to control an electronic device. It is still a matter of debate and active research on
which mental task should be adopted to maximize accuracy, although motor imagery tasks
in BCIs (MI-BCI) are reported among the most promising ones [6]. Patients with ALS
may retain full control of their cognitive abilities; therefore, this capacity needs to be fully
exploited in the design of a BCI in order to enable these patients to communicate.

In the present paper, we describe a proof of concept that took place within the context
of the BciAi4Sla (brain–computer interfaces and artificial intelligence for amyotrophic
lateral sclerosis) project (https://bciai4sla.di.unito.it/) (accessed on 23 December 2022),
a multidisciplinary project involving computer scientists, physiologists, biomedical engi-
neers, neurologists, and psychologists, with the aim of designing and developing a BCI
system following a user-centered approach by involving domain experts and users since
initial prototyping steps in a design–test–redesign development cycle.

The project intends to develop a software platform capable of restoring a commu-
nication channel in patients with impaired communication possibilities due to illness or
accidents. The most common case is the patients with ALS: a neurodegenerative disease
of adulthood that causes a rapid and progressive motor disability, up to the complete
loss of motility, swallowing, speech and speech articulation, and respiratory function.
ALS has a peak incidence of 3.1 cases per 100,000 people/year and a prevalence of about
10 cases out of 100,000 inhabitants in the Piedmont Region [7]. However, it is expected that
the number of cases will increase significantly in the coming years due to the aging of the
population and the improvement of therapeutic treatments [8]. On the other hand, the state
of consciousness is never altered, and although only 10–15% of cases can develop fron-
totemporal dementia, most patients do not develop significant cognitive deficits. Therefore,
in long-surviving patients, the need for tools that allow effective communication is vital.

In ALS, the extraocular muscles are often the last to be affected by paralysis, and
they represent the last expressive mean available to the patient to communicate with
the outside world (locked-in syndrome, LIS). As the disease progresses, paralysis also
affects the extraocular muscles, leaving the patient completely isolated (complete locked-in
syndrome, CLIS) even if still able to hear and perceive stimuli from the outside. Although
it has proved extremely difficult to re-establish a communicative channel in patients who
entered CLIS for a long time [9,10], trials with LIS patients have given, in many cases,
comforting results [11]. For patients in LIS or CLIS conditions, it is vital to maintain or
restore communication with the external world.

Therefore, research on BCIs that does not require oculomotor skills (required instead in
eye-tracking systems used by patients in LIS) is also particularly interesting for experiments
on patients with LIS condition before entering the CLIS phase because there is time to
develop the necessary training. A study has shown the reliability of P300-based BCIs
(P300 event-related potentials are EEG-based signals that can be spontaneously produced
or cortical responses to external/internal events and occur 200–700 msec after stimulus)
regardless of the severity of the disease and the level of physical decline [12].

The aim of the BciAi4Sla research project is to study and test BCI-based approaches on
patients with ALS in LIS and CLIS conditions using brain signals acquired non-invasively
with high-end commercial-grade BCI devices, which are cheaper, portable, and safer
compared to more invasive solutions. The raw data (brain waves) collected via these
devices via EEG will then be analyzed with machine learning and classification algorithms
in order to extrapolate in a more precise way the type of thought required by the user. Our
goal is to design and develop a user-centered and intelligent software platform (BciAI4Sla)

https://bciai4sla.di.unito.it/
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that allows, via BCI devices and the possible use of wearable sensors, direct communication
between the brain and the surrounding digital environment (made of smartphones, tablets,
robots, and smart objects, etc.) in an easy, usable, ergonomic, and adaptive way to the
end user.

In the long run, the goal is to obtain a non-invasive system, able to quickly learn
and adapt to the specific user to enhance his/her cognitive abilities, thanks to feedback.
Such a system will increase the inclusion of users with ALS and improve their quality
of life and safety. According to estimates by Allied Market Research, the global brain–
computer interface market size was valued at $1488.00 million in 2020 and is projected to
reach $5463.00 million by 2030 (https://www.alliedmarketresearch.com/brain-computer-
interfaces-market) (accessed on 23 December 2022), and Healthcare, Communication, and
Control are the driving applications. The expected high-level benefits deriving from the
diffusion of BCI devices are the facilitation and increase of the potential and ability of
users with motor disabilities, the removal of physical and cognitive barriers and related
difficulties that characterize individuals with special needs, the consequent increase in
social inclusion, and a potential and desirable autonomy.

This paper has been organized as follows: Section 2 overviews the related state of the
art; Section 3 introduces the background and the BciAi4Sla project; Section 4 details the
study and implementation of cognitive tests selected for the research; Section 5 describes
the implementation of the motor imagery task in our study; Section 6 reports preliminary
results obtained in healthy subjects; Section 7 introduces a proof of concept prototype
for the BciAi4Sla user experience; while Section 8 concludes the paper and present the
future work.

2. State-of-the-Art

BCIs allow the interaction between the cerebral activity of a user and an electronic
device [13], and they can be based on different neuroscientific techniques (e.g., electro-
corticography, functional magnetic resonance imaging, positron emission tomography,
etc.). The electroencephalography-based (EEG) method is less invasive and expensive.
EEG-based interfaces use an alteration of the brain’s electrical activity that can be caused
by exogenous (external events) or endogenous stimuli (voluntarily produced by the user)
as an input signal (see the reviews by [2,3]). For the purpose of our research, we will focus
on endogenous stimuli that are more suitable for subjects with limited abilities to interact
with the outside environment. For instance, persons with CLIS could not perform a visual
task since their sight is compromised but instead would use a somatosensory paradigm,
such as the vibrotactile or auditory paradigms [14–16]. Here, users are required to imagine
or do something. However, cognitive tasks are highly influenced by individual differences
in responsiveness [17]. It is, therefore, vital to consider some elements while choosing or
designing these mental tasks. For example, based on their personality and experiences,
users may prefer to perform different tasks than others [18,19]. Additionally, the residual
cognitive abilities (in terms of attention, motivation, memory, and so on) possessed by
participants should be taken into consideration [14,20]. In addition, several pathologies,
e.g., Alzheimer’s disease, impact cognitive functioning, thus limiting patients’ capacity to
perform mental tasks [21]. The ability to concentrate and to direct attention toward some
activities by repressing other stimuli are some of the capacities that can be highly impaired
in pathological conditions [18]. Furthermore, fatigue and frustration coming from the effort
to perform the task could affect mood and motivation and have an impact on the final
outcomes [18,22]. A way to limit all the aforementioned difficulties could be by adding a
training session preparatory to the recording sessions [19]. Patients with serious pathologi-
cal conditions, such as ALS, may obtain some benefits since they might train themselves to
perform the task while they are in a LIS condition. After the worsening of the disease that
may move to a CLIS condition where muscular abilities are permanently impaired [23],
patients can use the previously acquired competence to perform the cognitive task for the
BCI activation.

https://www.alliedmarketresearch.com/brain-computer-interfaces-market
https://www.alliedmarketresearch.com/brain-computer-interfaces-market
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Concerning example applications, although, initially, the goal of BCI research was to
provide assistive technologies for people with severe disabilities, the evolution of technolo-
gies and computing power has made it possible to expand BCI applications.

BCI-applied research has focused more on restoring the ability to communicate, control
the environment and provide mobility for people with severe physical disabilities. One of
their greatest needs is the opportunity to be able to communicate because this improves the
quality of their life. Basic communication is, for instance, the ability to say yes/no. Many
of the early BCI systems relied on training users to provoke brain rhythms by performing
mental tasks. For communication, one of the first BCIs was the “Right Justified Box” of the
Wadsworth Center [24], where users learned to modulate the brain signal by imagining
motor movements to select yes or no answers. In the one-dimensional case, the cursor
moves across the screen at a constant rate of speed. Target areas are discretized regions of
the right edge of the screen, each representing a selection alternative, for instance, yes or
no. The BCI user either performs or imagines movements, such as finger tapping, which
influences the y-position (height) of the cursor on the screen. The trial concludes when the
cursor reaches the end of the screen, completing the selection based on the y-position of the
cursor. Another important aspect covered by the “Right Justified Box” approach is the one
of spelling. A way to perform it is to use a binary spelling using the Right Justified Box to
communicate yes/no, progressively dividing the alphabet in half to speed up the selection
of the desired letter, such as in the case of odd binary search, as the famous speller devised
by Farwell and Donchin [25].

As well as helping in communication, another facility offered by BCIs is to empower
users to control devices, such as the television or the thermostat. Cheng et al. [26] describe
an SSVEP-based BCI that allows users to employ the discrete selection capabilities of an
SSVEP (steady-state visual evoked potentials (steady-state evoked potentials (SSVEPs)
is another evoked-response approach for BCIs. The SSVEP response is measured over
the visual cortex in response to steadily flashing stimuli [27])) control interface to dial
numbers to place a phone call. Adams et al. [28] described the Aware Chair project, which
focused on integrating environmental control, such as radio, lights, and television, into a
communication device mounted on a wheelchair.

Another important aid to users with motor disabilities is the restoration of their motor
functions. BCI research studied different ways to control accessories that can assist the
person with motor difficulties to help him/her in his/her movements. It has demon-
strated the possibility of being able to control movements by obtaining EEG signals. To
date, wheelchairs controlled with brain signals have already been designed and imple-
mented [29], and smart home prototypes controlled by BCI systems have been realized
and evaluated [27].

Robots can also be controlled through brain signals (see, for instance, [30]). Currently,
applications for controlling robots are particularly centered on assistive technology, but
research for military and industrial applications is also underway. Several experiments
were performed, one of them was to combine the movement of the robot with a P300-based
BCI, and the robot was configured to perform the various steps to make coffee, as reported
in [27]. Furthermore, telepresence robots have been combined with BCIs to enable impaired
users to interact through a telepresence system in remote places being able to control a
robotic alter ego [31].

Other interesting applications are related to the possibility of being able to recover
motor control through the control of motor robots, especially for people whose paralysis is
very advanced. Pfurtscheller and colleagues [32] found that it is possible to regulate sensori-
motor rhythms by imagining a movement, to control functional electrical stimulation (FES)
of the muscles and, thus, allow the limbs to move. Indeed, a subject paralyzed from spinal
cord injury learned to regulate sensorimotor rhythms to control functional electrical stimu-
lation (FES) of arm and hand muscles to perform simple tasks, such as grasping a glass.
Birbaumer and Cohen [21] instead devised a system based on magnetoencephalography
(MEG) that allowed a user to imagine the movement of a hand, increasing or decreasing
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sensorimotor rhythm amplitudes. Depending on the amplitude of the mu rhythm (the Mu
(µ) rhythm is a type of emitted brain wave that can be measured via electroencephalogra-
phy (EEG). The mu rhythm frequency band is defined by activity falling between 8 and
13 Hz and recorded by scalp electrodes over the sensorimotor cortex during waking neural
activity. The mu rhythm band is posited to reflect the conductance of synchronized activity
in large groupings of pyramidal neurons in the brain’s motor cortex but has also been
proposed to reflect the activity of the mirror neuron system [27]), patients can open or close
the prosthesis. As the amplitude of the mu rhythm increases, the hand opens, while to
close it, they must decrease the rhythm.

In the past, there have been relevant projects facing the use of BCIs for ALS. Smart
hoMes for All (SM4All) [33,34] was an international scientific research project funded by the
European Community, which ended in 2011. The SM4All project developed an innovative
middleware platform for the interworking of smart embedded services in immersive
and user-centered environments. In one of the project scenarios, a BCI was connected
with a virtual reality system to control a smart home application [35]. Special control
masks were developed, which allowed using the P300 component of the EEG as an input
signal for the BCI system. Control commands for switching TV channels, opening and
closing doors and windows, navigation, and conversation were realized. Experiments with
12 healthy subjects were made to investigate the speed and accuracy that could be achieved
if several hundred commands were used to control the smart home environment. The
study demonstrated that such BCI systems could be used for smart home control [36].

The European ICT Programme Project TOBI [37] developed practical technologies for
brain–computer interaction, namely non-invasive BCI prototypes combined with other
assistive technologies (AT) for improving the quality of life of disabled people. The goal of
the project was the widespread use of BCI-assistive technology endowed with adaptive
capabilities that augment those other ATs they are combined with. In such a hybrid
approach, users can fuse brain interaction and muscle-based interaction or can switch
between different channels naturally (based on monitoring of physiological parameters
or mental states). There have been four application areas in the project: communication
and control; motor substitution; entertainment; and motor recovery. Scientific results using
the multimodal fusion approach yielded a more accurate and stable control compared
to a single signal use [38]. It has shown, for instance, a telepresence robot controlled by
applying the proposed multimodal fusion approach [31]. Two patients with no previous
experience achieved levels of performance similar to those of a group of healthy users who
were familiar with the task.

Finally, we mention the ongoing project called BRAINTEASER [39,40], a data science
project that seeks to exploit the value of big data, including those related to health, lifestyle
habits, and environment, to support patients with amyotrophic lateral sclerosis and multiple
sclerosis, and their clinicians. Taking advantage of sensors and apps, BRAINTEASER will
integrate large clinical datasets that host both patient-generated and environmental data.
The goals of the project are to integrate societal, environmental, and human health data
to develop patient stratification and disease progression models for amyotrophic lateral
sclerosis and multiple sclerosis able to address the needs of personalized medicine. The
system developed in the project will try to provide quantitative evidence of the benefits
and effectiveness of artificial intelligence (AI) tools in healthcare pathways to present a
proof-of-concept of their use in real clinical settings.

3. Background and Research Project

The condition of ALS patients in the Italian Piedmont area, wherein the project is being
carried out, is specifically controlled by CRESLA (https://neuroen.campusnet.unito.it/do/
gruppi.pl/Show?_id=1zhm) (accessed on 23 December 2022), the Regional Expert Center
for ALS (DGR 30 December 2009, n.27-12969). The research activities of CRESLA are aimed
at studying ALS on the epidemiological, clinical, cognitive, genetic, neuropathological, and
neurobiological slopes. From the neuroepidemiological point of view, the Piemonte and

https://neuroen.campusnet.unito.it/do/gruppi.pl/Show?_id=1zhm
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Valle d’Aosta Register for ALS belongs to CRESLA, recognized as a Regional Register of
Relevant Health Interest (Piedmont Region BU 19/04/2012, Regional Law 11 April 2012,
n. 4). The Registry has been operational since 1995 and is the most extensive record for
worldwide ALS.

As specified above, ALS has a peak incidence of 3.1 cases per 100,000 inhab/year and
a prevalence of about 10 cases out of 100,000 in the Piedmont Region [41]. The number
of these cases is not insignificant and is destined to increase over time [8]; therefore,
projects like this have a fundamental current and future impact on clinical management
and the daily life of patients suffering from ALS and other pathologies that lead to LIS or
CLIS conditions.

The BciAi4Sla project has been divided into four phases for a total duration of
21 months:

• PHASE 1: STUDY AND IMPLEMENTATION OF COGNITIVE TESTS BASED ON
BCI. The main goals of this initial phase were to study, design, and implement a set
of cognitive tests aimed at evaluating the best mental activities detectable through
BCIs (Section 4);

• PHASE 2: TESTING. The main goals of the second phase were to test the above-
selected and implemented tests, first, with neuro-typical users and then with patients
suffering from ALS in LIS condition with the support of the University Hospital “Città
della Salute e della Scienza” of Turin (https://www.cittadellasalute.to.it/, accessed on
23 December 2022) and of the CRESLA, partners of the project (Section 6);

• PHASE 3: ANALYSIS OF COLLECTED DATA. Raw data (brain waves) collected
through the BCI headsets have been first analyzed via filtering and then via classifica-
tion algorithms to extrapolate the input data as accurately as possible. The processed
and classified signals have been then correlated with the right requests in order to
evaluate the percentage of correctly classified data (accuracy) (Section 5 and Section 6);

• PHASE 4: BCI PLATFORM DEVELOPMENT. Following the results of data analysis,
we are developing, from a user-centered perspective, a software platform (BciAi4Sla)
that will allow, through the BCI devices, online interaction between the subject with
ALS and a dedicated communication system (Section 7).

The details of these four project phases will be described in the following Sections.

4. Study and Implementation of Cognitive Tests
4.1. Study of Cognitive Tests Based on BCI

First, we have extensively reviewed the literature on cognitive endogenous tasks
used in previous research in order to present a list of revised tasks suitable for empirical
investigation of this domain. The goal of this study, more extensively described in [42], was
to select the best detectable mental activities through BCIs in order to be able to use them
with patients in our BCI platform.

There are six main mental tasks that have been extensively used in the BCI literature:
motor imagery; spatial navigation imagery; auditory imagery; familiar face imagery;
geometric figure rotation; and math imagery.

Motor imagery task
During this task, users imagine repeatedly moving a body part (e.g., a foot, arm,

etc.) in order to elicit cerebral effort. Imaginative use of an object may also be included,
such as imagining squeezing a ball. The cerebral localization of this task [43], which is
well-defined in the scientific literature (primary motor cortex, supplementary motor cortex,
and premotor cortex), has made this task one of the most reliable in terms of producing a
detectable signal [44–48].

Spatial navigation imagery task
Users performing this task must imagine a place familiar to them. Specifically, they have

to focus on details of the surroundings or orient themselves in the place [44,45,49–51]. Users
should avoid focusing on movements since an overlapping with motor brain areas will be

https://www.cittadellasalute.to.it/
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present. As a matter of fact, this task activates several brain areas, i.e., the dorsal frontoparietal
regions, pre-supplementary motor area, anterior insula, and frontal operculum [51].

Auditory imagery task
In this task, users are required to imagine a song as if they were singing it [44,49,52].

However, they should avoid moving their mouths in order to exclude brain area activations
that are not strictly connected to the imagination of the task. This task activated the auditory
cortex (i.e., the superior temporal gyrus in the temporal lobe) [53,54].

Familiar face imagery task
The imagination of a familiar face has also been reported as a used task in the BCI

literature. The familiar faces can be identified as relatives or friends, but also famous
persons, i.e., celebrities [17,55,56]. The neural activations related to this task, however, are
not very defined as they depend on the type of stimuli, namely, whether the user imagines
the face of a friend or a relative (fusiform gyrus, parahippocampal gyrus, middle superior
temporal gyri, middle frontal gyrus) [57].

Geometric figure rotation task
In this task, users should manipulate a figure (e.g., a cube) or an object and imagine it

repeatedly rotating on an axe [58–61]. This effort is usually located in the posterior parietal
cortex and posterior-occipital cortex [62].

Math imagery task
This task requires users to perform some math operations in the form of additions

or subtractions or, alternatively, to repeatedly imagine a number written on a blackboard,
to mentally erase this number and write the subsequent one [59,61,63,64]. Additionally,
in this task, users should avoid any movement in order to not activate other brain areas
except those required in the task (frontal and parietal areas) [65].

In the present research project, the tasks collected through the review of the literature
have been modified in order to optimize their capacity to produce a defined cerebral change
and to avoid difficulties connected to the users’ performance, such as task-related stress.
Specifically, all tasks are preceded by training sessions that help the user exercise and
control their cerebral effort. Although there is no specific recommendation on the duration
of training in the BCI literature [66], we believe, based on the preliminary trials with users
(described in Section 6), that at least three sessions of training should be sufficient for users
to feel confident in cognitively executing the task.

4.1.1. Motor Imagery Task

The user must imagine a hand movement without producing any actual muscular
movements. In the training session, the user is seated and sees two hands from a self-
centered perspective, on a computer screen, with palms down. The user sees an indication
(left or right arrow) on the screen and must imagine the respective hand movement; namely,
the right hand will move to the right and the opposite to the left. The indication of the
direction (arrow) with the image of the hand will last 1 s, and then, the user must imagine
the movement of his/her own hand for 3 s. To facilitate the imagination process, the
participant had previously been presented with an example of the movement on the screen
for 6 s. Each trial of the training lasts 10 s, and the complete training includes 8 runs with
18 trials each.

4.1.2. Spatial Navigation Imagery Task

The spatial navigation task is divided into two subtasks: navigation with an egocentric
perspective and with allocentric perspective [67]. The egocentric perspective (route) is
the participant’s point of view, and he/she has to move to the left or the right of the
environment. Users have to imagine themselves while moving within a familiar space,
e.g., home, from an egocentric view. In the training session, users look at some videos on a
computer screen. Videos show a still image of an environment for a few seconds, and at
this time, participants have to imagine moving to the left or the right of the room according
to some architectural affordances (e.g., the image shows a room with only one door to
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the right). After that, the video explicitly shows the movement (e.g., in this case, entering
through the door to the right).

The allocentric condition refers to the view from above, such as when looking at a map.
Users have to imagine a cursor moving on a map where only a path is viable. Training
consist of the visualization of some videos showing a map with a cursor moving. The user
is asked to imagine the movement of the cursor. The training of both sub-tasks comprises
8 runs with 10 trials each. Each trial is characterized by 6 s of movement imagination and
3 s of movement visualization. Therefore, each run lasts 90 s. Turns in paths (left and right)
are balanced to avoid habituation or biases.

4.1.3. Music Tune Imagery Task

Since this task can be subject to personal experiences, a list of very famous songs
based on the cultural context (e.g., in Italy, we propose “Volare” by Domenico Modugno
or “Azzurro” by Adriano Celentano) is presented to the user, among which he/her can
choose the preferred one. In the training session, the user can familiarize themselves with
the chosen song by hearing it three times (with the lyrics). Then, the user has to imagine
the tune without any muscle movements or verbalizations.

4.1.4. Face Imagery Task

Participants have to imagine the face of a celebrity with particular attention to the
eyes, mouth, nose, etc. The celebrity is selected from a list of famous people presented to
the subject or chosen by a relative if the user is unable to communicate. We have selected
six (three females and three males) national and international persons (such as Roberto
Benigni, Lady Diana, etc.). In the training session, the user visualizes images on a computer
screen for 10 s each and then has to recall the face of the celebrity during the recording
session. The task is repeated six times. It would be helpful to propose a list of celebrities
in line with the age of the participant since young celebrities may not be familiar to older
persons and vice-versa.

4.1.5. Object Rotation Imagery Task

In this task, users have to imagine a familiar object rotating. Unlike similar tasks
retrievable in the literature, we suggest using a real object in the training session, i.e., an
hourglass, since we believe that movement of the sand can help the user to better mentally
visualize the rotation. The user is seated in front of a computer screen and sees a clockwise
or counter clockwise rotation of the hourglass. The training session comprises a series of
images with an indication of the subsequent direction of the rotation is present. The user
has to imagine the movement in 3 s, and the rotation takes place during a time span of 6 s.
The training comprises 8 runs with 18 trials (rotations) each.

4.1.6. Math Counting Task

Here users can imagine a number and then subtract or add a specific number as many
times as requested for the recording process. The task is preceded by training where the
user visualizes very simple math operations while sitting in front of a computer screen:
starting from a specific number presented on the screen, the user has to add or subtract
repeatedly a suggested unit (such as 3), e.g., 9 + 3 = 12 + 3 = 15, etc. The type of operation
(subtraction or addition) and suggested unit to subtract or add can change and are indicated
before the beginning of the training session. After carrying out the operation mentally
in 4 s, the user sees the result on the screen. The training session is made of 6 runs, with
20 trials (calculations) each.

5. Processing and Implementations

From the review of the literature on cognitive tasks described in Section 4, a high
individual discrepancy with respect to responsiveness to tasks emerged. Among the six
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tasks identified above, the motor imagery task, one of the most consolidated, was chosen
as the basis for the first implementation.

The first release of the BCIai4SLA platform designed for the project was based on the
analysis of non-invasive EEG signals obtained from two low-cost headsets, Emotiv Epoc+
(https://www.emotiv.com/epoc/) (accessed on 23 December 2022) and OpenBCI Ultra-
cortex Mark IV (https://docs.OpenBCI.com/AddOns/Headwear/MarkIV/) (accessed on
23 December 2022).

The former is a 14-Channel Wireless EEG Headset capable of 128 or 256 Hz sample
frequency for each channel, using saline-based wet EEG sensors. It is well known in
research [68] for its accuracy and easy-to-use design that permits positioning the electrodes
in a few minutes to be ready to start EEG acquisition. It uses Bluetooth communication
to transmit recorded data to a personal computer, and EEG raw data are accessible under
a paid license. According to the review by Balart-Sánchez et al. [68], Emotiv Epoc+ can
acquire EEG data well enough for research studies in comparison with professional EEGs
for medical use, even if, due to inherent properties of the Emotiv system, a consistent delay
in the transmission of markers has been reported while using the Emotiv Epoc+, as also
reported in other studies [69].

The latter is a 16-Channel Wireless EEG Headset capable of 125 or 250 Hz sample
frequency for each channel, using dry EEG electrodes, equipped with Cyton/Daisy Biosens-
ing Boards communicating wirelessly with a computer via a USB dongle using RFDuino
radio modules. The Ultracortex Mark IV EEG headset is a scientifically-validated research
tool [70,71], and it is appreciated for its open-source, modular design in software and hard-
ware that lets users buy or 3D-print useful parts. One of the main problems of OpenBCI lies
in its ergonomics, as also reported in [71], which makes it impractical for prolonged use.

Independently of the hardware used, the raw EEG signals were used to train a clas-
sification machine learning algorithm, namely support vector machine (SVM), as will be
described below. SVM is one of the most used machine-learning methods for distinguishing
brain patterns generated from motor imagery (see, for instance, [72–74]). Specifically, we
aimed to search for sensorimotor rhythms (SMRs). SMRs are generated when the subject
imagines and tries to perform a muscle movement voluntarily. The hand, however, gener-
ates a stronger signal than other movements detectable in the so-called cortical homunculus,
namely, regions along the primary sensorimotor cortex corresponding to different body
parts (see [75] for details).

To expand and improve each piece in the future, the analysis protocol has been made
in distinct blocks. The procedure was initially developed in Matlab and, subsequently, in
Python 3 (with the help of Numpy v. 1.16/Scipy v. 0.9 libraries) for real-time acquisition
for both the Emotiv and OpenBCI helmets.

To summarize the workflow, whose schematic representation of each fundamental
block is shown in Figures 1 and 2, the acquired brain wave signals were first suitably filtered,
then modified with the common spatial pattern (CSP) algorithm, which in the literature
is considered very effective in discriminating different brain states [76–79], maximizing
the variance between the imagined movement signal of the left hand, compared to that
of the right hand. We created the whitening matrix W by feeding as input to the CSP
algorithm a matrix representing the first-class trials (left-hand imagined movement) and
the second-class trials (right-hand imagined movement).

From this W matrix, we took the first and last four columns representing the eigenvalues
of the spatial filter, simply called filters. With these filters, we transformed each trial.

At last, we extracted the features related to the trials (which will be used by the
SVM) by taking for each of the eight rows of the matrix, their logarithm of the variance,
and obtaining eight feature numbers. Then, with the feature extraction algorithm, a few
numbers were extracted that could be exhaustive to describe the imagined motion signal,
and a support vector machine (SVM) was trained to find the differences between the two
signals in real time.

https://www.emotiv.com/epoc/
https://docs.OpenBCI.com/AddOns/Headwear/MarkIV/
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Figure 1. Calibration phase: In the calibration phase, the user watches a distant monitor, waiting for
instructions. After 2 s, a left or right hand is displayed for 3 s and then removed. During this time,
the user has to imagine moving their corresponding hand and then rest for 2 s. This cycle is repeated
N times, with a randomic 0.1–0.8-s extension of the resting interval. Only a 2.5-s epoch of EEG signal
is considered for further processing (labeled in green). Each trial, along with its ground truth label
(right/left), is used to construct the calibration CSP matrix from which a set of features is extracted
and used to train an SVM classifier.
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Figure 2. Testing phase: In this phase, experimental protocol and data collection are identical to the
training phase. However, the collected EEG epoch is now transformed with the CSP matrix obtained
in the calibration phase to obtain a set of features that are used to classify the current trial as left or
right movement.

In the following Subsections, an exhaustive description of the general workflow for
data acquisition and training for the Emotiv Epoc+ and OpenBCI Mark IV headsets will
be provided.

5.1. Connection to Emotiv Epoc+

In the following, we describe the sequence of steps to obtain the CSV files containing
the row data acquired with the subjects wearing the Emotiv Epoc+ headset:

1. Creation of the connection with the WebSocket protocol;
2. Authorization of communication by passing information, such as license, client ID,

and client secret (all obtainable from the purchased license);
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3. Placing the headset on the subject;
4. Creation of the recording session;
5. Start recording with the insertion of markers at the beginning of each task;
6. End registration with the disconnection of the headset and request to send the CSV

file with the raw data.

5.2. Connection to OpenBCI Mark IV

In the following, we list the sequence of steps to obtain the CSV files containing the
row data acquired with the subjects wearing the OpenBCI Mark IV headset:

1. Creation of the connection with the headset via USB dongle;
2. Acquisition of the information of the headset in use (such as headset id, serial port, IP

address, and IP port);
3. Placing the headset on the subject;
4. Creation of the recording session;
5. Start recording with the insertion of markers at the beginning of each trial;
6. End registration; the CSV file is automatically parsed and saved.

5.3. General Procedure for Data Acquisition, Processing, and Training

In this section, we will describe the general workflow for data acquisition and training.
This procedure works with both the Emotiv Epoc + and with OpenBCI Mark IV headsets,
as schematized in Figures 1 and 2.

5.3.1. Experimental Protocol

The subject sits in front of a monitor with the arms resting on the legs.
The implemented motor imagery task is a finger touch with the thumb of the same

hand, which the user starts and stops according to a visual cue (see Figures 1 and 2). A
single trial lasts 7 s plus a random time between 0.1 and 0.8 s: after 2 s of rest, the visual
cue, consisting of a drawing of the left or of the right hand, is displayed for 3 s. During
this time, the subject is invited to imagine the finger movement of the corresponding hand.
The right/left sequence is randomized, with the constraint of an equal number of left and
right tests in the session. This continues until the preset task number is reached. The
monitor turns black during resting intervals while always presenting a central cross at the
center of the screen, which acts as a reference for the subject to look at. The slideshow
was implemented with the Psychopy v.3 (https://www.psychopy.org/) (accessed on
23 December 2022) library.

5.3.2. Data Filtering

The filtering of the data acquired by the headset is a fundamental part of the proper
functioning of the BCI system. Scientific research [75] has shown that sensory-motor
rhythms are usually detected in a quite broad frequency bandwidth: mainly in the range of
mu-rhythm (8–12 Hz), but often mixed with beta components (around 20 Hz). Since in the
real-time application the filter was applied to relatively small pieces of data, a low filter
order was fundamental. For this reason, an 18th-order IIR Chebyschev band-pass filter
was used, with a frequency range of 8–30 Hz [80]. To avoid phase distortions, a zero-phase
filtering approach was used.

5.3.3. Extraction of Central Sequences of Imagined Movement

For each trial lasting 7 s (2-s rest, 3-s motor imagery, 2-s rest), the central 3 s, in which
the subject performed the motor imagery task, were extracted, discarding the first 0.5 s
after the cue. Thus, an epoch of 2.5 s was selected for the analysis.

5.3.4. Signal Processing

The CSP (common spatial pattern) algorithm has been used to extract the features
of the signal coming from an imagined movement with the left hand compared to one

https://www.psychopy.org/
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with the right hand. Given two input signal Si with i ∈ 1, 2 representing two distinct
classes, each Si is an NxT matrix with N EEG channels and T samples per channel. The CSP
algorithm generates a transformation matrix W that allows to transform the original matrix
of signals of imagined movement into a new one that contains signals whose variances are
optimal for discriminating the two classes (for more details, see [76–79]). The construction
of the transformation matrix requires a device calibration phase (see Figure 1). At least
10 sequences of left-imagined movement and 10 sequences of right-imagined movement
are then used to form this matrix. Once the matrix has been created, some initial and final
columns are selected (called filters), which will be used for the transformation of movement
trials not yet classified. Currently, the best results are obtained by selecting the first and
the last 4–5 columns; thus, several filters range between 8 and 10, as will be described
in Section 6.

5.3.5. Feature Extraction

Once the signal has been transformed, features are extracted to train the supervised
classifier, see Figure 2. The logarithm of the sum of variances for each filter was chosen
as the extracting function. In total, therefore, for each trial, 8–10 numbers are obtained,
summarizing the relevant characteristics of the right or left movement.

5.3.6. Classification

A support vector machine (SVM), a supervised learning method used for classification,
regression, and outliers’ detection, was chosen as the classification algorithm. For the train-
ing, the features extracted from the trials used for the formation of the W matrix are used.
The SVM, trained with the above-described calibration sequences (see Figures 1 and 2),
allows to classify any trial in real time with an estimated accuracy, namely, the probability
(confidence) of how certain the prediction is, as will be detailed below.

In the following, we will explain the steps for training the classifier:

1. The training dataset is parsed, and a CSV file with the union of all the training data is
generated as output;

2. This CSV file is processed by the signal processing module. The data are cleaned with
the various filters described above, and features are extracted from them. Tasks are
also divided into imaged-left and imagined-right movements;

3. The classifier is trained by the SVM algorithm. To tune the hyperparameters of
the training set, we used the Python Optunity library (https://pypi.org/project/
Optunity/) (accessed on 23 December 2022), which, having a given dataset as input,
finds the best possible range of C and gamma parameters of the Radial Basis Function
(RBF) kernel SVM (Intuitively, the gamma parameter defines how far the influence
of a single training example reaches, with low values meaning ‘far’ and high values
meaning ‘close’. The gamma parameters can be seen as the inverse of the radius
of influence of samples selected by the model as support vectors. The C parameter
trades off the correct classification of training examples against the maximization
of the decision function’s margin. For larger values of C, a smaller margin will be
accepted if the decision function is better at classifying all training points correctly.
A lower C will encourage a larger margin, therefore encouraging a simpler decision
function at the cost of training accuracy. In other words, C behaves as a regularization
parameter in the SVM. Source: https://scikit-learn.org/stable/auto_examples/svm/
plot_rbf_parameters.html) (accessed on 23 December 2022).

4. The result of steps 1 to 3 are two persistent Python objects: the classifier; and the W
matrix, created by the CSP algorithm;

5. Finally, the trained classifier is loaded, and the accuracy test is performed on the test
dataset, parsed and filtered with the same filters used for the training set, with the
difference that the previously-created W matrix is used.

https://pypi.org/project/Optunity/
https://pypi.org/project/Optunity/
https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html
https://scikit-learn.org/stable/auto_examples/svm/plot_rbf_parameters.html
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6. Processing Settings and Assessment of User’s Performance

All the acquisition sessions described below were held as follows:

1. A brief explanation of the test objective;
2. An explanation with the demonstration of the movement to be made (both real and

then imagined);
3. A few minutes of free practice of the movement (both real and then imagined); at this

point, the subject started the protocol described above;
4. The protocol starts with a slideshow of pre-established images, as described above.

We performed several acquisitions for the following:

1. Tuning of training set/test set;
2. Tuning of weights and filters;
3. Real-time classification.

All the subjects involved in the experiments described below gave their informed
consent for inclusion before they participated in this study. This study was conducted in
accordance with the Declaration of Helsinki, and the protocol was approved by the Ethics
Committee of the University of Turin (Prot. N. 256076).

In the following, we will report the best results obtained in the acquisition of points
1, 2, and 3, using both OpenBCI Mark IV and Emotiv Epoch+. The pre-processing and
processing algorithms are platform-independent since they deal with the EEG signals,
regardless of which device performed the acquisition; the only thing changing is the
interface to the two devices (connection, protocols, the definition of electrodes, etc.). Thus,
we reported the OpenBCI Mark IV’s results for tuning of training set/test set, the Emotiv
Epoch+’s results for tuning weights and filters, and the real-time classification performed
with OpenBCI Mark IV. Regarding the last evaluation, we preferred to initially concentrate
on this headset since the literature reported the best accuracy results compared to the ones
of Emotiv Epoch+ [71], and delays in the transmission of markers have been reported while
using the last one, especially in real-time classifications [69].

6.1. Training Set/Test Set

Design. All the acquisitions were made following 1 to 4 steps described at the begin-
ning of Section 6. On two different days, we recorded 5 sessions of 60 tasks (30 left and
30 right), for a total of 600 tasks per subject. On the first day, we performed two sessions
per subject, while on the second day, we performed three sessions per subject. Each session
was recorded by pausing and always removing the headset.

Participants. We involved three subjects—two males and one female. They all were
young neuroscience researchers aged between 24 and 30, with 18 years of education.

Apparatus. OpenBCI Mark IV
Procedure. In order to discover the better ratio between the training size and the test

size, we calculated the accuracy of classification for the following percentage of training/test
set, respectively: 80–20%; 60–40%; 40–60%; and 20–80%.

Tests for scores were performed on 5000 divisions of the dataset, namely 5000 random
assignments of single trials to the training and test sets. The function dividing the dataset
kept the number of examples in the test set in the balance between the classes (the same
number of examples for the right and for the left). The SVM hyperparameters were tuned
and optimized on the training dataset, and accuracy values were calculated to assess the
performance of the test set. Average accuracy, calculated over the 5000 simulations, for
each subject and each condition is reported in Table 1.

Results. After having analyzed the collected data offline, we obtained the results
shown in Table 1:

The best results were obtained with 80% of training and 20% of the test set, see Table 2.
Keeping this ratio, we also performed the same trials with 2000 divisions of the dataset,
and we obtained comparable results.
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Table 1. Accuracy of training/test set trials.

Subjects 80–20% 60–40% 40–60% 20–80%

subject 1 0.812 0.729 0.699 0.633
subject 2 0.645 0.614 0.573 0.565
subject 3 0.729 0.666 0.583 0.552
average 0.73 0.67 0.62 0.58

Table 2. Results of training/test set 80–20% with 2000 divisions of the dataset.

Subjects Accuracy

subject 1 0.83
subject 2 0.642
subject 3 0.72
average 0.73

6.2. Tuning of Weights and Filters

Design. All the acquisitions were made following steps 1 to 4, described at the
beginning of Section 6. Each session consisted of two acquisitions of 60 tasks each (30 left
and 30 right), with a pause of a few minutes between the two acquisitions. Every subject
performed a total of 120 tasks.

Participants. We involved five subjects—four males and one female. They all were
neuroscience/computer science students aged between 22 and 25.

Apparatus. Emotiv Epoc+.
Procedure. The data were previously filtered and processed as described in Section 5.

Repeating steps 1 to 5, as described in Section 5.3.6, with a training/test set ration of
80–20%, with 2000 divisions of the dataset, several classifiers (with respective W matrix)
were created by changing some parameters, both in training and in the signal processing
phase. The parameters were:

• The classifier’s weights, which were uniform weight, as if it had no weight, and
logarithmic weight calculated as the Napierian logarithm of each input value;

• The number of filters, namely, the column’s W matrix, as described in Section 5.3.4,
when the signal processing approach with CSP is described, were, respectively, 6, 8, 9,
10, 11 and 12.

Once all the tests had been completed, the classifier that obtained the best result was
kept, and the average accuracy of all the tests performed was obtained.

Results. We analyzed the collected data offline. Regarding the comparison be-
tween uniform and logarithmic weights, the last ones obtained lower accuracy, as shown
in Table 3.

Table 3. Comparison between average accuracies of classifier’s weights.

Subjects Logarithmic Weight Uniform Weight

subject 1 0.738 0.812
subject 2 0.371 0.454
subject 3 0.529 0.563
subject 4 0.408 0.450
subject 5 0.796 0.892
average 0.569 0.634

The average accuracy values obtained by the classifier with logarithmic weight are
statistically significantly lower than the one obtained using uniform weights (av. 0.569 vs.
0.634), as witnessed by a paired t-test, p = 0.002.

Regarding the number of filters, we considered the data obtained by the classifier
with no weight. As described above, the CSP algorithm for signal processing performs
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a transformation W matrix that allows to transform the matrix of signals of imagined
movement. Once the matrix has been created, some initial and final columns are selected
(called filters), which will be used for the transformation of movement trials not yet
classified. Currently, the best results are obtained by a number of filters around 8–10, as
shown in Table 4.

Table 4. Number of W matrix filters and obtained average accuracies.

Number of Filters Accuracy

6 0.609
8 0.665
9 0.665
10 0.626
11 0.624
12 0.599

6.3. Real-Time Evaluations
6.3.1. Real-Time Evaluation with OpenBCI Mark IV

Design. All the acquisitions were made following steps 1 to 4, described at the
beginning of Section 6. We recorded 1 sessions of 60 tasks (30 left and 30 right) for training
the classifier, and then each subject performed a real-time trial (30 left and 30 right).
Between the training and a real-time session, each subject took a break of 5–10 min and in
the meantime, we trained the classifier. Results of real-time classification were given at the
end of the session, in order to not influence the subject’s performance.

Participants. We involved eight subjects—four males and four female. Six of them
were young students/researchers in neuroscience, psicology, and computer science aged
between 24 and 30. Two of them (subject five and eight in Table 5) were, respectively, a
male neuroscience professor, aged 53, and a female computer science professor, aged 48.

Table 5. Real-time classification of motor imagery tasks with OpenBCI Mark IV.

Subjects Accuracy

subject 1 0.78
subject 2 0.88
subject 3 0.83
subject 4 0.85
subject 5 0.62
subject 6 0.73
subject 7 0.74
subject 8 0.6
average 0.75375

6.3.2. Apparatus OpenBCI Mark IV

Procedure. The training data were previously filtered and processed, as described
in Section 5. Repeating steps 1 to 5, as described in Section 5.3.6, with a training/test set
ration of 80–20%, with 2000 divisions of the dataset. As the classifier’s parameters, we used
uniform weight and a number of filters ranging from 8 to 10. Performance evaluation was
performed through the K-Fold cross-validation, and, given the reduced number of available
training samples, the leave-one-out approach was used. In particular, we used the Stratified
Shuffle Split cross-validator, which is a merge of Stratified KFold and Shuffle Split, returning
stratified randomized folds (https://scikit-learn.org/stable/modules/generated/sklearn.
model_selection.StratifiedShuffleSplit.html#:~:text=Provides%20train%2Ftest) (accessed
on 23 December 2022). The folds are made by preserving the percentage of samples for
each class. In particular, the Stratified Shuffle Split cross-validator divides the training set n
times, each time, by choosing a different test set but always having the same number of left-
and right-hand tasks. By repeating training and test sets with different data, it is possible

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedShuffleSplit.html#:~:text=Provides%20train%2Ftest
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedShuffleSplit.html#:~:text=Provides%20train%2Ftest
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to obtain the better-performing classifier in terms of accuracy. For each subject, the process
is then repeated 2000 times, with a training size of 80% and a test size of 20%, respectively.
The classifier obtaining the best result in term of accuracy is kept. The real-time accuracy is
then calculated using the best classifier found.

Results. We obtained the real-time results shown in Table 5.
If we exclude the two older subjects (subject five and subject eight), the average

accuracy increases to 0.8.

6.4. Discussion

After several acquisitions, both with Emotiv and OpenBCI headsets, we noticed that,
in line with the current literature [17], the performances have great variations among the
participants, probably due to individual differences or variability in the individual person’s
capacity to concentrate and engage in the imagery task. Several studies, indeed, show that
different individual psychological, i.e., attention, concentration, motivation, and visuo-
motor coordination [18,81] and personality factors [82], influence BCI users’ performance.
In line with the relevant literature, also in our study, these factors influenced the quality
of the collected data. Our future studies should develop specific and personalized BCI
training protocols adapted to the profile of each user [82–84] in order to minimize these
differences and increase the quality of the data. In particular, Jeunet et al. [82] point out
how the personality psychological users’ profiles influence MI-BCI control ability. However,
the authors suggest that a possible solution is to design novel MI-BCI training protocols
adapted to the profile of each user. Collectively, these results indicate that mental state is
closely related to BCI performance, encouraging future development of psychologically
adaptive BCIs [83].

We here presented methodological and experimental results reached so far. They
represent a proof of concept testifying that the devised procedure, along with the developed
algorithm, constitutes a plausible BCI and can yield satisfactory performance even in a
real-time configuration. Our results seem to be in line with the ones reported in the
literature in similar contexts and approaches, although with the chance for improvement.
The correctness of our approach is witnessed by the fact that about half of the 89 studies
reported in a 2022 review paper on EEG in motor imagery BCI [73] used the CSP in
combination with classification based on an SVM [117], suggesting that classic combination
of CSP and SVM is effective. Their statistically-based analysis highlights that the most
performing feature selection approach achieved at least 85% and 83% accuracy in classifying
EEG signals associated with MI, respectively, in the binary and multi-class cases.

Many other researchers have examined the applicability of machine learning methods
for feature selection in MI-BCI; however, the results obtained do not support the exis-
tence of an algorithm that is clearly more efficient than the others, with high variance in
accuracy results. For instance, using a spatial filter with common spatial patterns (CSP)
with OpenBCI 8 channels at a 250 Hz sample rate, Haji [85] proposed a comparison of
different machine learning methods for MI classification, obtaining the best accuracy results
with Linear Discriminant Analysis (LDA) (~80%), followed by logistic regression (~78%),
Random Forest (RF ~73%), and SVM (~72%).

Behri et al. [86] used an EEG database from five volunteers to try to classify the imagery
movements of the right hand and right foot. For this, Decision Trees (DT), multilayer
perceptron (MLP), SVM, k-nearest neighbors (kNN), Naïve Bayes (NB), and RF algorithms
were used after noise reduction, feature extraction, and dimension reduction. In terms
of the classification accuracy achieved, the 53% result of NB proved to be the worst.
The DT (64%), MLP (67%), RF (78%), and SVM (89%) methods performed significantly
better, but the best result, almost 95% accuracy in the average of the five volunteers, was
provided by the kNN algorithm. By applying a small window size (1-s window size) and
using a purely convolutional neural network (CNN) on the MI-BCI PhysioNet dataset
(https://physionet.org/, accessed on 23 December 2022. The MI-BCI database was recorded
using the international BCI2000 instrumentation system. It contains 64 channels of scalp

https://physionet.org/
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EEG recordings sampled at 160 Hz. The total database includes 109 subjects who performed
14 motor imagery trials. Electrodes were positioned as per the 10–10 international system, a
standard of the American clinical neurophysiology society and the international federation
of clinical neurophysiology), [72] achieved 97.7% recognition accuracy. Assi et al. [87]
proposed a right-hand MI_BCI, wherein, using an LDA vs. SVM, they were able to improve
classification accuracy results from 66% to 88.10% after removing ocular artifacts from the
PhysioNet dataset.

In an approach more similar to the one reported in this paper, Costantini et al. [88]
proposed an MI-BCI using 61 electrodes at a 256 Hz sample rate, based on SVM Classi-
fication of EEG signals, which obtained very poor results (52.2% of average accuracy) in
discriminating between the movement of the right hand and left hand, while they obtained
better results in case of discriminating between the thought of a carol and a mathematical
operation (63.4%), or mathematical operation or carol and hand movements (68% and
73.8%, respectively). Stock and Balbinot [89] used Emotiv Epoc+ with CSP and an NB
classifier. They tested the approach in a MI experiment with two users and analyzed
the collected raw data offline. The results obtained reached a maximum classification
rate of 85%.

Regarding the comparison between Emotiv and OpenBCI, Aldridge et al. [71] used
the Ultracortex Mark IV for the P300 Speller classification task with nine experimental
participants, with the accuracy being measured along with the time required to set up the
Mark IV, the participants’ comfort, and the participants’ perceived ease of setup. Their
results were then compared to previous evaluations of other EEG headsets. The OpenBCI
Ultracortex Mark IV’s classification accuracy outperformed the one of Emotiv Epoch (82.9%
vs. 61.7%), which was better evaluated for comfort and ease of setup.

Real-time performance classification studies, also known as online classification stud-
ies, are rarely available. The Lotte et al. [74] review of studies evaluating BCI signal-
classification algorithms found the most used offline analyses, and over the year, the
situation does not seem to have changed so much, even in MI-BCI studies. Among the few,
Irimia et al. [90], in a real-time evaluation of an MI-BCI with five stroke patients wearing a
64-channel EEG cap, obtained a grand average accuracy of 87.4% and a mean maximum
accuracy of 96.9%, using a CSP filter and LDA for classification. Mondini et al. [91] devel-
oped a BCI system to control the flexion–extension of a DOF-modelled arm using an MI
strategy. They implemented an adaptive strategy, including a simple scheme, based on a
common spatial pattern (CSP) method and support vector machine (SVM) classification.
The system was tested online on 10 participants, of whom 7 reached the criterion level
of 70% with both peak and average accuracy in 3 days. Lehtonen et al. [92] investigated
whether inexperienced subjects could control a BCI accurately by means of visually-cued
left versus right index finger movements. In the second trial, seven of the ten subjects were
able to control the BCI well. Their mean single trial classification rate was 80%, and the bit
rate was 10 bits/min. Hazrati and Erfanian [93] presented an online single-trial EEG-based
BCI for controlling hand-holding, sequence of hand grasping, and opening in an interactive
virtual reality environment, using an adaptive probabilistic neural network to overcome the
subject training challenge. The experimental evaluation on ten naïve subjects demonstrated
that an average classification accuracy of 75.4% was obtained during the first experiment
session and 81.4% during the second session. The average rates during the third and eighth
sessions were 79.0% and 84.0%, respectively, using a previously calculated classifier during
the first sessions, without online training and without the need to calibrate.

Notably, the algorithms have proved to work well with two different headsets, char-
acterized by a different number of electrodes and different configurations. Although the
present study was not conceived to test and compare the two systems, we can report the
main differences and our subjective impressions.

“Technologically” different electrodes The Emotiv Epoc+ headset uses sponge-type
electrodes soaked in a saline solution that favors the skin-electrode electrical contact, while
the OpenBCI Mark IV headset uses plastic electrodes with tips pressing on the scalp. On
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the one hand, the headset has elastic branches that impart a slight force on the scalp; on the
other hand, the rigid OpenBCI headset allows to tighten up the electrodes so that they press
on the skin with an adjustable force but are generally stronger than the Emotiv system.

Electrodes in different positions of the scalp. The Emotiv Epoc+ headset has
14 prefixed electrode positions, while the OpenBCI Mark IV allows deciding where to
insert the electrodes (ranging from 8 to 16) and choosing between different options.

Data Communication. While OpenBCI provides tools and routines allowing to imple-
ment the data acquisition in a quite straightforward way under different platforms and
languages (e.g., Matlab, Python, etc.), the Emotive system provides an easy collection of
the data only at the end of the recording session. Online data acquisition and processing
with Emotive appears to be more complicated and requires an additional software license.

Comfort. The Emotive headset appears to be more comfortable, which could, in
principle, allow for a longer-lasting experimental session. The dry electrodes of OpenBCI
are, conversely, a bit painful but have the advantage of providing contacts that are more
stable in time (no risk of drying up). Both systems are quite fast to set up.

Obviously, the presented BCIs require numerous other tests with new subjects to verify
the stability of the performance and, eventually, adjust the system parameters. The results
obtained may become more promising with the integration of additional data also acquired
from other devices. Significant tests with ALS patients have not yet been carried out due to
the lockdown and social distancing imposed by the COVID-19 pandemic.

7. BciAi4Sla Proof of Concept Prototype

In the following, we illustrate a proof of concept prototype for the BciAi4Sla user
experience created using the Justinmind prototyping tool (https://www.justinmind.com/)
(accessed on 23 December 2022). The prototype is intended to be used on a tablet/PC
where the application will be running.

The designed layout (see Figure 3 and the following ones) has a simplified and similar
structure for all the pages to maintain internal consistency. For example, in the header, we
always find the project logo linked to the home page, the choices are always graphically
represented by uniform boxes, identifiable by an icon and a descriptive field, etc., a sound
is always returned after a user’s action as audio-feedback, etc. The basic idea is to make
the application usable both for the patient and for the family members or caregivers who
interact with it. For this reason, a previous version of the prototype has been evaluated by
two usability experts to ensure easiness of use and of learnability.
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We envision that, in order to make a preferential choice [94] in the final system, the
user will have to intensively concentrate on the object of his/her choice when a light signal
occurs on the element under consideration (see Figures 4 and 5, for example), and then
imagining the preferred hand movement to express the choice. The lighting has a duration
of a certain number of predefined seconds based on the patient’s state and his/her ability
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to respond (the duration can be modified based on the user’s need in the Settings section)
in order to allow him/her to carry out the mental task.
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Figure 5. The communication section: keyboard and phrasebook.

The home page (Figure 3) presents two buttons, the first is called “BciAi4Sla”, which
can be used by the patient to access all the functions allowing communication/relaxation,
while the second one called “Settings,” which allows the platform customization by
the caregivers.

By accessing the BciAi4Sla section, a default page is displayed (Figure 4), but this is
completely customizable. The default page presents the following options:

• Communication;
• Activities;
• Health;
• Music;
• Reading,

which will be detailed in the following sections.

7.1. Communication

In this section, the user may choose whether to communicate using a keyboard or a
phrasebook, consisting of both predefined expressions and the classic answers that can be
provided, for example, “Yes”, “No”, “Thank you”, etc. (see Figure 6).
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The keyboard (Figure 7) has the goal to facilitate and speed up the composition of
the words that express the patient’s thought according to the paradigm of the binary
search: it consists of an alphabet and of numbers sections grouped and divided into blocks
to facilitate selection; the software, according to the selected letters, proposes a guided
composition in the typing of alphanumeric strings of the possible statistically most used
words to speed up digitization. There is also a button allowing the deletion of one or more
letters and a button to insert spaces. At the end of the composition of the words, it is
possible, through the “Read” button, to listen to a voice reproducing the written definition.
Using the “New sentence” option, the writing field is cleared to allow a new formulation.
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The phrasebook (Figure 6) is made up of definitions that are predefined through
the settings menu and are completely customizable according to the patient’s needs. It
is recommended not to enter many expressions that would occupy the entire interface,
making the patient’s activity difficult. To speed up the interaction, the choice of keyboard
is present in the section to allow a direct connection with typing in case that the desired
word is not present. As for the other default choices, the phrasebook is customizable by the
caregiver in the Settings section.

7.2. Activities

Within this category, physical or manual activities are proposed to the patient. The
choices will be fully set and customized in the Settings section. Some predefined examples
include turning the TV on or off, activating an alarm sound to attract the attention of nearby
people, etc.

7.3. Health

In this section, we have inserted some expressions allowing the patient’s state of
health and needs to be expressed, such as I’m thirsty, I feel good/bad, I’m cold, I’m hot, etc.
Additionally, in this case, the sentences are customizable.

7.4. Music and Reading

To make the application more innovative, the communication tool has been combined
with functions allowing for playful and entertaining use. In the music section, the patient
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can choose between listening to the radio, where the main radio stations are listed, or
playing songs from a playlist, which has been preloaded in the appropriate Settings section.

In the reading section, the user has the possibility to choose the category of the desired
book genre. Once the choice has been made, a list of e-books that can be heard through the
application is proposed.

7.5. Settings

In the Settings section, the caregiver can completely customize the application.
He/she can:

• Adjust the brightness and zoom;
• Add or remove the various categories or sub-categories on the home page to act more

quickly on the fundamental actions for the patient;
• Set the order of the sections;
• Add or remove pre-set phrases and possible answers in the various categories, activi-

ties, phrasebook, health, etc.;
• Load or remove songs from the playlist;
• Load or remove e-books;
• Set different background and foreground colors;
• Increase/decrease font, etc.

8. Conclusions and Future Work

Currently, the first release of the BciAi4Sla software platform has been developed,
allowing the interaction through BCI as input devices between the user and the BCI
application that can enable him/her to communicate and give commands, as described in
the proof of concept prototype in Section 7. The BciAi4Sla’s goal is to enable LIS and CLIS
patients to communicate, adapting the application and the interaction to the characteristics
and needs of the single subject. Toward the end of Phase 4, the platform will be tested with
patients and modified based on the feedback that will emerge.

BCI devices do not replace the assistance of caregivers, but they contribute significantly
to the lives of patients. They will have a greater sense of autonomy in carrying out small
daily actions, making them feel more independent.

Even today, BCIs are being studied in medical research studies to improve and make
great progress in understanding and reading brain signals in order to be used more and
more by different types of users, improving their lifestyles. Studies are proceeding with
great constancy, and technological developments make it possible to overcome those
existing limits due to the lack of sufficient knowledge and tools available. Nonetheless,
there are many jobs to focus on in the future. In fact, BCIs need, for example, precautions
to make them more effective and easier to use and to improve responsiveness to feedback,
which is very important in communication paradigms.

There are many topics on which research could focus, but given the results obtained
so far, a largely positive development of the neural interface can be expected. Regarding
our current and future work, we are integrating into the BciAi4Sla platform an infrared
eye tracker aimed at detecting the pupillary movement that is voluntarily controllable
(through the accommodative response, for details, see [95]) and, apparently, preserved
in ALS. The dual functionality (BCI and eye-tracker) will intend to compensate for the
frequent occurrence of patients with impaired pupil function or with difficulty in learning
and performing the tasks required by BCI based only on EEG signals.
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