

An application of ecosystem services provided by microalgae for bioremediation strategies

Marta Zoppi^{1,2,3}, Benoît Schoefs³, Justine Marchand³, Elisa Falasco^{1,2}, Francesca Bona^{1,2}

 ¹ DBIOS, University of Turin, Turin, Italy.
 ² ALPSTREAM, Alpine Stream Research Center/Parco del Monviso, Ostana, Italy.
 ³ Metabolism, Molecular Engineering of Microalga and Applications (MIMMA), Biologie des Organismes Stress Santé Environnement, Le Mans University, Le Mans, France.

marta.zoppi@unito.it
in Marta Zoppi

DBios

Biologie des Organismes, Stress, Santé, Environnement Le Mans Université - UCO Angers

1 BACKGROUND

Ecological services provided by diatoms

Circular economy approach to water resource management

Water preservation

valorization

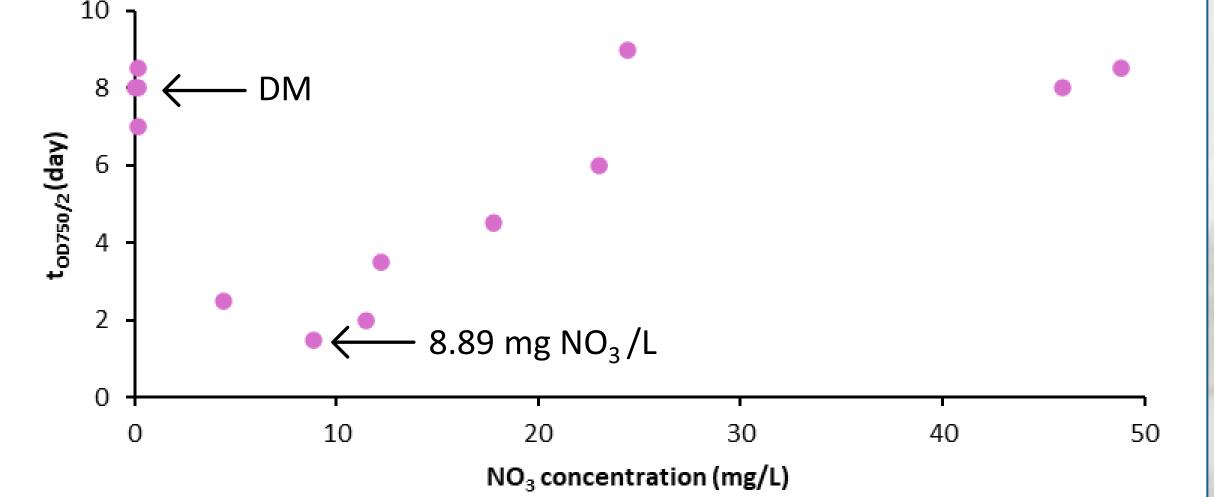
Wastewater reuse and

Achnanthidium sp.

RESULTS

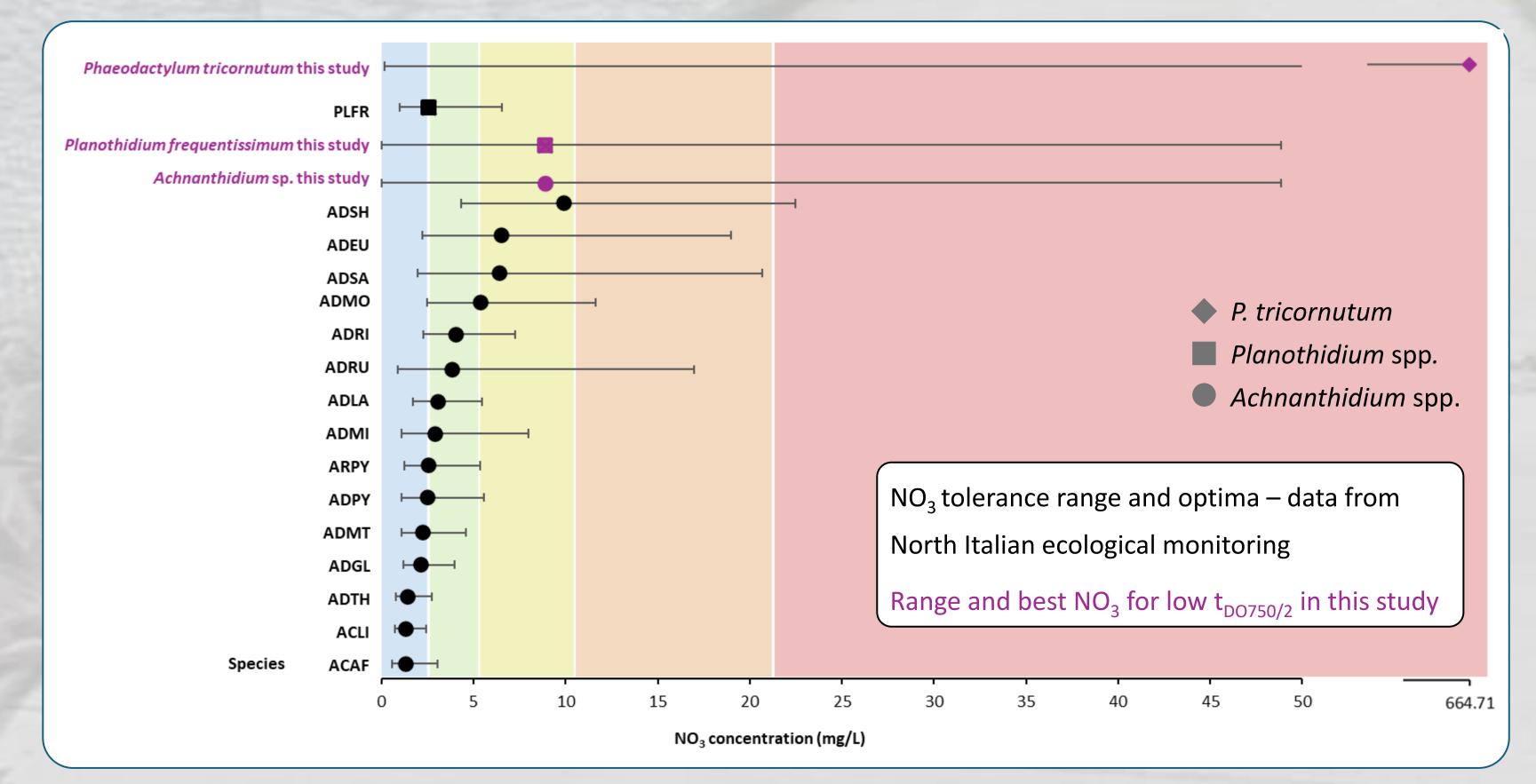
- Provisioning
- Regulating
- Supporting

2 AIMS


- 1. Test diatom growth response to increasing nutrient concentrations
- 2. Evaluate the bioremediation potential

3 METHODS

DIATOMS


One marine species and two benthic species:

Phaeodactylum tricornutum:
 Pt1 strain adapted to freshwater

ACHNANTHIDIUM SP. AND PLANOTHIDIUM FREQUENTISSIMUM

- In this study, 8.89 mg NO_3/L is the best concentration for unialgal culture
- Diatom Medium (DM), consisting of 0 mg NO_3/L , determines high $t_{DO750/2}$

- Achnanthidium sp.
- Planothidium frequentissimum

SPIKED AQUACULTURE WASTEWATER Aquaculture wastewater originating from trout farming may have high **nutrient concentrations**.

Spiked wastewater was enriched in NO_3 , with concentrations ranging from 0.15 to 48.84 mg/L.

Tests performed in multiwell plates:

Absorbance at Optical Density 750 nm

D

t_{OD750/2} inferred from OD data

LIMeco index (Italian regulation, D.M. 260/2010)

Ecological status	High	Good	Moderate	Poor	Bad
NO3 mg/L	< 2.64	≤ 5.28	≤ 10.56	≤ 21,12	> 21,12

 NO_3 concentrations from this study are consistent with tolerance ranges and optima values for species in natural biofilms (data from North Italy)

PHAEODACTYLUM TRICORNUTUM

- *Pt1* demonstrate growth in a wide NO₃ concentration: 0.15 664.71 mg/L
- F/2 Medium consisting of 664.71 mg NO₃/L determines the lowest $t_{DO750/2}$
- Results are consistent with Scarsini et al., 2022: cell division rate is similar in a range 0.15 – 13 NO₃ mM

6 CURRENT EXPERIMENTATION

Growth and bioremediation tests in Multi Cultivator 1000-OD (PSI, Czech Republic)

MEASUREMENTS

Concentrations of NO_3 and PO_4 , chlorophyll fluorescence, lipids content, fluorescent spectrum, pigments

CONCLUSIONS

- Achnanthidium and Planothidium species demonstrate the ability to grow in waters with moderate-to-bad ecological status in both monospecific strain (this study) and diatom communities (data from North Italy)
- *Phaeodactylum tricornutum* is known for growing in high NO₃ concentration

The three species are suitable candidates for bioremediation trials

This publication is part of the project NODES which has received funding from the MUR – M4C2 1.5 of PNRR funded by the European Union - NextGenerationEU (Grant agreement no. ECS00000036).

Funded by the
 European Union
 NextGenerationEU