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Abstract

We present a Monte Carlo study of various universal amplitude ratios of the two-dimensional
qs4 Potts model. We simulated the model close to criticality in both phases taking care to keep
the systematic errors, due to finite size effects and logarithmic corrections in the scaling functions,
under control. Our results are compatible with those recently obtained using the form-factor
approach and with the existing low temperature series for the model. q 1999 Elsevier Science
B.V. All rights reserved.

PACS: 75.10.H; 11.10.J
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1. Introduction

One of the peculiar features of the two-dimensional four-state Potts model is the
presence of a marginal field which leads to universal multiplicative logarithmic correc-
tions to the scaling laws.

w xThese corrections can be exactly evaluated 1,2 but, as often happens when dealing
with marginal fields, they are accompanied by still large subleading non-universal

Žcontributions which completely mask the scaling behaviour of the system at least for
.those values of the correlation length which can be reached in standard simulations .

This is different from the behaviour, for instance, of the 3d Ising model where even at
w xmoderate values of the correlation length, the non-universal corrections 3 give very

small contributions; thus they can be safely taken into account by adding to the scaling
functions only the first non-universal term.

In the present case, instead, these corrections are so large that the reliability of the
fits, in which only the first subleading term is taken into account, becomes questionable.

0550-3213r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
Ž .PII: S0550-3213 99 00521-0
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Table1
Results in the high temperature phase

b L j E C x2nd

Ž . Ž . Ž . Ž .1.06722 120 6.44 5 0.64604 6 1.571 12 11.83 2
Ž . Ž . Ž . Ž .1.07722 120 8.46 4 0.66318 6 1.892 13 18.78 3
Ž . Ž . Ž . Ž .1.07972 120 9.25 3 0.66808 6 2.018 14 21.80 4
Ž . Ž . Ž . Ž .1.08222 120 10.26 3 0.67337 6 2.189 15 25.90 5
Ž . Ž . Ž . Ž .1.08472 120 11.60 3 0.67909 6 2.405 15 31.69 6
Ž . Ž . Ž . Ž .1.08722 180 13.37 5 0.68544 6 2.614 22 40.31 9
Ž . Ž . Ž . Ž .1.08972 180 15.94 5 0.69232 6 3.033 24 54.05 13
Ž . Ž . Ž . Ž .1.09222 240 20.33 7 0.70056 6 3.574 35 80.88 24

On the other hand, with current numerical precision, it is almost impossible to add
further corrections without losing any predictive power in the fits.

This makes the numerical study of the four-state Potts model one of the most difficult
tasks in the context of Monte Carlo simulations of two-dimensional spin models.

w xThis problem was recently addressed by Salas and Sokal in 4 by extending the RG
w xanalysis of 1,2 up to third order in the fields. They succeeded in obtaining the universal

leading corrections to the scaling, which turn out to be additive terms of the generic
form log logrlog. The improved scaling functions were then tested by looking at the
critical finite size properties of the model, and an improvement of the scaling behaviour
of the data was observed which however turned out to be still affected by large
non-universal 1rlog terms.

In this paper we return to this problem by looking at various universal amplitude
Žcombinations of the model for a comprehensive review on amplitude ratios, see for

w x.instance, Ref. 5 . We find an improvement in the scaling behaviour of our data if the
w xuniversal contributions evaluated in Ref. 4 are taken into account.

w xHowever, as in Ref. 4 , this is not enough to describe the data; non-universal
corrections must be considered and final results crucially depend on the type of terms
included in the scaling functions. We consider this one of the most delicate aspects of
this paper. For this reason we described, as precisely as possible, the procedure used to

Ž .construct the scaling functions see Section 7 and included in the paper, besides final
estimates for the amplitude ratios, also the direct results of the Monte Carlo simulation
Ž .see Tables 1, 2 and 3 so that the reader can use the data to study alternative scaling

Table2
Results in the low temperature phase: thermal observables and correlation lengths

b L j E C2nd

Ž . Ž . Ž .1.130500 120 2.85 5 0.850888 5 1.3718 10
Ž . Ž . Ž .1.120231 120 3.69 5 0.835061 7 1.7474 16
Ž . Ž . Ž .1.117684 120 4.00 4 0.830453 8 1.8851 17
Ž . Ž . Ž .1.115135 120 4.45 4 0.825436 8 2.0516 20
Ž . Ž . Ž .1.112597 120 5.01 4 0.820001 9 2.2604 24
Ž . Ž . Ž .1.110065 120 5.77 4 0.813951 10 2.5274 28
Ž . Ž . Ž .1.107540 120 6.98 4 0.807100 12 2.9048 40
Ž . Ž . Ž .1.105020 180 8.89 7 0.799095 9 3.4872 49
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Table3
Results in the low temperature phase: magnetic observables

b L m xl

Ž . Ž .1.130500 120 0.633288 7 1.2180 9
Ž . Ž .1.120231 120 0.612874 11 2.1072 23
Ž . Ž .1.117684 120 0.606331 13 2.5080 26
Ž . Ž .1.115135 120 0.598834 14 3.0572 36
Ž . Ž .1.112597 120 0.590219 16 3.8447 51
Ž . Ž .1.110065 120 0.579950 19 5.0315 72
Ž . Ž .1.107540 120 0.567272 26 7.053 14
Ž . Ž .1.105020 180 0.550686 23 10.987 19

functions and possibly find a clever way to control the systematic errors involved in the
truncation that we suggest.

Fortunately for the present problem we have an independent way to test our results.
w xIn fact, thanks to a recent work by Cardy and Delfino 6 , precise estimates for

amplitude combinations are now available in the continuum limit. The relatively good
w xagreement found between our estimates and those of 6 make us confident of the

reliability of our results and at the same time strongly supports the correctness of the
w xform-factor derivation of Ref. 6 .

This paper is organized as follows. In Section 2 we give a general introduction to the
q-state Potts model and we summarize a few known facts concerning the phase diagram
and its scaling limit description in the framework of conformal and perturbed conformal
field theory. In Sections 3 and 4 we introduce and discuss the observables and the
amplitude ratios in which we are interested. In Sections 5 and 6 we describe the Monte
Carlo simulation and test the results by comparing them with existing low temperature
series and by imposing the duality relations on the internal energy and the specific heat.
Section 7 is devoted to the study of the scaling behaviour of the observables and to
extract the best estimates for the amplitude combinations. Section 8 is devoted to a

w xcomparison of the results with those of Ref. 6 while in Section 9 we have collected
some concluding remarks.

2. The model

We study the four-state Potts model in two dimensions on a simple square lattice.
The action is given by

S syb d , 1Ž .ÝPotts sŽ x . , sŽ y.
² :x , y

Ž . Ž .where the field variable s x takes the values 0,1,2,3; x' x , x labels the sites of0 1
² :the lattice and the notation x, y indicates that the sum is taken on nearest neighbor

sites only. The d function is defined as usual: d s1 if asb and 0 otherwise. Thea,b

coupling b is related to the temperature in the standard way b'1 kT. In the following
we shall always consider lattices of equal extension L and periodic boundary conditions
in both directions.
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Ž .Several results are known exactly for this model. The action 1 is invariant under the
permutation group S . However, in the low temperature phase this symmetry is4

spontaneously broken to S . The two phases are related by duality and separated by a3
Ž .second-order phase transition located at b '1 kT s log 3 s1.098612. The dualc c

˜coupling b is related to the original coupling b by

1yeyb

b̃sylog , 2Ž .ybž /1q3e

and the fixed point of this relation is the critical coupling b .c

It is useful to introduce the variables

1
s x sd y , as0,1,2,3. 3Ž . Ž .a sŽ x . ,a 4

² :It is easy to see that s s0 ;a in the high temperature phase and that they alla

become different from zero in the low temperature phase. In particular for one of the
Ž . ² :four values of the spin which we shall call in the following ‘‘majority spin’’ s )0,a

² :while for the three other values we have s -0.a

Ž w x. Ž .It has been shown cf. Ref. 7 that the partition function Z T ,q for the q-state Potts
Ž .models q integer on a square lattice L can be written as

Nb nZ T ,q s e y1 q . 4Ž . Ž . Ž .Ý
� 4G

Ž .The sum in Eq. 4 runs over all the graphs G on L, C is the number of connected
Ž .components including isolated sites in G, and N is the number of bounds on the lattice

edges. For a better understanding of some of the peculiar features of the four-state Potts
model it is convenient to consider the phase diagram of the whole family of models,

Ž .defined for arbitrary q)0. Eq. 4 provides an expression suitable for extending the
Ž .definition of Z T ,q to non-integer values of q. The q-state Potts model undergoes a

phase transition at

'b s log q q1 . 5Ž .Ž .c

Below this temperature the system is in its S -broken symmetry phase whereas above itq

the system is fully disordered. The transition at TsT is first-order for q)4 butc

becomes second-order for q(4, in the latter case the model gets renormalized into a
w xconformal field theory with central charge 8

6
cs1y , 6Ž .

ly1 lŽ .

where l is related to q by

2(2p 4qyq
sarctan . 7Ž .ž /l qy2Ž .
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Ž X .In the scaling limit, at rational points lspr p yp , the thermal field ´ rescales with
w xscaling dimension 9

1 3
D s 1q , 8Ž .´ ž /2 ly1

hence it can be identified with the operator f in the M X minimal conformal model.21 p, p
Ž .Notice also that Eq. 7 shows that two square-root branch points at qs0 and qs4 are

present. At qs0 the thermal operator is marginal, in the analytically continued second
branch it becomes irrelevant and the critical point has moved into the antiferromagnetic
region. The physics in this sector is certainly very interesting but it is slightly less
relevant for our current interests. More related to the subject of this paper is, instead, the
physical meaning of the second branch point at qs4. Let us consider a further variant
of the model in which vacancies are allowed, and correspondingly a chemical potential
m is introduced. In the sector 0-q-4 with m negative or sufficiently small, the
additional dilution field turns out to be irrelevant and the system still undergoes a
second-order phase transition in the same universal class of the pure Potts model. Near
the transition point the dilution field scales with a conformal dimension

4
D s2q , 9Ž .m ly1

and it can be identified with the primary conformal operator f .31

At qs4, the dilution field f becomes marginal; along the critical RG flow its slowm

rate of disappearance causes now multiplicative logarithm corrections to the critical
Ž .behaviour. From Eq. 7 we also see that the net result of the entrance in the second

branch consists of a turning negative of l. Hence at the same value of q, but on the
Ž .second branch, we now have a conformal field theory CFT with central charge

6
cs1y , 10Ž .

l lq1Ž .
with thermal and dilution fields with dimensions

1 3 4
D s 1y , D s2y . 11Ž .´ mž /2 lq1 lq1

These two fields can now be respectively identified with the relevant conformal
operators f and f . In conclusion, at fixed q-4, the phase diagram in the plane12 13
Ž . Ž .m,T is as follows: if m is negative or sufficiently small, then at TsT m the systemc

undergoes a second-order phase transition in the universal class of the pure Potts model,
whereas when m is large the transition becomes of first order. On the critical line
Ž Ž ..m,T m the point marking the change of critical behavior is the tricritical point. Fromc

the scaling quantum field theory point of view, the picture looks also consistent with the
one described above. First notice that perturbation of the conformal field theory with

w xeither the thermal or the dilution field is integrable 10 and that the associated quantum
Žfield theories have been the subject of very deep studies see for example Refs.

w x.11–16 . The thermal operator ´ drives the system into a massive ordered or disordered
w xphase depending on the sign of the perturbing parameter 14–16 . The operator fm

Žinstead moves the tricritical model either into a massive phase a line of first-order
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.transitions or into a critical massless phase. The IR fixed point of the latter is the
Potts-model CFT and the two less irrelevant attracting operators are the fields f and31

w xTT 14–16 .
Quantum reductions of the Izergin–Korepin model at rational points, giving the

w xS-matrix elements for the f rf perturbations, were first obtained by Smirnov 11 .12 21
w xSubsequently, using a somehow different kink basis, Chim and Zamolodchikov 17

defined alternative scattering elements for the model. The latter formulation, being more
suitable for analytic continuation at arbitrary values of q, has been used by Cardy and

w xDelfino 6 to make predictions about the values of some universal amplitudes. The
method used is a variant of the form-factor approach to the correlation functions

w xproposed in 18 .

3. The observables

3.1. Magnetization

The magnetization of a given configuration is defined as

1
ms s x , 12Ž . Ž .Ý amV x

where V'L2 is the volume of the lattice and a is the value of the spin correspondingm

to the majority of the spins. However, in a finite volume at arbitrary finite low
temperature the S symmetry of the model is not spontaneously broken. Practically this4

means that, in the simulation sample, configurations with all the four possible values of
a appear with equal probability. In order to obtain a low temperature non-vanishingm

magnetization a magnetic field h that explicitly breaks the symmetry, must be coupled
to the system. The thermodynamic limit at non-zero h should be taken first, then the
limit of vanishing magnetic field could be performed. However, it is difficult to follow
this route in a numerical study. An alternative, commonly adopted, approach is to
identify a in each configuration by counting the spins belonging to the four possiblem

values of a and then extracting the majority one. This procedure works in a satisfactory
way if the lattice size and coupling constants are such that the probability of finding
interfaces among different vacua is negligible. We carefully chose our lattice sizes so as
to satisfy this bound.1

In the following we shall assume for simplicity that a s0 is the value of them

majority spin and shall denote the remaining three values with Latin indices i, j,k, . . . s
1,2,3.

1 Let us note, as a side remark, that this procedure in the Ising case is equivalent to the choice

1
² : ² < <:m ' lim m ms s ,Ý iž /VL™` i

where the s ’s are in this case Ising spins. The finite size behaviour of this observable was carefully studied ini
w x19 . It was shown that this choice converges to the infinite volume value better than any other existing
proposal and that the asymptotic, infinite volume, value is reached for lattices of size L);8j , where j

denotes the correlation length. In our simulations we always used lattice sizes much larger than this threshold.
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b y bc w xClose to criticality and at t' -0, the magnetization scales as 4
bc

y1r81r12² :m ;B yt ylog ytŽ . Ž .Ž .

=
3 log ylog yt 1Ž .Ž .

1y qO . 13Ž .ž /16 ylog yt log ytŽ . Ž .

3.2. Magnetic susceptibility

The susceptibility

² :E m
xs 14Ž .

E H

gives the response of the magnetization to an external magnetic field and it can be
expressed in terms of moments of the magnetization

² 2: ² :2
xsV m y m . 15Ž .Ž .

In the high temperature phase this means

² 2: ² 2:xsV m sV s , 16Ž .a

Ž . 2where a is any one of the four values 0,1,2,3 .
In the broken symmetric phase, depending on the choice of coupling the external

Ž .magnetic field to the majority spin or to one or more of the other values, two kinds of
w xsusceptibilities can be defined 21

² 2:x s s longitudinal, 17Ž .l 0

2² :x s s ys i/ j transverse. 18Ž . Ž . Ž .t i j

In this paper we concentrate on the longitudinal susceptibility x .l
Close to the critical temperature x and x scale as3

l

< <9 log ylog t 1Ž .3r4y7r6 < <x;G t ylog t 1q qO t)0 ,Ž . Ž .Ž .q ž /< < < <8 ylog t log t

< <9 log ylog t 1Ž .3r4y7r6 < <x ;G yt ylog t 1q qO t-0 .Ž . Ž .Ž .l y ž /< < < <8 ylog t log t

19Ž .

2 Notice however that, inspired by the analogy with the Ising model or by the embedding in the AT model,
Ž .different definitions of the order parameter hence of the mean magnetization in the symmetric phase are

possible. For instance
² : ² :m s s ys1 a b

with a / b or
² : ² :m s s ys qs ys2 a b g d

with a / b /g /d . The corresponding susceptibilities are related to x by simple multiplicative constants. In
w xcomparing our results with those of Refs. 4,20 one must take into account this different normalization.

3 w xNotice that there is a misprint in the analogue of this equation in Ref. 4 .
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3.3. Internal energy and specific heat

The internal energy is defined as

1
Es d , 20Ž .Ý sŽ x . , sŽ y.2V ² :x , y

and the specific heat as

² :d E
22² : ² :C' s2V E y E . 21Ž .Ž .

db

Duality relates both internal energy and specific heat in the low temperature phase to
those in the high temperature phase. The relations are

˜yb yb ˜1ye E b s1y 1ye E b , 22Ž . Ž . Ž .Ž . Ž .
22 ˜yb yb yb yb˜C b 1ye qe 1ye E b sC b 1yeŽ . Ž . Ž . Ž . Ž .Ž .

˜ ˜yb yb ˜qe 1ye E b . 23Ž .Ž . Ž .
Close to the critical temperature we have

< <3 log ylog t 1Ž .y1y2r3 < <C;A t ylog t 1y qO t)0 ,Ž . Ž .Ž .q ž /< < < <2 ylog t log t

< <3 log ylog t 1Ž .y1y2r3 < <C;A yt ylog t 1y qO t-0 .Ž . Ž .Ž .y ž /< < < <2 ylog t log t

24Ž .

3.4. Second moment correlation length

We consider the decay of so-called time-slice correlation functions. The magnetiza-
tion of a time slice is given by

1
S x s s x , x . 25Ž . Ž . Ž .Ýa 0 a 0 1L x1

Let us define the correlation function

² : ² : ² :G t s S x S x qt y S x S x . 26Ž . Ž . Ž . Ž . Ž . Ž .� 4Ýab a 0 b 0 a 0 b 0
x0

Ž .For any choice of the indices a and b in 26 , the dominant large distance behaviour of
Ž .G t is dominated by the lowest mass of the model,

G t Aexp ytrj , 27Ž . Ž . Ž .
where j is the exponential correlation length and coincides with the inverse of the
lowest mass of the model. However, at low temperature, the rich structure of the

Ž w x.spectrum cf. Ref. 6 can mask this asymptotic behaviour. For this reason, in the
following, we shall concentrate on G which has the ‘‘neatest’’ asymptotic behaviour.00
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w xThis will also allow us to directly compare our results with those of Ref. 6 . In the high
temperature phase the lowest mass is well separated from all other excitations in the
spectrum and extracting the exponential correlation length is much simpler.

Close to criticality the behaviour of the correlation length is governed by the scaling
laws

< <3 log ylog t 1Ž .1r2y2r3 < <j; f t ylog t 1q qO t)0 ,Ž . Ž .Ž .q ž /< < < <4 ylog t log t

< <3 log ylog t 1Ž .1r2y2r3 < <j; f yt ylog t 1q qO t-0 .Ž . Ž .Ž .y ž /< < < <4 ylog t log t

28Ž .

We are also interested in the second moment correlation length j , to evaluate j we2 2
w xused the estimator 4,20

1r2x
y1ž /FŽ2.j ' , 29Ž .

2sin prLŽ .

where x is the susceptibility and F is the Fourier transform of the correlation function
Ž .at the smallest non-zero momentum 2prL,0 .

Notice that the susceptibility can be rewritten as the zero momentum Fourier
transform of the correlation function, hence, in order to have a consistent definition, the
same correlation function must be chosen in both x and F. In the low temperature
regime we are interested in setting the longitudinal susceptibility

x ' G x 30Ž . Ž .Ýl 0,0
x

Ž .in Eq. 29 , hence, we shall study

F' e2 ip x1 r LG x . 31Ž . Ž .Ý 0,0
x

j is a very popular approximation for the exponential correlation length since, in2

Monte Carlo simulations, its numerical evaluation is much simpler than that of j .
Moreover, it is the length scale which is directly observed in scattering experiments.

Ž w x.It is important to stress that j and j are not fully equivalent cf. Ref. 3 , even though2

their critical behaviours are the same up to a multiplicative factor. In particular, the ratio
jrj gives an idea of the density of the lowest states of the spectrum. If the lower2

excited states are well separated the ratio is almost one, whereas a significantly bigger
ratio indicate a denser distribution of states. Furthermore, different choices of the

Ž . Ž .correlation function in Eqs. 30 , 31 lead to different values of j , while the2

exponential correlation length is always the same. A careful study of these differences
can give several information on the spectrum of the theory. We shall call the critical
amplitudes f for j to distinguish them from f .2," 2 "
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4. Amplitude ratios

We are interested in the following amplitude ratios

G fq 2,q
R s , R s , 32Ž .x j ,2

G fy 2,y

and the following amplitude combinations:

G Gy q
R s R s , 33Ž .1 22 2 2 2f B f B2,y 2,q

Ž .which are scale invariant thanks to the hyper scaling relations among the critical
exponents

aq2bqgs2, dns2ya . 34Ž .

We are also interested in the combinations

A Gq qq qR s , R s A f , 35Ž .(c j q 2,q2B

A Gy yy yR s , R s A f . 36Ž .(c j y 2,y2B

Ž .which have particularly interesting behaviours in the four-state Potts model see below .
We shall neglect the amplitude ratio A rA which is trivially 1 due to duality.4q y

5. The simulations

We produced a standard cluster algorithm using both the Wolff single cluster update
and the Swendson–Wang cluster update. After preliminary tests, we used the latter
algorithm for our high statistic simulations.

To check our program we made comparisons of the MC results with the exact
2 w xsolution on a 3 lattice and with the Salas and Sokal 4,20 results at the critical point on

a 162 lattice, with a comparable statistics.
We simulated the four-state Potts model in the high and low temperature phases for

16 values of the couplings which were chosen exactly as dual pairs. This choice allowed
us, first, to perform a very stringent test on our estimates for the thermal observables
which must be related by duality and, second, to obtain a direct estimate of some
amplitude ratios. The results for the observables in which we are interested are reported
in Tables 1, 2 and 3.

4 In principle this result could be used to test our simulation. But such a test is completely equivalent to the
Ž .test of the duality relation 23 that we perform in Tables 4 and 5.
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Table4
Ž .Comparison between the internal energy measured in the simulation at high temperature second column and

Ž .the values obtained, from the internal energy measured at low temperature, using the duality relation 22
Ž .third column

Ž .b HT LT q Eq. 22

Ž . Ž .1.06722 0.64604 6 0.646061 5
Ž . Ž .1.07722 0.66318 6 0.663179 7
Ž . Ž .1.07972 0.66808 6 0.668074 8
Ž . Ž .1.08222 0.67337 6 0.673365 8
Ž . Ž .1.08472 0.67909 6 0.679055 9
Ž . Ž .1.08722 0.68544 6 0.685341 10
Ž . Ž .1.08972 0.69232 6 0.69240 1
Ž . Ž .1.09222 0.70056 6 0.70060 1

Lattice sizes were chosen large enough to make finite size effects negligible within
our statistical errors. After a preliminary test on the finite size behaviour of our
observables we chose L)10j in the high temperature phase and L)20j in the low
temperature phase, a default size Ls120 was taken for small values of j . In each
simulation the number of measurements was 2=107. Each measurement was separated
from the next one by two Swendsen–Wang updates. A standard jacknife procedure has
been used to analyze statistical errors.

6. Analysis of the results

6.1. Energy and specific heat

Ž .By using Eq. 22 we have a non-trivial test of our estimates both for the energy and
for the specific heat. In Table 4 we compare the results for the internal energy in the

Ž .high temperature phase with those obtained using Eq. 22 and the values measured with

Table5
Ž .Comparison between the specific heat measured in the simulation at high temperature second column and the

values obtained, from the internal energy and the specific heat measured at low temperature, using the duality
Ž . Ž . Ž .relations 22 , 23 third column

Ž .b HT LT q Eq. 23

Ž . Ž .1.06722 1.571 12 1.555 1
Ž . Ž .1.07722 1.892 13 1.903 2
Ž . Ž .1.07972 2.018 14 2.032 2
Ž . Ž .1.08222 2.189 15 2.191 2
Ž . Ž .1.08472 2.405 15 2.391 3
Ž . Ž .1.08722 2.614 22 2.646 3
Ž . Ž .1.08972 3.033 24 3.011 4
Ž . Ž .1.09222 3.574 35 3.579 5
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Table6
Comparison of our Monte Carlo results for the magnetization with a Pade resummation of the series of Ref.´
w x22

b Our MC Series

Ž .1.130500 0.633288 7 0.633275
Ž .1.120231 0.612874 11 0.612863
Ž .1.117684 0.606331 13 0.606310
Ž .1.115135 0.598834 14 0.598853
Ž .1.112597 0.590219 16 0.590268
Ž .1.110065 0.579950 19 0.580154
Ž .1.107540 0.567272 26 0.567899
Ž .1.105020 0.550686 23 0.552456

the dual coupling, at low temperature as input. A similar comparison for the specific
heat can be found in Table 5.

6.2. Magnetization and susceptibility

In Tables 6 and 7 we compare our results for the magnetization and the low
w xtemperature longitudinal susceptibility with the series of Ref. 22 . Both for the

magnetization and for the susceptibility we used the diagonal Pade approximant. As´
expected, the agreement, which is rather good far from the critical point becomes worse
and worse as b is approached. Notice however that we used the simplest possiblec

resummation technique, more sophisticated approaches like the double biased IDA of
w xRef. 23 could give better results and could also give a way to estimate the systematic

Žerrors involved in the truncation and resummation of the series for an attempt in this
w x. 5direction in the case of the 3d Ising model see for instance Ref. 3 . In the case of the

susceptibility the discrepancy between the results from the series expansion and our
Monte Carlo are larger and only the first value of beta agree within the errors. It is clear
however that we are pushing the series to their limit of validity and in fact, looking at

Žnon-diagonal Pade approximants, one sees very large fluctuations much larger than in´
.the case of magnetization in the series estimates.

7. Scaling behaviour

Let us now address the problem of extracting the continuum limit values of the
quantities discussed in the previous section. As mentioned in Section 1, due to the
presence of large corrections to scaling terms, this requires a rather non-trivial analysis.
We followed a three step procedure.

Ž .1 As first test we tried to fit the data using only the dominant multiplicative log
correction keeping into account for C and x the possible existence of bulk constant
terms. Hence a one-parameter fit for j and m and a two-parameter fit for C and x . In2

all cases we found very high x 2 and, even eliminating all the data except the twor

5 w xIn comparing our values of the magnetization with those of Ref. 22 one must notice that there is a factor
4r3 between the two definitions of magnetization. On the contrary, there is complete agreement between the
two definitions for the longitudinal susceptibility.
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Table7
w xComparison of our Monte Carlo results for x with a Pade resummation of the series of Ref. 22´l

b Our MC Series

Ž .1.130500 1.2180 9 1.2187
Ž .1.120231 2.1072 23 2.1241
Ž .1.117684 2.5080 26 2.5395
Ž .1.115135 3.0572 36 3.1179
Ž .1.112597 3.8447 51 3.9661
Ž .1.110065 5.0315 72 5.3242
Ž .1.107540 7.053 14 7.795
Ž .1.105020 10.987 19 13.647

couplings nearest to b , it was impossible to reach a reasonable confidence level. Thisc

clearly indicates that additive corrections to the scaling cannot be neglected.
Ž . Ž2 The second step was to add the first non-universal correction, that of the form

.1rlog . At the same time we also included the universal corrections evaluated by Salas
and Sokal, which are of the same order of magnitude and do not add degrees of freedom

Ž .in the fit. The resulting fitting functions are see Section 3
< <9 log ylog t aŽ . 13r4y7r6< < < <x t sa qG t ylog t 1q q , 37Ž . Ž .Ž .0 " < < < <8 ylog t ylog t

2 < <3 log ylog t aŽ . 11r2y< < < <3j t s f t ylog t 1q q , 38Ž . Ž .Ž .2 2," < < < <4 ylog t ylog t

< <3 log ylog t aŽ . 1y1r81r12< < < <m t sB t ylog t 1y q . 39Ž . Ž .Ž .
< < < <16 ylog t ylog t

< <3 log ylog t aŽ . 1y1y2r3< < < <C t sa qA t ylog t 1y q , 40Ž . Ž .Ž .0 " < < < <2 ylog t ylog t

Ž .We performed these two- or three- parameter linear fits, first taking into account all
the data and then systematically eliminating those farthest from the critical point until an

2 Ž 2 .acceptable reduced x namely a x lower than 1 was reached. In all cases, except for
the magnetization, with this second step we reached an acceptable C.L. and stopped.
Notice that in most of the cases such acceptable C.L. could be reached keeping all the

Ž .data see the second column of Table 8 . We also realized at this stage that the critical

Table8
Results of the fits for susceptibility, magnetization and correlation length. In the second column we report the
number of data taken into account in the fit, in the third column the reduced chi squared and in the fourth
column the confidence level of the fit. The last four columns contain the best fit estimates of the parameters of

Žthe fit. For the magnetization we also have the contribution of a next to leading magnetization operator see
.text a2

2Obs. N x C.L. Amplitude a a ar 0 1 2

Ž . Ž . Ž .x 8 0.93 46% G s0.0223 14 0.05 14 6.5 4q q
Ž . Ž . Ž .x 8 0.44 81% G s0.00711 10 0.02 1 y1.24 10y y

Ž . Ž .j 8 0.48 82% f s0.192 4 1.35 112,q 2,q
Ž . Ž .j 7 0.44 82% f s0.088 4 1.06 272,y 2,y
Ž . Ž . Ž .m 8 0.80 54% Bs1.1621 11 y0.220 6 y0.144 9
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amplitudes A could be obtained in a much more efficient way by looking at the"

internal energy data. We shall discuss this point in detail in Subsection 7.1.
Ž .3 In the next step we added a next-to-leading non-universal correction. Among the

various possible terms we chose the one giving, in the range of values of b of our
simulations, the largest contribution. We had to resort to this last step only for the
magnetization. In this case there are two competing corrections. The first one is the
1rlog2 term: certainly expected due to the presence of the marginal field. But there is
also second possibility: thanks to the CFT solution of the model we know that in the
spectrum there is a subleading magnetic operator to which corresponds a new critical
index b

X s3r4.
The two terms have comparable magnitude, but it turns out that the subleading

magnetic correction gives a slightly larger contribution in the range of interest. So,
according to our strategy, we kept only this contribution and neglected the 1rlog2 one.
The resulting scaling function is

< <3 log ylog t aŽ . 1y1r81r12 2r3< < < < < <m t sB t ylog t 1y q qa t .Ž . Ž . 2< < < <16 ylog t ylog t

41Ž .
Adding also the subleading magnetic term in the fit we found an impressive lowering

of the x 2.
The results of these fits are summarized in Table 8. It is important to stress that all

the quoted errors are statistical. Apart from them we also expect systematic errors due
Ž < <.to the truncation of the scaling functions to O log t or, in the case of the magnetiza-

tion, to the choice of the next-to-leading non-universal correction. In Subsection 7.2 we
shall discuss this problem in more detail.

7.1. The critical amplitudes A"

The most efficient way to obtain the critical amplitudes A is to fit the internal"

Ž .energy for which we have very precise data instead of the specific heat. The bulk value
3Ž . Ž .of the energy is known from duality to be E b s however, due to the finite size ofc 4

the lattice that we simulated we must account for possible small deviations from this
asymptotic result. We end up with the following fitting function:

3 y11r3< < < < < <E t s qa qa t q3 A t ylog tŽ . Ž .y1 0 "4

=
< <3 log ylog t aŽ . 1

1y q . 42Ž .
< < < <2 ylog t ylog t

A severe constraint on the results of this fit is represented by duality which implies
A sA . The result of the fits in the low and high T phases are reported in Table 9,q y

Table9
Results of the fits for the internal energy

2Obs. N x C.L. Amplitude a a ar y1 0 1

Ž . Ž . Ž . Ž .E 7 0.67 57% A s1.29 5 y0.0001 29 3.0 1.3 y1.47 48q q
Ž . Ž . Ž . Ž .E 7 0.87 45% A s1.316 9 y0.0056 5 1.30 18 y0.93 6y y
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where it can be seen that the values of a , and A extracted in the two phases are0 "

indeed compatible within the errors and that a is, as expected, very small. Combiningy1
Ž .the two estimates of A and A we extract as our final estimate: A s1.30 6 .q y "

7.2. Non-uniÕersal corrections

A crucial ingredient to test the reliability of the above fits is given by the magnitude
of the non-universal corrections. In the range of b values that we studied the log of the
reduced temperature t takes values which range from y4 up to y5. The non-linear
contributions listed in Tables 8 and 9 must be compared with this reference scale. One

Žeasily realizes that for all quantities these corrections are rather large they are more or
w x.less of the same order of magnitude of the universal corrections evaluated in Ref. 4

and in the particular case of the high temperature susceptibility they are very large. This
suggests that, even if the fits have a very good confidence level, caution is needed in
assuming the best fit estimates for the amplitudes which could be affected by systematic
deviations. Notice that there is no hope to control such large non-universal contributions
by tuning b towards the critical temperature. In fact it would be necessary to gain at

Ž .least a factor 10 in log t which, as can easily be seen, would imply a huge enhancement
of j .

We tried to estimate the systematic errors which affect our estimates of the critical
amplitude with the following method. We repeated the analysis discussed above adding

Ž Ž ..2 Žin the fitting functions a term of the form 1r log t which in the range of values of t
.that we study is the largest among the corrections to scaling terms that we neglect with

amplitude equal in modulus to the a amplitudes listed in Tables 8 and 9 and with plus1
Žand minus sign. The two resulting values for the critical amplitude give an admittedly

.rough idea of the systematic deviations that we may expect in our estimates. The results
are collected in Table 10. By comparing with the statistical errors listed in Tables 8 and
9, one can see that the in all cases the systematic deviations are larger than the statistical
errors.

7.3. UniÕersal amplitude ratios

Plugging the values of the critical amplitudes quoted in Table 10 in the definitions
Ž . Ž . Ž . Ž .32 , 33 , 35 , 36 we find the values for the amplitude ratios reported in the second

Table10
Critical amplitudes with a tentative estimate of the systematic errors

Amplitude

Ž .G s0.0223 40q
Ž .G s0.00711 30y

Ž .f s0.192 102,q
Ž .f s0.088 62,y
Ž .Bs1.1621 25
Ž .A s1.30 10"
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Table11
w xComparison between our estimates for the universal amplitude ratios and those of Ref. 6

w xRatio This work Ref. 6

Ž .R 3.14 70 4.013x

Ž .R 2.19 26 1.935j

Ž .R 0.68 13 0.45391
Ž .R 0.44 13 0.48452

q Ž .R 0.021 5 0.0204c
y Ž .R 0.0068 9 0.0051c
q Ž .R 0.220 20 0.2052j
y Ž .R 0.100 10 0.1060j

column of Table 11. The errors quoted in Table 11 have been obtained by using the
systematic errors quoted in Table 10 and discussed in Subsection 7.2.

8. Comparison with field theory predictions

It is very interesting to compare our results with the R , R , Rq, and Rq estimatesx j c j

obtained, using the S-matrix form-factor approach to the correlation functions, in Ref.
w x6 . It easy to obtain the remaining four ratios by using the following relations:

Rq Rq Ry Rq
c j c cy yR s , R s , R s , R s . 43Ž .c j 1 22 2y qR Rx j R RŽ . Ž .j j

w xWe compare our final estimates and those of Ref. 6 in Table 11. We immediately
observe a good overall agreement. This agreement is highly non-trivial since, as
discussed above, in our estimates we had to face large non-universal corrections, while

w xin the predictions of 6 only the lowest states of the spectrum were taken into account
and some small discrepancies with the exact results were expected. If we trust the
overall agreement that we have found we immediately see that the major discrepancies
between the two sets of data are in the two ratios R and R , which could both bex 1

consequences of a biased estimate of G . It would be important to understand the reasony
of this discrepancy. In this respect it is worthwhile to notice that x is the onlyl

observable for which the non-universal correction has the opposite sign with respect to
the universal additive one.

9. Concluding remarks

w xThe aim of this paper was to test the recent predictions of Ref. 6 for various
amplitude ratios in the four-state Potts model, with the results of a high precision Monte
Carlo simulation.
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We made four tests on the results of our simulations:

Ø Comparison with exact results for small lattices.
w xØ Comparison with the results of Refs. 4,20 at the critical point.

Ø Comparison with low temperature series.
Ø Agreement with the duality relations.

All these tests were successfully passed.
In looking at the scaling behaviour of our observables, we had to face a major

problem, due to the presence of a marginal field in the spectrum. In performing the
analysis we used the recent results of Salas and Sokal on the universal additive
log logrlog correction terms, and found in our fits the same behaviour and the same

w xfeatures that they reported in Ref. 4 where they looked at the finite size corrections at
the critical point.

We found a relatively good overall agreement with the predictions of Cardy and
Delfino with the exception of two ratios involving the low temperature susceptibility. It
remains an open problem to find a more efficient way of dealing, in the analysis of
Monte Carlo data, with corrections originated by the presence of marginal operators.
These contributions are the probable main cause of these discrepancies.
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