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Abstract 
 

Bioinformatics continues to be more and more integrated in numerous biological 

frameworks and this emphasize the importance of generating reproducible and reliable results. 

The current project provides evidence about reproducibility solutions in the area of applied 

bioinformatics in transcriptomics/genomics, and aims to identify factors influencing 

reproducibility.  

Reproducible Bioinformatic Project (RBP) is a no-profit open source project based on 

three modules docker containers, docker4seq and 4SeqGUI and was developed for enhancing 

reproducibility in transcriptomics/genomics workflows. In this study docker containers have 

been used as a platform to embed different tools, packages and dependencies necessary for the 

analysis of different sequencing data types. The docker4seq package in RBP comprises of a 

number of workflows designed and directed for the analysis of mRNA, miRNA and ChIP-seq 

data sets, confering reproducibility to each individual task. It integrates command line (Bash) 

and R programming languages with a user-friendly GUI interface, making it accessible for both 

bioinformaticians, as well as biologists with little-to-no prior skills in computational analysis.  

One of the workflows, implemented in the docker4seq package was used to analyse the 

miRNAs profiles from four biofluids: plasma exosomes, stool, urine and cervical scrapes. Both 

common and uniquely present miRNAs were identified in each biospecimen and their 

differential expression analysis helped in classifying and understanding the distribution of these 

regulatory elements in the different human surrogate tissues. Moreover, uniquely identified 

miRNAs were cross-validated with previously published studies and were found to be 

biomarkers for different diseases, such as diabetes, colorectal and pancreatic cancer. 

The designed workflows developed and embedded in the docker4seq package were 

validated and successfully applied in a number of already-published studies, thus demonstrating 

the versatility, utility, efficiency and scalability of our pipelines. In addition, an increasing 

number of users reports satisfactory usage of our tools. 
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Chapter 1 

Introduction  

The term Reproducibility reminds me of a very famous story of the 17th century, when 

famous Irish chemist, Robert Boyle was working on “vacuum” considered at that time to be a 

questionable topic. Although two other well-known scientists – René Descartes and Thomas 

Hobbes believed that vacuum did not exist, Boyle designed an air pump to generate and study 

the vacuum, and continued to repeat the same experiments time and time again, believing that 

others will eventually trust them as facts. It was during a time like that, when building an air 

pump was overall cost inefficient and difficult, that the first documentation of “reproducibility” 

was recorded. Similarly, in 1660s the Dutch scientist Christiaan Huygens from Amsterdam 

build his own air pump, that being the first time an air pump was built without Boyle’s direct 

support. Huygens’s air pump seemed to be a success, as he performed experiments that defined 

the effect of "anomalous suspension of water", through which he observed that water in the 

glass jar inside the air pump seemed to drift away. 

 During the same time in England, Boyle failed to replicate the same experiment with 

his own-designed pumps, thus making Huygens’s observations on “anomalous suspension” 

hard to accept by the scientific community. Hence, Huygens was invited to perform his 

experiment in England in 1935 and with his collaboration and expert guidance, Boyle was able 

to replicate the anomalous suspension of water (Schaffer S. et al., 1985). With all these 

scientific allegations, it expressed the need for reproducibility as the necessary condition for 

demonstrating a scientific fact. At that time, a famous statistician Ronald Fisher for the first 

time wrote the book ‘The Design of Experiments’ in reference to reproducibility for statistical 

scientific. (Fisher R., 1971; Popper K., 1992) 

In Science newsletter article of May 2015 – ‘What does “reproducibility” mean?’ 

reproducibility was defined as the ability to reproduce an experiment for achieving exactly the 

same results, independently of the location and the operator. In simple terms, users could try to 

replicate an analysis using the same raw data and same pipeline(s), in order to produce same 

results and confirm the reliability of the method.  

 

https://en.wikipedia.org/wiki/Robert_Boyle
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These aspects always remind me of situations in which I have tried to reproduce my 

own findings and of the importance of obtaining comparable results, supporting my hypotheses. 

For example, my colleagues and I have faced difficulties in replicating differential expression 

analysis results for RNA-seq data, performed a few months before. To our surprise, we were 

unable to reproduce our initial findings using the same code, the same data, the exact same tools 

and computer. We checked file by file and every line in the code, trying to understand what 

were the reasons behind the variation in our results on the same data sets previously analysed. 

Eventually, we realized there was one thing in particular we had not paid attention to, and that 

were some R packages, which had been updated. After reinstalling the old versions we had used 

before, we could confirm our initial results. This made us realise that the code and data used 

are not the only important aspects in reproducible studies, but also the software versions and 

the depending packages. These are pivotal in terms of reproducibility.  

A similar incident, named the “Duke Saga” was reported at the University of Duke” by Dr. 

Anil Potti and his colleagues, who had developed a method for studying the gene expression 

information from high-throughput microarrays of cancer samples. They had used the data for 

detecting and anticipating responses to the different drugs used in chemotherapy. At that time, 

their method was considered revolutionary in the sector of personalized medicines, but it posed 

problems when other two biostatisticians – Baggerly K. A. and Coombes K. R. (2009) tried to 

reproduce Duke’s studies. They found contradicting results and concluded the initial studies 

were flawed and did not pay careful attention to data reporting, and paper documentation 

production. Thus, they reported there were not sufficient proofs to support the findings, which 

failed to be replicated, based on the following points: (Buffalo V., 2015) 

a) The whole genes list was demonstrated to be shifted down in relation to the identifier. 

b) Two outliers identified were not on the microarray that was used in the study 

c) There was utter disorientation in the treatment and dates recorded for the microarrays 

d) The experiment group names were mislabelled. 

  Keith Baggerly and Kevin Coombes both have very well complied their studies and 

highlighted that how most common errors are simple, conversely, most simple errors are 

common in Duke’s research article. They also emphasized that poor documentation can not 

only lead to inconvenience but can be misleading for other readers. In their research article that 

have provided 5 different case scenarios where the results have simple errors which might put 
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patient life at risk. Its time now we consider “Reproducibility” an important issue, especially in 

health sciences. (Baggerly K.A. and Coombes K.R., 2009) 

The above embarrassing stories highlight why reproducibility is required. Computational 

Analysis in pre-genomic era, data size was very small, and data were shared only using hard 

drives, CDs, but nowadays, data size can rise to terabytes. In mid 2000s the Sanger sequencing 

was slowing getting replaced by less expensive sequencing technologies. After the data size 

increased and work around the sequencing became a routine, bioinformaticians were involved 

in developing automated tools and software that could check sample quality, perform statistic 

analyses, annotate features, build reports and store results in. Before bioinformatics, such work 

was very laborious and could only be performed for a limited number of genes at a time.  

However, it stills seems a difficult task for the biologists to perform the bioinformatics 

analysis using tools and software as they lack the mathematical and statistical background to 

understand how a particular package works. Many tools have only command line operations; 

therefore, tools are chosen based on easy to use. Many biologists use the default parameter that 

are available with the tools, this might not always be right, the default parameter worked best 

for the test dataset that the developer has used, as each dataset has its own challenges and 

limitations, this can also lead to inappropriate results.  

Some Biologists might design their own pipeline to analyse the data but they should also 

consider the fact as to how they want to share the pipeline and update it from time to time, in 

most of the cases the pipelines are not updated and left alone and often the developed pipelines 

are not even released, adding to the difficulty level for the reviewers and reads to wonder ‘how 

did they get the results’? (Preeyanon L. et al., 2016).  

 

1.1 Motivation for research 

 

Biological data is considered to be one of the ‘big problem’, but in reality, it is just one 

side of a bigger problem. It seems that researchers are having a hard time analysing the big data 

due to the lack of infrastructure and understanding of the data in such a way that it can be 

reused. The invention of microarray technology for the first time in biological sciences was 

producing a huge amount of data, which could be understood and analysed only with sufficient 

amount of training specifically given in that domain. The advent of NGS produced an explosion 
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of data generation. Analysis and interpretation of such vast sequencing data still remains 

challenging as they rely heavily on complex computer techniques. This eventually motivates us 

to take into consideration that researchers should be able to repeat their analysis end to end. 

(Nekrutenko A. and Taylor J., 2012) 

Moralistically, reproducibility is an extremely important term, not only for science, but 

also as a scientist it makes research more attainable. The basic requirement of reproducible 

studies is that one should at least be able to reproduce his/her research, this will help to increase 

the productivity. This will in-turn consistently bring into practice to make it a habit. Lastly, the 

reviewers could also be given the access to the methods, scripts, software to actually reproduce 

the results when reviewing the research papers, which will lead to increasing trust, passion 

towards research and citation of the work. (Sandve G. K., et al., 2013) 

Karl Popper once said the best that, if you are the only person who can produce results 

and others find it hard time producing the same result, then it has not much significance in 

science. It also causes no trust with such results. It is audacious to build a theory on such an 

unconfirmed finding, and is a waste of time, efforts and resources to build a hypothesis/theory 

on such a result. The capabilities of the inventions are in the convenient use of methods/tools 

for other researcher to administer to their own problems. Science is cohesive, other should be 

able to pick it up from the piece where one has left to continue to produce new findings, it 

should be as transparent as possible. (Popper K., 1992) 

 

1.2 Aim and scope for research  

Addressing the reproducibility problem is challenging and may require multi-way 

approach. In this thesis I aim to address the reproducibility issue using docker images and R 

packages to allow reproducible results in transcriptomics and genomics (Figure 1.1). I also aim 

to articulate the challenges and help aid the implicit and explicit requirement of reproducibility 

to support reproducible bioinformatics workflows and guide the community forward in 

increasing reproducible research in field. Although, my focus here is on the transcriptomics and 

genomics data processing, principles and challenges also more broadly apply to other omics 

studies as well. The Reproducible Bioinformatics Project is a non-profit and open source 

project. I have implemented the workflows in R-functions embedded in a package available at 

GitHub-repository.  
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Reproducibility is not only useful in biological sciences but is also useful in extended 

fields. In this project we have tried to answer the questions as to, how we can implement 

reproducibility in different NGS workflows, highlighting important criteria that make the 

workflow reproducible-friendly . 

The scope of reproducible studies is very vast and is been actively investigated in 

various fields. The researchers at the National Cancer Institute in France were working on 

project which provided complete diagnosis and interpretation for example QC or variant 

knowledge annotation for oncology studies, they wanted to deploy this existing workflow to 

most of the French hospital laboratories. The computational tool that they used was command-

lines and workflow systems in Galaxy, special care was taken in embedding the exact same 

version of tools and packages. This workflow embeds large number of tools and make use of 

many databases at the same time. The change in the database version implies an update, 

development and validation of a new stable version of the workflow. A regular maintenance of 

the workflow is done and ensured with a test dataset to validate the tools. (Cohen-Boulakia S. 

et al., 2017) 

A similar study was conducted on the same lines of reproducibility by a different group 

researcher. The team evaluated eight different algorithms for analysing Gene Set Gene 

Enrichment. Out of the 8 they identify CERNO a novel algorithm which outperformed the rest 

Figure 1.1: A specific reproducible bioinformatics workflow in a biological experiment 

Sequencing Raw data 

Samples 

Bench biologists 

Thesis focus –  

“reproducibility

” 

Interpretable results 
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of the algorithm tested along with it. Coincident Extreme Ranks in Numerical Observations 

(CERNO), was not only considered to be highly reproducible but was also sensitive and fast. 

The comparison study conducted by the team was concluded by ranking CERNO highest in 

terms of reproducibility (Zyla J. et al., 2019). Such studies have helped me in designing my 

project. 

 

1.3 Significance of study 

Essentially science is expected to be reproducible, but it is not tested all the time. Every 

new finding is the base of the existing discovery. The published data and literature act as 

stepping stone for the new discoveries. Researchers consider the published literature as gold 

standard to build their new hypothesis. When the published data is some much relied on, it is 

highly essential for it to be validated and utmost accurately reproducible. In short, 

reproducibility is very essential, so that none of the researcher waste time is reproducing any 

experiment which is not validated before and provide enough evidence of the experiment and 

result being reproducible. (Jalees Rehmann, 2013). 

This thesis will provide an essence of the rules for reproducibility of bioinformatics 

workflows that are widely used in genomic workflows. The primary aim is to provide a baseline 

to identify a preparatory set of factors that can advance reproducibility in genomic workflows. 

We intend to present more constructive, non-hypothetical access to reproducible genomic 

analysis. The effort of us help researcher to make their study end to end as reproducible as 

possible.  

1.4 Problems in study 

By now we have a basic idea as to what is reproducibility and how important it is, we 

also have a grasp of ways to make it work. There is a large number of difficulties that drive 

reproducibility crisis in biological sciences. These difficulties are not easy to crack, some are 

environment, data and model availability, pressure to publish, gold standards, and many more. 

Each of these issues requires a focused solution and, in many cases, there is no single rule 

solution to the problem. (Popper K., 1992). Although it seems that computational 

reproducibility seems to be an easier aim compared to applying reproducibility in experimental 

biology, the increasing complexity of softwares brings challenges in reproducibility also in 

computational biology (Boettiger C., 2015). 



1. Introduction 

8 
 

1.5 Ten simple rules for Reproducible Computational Research 

Our goal as bioinformaticians is to be of help to biologists, who have little or no knowledge 

about computational biology. For such biologists, to have a pleasant experience with 

computational tools, Sandve GK has laid down specific rules to structure command line 

operations that will be useful for biologist and which are useful to make it reproducible. Now 

presenting in detail ten simple but most important rules to work with while trying to make your 

study reproducible. (Sandve G. K. et al., 2013) 

1) Results should be trackable 

Making a note of the steps involved in performing experiments producing promising results, 

is always the best to begin for reproducible studies. These steps might involve many 

interdependent steps starting from collection of raw data to the end result, for example: in 

bioinformatics studies, one-line commands, end to end scripts and finally the program. 

Therefore, all the steps whether performed as workflow or steps involved in pipeline or even 

manually, need to be recorded.  

2) Avoid manipulating steps manually that are involved in analysis 

The most efficient way to be able to reproduce results is to avoid as much as possible any 

step that involves manual writing steps.  

3) Record the exact version of the tools used 

To be able to reproduce the results exactly, one need to know or record the exact version of 

the tools used in the original work.  

4) All the scripts should have a version 

When the codes are in the development state they need to be versioned in an appropriate 

fashion. In short, every piece of code needs to be named and stored as to when it was developed 

and for what reason.  

5) Recording the results in between in a standard format 

Theoretically, being able to fully trace back the code, the mid-way results can be anyway 

re-established. However, storing the results and skimming through the results can help 

understanding what exactly have we done in the script to achieve a particular result.  
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6) Note and provide random seeds 

When random numbers generation is required the initial seed should be stored, so that all 

the random numbers generated in the analysis could be reproduced. 

7) Store raw data behind plots 

Plots from time and now have been very useful in the reading data at a glance. They provide 

an overall understanding of what the data is. The plots are also considered to be a major tool to 

for visualization, and most of the time they are modified to improve visual readability of the 

data. If one stores the raw data behind the plots, it is easier to have access to original data, 

further one can just make changes in the script to allow different visualization on the data that 

is processed, where the original data still remains intact.  

8) Generate a hierarchical analysis output, allowing transparency at every step 

A step-wise article can be made for all the data, plots and results that are involves on the 

study. This can be easily achieved by simple adding an html file along with a hyperlink at fig, 

data, result to provide a detailed description of the same. This creates a well-versed transparency 

of the analysis performed.   

9) Providing the textual statements to the results 

Usually, the result of the analysis performed, and the respective interpretation are 

disconnected, the results are placed always along with the data and the interpretation in the text 

format is not there usually along with the results, but could be present in the form of personal 

notes somewhere unrelated. Textual interpretations added to the scripts helps understanding the 

rational of the script even after long time.  

10) User access to script and results 

Finally, sharing the data results, intermediate results and scripts are what most of the 

journals now a days allow. It’s become more and more easy, accessible and standardized 

process to allow sharing. Main codes and source codes as supplementary materials. (Sandve G. 

K. et al., 2013) 

Making efforts using the above rules, will only make the reproducibility process easy and 

accessible. Moreover, it provides a strong essence of the study being exceptionally true, good 

quality and transparent, leading to good journal that other researchers will cite study.  
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1.6 Insightful Introduction to Docker  

There goes a very preliminary thought on what is docker, it’s a blessing for today’s 

complex systems. It provides excellent facilities, that are useful for developers. It poses the 

ability to build, distribute, run and is a compact lightweight packing tool. It is relatively cheap 

and now a day’s researchers prefer docker containers over traditional virtual machines. Docker 

is called the ‘hotter than the hot’ as makes desirable for more and more apps to run on the same 

old server and is believed that it goes easy on packaging and distributing. (Vaughan-Nichols 

S.J., 2018) 

In June 2014, the first version of Docker was released. Public and privat institutions are 

moving from traditional virtual machines to Docker at an expedite rate. According to recent 

reports, over 3.5 million applications have been placed in containers using docker technology 

and about 37 billion containerized application have been downloaded. There are more than 400 

research papers, which have proven the utility of docker containerization. 

Container history starts back in 2000s, when Oracle Solaris had similar technology 

called ‘Zones’ while the other companies like Parallels, Google, and Docker worked on projects 

like Linus containers develop containers to more efficiently and robustly. With container 

system, one can have four to six times the number of server application instances on the same 

machine. Secondly, containers are easy to pack, deploy and run application as a lightweight, 

independent application, which can practically virtually run anywhere. The prime difference in 

the containers and VMs is that VMs is managed by a hypervisor abstract machine, while the 

containers provide an abstract OS. (Figure 1.2) There is one thing that VMs can do but container 

cannot. VMs can practically run the different OS, in dockers all the containers use the same OS 

and kernel. (Babak B. R. et al., 2017; Vaughan-Nichols S. J., 2018)  
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Docker Architecture 

There are four main components to the Docker, Docker Client and Server, Docker 

Images, Docker Registries, and Docker Containers. The different components of the Docker 

work in harmony to provide full functionality to the Docker in whole. 

Docker Client and Server 

The client is the terminal interface that provide the command to the docker server to 

process the tasks accordingly. As depicted in the figure below, the client can be multiple and 

can be on the same machine as the server is or can be remotely connected to the server which 

is running on the other machine. The main task of the docker clients is to pull the images from 

a registry and allow it to run on the docker host (Figure 1.3). 

Some of the common commands of clients are as below: 

docker build 

docker pull 

docker run 

 

Figure 1.2: VM and docker component 
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Docker Host 

This is the place where all the action happens. The Docker Host provide a suitable and 

defined environment to carry out task and run the application. It consists of docker daemon, 

images, containers, networks and storage. The daemon carries out all the container-related 

action and obtains commands from client and the remote API. The daemon uses the above-

mentioned commands to pull and build the container images as appealed by the client, daemon 

creates a running model for container with the commands obtained called a build file (Fig. 1.4). 

Docker client Docker client Docker client 

Docker host 

Docker Containers 

Docker Containers 

Figure 1.3: Schematic representation of Docker client, containers and host 

Figure 1.4: Docker Architecture 
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Docker Objects: 

a) Docker Image 

A docker image is a file having multiple layers, it is used to execute the code from the 

docker container. There are two ways of creating a docker image: 

• Create a Dockerfile 

• Run some type of build command that uses the Dockerfile 

So basically, docker file is a recipe for creating the docker image and the docker image 

created by running the command that uses the dockerfile.txt and lastly, docker container is the 

running example of docker image. A new image can be built and the necessary applications can 

be added to the base image, process of generation of new image is known as “committing”, if 

you do not committee the change the changes are not recorded. 

b) Docker Registries 

The docker registries consists of docker images and acts like a register or versioning of 

these images, facilitating their storage and distribution. The images are pulled and pushed from 

and to registries. The two types of registries are public and private are available the Docker hub 

which is the public registry is used default when installing the docker engine, users can pull, 

push images without generated their own images from scratch. The Docker hub is the feature 

which helps the images to distribute to public or private areas. (Babak B. R. et al., 2017) 

c) Docker Containers 

Docker containers are boxes that the docker images creates. These boxes are meant to 

hold the entire applications, so that these applications can run in a confined way.  For eg: one 

is working of the image of the Ubuntu OS with SQL server, when the ubuntu image is used to 

run using the ‘docker run’ command, a new container is created. The containers have a limited 

access to the stored resources inside them, but the access can be extended by building an image 

into the container. As docker containers are smaller than VMs, it is easy to set it go in a moment 

and the outcome is better server density. (Fig 1.5) (Babak B. R. et al., 2017) 
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1.7 Thoughts on Docker and Bioinformatics 

BioDocker project aim to create many docker containers consisting of bioinformatics 

tools ready to be distributed to maximise reproducibility in the field. The main of the project is 

to expand the use of docker containers in the field of computational biology and bioinformatics 

and to homogenize the bioinformatics tools. The project came into existence in 2014 by ‘Felipe 

da Veiga Leprevost’. Similarly, another project BioBoxes was developed to make the 

bioinformatics studies reproducible and institutionalize the software packaging methods. What 

BioBox says is that analysis of biological data using the bioinformatics tools has made the entire 

bioinformatics to be so much reliable on the software is that there seems no way we can avoid 

the thought of reproducibility, therefore the problems associated with the software have come 

in handy when one uses the bioinformatics software. Problems such as partial codes, software 

installing dependencies and irreproducible workflows, all of these issues provide user an 

extremely bad experience. Therefore, Bioboxes considers software containers to have a high 

potential in solving these problems. (Keith Bradnam, 2015) 

https://www.thesaurus.com/browse/institutionalize
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Chapter 2 

Literature Review 

By now we know the subject matter of reproducibility and its importance. Although 

when shed some light upon the case to case-based scenarios in different journals help one to 

understand what else can be done to make the reproducible studies impactful. The literature 

survey helps to set certain rules around the problems, it also highlights the problems that was 

never ever occurred for any other researchers. It provides researchers to be elucidate in the 

subject. It defines the problem not only in our studies but also in various domains indicating the 

alarming need for solutions. Lastly, it helps the research to provide quality research. However, 

reproducibility still remains a big problem to achieve in day to day life and also remains a 

problem to follow the rules specified by scientist with ease. Digging deep and to dissect certain 

terminologies similar to ‘reproducibility’ could be somewhat comforting. 

In 1990, Jon Claerbout one of the researchers at Standford, wanted is PhD student to 

perform experiments that could fulfil the standards of reproducibility. He basically wanted to 

make sure that this reproducible research be documented in the form of thesis, for the other 

colleagues to be able to perform reproducible analysis using the same command and the same 

data and were aiming for a publication. They used ‘make’ a tool which uses source code and 

read list of commands from the makeFile to build a software. They build a workflow with the 

commands burn, build, view and clean and also attached the publication which included 

programs, scripts, parameter files and makefiles. Clearly the author has made efforts in defining 

the Reproducibility. He has specifically emphasised on the different terminologies and their 

misconceptions. (Barba L. A., 2018) 

 

 

 

 

 

 

Figure 2.1: Qualities to achieve quality work 
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The above image depicts the fact that, as researcher we are expected to provide quality 

of work and this can be achieved only by accuracy, reproducibility, replicability and 

repeatability (Figure 2.1). (Blatecky A., 2017) 

 

2.1 Reproducibility, Replicability and Repeatability 

For a number of years, researcher have highlighted the issue of reproducibility and the 

confusing terminologies that they often struggle to define. Reproducibility, replicability and 

repeatability have influenced almost all the fields of science and there was also a survey 

conducted, where 65% researchers confirmed that they have experienced reproducibility issues 

in creating an experiment from already published data. (McArthur S. L., 2019) It felt absolutely 

necessary to define the 3Rs – reproducibility, replicability and repeatability. 

Repeatability (same team, same experimental setup): The basic definition for 

repeatability is that a result can be produced from one experiment given that they are performed 

with exact same protocol. To illustrate the protocol’s repeatability, it requires the following: 

• Location: place where the experiment is conducted, a lab setting 

• Apparatus: measuring tools 

• Techniques 

• Observer 

• Assumptions 

• Timeline as to how long should an experiment run (MacKenzie R. J., 2019) 

Repeatability is considered important when one has to compare two methodologies. It 

is considered that the repeatability of the two methods might have disagreement. For example: 

if one of the methods have a lot of variation for the measurement for the same subject, it is 

considered with great confidence that other method in comparison has variation too. Therefore, 

the two methods do not have a strong agreement. If the two methods in comparison do not have 

an agreement, the problem is considered critical. An example for this case would be if two 

methods are developed to measure pulse rate, it would be surreal if they were unrelated. 

There is a solution to this problem says the Bland and Altman, to avoid a disagreement 

in the two different methods, one could take repeated measurement in one method and calculate 

the mean from them and compare with mean of those achieved from the other method, based 

on this the two methods can have an agreement or disagreement. (Bland J. M. and Altman D. 

G., 2010; MacKenzie R. J., 2019) 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Bland%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=2868172
https://www.ncbi.nlm.nih.gov/pubmed/?term=Altman%20DG%5BAuthor%5D&cauthor=true&cauthor_uid=2868172
https://www.ncbi.nlm.nih.gov/pubmed/?term=Altman%20DG%5BAuthor%5D&cauthor=true&cauthor_uid=2868172
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Reproducibility: The ability to reproduce the results using the same method from one 

researcher group. This happens in few cases, when one research group has to build a hypothesis 

on already existing theory, and to do so, they need to reproduce the results that has already be 

published. If the results are not same, if is considered as mere artefact. Reproducibility and 

Repeatability and two different concepts in itself. And the two concepts are variably used in 

various studies. 

Replicability (different team, same experimental setup): The results which is obtained 

by different team, using same protocol, the same measuring apparatus, under the same operating 

conditions, in the same or a different location. This is quite difficult to attain, although to define 

replicability is highly important to distinguish between the 3Rs. 

Although the two terms replicability and just a smaller part of the larger term 

‘reproducibility’, and they are a part of bigger problem in computational analysis. As expressed 

these terms need to be defined and identified separately, as they hold completely different 

meaning in different case scenarios. There, are many such reasons as to why some experiments 

need to be repeatable or replicable but mostly studies have to be reproducible as they hold great 

importance for the study to said true and not occurred by chance. 

Drummond C. 2009 says that “Reproducibility requires changes; replicability avoids 

them”, which makes absolute sense. Drummond argues that if traditionally seen, the 

experiments done by different researchers, in different location (lab), using different apparatus. 

It will certainly be considered that the two experiments are same, but there will definitely have 

between the experiments due to many reasons. If these differences are removed the studies 

would be called as replicability, according to him these difference matters a lot in 

reproducibility studies.  

He suggests the researches to look into traditional techniques to clarify the real meaning 

of reproducibility, unless the true meaning of the reproducibility is not understood one cannot 

dig deeper to understand features of reproducibility and the process accompanied. Drummond 

also suggests the issue related to reproducibility can be solved only by discussion in the larger 

platforms and one of the forums which always these kinds of discussion to take place is Journal 

of Machine Learning. 
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Other terminologies 

Although, most of the research article rely only on differentiating the key terminologies, 

but there are other terms which contribute to make the key terminologies to be important. The 

terms such as accuracy, transparency and validity also hold importance in context of 

reproducible research. 

Accuracy: Generally, accuracy is compatible closely to exactness and truthfulness. It 

implies precision of the result or data collected for an experiment. In terms of reproducibility, 

accuracy is the feature of research that is necessary for correctness and exactness of the result 

obtained. The degree of exactness defines the quality of the results obtained. 

Transparency: Transparency has many definitions in term of reproducible research. 

Transparency is achievable by disseminating the end to end details about the study. This is 

doable through journals and research articles. In terms of computational research, documenting 

every step in building the code, used tools, packages etc would thereby lead to transparency. 

It’s the prime duty of researches to clearly display the results/data or source data with easy 

access for others. 

Validity: The term validity is whether a study was able to deliver the results as intended 

in the assumptions or not. The validity tells the researcher if the study can be trusted or not. 

(Blatecky A., 2017) 

 

2.2 Attempts to address reproducibility 

The reproducibility issue has hampered multiple fields and is continuing to harm on a 

vast scale. To be able to address this issue in all fields, it is necessary to define the issue very 

clearly. Researchers have made efforts in defining the problem. They believe that there is no 

single solution to this issue, therefore there are multiple ways to work towards this issue, which 

might be beneficial. 

The array technology initially when was new to market and was in trend to be used in 

experiment was dealing with lots of problems. An attempt to solve this problem, many journals 

in 2001 made it a requirement for data deposition on the website. Although it was compulsory 

to deposit the data, the agreement still remained an issue. Between 2011 and April 2012, only 
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2 of 18 papers were able to reproduce the results involving the microarray data, the main reason 

for this is that the raw data was not available. There were many cases, which revealed that as 

the raw data was not deposited many studies either had different conclusion or were not 

reproducible. 

It was remarkable that the National foundation and the National Institute of Health 

(NIH), have made it compulsory to deposit the data and a full disclosure of software if the 

researcher want to publish, but there still remains the problem of agreement. This was one of 

the major attempts made by the research journals. (Begley C. G. and Ioannidis J. P., 2015)  

There were few other initiatives taken to reduce the reproducibility problems. The 

Neuroscience Information Frame was generated to help researchers to find the resources to 

improve the neuroscience research. The researchers have tried to make a note of the details 

specific to study design, experimenter blinding, randomization of animals, cohorts of sufficient 

size, inclusion of controls. 

Another group Global Biological Sciences Institute aspires to set up an integrated 

standard that can be practiced across all the research tools. They believe that such a standard 

set of rules is important for advancing in the biological science fields and can improve the 

correct identification of terms, but they also think that having such rules consented world-wide 

would be challenging. For example MDA-MB-435 cell line is named in the many research 

articles names as a breast cell line, although it is a melanoma cell line. Overall, there are more 

than 170 articles that have incorrectly defined these, with only 47 correctly recognizing them. 

 A recent attempt in Reproducibility research was initiated, where the researchers 

investigated the reproducibility of the cancer Biology publication between 2010-2012. This 

study is beneficial as they provide the information as to who can perform these replication 

studies and how they are best performed along with that they have provided a platform for 

research to conduct debate to clarify doubts within the community. Ten rules laid by Sandve 

has laid foundation for researchers to follow and make studies reproducible and trustful. 

There is a unique approach provided by the academia.edu, they aim to build a domain, 

where the publications are made available and the peer reviewing is done after they are 

published. They are also aiming to make all the researches freely available. The NIH seems to 

be promising reproducible solutions, such as making an integral grant application review, 
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transparent access to data and online platform to discuss the recently published papers and 

associated problems. The measures take still seem to be in the evolving state, but feels satisfies 

as they are all embraced by the scientific community (Begley C. G. and Ioannidis J. P., 2015)  

 

2.3 Computational tools and resources supporting reproducibility 

Many researchers use various tools and resources to make the studies reproducible and 

to overcome the issue related to computational reproducibility. The tools and the techniques 

used could be challenging in itself, which includes a simple technique of providing a written 

document and slightly an advance technique which includes a virtual environment having an 

OS and all the software to carry out analysis. There are several ways to make the study 

reproducible, each carrying its own pros and cons and the limitation to use the technique for a 

specific dataset.  

From a practical point of view, often one single strategy/technique is not enough for the 

study to make it reproducible, but a combination of different strategies make it work. The aim 

of addressing the computational tools, techniques and resources for the studies to make 

reproducible, will be vastly useful for scientists who have limited experience in computational 

biology and will be more proactive to produce reproducible studies (Piccolo S. R. and Frampton 

M. B., 2016), as our aim of this thesis also reflects the same. 

a) The Narratives 

 The most helpful approach to make sure that the others can reproducible a 

computational analysis is to supply an end-to-end description of the process. When the 

researchers mention a computational analysis in a research article they provide a detailed 

description of the software used followed by the sequential steps they used. These steps help 

the other researchers to reproduce the analysis and the results. In most cases, when there is user 

input required for the software to programme to execute, the written steps available makes 

possible to do the task. Even in the cases where the open source software is automated to 

perform certain tasks the, written narratives make the other researcher to understand exactly the 

analysis the software is executing. (Piccolo S. R. and Frampton M. B., 2016) 
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Moreover, as mentioned before special focus must be paid to the exact versioning of the 

software used in perfect order of usage and should also mention the software dependencies. The 

parameters used must also be mentioned correctly. It is also observed that the computer 

configuration and OS affect immensely, it is difficult to remember these small details therefore 

it is important that the scientist make a note of it and document it at the time of the working on 

the project rather than later. This approach is valid in case the researchers are pure biologist and 

have no experience with programming language 

b) Analysis automatization 

Command line operations can be used to perform tasks, instead of using single 

command and record it individually, one can just the make a note of all the commands step by 

step, even before that few steps to install and configuring he necessary software. This will not 

only be helpful to others to reproduce the steps but also to the original researcher to track his 

own scripts. Therefore, providing the detailed script document is much more beneficially than 

just the narrative: 

#install FastQC 

wget https://www.bioinformatics.babraham.ac.uk/projects/fastqc/fastqc_v0.11.7.z

ip 

 

# unzip 

unzip fastqc_v0.11.7.zip 

  

# make the tool executable 

chmod +x FastQC/fastqc 

 

#download BWA and install 

wget https://sourceforge.net/projects/bio-bwa/files/latest/download 

 

#unzip 

tar -xvjf bwa-0.7.12.tar.bz2 

 

#installing 

cd bwa-0.7.12 

make install 

 

#alignment 

bwa mem ref.fa read1.fq read2.fq > aln-pe.sam 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/fastqc_v0.11.7.zip
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/fastqc_v0.11.7.zip
https://sourceforge.net/projects/bio-bwa/files/latest/download
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The ‘make’ utility helps to confirm with the dependencies which are already available, 

it also helps in understanding the necessary dependencies that are very important in carrying 

out the analysis. ‘Make’ is said to be originally developed for UNIX-based OS, later similar 

utilities were developed for other OS such as windows. There are few such utilities developed 

for automatic update of the software mentioned as below: 

i) GNU Make is a tool which is designed to manage the executables the source program files. 

Make know to perform job, by following instructions from the file called the makefile. 

ii) Snakemake is also a better and an extended version of GNU make, it provides a better 

flexibility and provides parallel tasks running. They mostly are python scripts. 

iii) Bpipe is a tool that controls and executes all the bioinformatics pipelines. It makes 

parallelism easier and is known to work better with shell scripting. 

It is recommended that the scripts be provided along the supplementary information, 

moreover it is feasible that the scripts be made public and added to public repository and a 

simple URL permanent link to the repository be provide in the research article. It is often a 

good practice to add the scripts as version control to the repository and share using the services 

like GitHub.com or Bigbucket.org. It is not only useful for the other researchers to see how the 

code or the script is developed throughout the research, but it is often beneficial for the 

developer to track his progress and get back to the errors easily. For the other researchers it is 

beneficial in terms of using the bits of version control scripts to develop their own. For the 

purpose of citation in the final stages the other researchers can simply ‘tag’ the part of the script 

they have used. 

c) Software frameworks 

It is very common that all the scripts majorly depend of the external software and OS 

specifications. In case where the user wants to perform any non-parametric statistical test, it 

feels very convenient to pull in any library that can do the job, rather than writing the code to 

perform the non-parametric test. This is easily possible if the libraries are available. It is very 

important that a specific version of the library is found to reproduce the analysis. Building pre-

exiting software frameworks for libraries that are commonly used to perform analysis, can be 

one way to address the issue. For R language, Bioconductor framework make it possible to have 

a control over the versions and code distribution. It has hundreds of libraries useful for 

performing analysis. The library once developed can be integrated with the Bioconductor’s 
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framework and can be used by many other researchers to perform their analysis. The best part 

of the Bioconductor framework is that it downloads and install the necessary dependencies 

required by the library. Apache Ivy and Puppet are other examples of software framework. 

d) Literate programming 

Even if the written document is provided with the code in the research papers, 

sometimes it is very confusing as to find out how certain section of the code can give an output. 

Sometimes, even the written document alongside the code seems not useful as the code evolves 

at many steps. One possible solution for this problem is literate programming, it a method in 

which the researchers write the narrative and blend the code along with the narrative, once the 

code is complicated and upon its execution an output files, tables, figures are generated. This 

helps the other researchers to understand the code and narrative for it very well.  

Knitr, is considered very useful and is commonly used among researcher. Knitr is 

written is R programming language. The knitr functions is carried out in Rstudio which is an R 

interface which manages the R environment and packages. Knitr generates the dynamic reports 

which includes, chunks of codes, narratives, plots etc, the reports are often generated in a web-

based html and pdf format. (Figure 2.2) 

 Knitr can be used for simple codes with minimum amount time spent of the code 

generation. It provides an interactive figures and sufficient amount of narrative. For programs 

requiring extensive OS environment and advance scripting, tools such as Dexy.it is very useful 

it helps the code to speak for itself. It is very powerful and flexible. Dexy.it shows of the codes 

and highlights beautifully the syntax that is used in certain section.  

 

 

 

Tools URL 

Ipython Notebook https://ipython.org/notebook.html 

Janiform https://github.com/uds-datalab/PDBF 

Sweave https://stat.ethz.ch/R-manual/R-devel/library/utils/doc/Sweave.pdf 

Table 2.1: Other examples of literate programming (Chirigati F. and Freire J., 2017) 

https://ipython.org/notebook.html
https://github.com/uds-datalab/PDBF
https://stat.ethz.ch/R-manual/R-devel/library/utils/doc/Sweave.pdf
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Figure 2.2: Knitr output example 
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e) Virtual Machines 

All the platforms and tool mentioned above require and are dependent on heavy 

software dependencies to identify, download, install and configure before any analysis is 

carried out. This is time-consuming process can be very frustrating for scientists. A whole lot 

of energy is wasted in configuring the dependencies if the OS is completely different and 

previously installed incompatible software dependencies are a huge problem in itself. One 

solution to such problems in the Virtual machines. Virtual machine acts as a simple computer 

in itself with an OS encased in it.  

The VMs are a box with all the software dependencies packed and ready to be executed 

on any computer regardless of any OS. In certain case where the researcher’s computer (host) 

is an windows machine and wants to perform analysis that is embedded in the Linux VMs 

(guest), the researchers can easily have control over the (guest) OS and therefore can perform 

any modification required. After the analysis is performed the researchers can export the entire 

VM as a single binary file, following to which the other researchers can use the same file to 

construct exactly same VM environment to reproduce the original results. This system is 

beneficially in following ways: 

a) It is one-time job for researchers to provide a narrative of installation for one OS 

b) The other researchers need to only install the Virtual software and nothing else 

c) The analysis can be executed multiple times with same Virtual machine 

One disadvantage that makes researchers think twice about using the Virtual Machines 

for reproducibility is that the virtual machine files are high in size mostly gigabytes, in cases 

where they also comprise of the raw data files. This makes it difficult to share with the research 

community. One of the solutions to this problem is that making use of cloud computing, where 

the user can perform the analysis in the cloud repositories, store the VM files and share with 

other users from the same environment (Table 2.2).  

However, some researchers do not feel safe when it comes placing the data on the cloud 

at least at the time when they are analysing it, they would rather prefer keeping the data on the 

local machine. The researchers might need to pay fee to activate the cloud-based services. VMs 

can be considered good options for reproducibility, as they allow to re-execute the analysis 

along with investigating the scripts, codes and contents present.  
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f) Software containers 

Software containers are very similar as the virtual machines, they are comprised as a 

container encapsulating the OS elements, scripts, codes and data ready to share with other users. 

There is not much difference in the way the VMs and the containers work to produce the 

outputs. One of the major differences in terms of the containers is that a container provides an 

abstract OS unlike the VM where it provides an abstract machine which uses the drives 

targeting the abstract machine. A container needs a latent OS that supports the applications 

using the virtual memory whereas the VMs have their own OS using the hardware VM 

supported by the hypervisor. In terms of flexibility VMs are considered better as the containers 

are designed specific to the OS, although the containers require very less computational process 

as compared to VMs and they can be initialized much more quickly than VMs. (Figure 2.3) 

 

Cloud based services URLs 

Google cloud Platform https://cloud.google.com/ 

Rackspace.com https://www.rackspace.com/en-gb/cloud 

Amazon Cloud Services https://aws.amazon.com/what-is-aws/ 

Windows Azure https://azure.microsoft.com/en-gb/services/cloud-services/ 

CloudBioLinux http://cloudbiolinux.org/ 

Table 2.2: Examples of cloud-based services 

Figure 2.3: Containerized applications 

https://cloud.google.com/
https://www.rackspace.com/en-gb/cloud
https://aws.amazon.com/what-is-aws/
https://azure.microsoft.com/en-gb/services/cloud-services/
http://cloudbiolinux.org/
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Dockers have gained its popularity since the time they are developed as they have the 

capacity of providing the content of the user specific dockerfile which is basically text-based 

file, that can be used by the other researchers in reconstructing the container. And this text based 

dockerfile can be easily shared, tracked and versioned in repositories. Finally, when the docker 

container is build the content can be exported in the form of binary file, as these files are very 

much smaller and can be shared via hub.Docker.com. (Table 2.3) 

As emphasised before, the use of docker containers comes in handy with some 

problems. With respect to one single container that is stored plus executed individually by other 

containers on same computer machine, since all the container are sharing the same OS, the 

seclusion of the containers are incomplete when compared to virtual machines. What it exactly 

means is that, a specific container if not given enough access to memory and processing power, 

then the other containers might have to clash for these resources from the computer machine. 

This can create more accessibility for containers to face security breaches.  

Since Linux platforms are only eligible for the docker containers to be executed, for 

Mac and Windows they need to be executed within the virtual machines. But if virtual machines 

are used, there is a possibility of the losing some of the performance benefits of containers. 

Investment and efforts are going on for the development of refined container technologies. 

Docker containers seem to have great influence in the near future. 

g) Dockers, keep it small and simple (advantages and disadvantages) 

It is often debatable as to, ‘why it is important to keep the containers small and simple’? 

Portability being the prime feature of container, which thereby adds to its popularity. Containers 

are often compared to the virtual machine containers, in these terms the container always win 

Open source container software URLs 

Docker.com https://www.docker.com/ 

LinuxContainers.org https://linuxcontainers.org/ 

lmctfy https://opensource.google.com/projects/lmctfy 

OpenVZ.org https://openvz.org/ 

BlockBridge http://www.blockbridge.com/ 

Table 2.3: Online sources of software containers 

https://www.docker.com/
https://linuxcontainers.org/
https://opensource.google.com/projects/lmctfy
https://openvz.org/
http://www.blockbridge.com/
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the battle in terms of preferability, giving rise to misconception that the size of the container 

does not matter.  

Usually, researchers tend to use the default base docker image, which makes the 

containers large and another main concerns of is that the container eventually duplicates 

dependencies in application and the image. Also, if the build tools are used within the containers 

in the running application, this obviously will increase the size of the container and install 

dependencies which might not be necessary for the application to run. (Ashan Fernando, 2018) 

There are many advantages of using a small size of the container:  

I)  For security reasons 

In terms of practicality, using smaller containers images are often with a smaller number 

of libraries inside, this does not directly attack the surface to container. When such a technique 

is used to build the container, it provides more transparency, allowing one to know what is 

happening inside the containers. The details about the large size images being vulnerable is 

seen in the scan log of the container images in the Docker.  

II) Efficiency and performance 

It is easy and faster to move the smaller containers. Eventually reconstructing the 

process of build and deployment which will be then pulled to the running container cluster. 

Smaller containers effectively utilize lesser disk space and memory. 

III) Maintainability 

With small container image, once the dependencies are installed, it is in full control to 

be modified at any stages as the configuration modification is known to the application. As 

there are less libraries installed, it is easy to manage these libraries, keeping them updates along 

with the OS patches. These are the basic advantages of keeping the images in docker containers 

small and simple, therefore in this thesis we have implemented the use of small containers 

images restricted with one workflow in each image. (Ashan Fernando, 2018) 

IV) Advantages  

In the last few years the need and the progress in using the docker containers has 

increased. They are high in demand and are popular because of the benefits they provide. Few 

advantages are listed below: 
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a) Speed 

Containers are mostly appreciated for the speed. It would be unfair not to talk about the 

speed that containers provide. It requires less time to build a container as they are small and 

because they are small the development, testing and deployment can be done very fast. Once 

the containers are built they can be sent to testing. (Babak B. R. et al., 2017) 

b) Portability 

The applications which are developed insider the docker are easily portable and are 

portable as a single element. A single container containing it application and dependencies can 

be all packed together, is independent from the host version of Linux kernel, platform 

distribution or deployment model. The container can be executed on another machine by 

transferring it on a machine having Docker installer and up in running, there would not be any 

compatibility issues. (Babak B. R. et al., 2017) 

c) Scalability  

The ability of the docker to deploy in many physical servers, data servers and cloud 

platforms making it very likeable amongst the researchers. It can be exchanged from cloud 

environment to the local host and back easily and very fast. Modifications can easily be 

performed. (Babak B. R. et al., 2017) 

d) Speedy recovery 

The standardized structure of the docker containers, make it possible for the researchers 

to not worry about each other’s tasks. As the responsibility of the programmer is to take care of 

the application within the container whereas the admin takes care of the deployment and the 

maintenance of the server with the docker containers. Containers have the ability to work in 

any environment as they are packaged along with the necessary dependencies for the 

application, followed by rigorous testing. Predictable results are achieved as the dockers are 

very reliable and consistent, even though codes can and are moved in between the stages of 

development, testing and producing system. (Babak B. R. et al., 2017) 

e) Density 

Dockers are considered to have a higher performance than virtual machines because of 

their efficient use of resources, the absence of a hypervisor, their capability to run more 

containers on a single host. (Babak B. R. et al., 2017) 
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V) Disadvantage 

Linux kernel which is the local host of the docker system does not allow a complete 

visualization. The docker systems requires a specific configured machine, it supports only 64-

local machines, they do not support the old machines. A complete visualization can be provided 

by the docker containers for windows and the machines. There is another tool called 

boot2docker which can fill the gap for virtualization. (Babak B. R. et al., 2017) 

Another feature, which is marked as the feature request which is in progress, that is 

container self-registration and self-inspecting.  Cross platform issue is been an issue ever since, 

if the application is designed to run on a docker container on windows machine, then it cannot 

run on a Linux machine and vice-versa. Docker is basically designed to host application, and it 

uses command line only. The graphical user interface is possible to run within a docker 

container; however it is vert clunky. Therefore, if an application requires a good GUI docker is 

bad option. (Babak B. R. et al., 2017) 

Docker Performance 

There was an experiment performed by researchers where they used two servers with 

same configuration in a cloud environment and compared the performance of each one of them. 

One of the servers was used for docker and another one was used for Open Stack platform for 

KVM a virtual machine tool. The concluded their study by stating that the VM works 

independently, which makes it easy to apply and is good in terms of network, security etc. Their 

major highlights were that the docker does not have guest operating system and hence it takes 

very minimal time to distribute and gather images, the boot time is also very short. Therefore, 

these being the main reason for docker cloud being favourite for the researchers over the VM 

cloud. (Babak B. R. et al., 2017) 

Another investigation performed by a different group of researchers, wherein they 

performed a comparison between the Linux containers and Xen virtualization technologies. 

Xen would be a better choice in terms of equal distribution of resources, it is executed on the 

same machine and is not depend on the same machine. But, they debate stating that Linux 

container are ‘n’ times better in terms of utilizing the most of hardware resources and executing 

the smaller isolated process. 

The future is Docker technology. As and how the researchers understand the worth of 

the docker and its capabilities, they would consider replacing the old virtualization techniques 
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with docker technology. It has many positive features, which has already made it so popular 

among most scientist. To be able to use the docker efficiently, it is necessary that one makes a 

move from the default configuration. (Babak B. R. et al., 2017) 

 

2.4 Approaches for developed workflows, definition and executions 

Many researchers still are frightened about writing scripts and codes. There are many 

courses available online, which seems helpful. Many scientists prefer the workflow 

management software that can be executed using the graphical user software. This software 

allows the user to upload their data and perform analysis using the available tools and scripts 

with the software. When the scientist has to perform a multi-step analysis they usually provide 

the output of one tool as input to the other tool and these series of the steps are comprised in 

the workflow. The development of these pipeline basically follows three rules and differ on the 

same components: using syntax, configuration and offering command line and/or workbench 

interface. (Leipzig J., 2017) 

2.4.1 Text-based workflow managers 

Pipeline managers have been developed for different data types, such as Cpipe, for 

clinical genomics data. (Figure 2.4) It is based on Bpipe, a pipeline construction framework, 

which makes execution very simple by making it almost similar to executing it manually. This 

has become very famous among bioinformaticians, as they do not need to learn any specific 

programming language to understand or modify syntax in the pipeline. Additional feature of 

Bpipe include automatic tracking of the commands, logging off from the input and output files, 

clear the files from failed execution, removing the intermediate results, creating plots/graphs, 

notification by emails or pop up message in response to failure. (Sadedin S. P. et.al, 2015) 

Other workflow managers not based on a graphical environment include Ruffus, 

Snakemake, Nextflow and CGAT (core and pipelines), which use Python decorators and 

packages for pipeline development and optimization. They can support cloud storage and 

environment management systems, such as conda, thus making the installation, update and 

implementation of numerous packages easier. (Köster J. and Rahmann S., 2012; Cribbs A. P. 

et al., 2019) 
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 Another e.g of the NGS pipeline is the bcbio-nextgen which is an implemented in the 

python framework. (Figure 2.5) It is a fully automated pipeline which connects with the 

sequencing machine, run sequences through the pipelines and uploads the data into the Galaxy 

processing and analysis the data further and for visualization. Another pipeline available is the 

variant calling pipeline that performs alignment with the reference, identifies the variants using 

GATK and provides a summary report. Some of the famous project which utilizes this pipeline 

are CloudBioLinux and CloudMan projects. (Guimera R. V., 2011) 

 

 

Figure 2.4: Batch directory structure used by Cpipe 

Figure 2.5: Bcbio-nextgen pipeline structure 
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Another very famous python package implementation framework is Omic-Pipe. It 

assembles scripts in automated, version regulated, parallel pipeline for bioinformatics analysis. 

The python package it uses is called Ruffus for running the pipeline, Sumatra for version 

regulation and tracking, Python DRMAA for distributed computing. It is also possible to 

distribute the python package as a standalone package for installing on the local severs. Omic 

Pipe, currently supports six published piplines, 2 RNA-seq pipelines, variant calling from whole 

genome sequencing, WGS from GATK, two ChiP-seq piplines. They also have customized 

RNA-seq pipelines. (Fisch K. M. et al., 2015).  

 

2.4.2 Graphical user interface-based integrative workflows 

To easy a bit some challenges in the command line pre-built pipelines, workbenches 

such as Galaxy and Taverna provide the users to design step by step analyses just by a simple 

drag and drop functions available in these graphical interfaces. Galaxy and Taverna are two 

most popular bioinformatics server workbenches. Galaxy is a web-based interface, whereas 

Taverna is a stand-alone client which provide access to all the tools available freely on internet. 

Both can be installed locally and have the feature of sharing the workflow. (Leipzig J., 2017) 

A new tool can be added to the Galaxy analysis environment by writing a configuration file 

which has all the specifications as to how to run the tool, input/output parameters etc. This 

makes the ideal for the users who are not very much familiar to the programming languages. In 

terms of reproducibility the Galaxy seems promising. (Goecks J. et. al, 2010) 

Taverna workbench is free and can be downloaded. It is compatible with windows, mac 

and Linux OS. Through Taverna access is available to several different tools and resource that 

are freely available. The workflows are reusable, reproducible and can be shared with other 

users. Another mode of executing the workflows from Taverna is by the Taverna Serve. Lastly, 

Taverna can also be executed by the Taverna Lite installation, which allows the users to run the 

workflows through the web and also upload new workflows. The Taverna bioinformatics user 

community include transcriptomic, proteomic and metabolomics analysis. (Wolstencroft K. et 

al., 2013) 
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Chapter 3 

Docker4seq 

3.1   Introduction 

Reproducible Bioinformatics Project (RBP) is a concept based on three modules: 

docker4seq R package, dockers image, and 4SeqGUI. (Figure 3.1) As discussed in the above 

chapters the aim of RBP is to develop easy to use bioinformatics workflows fulfilling the ten 

rules by Sandve G. K. et al. 2013.  

 

R packages are a collection of R functions, complied code and sample data. They are 

stored under a directory called "library" in the R environment. By default, R installs a set of 

packages during installation.  Docker4seq is a R package contains all the R functions which are 

required to handle all the steps of RNA-seq. miRNA-seq and ChIP-seq data analysis. The R 

package generate the commands required to execute docker containers capable of fulfilling 

tasks (e.g. short reads mapping, differential expression analysis, etc.). This approach provides 

multiple advantages such as following:   

• The user has no need to install all the required software on its local server as they are 

all embedded into various containers 

• Each container produces the results which are part of a specific pipelines 

• By sharing the docker images used for the analysis, reproducible results are therefore 

guaranteed  

 

 

Figure 3.1: The Docker4seq package acts as an interface between users and docker containers. 
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An example of implementation of docker4seq is the SeqBox (Beccuti et al. 2018), an 

integrated hardware/software solution to facilitate data analysis to life scientists. Specifically 

the R engine, docker4seq, can be controlled by a graphical interface, 4SeqGUI, and the software 

is implemented in an Intel mini-computer equipped with 32GB GB RAM and 500GB Internal 

SSD. Docker4seq was built to provide a general schema and a software infrastructure to 

distribute robust and reproducible workflows. It provides the users the capability to repeat 

consistently any analysis independently by the UNIX-like architecture in use. The package can 

be downloaded and installed in R with the following commands: 

library(devtools) 

install_github("kendomaniac/docker4seq", ref="master") 

library(docker4seq) 

downloadContainers(group="docker") 

Docker4seq is one of the packages being part of the Reproducible Bioinformatics 

Project (RBP), which is an open community for the development of reproducible workflows in 

bioinformatics. Developers can build their own packages and/or workflows in an R 

environment, which is the most widely-used programming language by scientists with different 

levels of scripting knowledge. The skeleton.R function embeds the runDocker function, which 

is the core of the construction of the string of text that will control a docker image. Actually, 

the runDocker function supports docker daemon, but we are extending it to support also 

Figure 3.2: A – SeqBox; B – external hard disk; C – ethernet cable; D – SeqBox 

power supply; E – PC/MAC 
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singularity daemon (https://sylabs.io/docs/), which provides advantages such as security with 

respect to docker, since it allows to run docker containers not holding root privileges. 

The skeleton.R function controls an ubuntu image, which is the prototype image to 

create a functional container in the docker image repository docker.io/repbioinfo. However, 

developers can make use of any linux image to build their own docker image, as there is no 

specific software requirement for the docker image present in the RBP. Any new workflow 

being part of RBP is required to fulfil at least the first 6 rules defined by Sandve G. K. et al., 

2013. Any new RBP module must be provided with an explanatory document in the form of 

vignette pages, i.e. an online html document, and a test data set. 

3.1.1 Sequencing data types 

Workflows of following of sequencing datatypes are implemented in docker4seq: 

a) mRNAseq  

RNA-seq, also rightly called as whole-transcriptome shotgun sequencing, it is used for 

high-throughput sequencing technologies to characterize the RNA content and composition in 

a given sample. The transcripts sequence information as full transcript cannot be retrieved, but 

it can be obtained in the form of short reads of up hundred base pairs. The starting point for 

biological inference, is obtaining by the read counts that fall onto a given transcript which 

finally provides a digital measurement of transcript abundance. 

b) miRNAseq 

The micro RNAs are a class on non-coding RNAs which have an important role to play 

in regulating the gene expression. The process of DNA transcribing into primary miRNAs and 

then further processed into precursor miRNAs and finally into mature miRNAs is well known 

(ref). Most of the times the miRNAs interact with 3’ untranslated regions (3’UTRs) of target 

mRNA to promote mRNA to degrade and translate repression (O'Brien J. et al., 2018). 

c) ChIPseq 

The goal of ChIP-seq analysis is to determine how transcription factor and some other 

chromatin-associated protein influence phenotype-affecting mechanism. In short it provides 

insight into protein-DNA interactions for regulating gene expression, which is very important 

in understanding many biological process and disease states. (Pepke S. et al., 2009) 
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3.1.2   Tools for the analysis of sequencing data 

The analysis for the above data types is made using the software described below. 

a) Data pre-processing 

i. Demultiplexing: from bcl to fastq  

The input used by downstream sequencing analysis applications are FASTQ files. The 

Illumina sequencing instruments generate per-cycle BCL basecall files as primary sequencing 

output. The bcl2fastq software combines these per-cycle BCL files from single run following 

to which it translates them into FASTQ files. bcl2fastq also separates multiplexed samples, this 

process of separating the sample is called demultiplexing. (bcl2fastq Conversion-User Guide, 

2013) bcl2fastq requires that the information about the sequenced samples are provided by a 

comma separated file (SampleSheet.csv – Table 3.1) 

 

Column Description 

FCID Flow Cell ID 

Lane Positive integer, indicating the lane number (1-8) 

SampleID ID of the sample 

SampleRef The name of the reference 

Index Index sequence(s) 

Description Description of the sample 

Control Y indicates this lane is a control lane, N means sample 

Recipe Recipe used during sequencing 

Operator Name or ID of the operator 

SampleProject The project the sample belongs to 

 

Every project in the sample sheet is linked to a corresponding project directory. Each 

sample belonging to that project is linked to a corresponding sample directory, within project 

directory. After their generation, FASTQ files are generated in the project and sample 

directories specified in the sample sheet. 

The generation of FASTQ files, based on the index information, and production of 

sequencing run statistics is made by bcl2fastq and this project goes under the name of 

demultiplexing. Demultiplexing works in the following way:  

1. Gets the raw index for each index read from .bcl files.  

2. Identifies the appropriate directory for the index based on the sample sheet. 

3. For each read:  

a) Write the index sequence into the index field.  

b) Append the read to the appropriate new FASTQ file in output directory. 

Table 3.1: Sample sheet column header and description 
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ii. Technical quality control of fastq: FastQC & MultiQC 

During sequencing, the nucleotide bases in a DNA or RNA sample (library) are 

determined by the sequencer. For each fragment in the library, a short sequence is generated, 

also called a read, which is simply the succession of nucleotides associated to the quality of the 

base calling. Modern sequencing technologies can generate a massive number of reads from a 

single experiment. However, no sequencing technology is perfectly efficient, and each 

instrument will generate different types and amounts of problems/errors, e.g. such as incorrect 

nucleotides being called. 

Therefore, it is necessary to understand and identify errors that may affect downstream 

analysis. Thus, sequence quality control is therefore an essential first step in your analysis.  

FastQC is a software used for quality check for high throughput sequencing data, 

developed by Simon Andrews at the Babraham Institute in Cambridge 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). It is an open-source tool that 

allows quality control of raw sequence data. It also allows a modular set of analyses, which can 

be uses to give a quick impression of whether data have any problem before doing any further 

analysis. FastQC looks at quality collectively across all reads within a sample, rather than 

looking at quality scores for each individual read (Wingett S. W. et al., 2018). 

  MultiQC is a tool which provides visualization of the results generated by FastQC, 

trimming tools and mapping tools across all samples in a sequencing run or in an experiment. 

It is command line tool that you point at a directory containing output from your analysis. It 

runs through all of the files and finds output of most used tools for data processing in short 

reads sequencing, e.g. FastQC, SKEWER, STAR, etc. The analysis results are organized in a 

single HTML report summarising the QC for all samples in that specific experiment. This 

makes easy to spot any outliers and check trends. (Ewels P. et al., 2016) In MultiQC12 

programs output are currently supported (see below). Output from any of these modules is 

combined into the final report (Figure 3.3) 
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iii. Adapter trimming 

1) SKEWER  

When the reads are longer than the target DNA/RNA fragments, adapter trimming 

becomes a prerequisite step before mapping with tools which are unable to perform soft-

clipping, i.e. not considering in alignment 3’ end region of a reads that do not map the targer 

sequence. Trimming is mandatory in docker4seq miRNA workflow because mapping is done 

using BWA, allowing only one mismatch between the read and the miRNA precursor sequence.  

SKEWER is a trimming program designed to process Illumina sequences and it is based 

on a dynamic programming algorithm, specifically dedicated to the task of adapter trimming 

(Jiang H. et al., 2014). Skewer is time efficient and has the best capabilities of achieving 

unmatched accuracies for adapter trimming. SKEWER algorithm searches for adapter sequence 

pattern in an exhaustive and efficient manner. It is designed in such a way that it can be used in 

both SE and PE sequencing data. Jiang H. et al., 2014 have provided the results for Skewer tool 

and was shown to achieve accuracies that were not matched by other similar tools that are 

currently available. Importantly, Skewer is optimized for most applications. (Figure 3.4) 

Figure 3.3: Example of stack chart for feature counts in multiQC report 
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2) Cutadapt 

 Trimming is a mandatory procedure in miRNAseq and Cutadapt was described 

specifically as trimming tool for miRNA sequencing. Cutadapt works in error-tolerant way as 

it can identify, modify and filter reads in various ways (Figure 3.5). It works step wise 

identifying and removing adapter sequences, primers, poly-A tails. It can either trim or discard 

reads in which an adapter occurs and can also discard reads that are below a specified length 

after trimming. (Martin M., 2010)  

Figure 3.4: Bar chart showing the performance of different 

trimming tools 

Partial adapter in the beginning 

Options -a and -b Options -a Options -b 

Adapter within read 

Read runs into adapter Full adapter in the beginning Full adapter in the beginning Read 

Adapter 

Remove sequence 

Figure 3.5: Schematic representation of Cutadapt algorithm: possible configuration between 

 the read and an adapter sequence. The two -a and -b are used as adapater trimming options. 
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b) Mapping tools 

i. Genome mapping (alignment-based mapping) 

Reads that are obtained from the sequencer are ideally mapped to either genome or 

transcriptome. An important part of mapping is the percentage of mapped reads, which indicates 

the overall sequence accuracy and the presence of contamination. It is expected that the reads 

of a regular RNA-seq maps closed 90% onto its reference genome. On the other hand, when 

the reads are mapped against the transcriptome the percentage of mapped reads is expected to 

be slightly low, as the reads coming from the unannotated region might also be lost (Conesa A. 

et al., 2016). 

1) STAR 

The alignment of the reads to the reference genome is done using STAR (Spliced 

Transcripts Alignment to a Reference, Dobin A. et al., 2013), to determine where on the 

reference genome the reads are originated. Many challenges of RNA-seq data mapping is 

handled by STAR aligner using a strategy to account for spliced alignments. 

For every read that STAR aligns, STAR will search for the longest sequence that exactly 

matches one or more locations on the reference genome. These longest matching sequences are 

called the Maximal Mappable Prefixes (MMPs): The different parts of the read that are mapped 

separately are called ‘seeds’. So, the first MMP that is mapped to the genome is called seed1. 

STAR will then search again for only the unmapped portion of the read to find the next longest 

sequence that exactly matches the reference genome, or the next MMP, which will be seed2. 

(Dobin A. et al., 2013) 

This sequential searching of only the unmapped portions of reads underlies the 

efficiency of the STAR algorithm. STAR uses an uncompressed suffix array (SA) to efficiently 

search for the MMPs, this allows for quick searching against even the largest reference 

genomes. Other slower aligners use algorithms that often search for the entire read sequence 

before splitting reads and performing iterative rounds of mapping. If STAR does not find an 

exact matching sequence for each part of the read due to mismatches or indels, the previous 

MMPs will be extended. (Dobin A. et al., 2013) 

If extension does not give a good alignment, then the poor quality or adapter sequence 

(or other contaminating sequence) will be soft clipped. The separate seeds are then stitched 
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together to create a complete read by first clustering the seeds together based on proximity to a 

set of ‘anchor’ seeds, or seeds that are not multi-mapping. Then the seeds are stitched together 

based on the best alignment for the read (scoring based on mismatches, indels, gaps, etc. (Dobin 

A. et al., 2013) 

2) Burrows-Wheeler Aligner (BWA) 

To align low divergent sequences to a reference genome or not spliced transcriptome 

BWA is used. There are three algorithms in the BWA package such as BWA-backtrack, BWA-

SW and BWA-MEM. BWA-backtrack is used for aligning reads up to 100bp, while the other 

two are used for the longer sequences ranging from 70bp to 1Mbp, they also provide split 

alignment. BWA provides and output of the alignment in the new standard format called 

Sequence Alignment/Map (SAM). These SAM files can be further used for analysis using open 

source SAM tool packages. What is more, BWA provides support to the pair-end read mapping, 

by identifying the position of all the good hits, sorts them by the chromosomal co-ordinates 

finally scans through all the hits to pair the two partner ends. (Li H. and Durbin R., 2009) 

3) SHRiMP 

The identification of mature miRNAs can be done using as reference the hot genome or 

miRNA precursors. miRbase database consists on the predicted hairpin portion of the miRNA 

transcript along with the information of its location and mature miRNA sequence (termed as 

miR). The hairpin and mature miRNA sequence can be searched and browsed within the 

database. The sequences and annotation of the data are both present in the database to 

download. Since the miRbase is a huge repository for miRNA sequences, it is used for the 

mapping the unknown miRNAs to miRbase database. (Griffiths-Jones S. et al., 2006) SHRiMP 

is based on q-gram filter approaches (Rasmussen R. K. et al., 2006), spaced seeds (Califano A. 

and Rigoutsos I., 1993) and an optimized Smith-Waterman Algorithm (Rumble S. M. et al., 

2009) (Figure 3.6)  
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ii. Quasi-alignment (alignment-free mapping) 

Quasi-alignment is an efficient mapping algorithm which maps the sequencing read to 

the transcriptome, by attempting to report potential loci of the origin of the sequencing read and 

merely does not provide base to base alignment of sequencing read to reference. Quasi mapping 

is considered to be faster in terms of speed as compared to the other exiting alignment tools 

(Srivastava A. et al., 2016). Moreover, in case of the alignment to the transcript rather than the 

genome, there are a lot of repetitive mapping, as alternative splicing give rise to many identical 

alignments for reads, which means that the reads might align to different transcript and different 

position, this adds to a lot of redundant work of solving the identical alignment. In docker4seq, 

Salmon is implemented as quasi-alignment tool, to provide the possibility to perform mapping 

on computers with relatively low RAM, i.e. < 32 GB, which are instead mandatory for STAR 

mapping on large genomes as the human one.  

SALMON  

SALMON is a transcript quantification tool. To quantify the reads the tool requires a 

set of target transcripts, could be either from reference or de-novo assembly. The basic 

requirement for using SALMON is a FASTA file containing the reference transcripts and a set 

of FASTA or FASTQ files having reads. The quasi-mapping-based mode of Salmon runs in 

two phases; indexing and quantification. The indexing step is independent of the reads to be 

used for quantification, and only need to be run ones for a particular set of reference transcripts. 

The quantification step is specific to the set of RNA-seq reads (Patro R. et al., 2017). 

Figure 3.6: SHRiMP Data flow and processing 
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c) Read counting tool 

RSEM  

In transcript quantification from RNA-Seq data, the challenge is the handling of reads 

that can map to multiple genes or isoforms.  In cases where the sequenced genomes are absent, 

issue is particularly important for quantification with de novo transcriptome.  

RSEM is a software package, which is used for quantifying gene and isoform 

abundances from RNA-seq data for both single-end and paired-end data. RSEM outputs gene 

and isoform abundance estimates. RSEM does not require a reference genome for transcript 

expression estimation. In cases a de novo transcriptome assembler is combined with RSEM can 

provide accurate transcript quantification for species without sequenced genomes. Tests on real 

data sets, showed that RSEM has better or similar performance to other quantification 

techniques that heavily rely on a reference genome. 

RSEM consists of two steps: 

1. The first and most important step for RSEM to generate a set of reference transcript 

sequences and pre-processed it for later use by RSEM steps 

2. Further the second step is an alignment to reference transcript is done to a set of RNA-

seq reads, the resulting aligned reads are used to estimate abundances. The scripts rsem-

prepare-reference and rsem-calculate-expression are the scripts which carries out these 

two steps. (Bo Li and Dewey C. N., 2011) 

 

d) Gene annotation using ENSEMBL 

Gene annotation is nothing but providing a link between HUGO symbols and reference 

data base ids. In docker4seq we have decided to use ENSEMBL database as source of 

annotation and genome assembly essentially because: 

• ENSEMBL is gene centric. Thus there is no needs to query other database to associate 

transcrpts to genes as instead is required for Refseq and UCSC databases.  

• Any release version of the ENSEMBL is stored in their ftp repository, which provide 

the basis for the reproducibility of the annotation. E.g. UCSC do not have stored version 

of the annotation and annotation GTF is created using a GUI and there is no way to be 

sure that a GTF created in an other moment will contain the same information. 

• ENSEMBL has the most annotated non-coding genes from a wide variety of organisms. 
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e) Data reformatting 

In docker4seq the output of each step of the analysis is compatible with the following 

one. STAR/RSEM and Salmon were configured to produce the same files in structure and 

content to be used by a specific R function (samples2exeriment), which aggregate the outputs 

of the above mapping tools to provide counts, TPM, FPKM tables for genes and transcripts to 

be used for differential exspression analysis. 

 

f) Differential Expression analysis 

Differentially expression analysis is a statistical analysis necessary to extrapolate, from 

a transcriptomic experiment, which are the genes/transcripts involved in a specific biological 

event. There are many different differential expression analysis tools such as DESeq, DESeq2, 

EdgR, Limma, NBPSeq etc which work specific to the data selected. In docker4seq we have 

implemented DESeq2 and edgeR. DESeq2 has a very high sensitivity and precision compared 

to edgeR and voom (ref), and it has features, which are not available in other tools. One of these 

features is, the Empirical Bayes shrinkage for FC (fold change), which shrinks log FC estimates 

toward zero. This feature reduces the noise due to low expressed genes, since shrinkage is 

stronger when the available information for a gene is low, which may be because the read counts 

are low. Another feature of DESeq2 is the identification of counts outliers, which could lead to 

false positives. Specifically, DESeq2 flags genes that record counts outliers, estimated with the 

standard outlier diagnostic Cook’s distance. (Soneson C. and Delorenzi M., 2013) 

1) DEseq2 

The DEseq2 an R package embedded and implemented to perform differential 

expression analysis. DEseq2 expects the data to be count matrix for mRNA and miRNA seq 

data. The count data are presented in the form of a table which reports for each sample, the 

number of sequence fragments that are assigned to each gene. DEseq2 R package allows 

methods to validate the differential expression by using the negative binomial generalized 

models. The estimates of dispersion and the log 2-fold changes include data driven prior 

distribution. The vignette pages are explained in details about the use of packages and 

demonstrate typical workflows. The vignette page on the Bioconductor incorporates the RNA-

seq workflow which provides similar material of generating count matrices from FASTQ and 

following analysis including downstream analysis. (Love M. I. et al., 2014).  
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A comparison study was conducted to test the performance of different differentially 

expression analysis tools such as ALDEx, DESeq, edgeR, and CuffDiff. Paper results suggest 

that DESeq is one of the most robust algorithms, hence preferred in many studies (Fernandes 

A. D. et. al, 2013) 

2) Anova-like 

ANOVA-like DE procedure is to identify the genes with larger difference between the 

conditions and within condition difference. It has the capabilities to show differential 

expression and magnitude of the comparative difference even in a very small sample size, and 

provides a multiple contrast of conditions. To offer docker4seq users a multi-group comparison, 

we have implemented the Anova-like statistics present in edgeR. (Fernandes A. D. et. al, 2013)  

 

g) Peak calling  

Peak calling is an important step in ChIP-seq analysis. It defines the protein-DNA 

binding region by identifying the region where most of the reads mapped to the genome. Peak 

caller tools use the following steps: 

a. Read shifting: Most of the ChIP-seq data comes from single-end sequencing. 

The reads are aligned to the sense/antisense strand of the genome, they are shifted and combined 

for obtaining a ratio close to 1, which is used to identify protein binding regions. 

b. Background estimation: Control ChIPs are also processed in the same way to 

allow either a genomic background to be determined or for regions enriched through the ChIP 

process with no antibody specificity to be identified (IgG controls). 

c. Peak identification: peaks are identified by the reads aligned to the particular 

region  above the threshold or it is highly enriched in the aligned region compared to the 

background signal. 

d. Significance analysis: The peak significance is determined by the statistical 

method and takes into consideration the p value or FDR; for statistical analysis the true peak 

list is necessary for comparison. Few tools take into consideration the height of peaks and/or 

enrichment with background to rank peaks, however this method does not provide p values. 

e. Artefact removal:  Before generating the final peak list, the peaks in which 

contains either single read or few reads are discarded as this can be due to the PCR amplification 

artefacts. Also, the peaks which are significantly difference between the number of reads on 

each strand are also discarded. 
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MACS 

There are many peak calling algorithms. MACS is one of the most popular algorithms 

and widely used by many researchers to detect peaks, therefore MACS was implemented in the 

docker4seq package. In a study by Elizabeth G, et.al, (2010), eleven different peak calling 

algorithms were tested on three different datasets and their sensitivity, accuracy and usability 

were evaluated. MACs was identified as one of the most robust algorithms in peak detection 

across the three dataset considered in the study (Figure 3.8).  

h) Data visualization 

PCA 

PCA is widely-used for data visualization of miRNA and mRNA data analysis. The 

principal component analysis (PCA) is a dimensionality reduction method based on variance of 

the data. This method converts a set of observations of correlated variables into a set of values 

of linearly uncorrelated variables called principal components. By using few components from 

the data, each sample can be represented by relatively few numbers instead of using the values 

for thousands of variables. Finally, the data can be visualized and similarities and differences 

between samples can be easily plotted with PCA.  

Figure 3.8: Peaks identification via different algorithms. GABP, FoxA1 and 

NRSF are three different xdatasets.  (Elizabeth G. Wilbanks, 2010) 
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3.2   Docker4Seq workflow strategy 

There are numerous tools and packages available for the analysis of different types of 

sequencing data, but these are often individually applied and there is no current platform 

implementing all of them under one roof. Therefore, I have developed a user-friendly workflow 

that can make use of different bioinformatics tools to obtain numerous results on the same data 

sets. All workflows embedded in docker4seq are characterized by providing, for each module, 

a output file with is compatible for the next step of the analysis. This is particularly important 

to avoid manual manipulation of the data (Sandve G. K. et al., 2013). 

The strategy implemented is based on an initial assessment of the data quality, the 

removal of any adapter sequences and alignment to the corresponding genome/transcriptome. 

These steps can be applied mRNA, miRNA and ChIP-seq, while subsequent analysis steps have 

been individually tailored for each of the three workflows. These three data types were chosen 

for both the development and validation of the workflows, because they are the most widely-

used sequencing data types and the designed tool would be useful for a larger number of users, 

including biologists with no prior programming skills. 

The analysis of all three workflows starts with the demultiplexing of bcl input files and 

their conversion to fastq files using bcl2fastq, which is an optional step, if the inputs are already 

in fastq format. The quality of fastq files is then checked using FastQC and trimmed using either 

SKEWER and CutAdapt, depending on the data type. The trimmed files are then fed to the 

alignment tools, which can again vary depending on the workflow. 

1. Analysis of mRNAseq 

Based on the choice of the user, the mRNA-seq workflow implementation in the 

docker4seq package provides two options:  

1) a genome based alignment approach using STAR (Dobin A. et al., 2013) and RSEM 

(Zhang C. et al., 2017)  

2) a transcriptome-based approach based on the quasi-alignment tool Salmon.  

The reason of the implementation of two different mapping tools is to provide higher 

flexibility to the final user in terms of specificity and different hardware requirements. STAR, 

although being memory intensive, it is shown to have high accuracy and outperforms other 

available aligners by more than a factor of 50 in mapping speed, hence I have implemented 
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STAR as an aligner in docker4seq package. The algorithm achieves this highly efficient 

mapping by performing a two-step process such as a) Seed searching and b) Clustering, 

stitching, and scoring.  

SALMON was embedded in the docker4seq for presenting the following advantages: 

• Fast & Lightweight – can quantify 20 million reads in under eight minutes on a desktop 

computer 

• Support for strand-specific libraries 

• Accepts BAM and FASTQ files as input 

• Lower RAM requirements with respect to STAR/RSEM quantification approach 

Zhang and co-workers performed a comparative analysis between alignment dependent 

tools such Salmon_aln, eXpress, RSEM, TIGAR2 and quasi-alignment methods such Salmon, 

Kallisto, Sailfish was performed (BMC Genomics 2017, 18,583). STAR was used as mapping 

tool for alignment-dependent methods. For the isoform quantification, the authors indicated 

there was a strong co-relation among the quantification results obtained from RSEM, Salmon, 

Salmon_aln, Kallisto and Sailfish with R2 > 0.89, indicating that impact of mappers on isoform 

quantification is small. For the gene-level quantification, the difference between quasi-

alignment methods and alignment-dependent tools is not as significant as for transcript level 

analysis (Teng M. et al., 2016). However, quasi-mapping methods require lower memory, being 

a good alternative to genome mapping tools, and thus we also implemented SALMON in 

docker4seq. 

The bam outputs aligned with STAR are subsequently parsed to RSEM for generating 

a count table and the results are sample specific. The same output is also generated by Salmon, 

to keep output downstream compatibility. RSEM or Salmon count tables are then assembled in 

an experiment table, which also include covariates and batch information, whenever is needed. 

Experiment tables are provided as counts for differential expression and as TPM/FPKM format 

for data visualization, e.g. PCA or heatmaps. As indicated above counts experiment table is 

then used for differential expression analysis, which can be performed through DESeq2 and 

Anova-like methods, chosen for their increased sensitivity for different RNA data sets. Outputs 

of differentially expressed tools have again the same format and it can be used by a filtering 

function to generate set of counts/TPM/FPKM tables filtered for the set of the differentially 

expressed genes to be used for the heatmap module implemented in docker4seq or to be used 

with other external clustering tools. 
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2. miRNAseq 

Cordero F. et al. 2012 had designed, optimized and validated a miRNA workflow, 

which I have used as reference for building a new, independent miRNA workflow in the 

Reproducible Bioinformatics Project. As mentioned above, miRNA data sets were analysed in 

a similar manner to mRNA datasets, starting from bcl inputs conversion to fastq and quality 

check via FastQC. However, the adapter sequences were removed using CutAdapt, which was 

proven to be more efficient when reads are longer than the molecule sequenced, such as in 

microRNA data. Subsequently, the filtered fastq files were mapped using Shrimp, instead of 

STAR, because Shrimp takes into consideration smaller read lengths and uses local alignment 

method based on Smith-Waterman Algorithm, which increases precision.  

Since same mature miRNA can be generated by multiple miRNA genes dispersed over 

the genome, some of the reads could be lost as multiple mapping, when using the genome as 

reference for mature miRNA ( 20 nts) search. Furthermore, mapping approximately 20 nts 

over 3 billion bases of high eukaryotes genomes, could result in fake mapping, because of the 

possibility to detect similarities with potential miRNA targets in the 3’ end of genes. For this 

reason, miRNA precursors from miRbase database were mapped using Shrimp.   

The quantification of the miRNA expression was then performed using two methods - 

annotation based and the position based. In the annotation-based method, reads mapping on 

precursors weree saved in a genomicRanges object, which was compared to the miRbase 

annotated location of mature miRNA in its precursors. mirBase mature location in precursor 

was also integrated with positional information, when the localization of the mature miRNA in 

the 3’ end (-3P) or in the 5’ end (-5P) of the precursor was not indicated in miRbase.  

Finally, a count matrix containing the merged results of the two methods of miRNA 

quantification was generated. The annotated positions of the mature miRNAs were indicated in 

the final table with the postfix “:Novel” instead of “:mirBase”.  

Following mapping and quantification, mirnaCovar() was used to add the covariates and 

batch information for the miRNAseq raw counts. The resulting experimental table was then 

used as input for differential expression analysis, which could be performed using DESeq2 or 

Anova-like methods, as previously described for mRNA data sets.  
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Lastly, further analysis such as evaluation of the experiment power and sample size, as 

well as visualization using PCA are available both for mRNA and miRNA workflows. 

3. ChiPseq 

Pre-processing of CHiPseq data sets was done similarly to that for mRNAs, such as 

demultiplexing, quality check via FastQC and adapter trimming using SKEWER. 

Subsequently, the filtered reads were aligned using BWA-MEM, known for its high-quality 

performance and accuracy fit for CHiPseq data sets. MACS was then used for peak calling, as 

it is considered the most robust and reliable algorithm. The final peak list obtained was 

annotated through a custom script using genomic Ranges and refGenome R package to allocate 

peaks with respect to the nearest genes. 

The structure of the ChIP-seq workflow was based on the previous work of Dr. Matteo 

Carrara, who embedded it in basespace. The ChIP-seq workflow was however, implemented in 

the docker4seq infrastructure by myself.  
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3.3   Results 

As mentioned above, the RBP described within this project is unique for the 

implementation of all three components – Docker4Seq, Docker containers and 4SeqGUI. It 

integrates command-line (Bash) and R programming languages with a user-friendly GUI 

interface, making this tool/workflow accessible for both experienced bioinformaticians, as well 

as biologists with little-to-no prior skills in computational analysis. In addition to this, it confers 

flexibility for optimising and further development of individual tasks and/or parameters for 

specific containers. By applying the strategy discussed above for the three types of sequencing 

data sets, I have developed a workflow/pipeline consisting of consecutive functions described 

in details, including their corresponding commands, parameters and options that the user can 

follow step-by-step and implement according to their proposed analyses. (Figure 3.9) 

 

 

MACS 

Figure 3.9: Flow chart of different workflows implemented in Docker4seq: 

mRNA (A), ChIP (B) and miRNA (C) 
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 The Docker4seq has been organized in two branches one is the stable and the other one 

is the development branch. The transition from development to stable is when a module made 

of R function and docker container satisfies the 10 rules proposed by the Sandve G. K., et al., 

2013. We have used Git and GitHub as it useful when developing a package. An R user can 

make an easy installation using the same package by using following two lines of code. 

install.packages("devtools") 

devtools::install_github("username/packagename") 

The nomenclature of docker images are labelled with an extension YYYY.NN, wherein 

YYYY stands for the year of insertion in the stable version, while NN is a progressive number. 

There can be a change in the YYYY only when the there is an update done in the programmes, 

implemented in the docker image, as any such updates will affect the reproducibility of the 

workflow in RBP. The previous versions will remain available in the repository. As mentioned 

earlier the NN signifies the change in the docker image, which will not affect the reproducibility 

in those workflows in RBP.  

All the R functions necessary in handling all the steps of RNA-seq, ChIP-seq and 

miRNA-seq workflows are embedded in the stable branch of docker4seq R package. At the 

present time all functions requiring calculations are embedded in the following docker images: 

docker.io/repbioinfo/demultiplexing.2017.01 used by demultiplexing 

docker.io/repbioinfo/annotate.2017.01 used by rnaseqCounts, rsemanno 

docker.io/repbioinfo/bwa.2017.01 used by bwaIndexUcsc, bwa, wrapperPdx 

docker.io/repbioinfo/chipseq.2017.01 used by chipseqCounts, chipseq 

docker.io/repbioinfo/r332.2017.01 used by experimentPower, sampleSize, wrapperDeseq2 

docker.io/repbioinfo/mirnaseq.2017.01 used by mirnaCounts 

docker.io/repbioinfo/rsemstar.2017.01used by rnaseqCounts, rsemstarIndex, rsemstarUscsIndex 

docker.io/repbioinfo/skewer.2017.01 used by skewer, rnaseqCounts, wrapperPdx 

docker.io/repbioinfo/xenome.2017.01 used by xenome, xenomeIndex, wrapperPdx 

Any analysis performed with docker4seq generate a file called containers.txt, which 

docker images are available in the local release of docker4seq. In case, user would like to 

download a set of docker images different from those provided as part of the package, then 
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these images must be specified in a file with the format docker.repository/user/docker.name, 

which has to be passed to downloadContainers function: 

downloadContainers(group="docker", containers.file="my_containers.txt") 

An example of the my_containers.txt file content is: 

docker.io/repbioinfo/bwa.2017.01 

docker.io/repbioinfo/chipseq.2017.01 

docker.io/repbioinfo/r340.2017.01 

 

R skeleton for developing workflows in RBP 

• The first step in the skeleton function is storing the working folder and grabbing the process 

time for subsequent performance evaluation. 

• Testing if docker demon is running. 

• Setting the working directory to the data folder. 

• Checking if the scratch folder exists and then creating a temporary folder 

• Executing the docker command: 

skeleton(group=”docker”, scratch.folder, data.folder) 

The skeleton.sh scripts in docker.io/repbioinfo/Ubuntu for eg: write the hello world in 

the helloworld.txt and moves helloworld.txt to the scratch folder together with 

the run.info file, which is used to store information about the run, and the out.info, used to tell 

to the R script when the doker job is finished. The skeleton.sh scripts is a prototype for the 

handling of docker application(s). 

The resultRun is used to check when the docker job is finished. The results are copied 

from the scratch to the data folder, followed to which the computing time is estimated and saved 

in the run.info file. The log of the docker job (describing the events observed during the 

execution of the container) is saved with a name made of the first 12 letters of the docker job 

ID. After saving the docker instance log, temporary directories and files are deleted. 

More details about the R skeleton and a step-by-step tutorial can be found at: 

https://kendomaniac.github.io/docker4seq/articles/skeleton.html 

 

https://kendomaniac.github.io/docker4seq/articles/skeleton.html


3. Doker4seq 

 

57 
 

Workflow for data pre-processing 

Demultiplexing, quality check and adapter trimming is performed for all sequencing 

data types such as mRNA, miRNA and CHiPseq, but are not implemented in 4SeqGUI, because 

these steps are usually performed by a core lab. Thus only a limited group of users require the 

use of this function. The mRNAseq workflow, that can be handled using 4SeqGUI graphical 

interface (Linux/MAC), starts from the availability of fastq files. Therefore, they can be 

executed from the command line, as follows: 

1. Demultiplexing 

demultiplexing(group="docker", data.folder, scratch.folder, threads=24) 

2. Quality check using FastQC 

fastqc(group = c("sudo", "docker"), data.folder) 

User has to create the fastq.folder, where the fastq.gz files for all miRNAs under analysis 

are located. The scratch.folder is the location where temporary data are created. The results 

will be then saved in the fastq.folder. 

3. Adapter trimming 

• using either SKEWER 

skewer(group = c("sudo", "docker"), fastq.folder = getwd(), 

 scratch.folder = "/data/scratch", adapter5, adapter3, 

 seq.type = c("se", "pe"), threads = 1, min.length = 18) 

User needs to provide the adapter sequence of the sequencing adapters, adapter5 and 

adapter3 parameters. The min.length refers to the minimal length that reads should have after 

adapters trimming. Since today the average read length for a RNAseq experiment is 50 or 75 

nts then it would be better to bring to 40 nts the min.length parameter to increase the precision 

in assigning the correct position on the genome. 

• or CutAdapt 

cutadapt(group = c("sudo", "docker"), scratch.folder, data.folder, adapter.type 

= c("ILLUMINA", "NEB"), threads = 1) 

More details and step-by-step guidelines can be found at:  

https://kendomaniac.github.io/docker4seq/articles/docker4seq.html#rnaseq-workflow-howto 

https://kendomaniac.github.io/docker4seq/reference/demultiplexing.html
https://kendomaniac.github.io/docker4seq/articles/docker4seq.html#rnaseq-workflow-howto
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1. Workflow for mRNAseq analysis 

The main tasks used for mRNA analysis can be setup using 4SeqGUI or command-line: 

1.1 Creation of genome index for STAR (hg38 example below) 

rsemstarIndex(group="docker", genome.folder="/data/scratch/hg38star",  

ensembl.urlgenome="ftp://ftp.ensembl.org/pub/release-87/fasta/homo_sapiens/dna/

Homo_sapiens.GRCh38.dna.toplevel.fa.gz",  

ensembl.urlgtf="ftp://ftp.ensembl.org/pub/release-87/gtf/homo_sapiens/Homo_sapi

ens.GRCh38.87.gtf.gz") 

User has to provide the URL (ensembl.urlgenome) for the file XXXXX_dna.toplevel.fa.gz 

related to the organism of interest, the URL (ensembl.urlgtf) for the annotation GTF 

XXX.gtf.gz and the path to the folder where the index will be generated (genome.folder). 

 

1.2 Mapping of reads to a reference genome using STAR (hg38 example below) 

rsemstar(group=c("sudo","docker"),fastq.folder=getwd(), scratch.folder="/data/s

cratch", genome.folder, seq.type=c("se","pe"), strandness=c("none","forward","r

everse"), threads=1, save.bam = TRUE){--outSAMattributes Standard  

1.3 Count generation using RSEM 

#test example 

system("wget http://130.192.119.59/public/test.mrnaCounts.zip") 

unzip("test.mrnaCounts.zip") 

setwd("./test.mrnaCounts") 

library(docker4seq) 

rnaseqCounts(group="docker",fastq.folder=getwd(), scratch.folder=getwd(), 

adapter5="AGATCGGAAGAGCACACGTCTGAACTCCAGTCA", 

adapter3="AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT", 

seq.type="se", threads=8,  min.length=40, 

genome.folder="/data/scratch/mm10star", strandness="none", save.bam=FALSE, 

org="mm10", annotation.type="gtfENSEMBL") 

1.4 Reference-free alignment and quantification of gene and transcripts using Salmon 

#running salmonIndex human 

salmonIndex(group="docker", index.folder=getwd(),  

https://kendomaniac.github.io/docker4seq/reference/rsemstarIndex.html
https://www.rdocumentation.org/packages/base/topics/system
https://www.rdocumentation.org/packages/utils/topics/unzip
https://www.rdocumentation.org/packages/base/topics/getwd
https://www.rdocumentation.org/packages/base/topics/library
https://kendomaniac.github.io/docker4seq/reference/rnaseqCounts.html
https://www.rdocumentation.org/packages/base/topics/getwd
https://www.rdocumentation.org/packages/base/topics/getwd
https://kendomaniac.github.io/docker4seq/reference/salmonIndex.html
https://www.rdocumentation.org/packages/base/topics/getwd
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ensembl.urltranscriptome="ftp://ftp.ensembl.org/pub/release-90/fasta/homo_sapie

ns/cdna/Homo_sapiens.GRCh38.cdna.all.fa.gz", ensembl.urlgtf=ftp://ftp.ensembl.o

rg/pub/release-90/gtf/homo_sapiens/Homo_sapiens.GRCh38.90.gtf.gz, k=31) 

 

#running salmonCounts 

wrapperSalmon(group="docker", scratch.folder="/data/scratch/", 

 fastq.folder=getwd(), index.folder="/data/genome/salmonhg38/", 

 threads=8, seq.type="pe", adapter5="AGATCGGAAGAGCACACGTCTGAACTCCAGTCA", 

 adapter3="AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT", min.length=40,strandness="none") 

1.5 Generation of count matrix 

RSEM and Salmon quantification generate counts, TPM and FPKM values for 

individual samples. However, I developed a sample2experiment function, which builds a matrix 

of counts and adds batch information for all samples that can be used in downstream analysis. 

#test example 

system("wget http://130.192.119.59/public/test.samples2experiment.zip") 

unzip("test.samples2experiment.zip") 

setwd("test.samples2experiment") 

library(docker4seq) 

sample2experiment(sample.folders=c("./e1g","./e2g","./e3g", 

"./p1g", "./p2g", "./p3g"), 

covariates=c("Cov.1","Cov.1","Cov.1","Cov.2","Cov.2","Cov.2"), 

bio.type="protein_coding", output.prefix=".") 

1.6 Evaluating sample size and experiment power 

#test example 

system("wget 130.192.119.59/public/test.analysis.zip") 

unzip("test.analysis.zip") 

setwd("test.analysis") 

library(docker4seq) 

sampleSize(group="docker", filename="_counts.txt", power=0.80, FDR=0.1, genes4d

ispersion=200, log2fold.change=1) 

The requested parameters are the path to the counts experiment table generated 

by samples2experiment function. The param power indicates the expected fraction of 

differentially expressed gene, e.g 0.80. FDR and log2fold.change are the two thresholds used 

to define the set of differentially expressed genes of interest. The output file 

is sample_size_evaluation.txt is saved in the R working folder. 

ftp://ftp.ensembl.org/pub/release-90/gtf/homo_sapiens/Homo_sapiens.GRCh38.90.gtf.gz
ftp://ftp.ensembl.org/pub/release-90/gtf/homo_sapiens/Homo_sapiens.GRCh38.90.gtf.gz
https://www.rdocumentation.org/packages/base/topics/system
https://www.rdocumentation.org/packages/utils/topics/unzip
https://www.rdocumentation.org/packages/base/topics/getwd
https://www.rdocumentation.org/packages/base/topics/library
https://kendomaniac.github.io/docker4seq/reference/sample2experiment.html
https://www.rdocumentation.org/packages/base/topics/c
https://www.rdocumentation.org/packages/base/topics/c
https://www.rdocumentation.org/packages/base/topics/system
https://www.rdocumentation.org/packages/utils/topics/unzip
https://www.rdocumentation.org/packages/base/topics/getwd
https://www.rdocumentation.org/packages/base/topics/library
https://kendomaniac.github.io/docker4seq/reference/sampleSize.html
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#test example 

system("wget 130.192.119.59/public/test.analysis.zip") 

unzip("test.analysis.zip") 

setwd("test.analysis") 

library(docker4seq) 

experimentPower(group="docker", filename="_counts.txt", replicatesXgroup=7, FDR

=0.1, genes4dispersion=200, log2fold.change=1) 

The requested parameters are the path to the counts experiment table generated 

by samples2experiment function. The param replicatesXgroup indicates the number of 

sample associated with each of the two covariates. FDR and log2fold.change are the two 

thresholds used to define the set of differentially expressed genes of 

interest. genes4dispersion indicates the number of genes used in the estimation of read counts 

and dispersion distribution. The output file is power_estimation.txt. 

1.7 Differential expression analysis using DESeq2 

#test example 

system("wget 130.192.119.59/public/test.analysis.zip") 

unzip("test.analysis.zip") 

setwd("test.analysis") 

library(docker4seq) 

wrapperDeseq2(output.folder=getwd(), group="docker", experiment.table="_counts.

txt", log2fc=1, fdr=0.1,  ref.covar="Cov.1", type="gene", batch=FALSE) 

1.8 Data visualization using PCA 

#test example 

system("wget 130.192.119.59/public/test.analysis.zip") 

unzip("test.analysis.zip") 

setwd("test.analysis") 

library(docker4seq) 

pca(experiment.table="_log2FPKM.txt", type="FPKM", legend.position="topleft", c

ovariatesInNames=FALSE, principal.components=c(1,2), pdf = TRUE, output.folder=

getwd()) 

More details and step-by-step guidelines can be found at:  

https://kendomaniac.github.io/docker4seq/articles/docker4seq.html#rnaseq-workflow-howto 

 

https://www.rdocumentation.org/packages/base/topics/system
https://www.rdocumentation.org/packages/utils/topics/unzip
https://www.rdocumentation.org/packages/base/topics/getwd
https://www.rdocumentation.org/packages/base/topics/library
https://kendomaniac.github.io/docker4seq/reference/experimentPower.html
https://www.rdocumentation.org/packages/base/topics/system
https://www.rdocumentation.org/packages/utils/topics/unzip
https://www.rdocumentation.org/packages/base/topics/getwd
https://www.rdocumentation.org/packages/base/topics/library
https://kendomaniac.github.io/docker4seq/reference/wrapperDeseq2.html
https://www.rdocumentation.org/packages/base/topics/getwd
https://www.rdocumentation.org/packages/base/topics/system
https://www.rdocumentation.org/packages/utils/topics/unzip
https://www.rdocumentation.org/packages/base/topics/getwd
https://www.rdocumentation.org/packages/base/topics/library
https://kendomaniac.github.io/docker4seq/reference/pca.html
https://www.rdocumentation.org/packages/base/topics/c
https://www.rdocumentation.org/packages/base/topics/getwd
https://kendomaniac.github.io/docker4seq/articles/docker4seq.html#rnaseq-workflow-howto
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2. Workflow for miRNAseq analysis 

In brief, fastq files are trimmed using CutAdapt and the trimmed reads are mapped on 

miRNA precursors, i.e. harpin.fa file, from miRBase using SHRIMP. Using the location of the 

mature miRNAs in the precursor, countOverlaps function, from the Bioconductor package 

GenomicRanges is used to quantify the reads mapping on mature miRNAs. All the functions 

for miRNA analysis can be performed via the 4SeqGUI interface. 

User has to provide also the identifier of the miRBase organism, e.g. hsa for Homo 

sapiens, mmu for Mus musculus. If the download.status is set to FALSE, mirnaCounts uses 

miRBase release 21, if it is set to TRUE the lastest version of precursor and mature miRNAs 

will be downloaded from miRBase. 

The main tasks implemented for miRNA data set analysis involve: 

2.1 miRNA counting 

#test example 

system("wget 130.192.119.59/public/test.mirnaCounts.zip") 

unzip("test.mirnaCounts.zip") 

setwd("test.mirnaCounts") 

library(docker4seq) 

mirnaCounts(group="docker",fastq.folder=getwd(), scratch.folder="/data/scratch"

,mirbase.id="hsa",download.status=FALSE,adapter.type="NEB",trimmed.fastq=FALSE) 

2.2 Addition of covariates and batch information 

The function mirnaCovar is used to add to the header of all.counts.txt covariates and 

batches or covariates only. The output of mirnaCovar, i.e. w_covar_batch_all.counts.txt, is 

compliant with downstream analysis. 

#test example 

system("wget 130.192.119.59/public/test.mirna.analysis.zip") 

unzip("test.mirna.analysis.zip") 

setwd("test.mirna.analysis") 

library(docker4seq) 

mirnaCovar(experiment.folder=paste(getwd(), "all.counts.txt", sep="/"), 

     covariates=c("Cov.1", "Cov.1", "Cov.1", "Cov.1", "Cov.1", "Cov.1",  

                  "Cov.2", "Cov.2", "Cov.2", "Cov.2", "Cov.2", "Cov.2"), 

     batches=c("bath.1", "bath.1", "bath.2", "bath.2", "batch.1", "batch.1",  

               "batch.2", "batch.2","batch.1", "batch.1","bath.2", "bath.2"), o

utput.folder=getwd()) 

https://github.com/marcelm/cutadapt
http://www.mirbase.org/ftp.shtml
http://compbio.cs.toronto.edu/shrimp/
https://www.rdocumentation.org/packages/base/topics/system
https://www.rdocumentation.org/packages/utils/topics/unzip
https://www.rdocumentation.org/packages/base/topics/getwd
https://www.rdocumentation.org/packages/base/topics/library
https://kendomaniac.github.io/docker4seq/reference/mirnaCounts.html
https://www.rdocumentation.org/packages/base/topics/getwd
https://www.rdocumentation.org/packages/base/topics/system
https://www.rdocumentation.org/packages/utils/topics/unzip
https://www.rdocumentation.org/packages/base/topics/getwd
https://www.rdocumentation.org/packages/base/topics/library
https://kendomaniac.github.io/docker4seq/reference/mirnaCovar.html
https://www.rdocumentation.org/packages/base/topics/paste
https://www.rdocumentation.org/packages/base/topics/getwd
https://www.rdocumentation.org/packages/base/topics/c
https://www.rdocumentation.org/packages/base/topics/c
https://www.rdocumentation.org/packages/base/topics/getwd


3. Doker4seq 

62 
 

2.3 Differential expression analysis and data visualization were performed as before, for 

mRNA, described above. 

More details and step-by-step guidelines can be found at:  

https://kendomaniac.github.io/docker4seq/articles/docker4seq.html#mirnaseq-workflow 

 

3. Workflow for ChIP-seq analysis 

For ChIP-seq data sets there were two main functions applied: 

3.1 Genome indexing and mapping using BWA 

bwaIndex(group=c("sudo","docker"), genome.folder=getwd(), genome.url=NULL, gtf.

url=NULL, dbsnp.file=NULL, g1000.file=NULL, mode=c("General","GATK","miRNA","nc

RNA"), mb.version=NULL, mb.species=NULL, rc.version=NULL, rc.species=NULL,     

length=NULL) 

bwa (group=c("sudo","docker"),fastq.folder=getwd(), scratch.folder="/data/scrat

ch", genome.folder, seq.type=c("se","pe"), threads=1, sample.id, circRNA=FALSE) 

BWA indexing uses ENSEMBL genomic data. User has to provide the URL 

(uscs.urlgenome) for the file chromFa.tar.gz related to the organism of interest and the path to 

the folder where the index will be generated (genome.folder). The parameter gatk has to be set 

to FALSE if it is not required for ChIPseq genomic index creation. 

The accepted input files are in .bam format, generated with any tool BWA. The user has 

to provide two condition treatment and background for peak calling procedure. The peak calling 

is performed on treatment using the background information to model the noise of the system 

and for this reason a background from same system is provided which is generated using a 

immunoglobulin independent treatment. 

The parameters for peak calling is implemented in docker4seq package with the default 

setting as implemented in the baseSpace App. The user having experience with peak calling 

algorithm can tweak options for peak calling procedure. 
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3.2 Peak calling and annotation using MACS  

system("wget 130.192.119.59/public/test.chipseqCounts.zip") 

unzip("test.chipseqCounts.zip") 

setwd("test.chipseqCounts") 

library(docker4seq) 

macs2(group=c("sudo","docker"), control.bam, chipseq.bam, experiment.name, hist

one.marks=FALSE, broad.cutoff=0.1, qvalue=0.05, organism=c("hs", "mm")) 

User needs to create the following folders: 

+ mock.folder, where the fastq.gz file for the control sample is located. For control sample we refer t

o ChIP with IgG only or input DNA. 

+ test.folder, where the fastq.gz file for the ChIP of the sample to be analysed. 

+ output.folder, where the R script embedding the above script is located. 

There were certain limitations to the ChIP-seq workflow, in the BaseSpace App such as 

each input sample needed to be provided only as unique BAM file because the app did not allow 

the uploading of the fastq files. The BAM file provided needed to aligned with a external tool 

The app only supported peak-calling via background noise definition by external resources. 

More details and step-by-step guidelines can be found at:  

https://kendomaniac.github.io/docker4seq/articles/docker4seq.html#chipseq-workflow 

 

Validation of workflows in RBP  

The workflows designed and described above for mRNA and miRNA data sets were 

successfully embedded in the docker4seq package which is a module in the RBP and were 

validated in different research articles. 

a) Using mRNA data sets 

The (Susanna Zucca, et. al, 2019), was a study performed to reveal the metabolism of the 

coding and long non-coding RNA role in the Amyotrophic Lateral Sclerosis (ALS) 

pathogenesis. The data was obtained from the Peripheral Blood Mononuclear Cells (PBMCs) 

from sporadic and mutated Amyotrophic Lateral Sclerosis patients with specific mutations in 

FUS, TARDBP, SOD1, VCP genes and healthy donors as controls. The aim of the study was 

to compare the coding and non-coding RNAs and to study the difference of the diseases state 

and healthy controls, for sporadic and mutated patients.  

https://www.rdocumentation.org/packages/base/topics/system
https://www.rdocumentation.org/packages/utils/topics/unzip
https://www.rdocumentation.org/packages/base/topics/getwd
https://www.rdocumentation.org/packages/base/topics/library
https://kendomaniac.github.io/docker4seq/articles/docker4seq.html#chipseq-workflow
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The dataset used in this study included samples from 15 sporadic ALS (sALS) patients, 

9 ALS patients with mutation in classical ALS-genes, 3 patients were mutated in SOD1 gene 

(SOD1-m1, SOD1-m2 and SOD1-m3), 3 in FUS gene (FUS-m1, FUS-m2 and FUS-m3), 2 in 

TARDBP gene (TARDBP-m1 and TARDBP-m2) and one in VCP gene (VCP-m1), as well as 

7 healthy individuals (controls). 

Human PBMCs were isolated from ALS patients and healthy controls, RNA was 

extracted from them and an RNA-seq library was prepared using the Illumina TruSeq Stranded 

RNA Library Prerp. Fastq files were generated using bcl2fastq2 (Version 2.17.1.14), their 

quality was checked FastQC software v0.11.6 and Cutadapt was used for adapter trimming. 

STAR 2.6 was used for read mapping to reference human genome GRCh38 genome assembly 

and RSEM v1.3.0 was applied for gene expression quantification. DEseq2, as an R package 

was used to perform differential expression analysis for all the transcripts coding and non-

coding RNAs.  

 

b) Using miRNA data sets 

My miRNA-seq workflow was used in one of the paper in which I am co-author: 

Barbara Pardini, et,al, 2018. This study highlights the abnormalities associated in Bladder 

Cancer (BC), which is one of the most regularly occuring malignancies worldwide. The BC 

screening and early primary diagnosis is believed to improve patient quality of life and their 

survival rate. The main highlight of the study is based on identifying the urinary miRNA 

profiles associated with the BC and different clinic-pathological subtypes by using NGS 

techniques. The most significant miRNAs were used to build model to predict the BC. 

The dataset involved in this study included only men. There were 114 samples in total 

(from 66 BC cases and 48 controls) used in the analyses. RNA was extracted from the urine, 

stored and processed together with library preparation (small RNA-seq) using NEBNext 

Multiplex Small RNA Library Prep Set for Illumina. miRNA was quantified by qPCR. miRNA 

biomarkers were validated in independent urine samples using the miRCURY LNA. For the 

computational and statistical analyses, my developed pipeline was successfully used to analyse 

the associated miRNA-seq dataset. A total of 98 DE miRNAs were identified, out of which 5 

miRNAs (miR-30a-5p, miR-205-5p, miR-584, let-7c and miR-7706) were associated with a 
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Predictive Power (PP) higher than 0.7 when performed using logistic regression analysis. 

(Barbara Pardini, et,al, 2018) 

Other studies that have implemented my designed workflow, embedded in docker4seq for both 

mRNA and miRNA include: Ambrosio S. et al., 2017; Ferrero G. et al., 2017; Pardini B. et al., 

2018; Adamo A. et al., 2019; Arcà B. et al., 2019.  

Discussion 

Reproducibility has been supported and used as a measure to establish reliability of the 

scientific literature and the knowledge we believe in. The increasing dependability on research 

data and bioinformatics and computational techniques for its capacity to reproduce results is 

holding an increasing importance to the scientific community. Aiming in case where a novel 

result is claimed, other researches should be able to reproduce them given that the raw data and 

knowledge of the experiment is provided. The reproducible analysis of high throughput 

sequencing data is a challenging and computationally intensive task, as it involves in depth 

understanding of not only methods and tools used but also data, infrastructure and software. 

Until now, reproducibility of workflows has been a non-trivial task. It is further complicated by 

the interchangeably used reproducibility terminologies (such as repeatability and replicability), 

myriad tools and heterogeneous platforms available to support workflow design and 

implementation.  

The detailed literature review of previous studies shows that reproducing previously 

analysed results can be challenging due to insufficient and sometimes erroneous reporting such 

as technical errors and bias to publish positive results and information. Moreover, there exists 

a lack of clarity in terminologies and concepts associated with reproducibility in the literature. 

In this context, if we cannot agree on the concepts of reproducibility then we have little chance 

to reproduce existing results as described in detail in research publications. The result of this is 

that considerable effort is lost for reproducing experiments/analysis and lack of faith in research 

outcomes is manifest causing an additional burden of reproducibility crisis. 

Important is that scientific claims made through experiments last the test of time as it’s 

very difficult to practically implement and pursue scientific discoveries if the foundations of 

such evidence are weak or if the reproducibility of claims is not possible. Therefore, essentially 

rethinking current research methods and consider standardization of research practices. This 

thesis aims to support reproducibility of bioinformatics workflows by identifying and 
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characterizing implicit and explicit assumptions with intricate details associated with workflow 

design and implementation. These assumptions are often considered needless to be stated, but 

lead to various factors that ultimately impact on the reproducibility of workflows.  

Reproducibility has been time and again shown to be the core principle for any scientific 

research is built upon theory and experiments, verified and extended ideally through open 

science. On the other hand, irreproducible researches create a wastage of resources, time and 

effort misleading the research community. The main issue is that the intricate information 

associated with modern workflow implementations suitable for large scale -omics data has 

reproducibility requirements that are not well understood. Understanding reproducibility 

requirements of bioinformatics workflows and providing a clear definition of reproducibility 

and the associated dimensions have motivated in this thesis.  
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Chapter 4 

Computational analysis of miRNAs from 

human biofluids and surrogate tissues 

 

4.1   Introduction 

miRNAs are small non coding RNAs ~ 22 nucleotides in length. Most of them are 

transcribed from DNA into primary miRNAs (pri-miRNAs) and then processed into precursor 

miRNAs and mature miRNAs. The majority of miRNAs interact with the 3’ untranslated 

regions (UTRs) of target mRNAs, leading to down regulation of gene expression. In addition, 

miRNAs interactions with other regions such as 5’ UTR, coding sequence and gene promoter 

regions have also been reported. Other studies have also shown that miRNAs travel to and from 

different subcellular compartments, thus maintaining a continuous and tight control over the 

rates of translation and transcription. Therefore, miRNAs are very important regulatory 

elements for normal development in numerous biological processes and abnormal expression 

of miRNAs has been linked with many different human diseases. (Makarova J. A. et al., 2016) 

What is more, miRNAs secreted in the extracellular fluids have been widely studied and 

demonstrated to have potential as biomarkers for different diseases, as well as behaving as 

signalling molecules in mediating cell to cell communications. (Ferrero G. et al., 2018) In 

contrast to the RNA species in the cellular region, the extracellular miRNAs are highly stable 

and can resist degradation at room temperature for up to 4 days. (O'Brien J. et al., 2018). 

Studies on these extracellular miRNAs were reported for biological fluids such as 

plasma, serum, cerebrospinal fluid, saliva, breast milk, urine, tears, colostrum, peritoneal fluid, 

bronchial lavage, seminal fluid, ovarian follicular fluid etc (Weber J. A. et al., 2010).  

Taking all these into account, the aim of the current chapter is to demonstrate that my 

computational workflow can be used to identify the abundance and distribution of both common 

and unique miRNAs in different biospecimens. More than that, differential analysis of the 

uniquely observed miRNAs were cross-validated against previously published studies which 

found the corresponding miRNAs as biomarkers for different diseases. All the results obtained 

from both wet-lab experiments and bioinformatics analysis based on my designed pipeline were 

published in (Ferrero G. et al., 2018), for which I was a co-author. 
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4.2   Material and Methods 

Dataset 

The datasets used for the above-mentioned study Giulio Ferrero, et.al, 2018 were 

obtained from a total of 125 samples of plasma-derived exosomes, out of which 48 were urine 

samples, 31 cervical scrapes and 39 stools samples, all from healthy donors (controls). 

Stool and plasma samples – In a hospital-based study for colorectal cancer negative 

subjects were recruited as controls, we obtained the stool and plasma samples donors who tested 

negative for the colorectal cancer. Naturally evacuated stool was collected in special tubes with 

RNA stabilizing solution and stored at -80°C until RNA extraction was performed. 

Urine sample – Urine samples were collected from the donors in the morning and stored 

at 4°C until the process of centrifugation at 3000g for 10mins. The urine supernatants were then 

transferred to other tubes and stored at -80°C until use.  

Cervical scrapes – The cervical scrape samples were obtained from the women who 

only tested negative for HPV. The samples were collected and stored in Specimen Transport 

Medium (STEM) at -80°C until RNA extraction. 

All the following wet-lab experiments were performed by other colleagues in my group: 

RNA isolation, exosome isolation from plasma, RNA extraction and library preparation. I have 

run the computational analysis, focused on investigating expression levels and patterns of 

miRNAs of the comparable sizes in the aforementioned four biospecimens obtained from 

human biofluids and surrogate tissues for diagnostic and screening programs. The aim of the 

study was to explore new potential biomarker for disease classification and a clear overview of 

the commonly and uniquely expressed miRNAs in different human biospecimens. 

RNA isolation 

Total RNA was isolated from samples with kits suited for each type of specimen. Total 

RNA was used to prepare sequencing libraries, subsequently sequenced on an Illumina Nextseq 

500. The resulting fastq files were analysed with the miRNA workflow, developed as a part of 

the Reproducible Bioinformatics Project (described in detail in Chapter 3). 
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Exosome isolation from plasma 

The plasma samples were obtained from 5-8ml of blood centrifuged for 10mins at 1000 

rpm following to which the plasma aliquots (about 200-300 µl) were stored about at -80°C until 

next use. ExoQuick exosome precipitation solution (System Biosciences, Mountain View, CA, 

USA) according to the manufacturer’s instructions with minor modifications were used to 

isolate Exosomes from 200 μl of plasma. the plasma was mixed with 50.4 μl of ExoQuick 

solution and refrigerated at 4°C overnight (at least 12 h). The mixture was then further 

centrifuged at 1500 g for 30 min. The exosome pellet was dissolved in 200 μl of nuclease free 

water; RNA was extracted immediately from the solution. 

RNA extraction and quality control 

Using the miRNeasy plasma/serum mini kit (Qiagen) and the QiaCube extractor 

(Qiagen), total RNA from plasma exosomes was extracted. Using the Total RNA Purification 

Kit (Norgen Biotek Corp), RNA from stool was extracted. The RNA from the cervical scrape 

was extracted from the samples stored in the STM, using the miRCURY RNA isolation Kit. 

Using the MIQE guidelines, the RNA quality and quantity was verified. Using the Qubit 2.0 

fluorometer, RNA concentrations were quantified. 

Library preparation 

Small RNA library preparation was performed with the NEBNext Multiplex Small RNA 

Library Prep Set for Illumina (New England BioLabs Inc., USA) (Figure 4.1) 

Figure 4.1: Schematic representation of library preparation and miRNA pipeline 
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Computational analysis of miRNAs 

As described in the previous Chapter 3, miRNA fastq files were pre-processed and their 

quality was checked using FastQC, after which reads shorter than 14 nucleotides were filtered 

out/discarded. These were then adapter-trimmed using Cutadapt and subsequently mapped 

against the precursor miRNA sequences downloaded from miRbase (Release 21), using Shrimp 

algorithm. A count matrix made of integer values referring to the level of expression of mature 

miRNAs were generated using Bioconductor Genomic Ranges (GRanges) based script, which 

counts reads located in the region of miRNA precursors for which mature miRNAs are 

expected. This count matrix is then used for further analysis of differentially expressed genes.  

The expression levels of miRNAs were identified in all different specimens and were 

then compared using Venn diagram and heatmap2 R function. PCA analysis was performed 

using prcomp R function and autoplot function from ggfortify R package. A list of validated 

miRNAs was annotated in miRWalk 2.0 database (Dweep H. and Gretz N., 2015) and then 

EnrichR (Chen E. Y. et al., 2013), a web tool (https://amp.pharm.mssm.edu/Enrichr/) used for 

the functional enrichment analysis of miRNAs (Dweep H. and Gretz N., 2015). The uniquely 

identified and differentially expressed miRNAs were then cross-checked with numerous 

miRNAs already reported as biomarkers in tissues in altered state of disease. 

 

4.3 Results  

The mapping analysis of miRNA-seq data recorded remarkable read alignment rates 

(figure 27), with the highest number of uniquely-mapped reads found in urine samples, with a 

median read 12.38 million. Plasma exosomes had second highest median read of 11.34 million, 

while the median rates for stool samples and cervical scrapes were 4.88 million and 4.13 

million, respectively (Figure 4.2) 

A total of 1823 miRNAs were successfully identified and annotated using miRbase 

database, with 73.8% corresponding to plasma exosomes and 19.9% to cervical scrapes. The 

differential expression analysis embedded in my workflow also helped identify the miRNAs 

with the highest expression in each of the different biological tissue types - miR-486-5p in 

plasma exosomes, miR-320a in cervical scrapes, miR-6813-5p in stool samples, and miR-30a-

5p in urines samples. (Figure 4.3B) 
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Figure 4.2: Barblot showing the fraction of reads aligned for different biospecimens 

Figure 4.3: (A) Venn diagram reporting the number of miRNAs detected in different specimens from 

healthy individuals and their overlap. (B) Heat map showing the log10 number of normalized reads 

supporting the miRNAs specifically detected in one specimen or commonly detected among them. (C) 

PCA plot showing the small RNA-Seq datasets separation obtained using miRNAs detected in samples 
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miRNAs were commonly and uniquely identified in different biospecimens involved in 

the study. PCA visualization of expression results showed different miRNA clusters for each 

biospecimen. A pairwise correlation analysis provided comparable results. Out of these, 11 

miRNAs were identified as common between all specimen types: miR-320a, miR-589-5p, miR-

636, miR-1273a, miR-3960, miR-4419a, miR-4497, miR-4709-5p, miR-4792, miR-7641-1, 

and miR-7641-2 (Figure 28a). In contrast, 155 miRNAs were uniquely present in the plasma 

exosomes, comparably more than in any of the other biospecimen – stool samples had 55 

miRNAs uniquely present, urine samples had 22 miRNAs and cervical scrapes had only 1 

miRNA uniquely present. (Figure 28A).  

In addition, PCA analysis of highly expressed miRNAs provided a good accuracy in the 

classification of different biospecimen (Figure 28C). Although not implemented in the 

Docker4Seq mRNA workflow, random forest classification was subsequently used and an 

accuracy percentage of 99.9% was obtained, with only one sample being misclassified. 

Moreover, all the miRNAs were analysed based on a discriminate capacity, using chi square 

statistic for attribute selection analysis. Out of these, three miRNAs (miR-204-5p, miR-5698, 

and miR-335-3p) recorded the highest merit scores/lowest p-values.  

For a number of patients, multiple samples were collected from the same individual, 

such as both plasma and stool, or plasma and urine. The availability of such paired data for sets 

of 2 different biospecimens enabled a comparison analysis between the expression levels of 

miRNAs for the same patient. A low co-expression was observed between both plasma-stool 

or plasma-urine samples. However, there was one exception – miR-3665, which was observed 

to be a positive correlation (r=0.59, p=2.0*10-5) between plasma and urine sample (Figure 4.4).  

An analysis to predict the miRNA isoforms (isomiRs) was performed. 832 isomiRs were 

detected in at least one specimen with more than20 supporting reads. There 94.4% of isomiRs 

found in plasma exosomes or urine sample consistently with consistently higher reads in these 

samples. IsomiRs with a 3’ variant of miR-486/miR-486-2 in plasma sample 5′ variant of miR-

934 in urine sample, a 5′ variant of miR-7704 in cervical scrapes, and a 3′ variant of miR-583 

in stool samples were isomiRs with higest number of supporting reads. Out of 11 common 

miRNAs that were previously identified, 8 were associated to an isomiR. 
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The most commonly obtained miRNA (miR-320a) and its downregulation was shown 

to be associated with different disease including cancer (Xie F. et al., 2017). miRNA (miR-589-

5p) was identified in our study which is a good inhibitor of MAP3K8 and is associated with 

hepatocellular carcinoma which a suppressor of CD90+ cancer stem cells (Zhang Xi et al., 

2016). Another regulatory element, miR-636 also identified in the study was reported as a good 

biomarker for many diseases, such as diabetics and kidney diseases (Eissa S. et al., 2016), 

pancreatic cancer (Schultz N. A. et al., 2014), colorectal cancer (Slattery M. L. et al., 2016). 

miR-4792, also identified using the current workflow was previously demonstrated to be 

dysregulated in nasopharyngeal carcinoma tissues (Li Y. and Chen X., 2015) and oral 

submucous fibrosis (Chickooree D. et al., 2016).  

Interestingly, the rest of the commonly obtained miRNAs were never studied in detail. 

Although these miRNAs are found to be dysregulated in different diseases found in different 

biospecimens can be used as multispecies markers. Several studies also obtained comparable 

results on the available dataset from same anatomically related tissue. (Ben-Dov I. Z. et al., 

Figure 4.4: Correlation analysis of paired datasets. 
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2016; Seashols-Williams S. et al., 2016; Yeri A. et al., 2017). Similarly, using our docker3seq 

embedded pipeline, miR-320a and miR-589-5p were observed to be highly expressed in the 

tested data sets and they were also found in all other observed datasets. 

 

Discussion 

The results described above demonstrated that my designed miRNA workflow (also 

embedded in the docker4seq package) was successful in identifying the miRNAs that were 

commonly and uniquely expressed in the four different biospecimens included in this study.  In 

total, there were 400 miRNAs detected in one or more specimen types, while a large set of 

miRNAs were expressed only in plasma exosomes, but only a few miRNAs were specific to 

stool or urine, and just one was found to be specific to cervical scrapes. However, there were 

109 commonly expressed and shared miRNAs between plasma exosomes and urine.  

More than that, considering the total number of highly expressed miRNAs, these were 

successfully and efficiently classified and separated by their original biological type. This 

classification is very important in biomarker studies, which could be representing an altered 

state of tissue type in its association with various diseases. In contrast, I identified 11 miRNAs 

with similar expression patterns in all four specimens. Overall, the data studied provided an 

insight to the human miRNome for different biospecimens of healthy individuals.  
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Chapter 5 

Conclusions and Future Work 

 

Reproducibility has always been one of the most important aspects for high quality 

scientific research, but it has also posed major issues that continue to be addressed. Moreover, 

the increase in demand and use of bioinformatics approaches has led to more systematic 

strategies for solving reproducibility problems. One of these is Reproducible Bioinformatics 

Project (RBP), developed with the aim of reducing the reproducibility issues, since it is a 

framework helping users to collate, analyse and visualize data. The workflows implemented in 

RBP are designed to bring back in the hands of life scientists the basic bioinformatics required 

for the majority of transcriptomics and genomics studies, e.g. going from fastq to differential 

expression or calling ChIPseq peaks. For this reason, a GUI is provided together with 

workflows vignette and a you tube channel describing how to run the workflows using the GUI. 

At the same time RBP is granting the robustness and reproducibility of the workflows 

being designed on the basis of the reproducibility rules proposed by Sandve and assembled 

using docker containerization which guarantees computational reproducibility.  

 

5.1 RBP workflows for mRNAseq, miRNAseq and ChIPseq analysis 

The stable version of the current RBP has three functional workflows for the analysis 

of mRNAseq, miRNAseq and ChIPseq. These enable the identification and study of expression 

patterns of different genetic elements in a tissue specific manner. A test dataset is also provided 

for beginners to test and familiarize themselves with each workflow. 

mRNAseq pipeline offers an insight into the transcriptomic state of diseases and is 

designed detect differential expressed genes and transcripts. miRNAseq workflow analyses 

mature miRNAs, identifies unannotated 5P or 3P mature mRNAs, looks at their distribution 

and abundance, and quantifies their expression levels. The third workflow in RBP is ChIPseq, 

which helps the users to examine the mechanism of transcription factors (TF) and chromatin-

associated proteins, to determine their interaction with DNA and to understand its potential for 

regulating gene expression.  
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5.2   Computational analysis of miRNAs from human biospecimens 

Diagnostic and the therapeutic procedures demand for less invasive techniques to 

analyse different biospecimens for the study biomarker detection in complex diseases. This 

emphasizes the importance of our computational workflows, which can be used to analyse 

various sequencing data for both predicting the presence of specific regulatory elements and 

understanding their pathogenesis in relation to different diseases. The pipeline developed for 

analysis of miRNAseq data was used to evaluate the miRNA profiles in different tissues and 

human biofluids obtained from healthy individuals through non-invasive methods. The analysis 

was performed on plasma exosomes, urine, stool and cervical scrap samples and investigated 

the presence, distribution and expression of miRNAs in each biological condition.  

A large set of uniquely-present miRNAs (n=155) was found in plasma exosomes, while 

in stool and urine samples there were less miRNA uniquely identified, and only one miRNA 

was associated with the cervical scraps. However, plasma exosomes and urine samples shared 

approximately 100 common miRNAs, and even fewer were recorded between the other 

biospecimens. The four biological tissues tested were also classified based on the highly 

expressed miRNAs, thus proving the capability of our workflow to be used for predicting and 

identifying possible biomarkers. For example, the most commonly obtained miRNA, miR-320a 

was cross-checked with various published studies and was found to be downregulated in 

conditions like cancer. Similarly, miR-589-5p was reported as a good inhibitor of MAP3K8 

and associated with hepatocellular carcinoma. Other miRNAs identified were shown as 

potential biomarkers involved in diseases such as diabetes and kidney disease, pancreatic and 

colorectal cancer (miR-636), and nasopharyngeal carcinoma (miR-4792). 

In conclusion, the 3 workflows for mRNAseq, miRNAseq and ChIPseq analysis 

represent our first successful attempt to build an RBP platform supporting scientific 

reproducibility. They are wrapped in a docker images and supported by video tutorials which 

describe the use of each workflow in a step-by-step manner. Workflows for mRNAseq and 

miRNAseq analysis have also been cross-validated in a number of studies published in peer-

reviewed journals. 
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More than that, the high number of online visitors and users demonstrate the demand of 

our tool and its increasing popularity (Figures 5.1 – 5.4). This is because the developed pipelines 

embedded into a docker4seq platform confer flexibility for optimization and further 

development of individual tasks for each container and it uses a user-friendly interface. Other 

future workflows are also under development for the analysis of variants calling in patient 

derived xenografts (PDX) from RNAseq and EXOMEseq data, for single cell analysis and 

metagenomics. 

 

Figure 5.1: Plot representation overview of audience of RBP 

Figure 5.2: Plot representation of visitors to ourGitHub link 
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Figure 5.3: RBP Visitors from United States and Italy 

Figure 5.4: RBP Visitors from rest of the world 
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Abstract

Background: Reproducibility of a research is a key element in the modern science and it is mandatory for any
industrial application. It represents the ability of replicating an experiment independently by the location and the
operator. Therefore, a study can be considered reproducible only if all used data are available and the exploited
computational analysis workflow is clearly described. However, today for reproducing a complex bioinformatics
analysis, the raw data and the list of tools used in the workflow could be not enough to guarantee the
reproducibility of the results obtained. Indeed, different releases of the same tools and/or of the system libraries
(exploited by such tools) might lead to sneaky reproducibility issues.

Results: To address this challenge, we established the Reproducible Bioinformatics Project (RBP), which is a non-profit
and open-source project, whose aim is to provide a schema and an infrastructure, based on docker images and R
package, to provide reproducible results in Bioinformatics. One or more Docker images are then defined for a
workflow (typically one for each task), while the workflow implementation is handled via R-functions embedded in
a package available at github repository. Thus, a bioinformatician participating to the project has firstly to integrate
her/his workflow modules into Docker image(s) exploiting an Ubuntu docker image developed ad hoc by RPB to
make easier this task. Secondly, the workflow implementation must be realized in R according to an R-skeleton
function made available by RPB to guarantee homogeneity and reusability among different RPB functions.
Moreover she/he has to provide the R vignette explaining the package functionality together with an example
dataset which can be used to improve the user confidence in the workflow utilization.

Conclusions: Reproducible Bioinformatics Project provides a general schema and an infrastructure to distribute
robust and reproducible workflows. Thus, it guarantees to final users the ability to repeat consistently any analysis
independently by the used UNIX-like architecture.
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Background
Recently Baker and Lithgow [1, 2] highlighted the problem
of the reproducibility in research. Reproducibility critical-
ity affects to different extent a large portion of the science
fields [1]. Since nowadays bioinformatics plays an import-
ant role in many biological and medical studies [3], a great
effort must be put to make such computational analyses
reproducible [4, 5]. Reproducibility issues in bioinformat-
ics might be due to the short half-life of the bioinformatics
software, the complexity of the pipelines, the uncontrolled
effects induced by changes in the system libraries, the in-
completeness or imprecision in workflow description, etc.
To deal with reproducibility issues in Bioinformatics
Sandve [5] suggested ten good practice rules for the devel-
opment and the utilization of a computational workflow
(Table 1). A community that fulfills some of the rules sug-
gested by Sandve is Bioconductor [6] project, which pro-
vides version control for a large amount of genomics/
bioinformatics packages. In this way, old releases of any
Bioconductor package are kept available for the users.
However, Bioconductor does not cover all the steps of any
possible bioinformatics workflow, e.g. in RNAseq wolk-
flow fastq trimming and alignment steps are generally
done using tools not implemented in Bioconductor. Base-
Space [7, 8] and Galaxy [9] represent an example of both
commercial and open-source cloud solutions, which par-
tially fulfill Sandve’s roles. Furthermore, the workflows im-
plemented in such environments cannot be heavily
customized, e.g. BaseSpace has strict rules for applications
submission. Moreover, clouds applications have to cope
with legal and ethical issues [10].
Galaxy instead implements the functional reproducibility

level, i.e. the information about data and the utilized tools
are saved in terms of meta-data, while RBP exploiting
Docker framework provides also the computation reprodu-
cibility, i.e. the real image of the computation environment
used to generate the date is stored.

Recently container technology, a lightweight Operation
System (OS)-level virtualization, was explored in the
area of Bioinformatics to make easier the distribution,
the utilization and the maintenance of bioinformatics
software [11–13]. Indeed, since applications and their
dependencies are packaged together in the container
image, the users have not to download and install all the
dependencies required by an application, thus avoiding
all the cases where the dependencies are not well docu-
mented or not available at all. Moreover, problems re-
lated to versions conflicts or updates of the system
libraries do not occur, because the containers are iso-
lated and frozen from the rest of the operating system.
Among the available container platforms, Docker

(http://www.docker.com) is becoming de facto the
standard environment to quickly compose, create, de-
ploy, scale and oversee containerized applications under
Linux. Its strengths are the high degree of portability,
which allows users to register and share containers over
various hosts in private and public repositories, and to
achieve a more effective resource use and a faster de-
ployment compared with other similar software.
In Menegidio [13], da Veiga [11] and Kim [12] the au-

thors provide a large collection of bioinformatics tools
containerized in a Docker image called BioContainers.
However, a controlled and flexible framework to create
and distribute bioinformatics reproducible workflow is
not defined. Instead, projects like (https://snakemake.bit-
bucket.io) or Nextflow (https://www.nextflow.io) allow
users to create reproducible and scalable data analyses
specifying their own pipeline through a powerful meta-
language for workflow specification. However, the strong
flexibility of these metalanguages can make difficult their
utilization for users without advanced programming skills.
To cope with these aspects, we propose the implemen-

tation of the Reproducible Bioinformatics Project (RBP,
http://reproducible-bioinformatics.org/), whose aims are
(i) to distribute to the bioinformatics community
docker-based applications under the reproducibility
framework proposed by Sandve [5], and (ii) to provide to
R bionformatics community an easier framework for the
developing their own reproducible workflows.
The concept of BioContainers, described above, is differ-

ent from RBP project. BioContainers provides pieces of
software to be integrated in a workflow, as instead in RBP
complete workflows are provided, e.g. gene/transcripts
RNAseq, microRNA-sequencing (miRNA-seq), Chroma-
tin Immuno Precipitation sequencing (ChIP-seq), DNA/
RNAseq variant calling. RBP docker images not only in-
clude the specific software that give the name to the
image, e.g. in bwa RBP docker image, bwa.2017.01, sam-
tools, picard-tools, java and R, are also present.
RBP accepts simple docker implementations of bio-

informatics software (e.g. a docker embedding bwa

Table 1 Good practice bioinformatics rules, derived from
Sandve et al. [5]

1 For Every Result, Keep Track of How It Was Produced

2 Avoid Manual Data Manipulation Steps

3 Archive the Exact Versions of All External Programs Used

4 Version Control All Custom Scripts

5 Record All Intermediate Results, When Possible in Standardized
Formats

6 For Analyses That Include Randomness, Note Underlying Random
Seeds

7 Always Store Raw Data behind Plots

8 Generate Hierarchical Analysis Output, Allowing Layers of Increasing
Detail to Be Inspected

9 Connect Textual Statements to Underlying Results

10 Provide Public Access to Scripts, Runs, and Results
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aligner tool), implementation of complex pipelines in-
volving the use of multiple dockers images (e.g. a RNA-
seq workflow providing all the steps for an analysis
starting from the quality control of the fastq to differen-
tial expression), as well as demonstrative workflows (i.e.
docker images embedding the full bioinformatics work-
flow used in a publication) intended to provide the abil-
ity to reproduce published data.

Methods
The Reproducible Bioinformatics Project (RBP) reference
web page is http://reproducible-bioinformatics.org. The
project is based on three modules (Fig. 1): (i) docker4seq R
package (https://github.com/kendomaniac/docker4seq), (ii)
dockers images (https://hub.docker.com/u/repbioinfo/), and
(iii) 4SeqGUI (https://github.com/mbeccuti/4SeqGUI).
Docker4seq package provides the interface between

users and docker containers. Docker4seq is organized in
two branches: stable and development. The transition
between development and stable branch is done when a
module (R function(s)/docker container(s)) fulfills the 10
rules suggested by Sandve [5] for the good bioinformat-
ics practice (Table 1).
The function skeleton.R in docker4seq provides a prototype

to build a docker controlling function. A tutorial on how to
use the skeleton.R function is available in the section “How
to be part of the Reproducible Bioinformatics project” at
http://www.reproducible-bioinformatics.org/ and the skele-
ton.R is part of the devel branch of docker4seq (https://
github.com/kendomaniac/docker4seq/tree/devel). The tutor-
ial also embeds a description of the Ubuntu docker image
called via skeleton.R. In the docker images repository dock-
er.io/repbioinfo is available an Ubuntu image, which is the
starting image used for the creation of all docker images de-
veloped by the RBP core team. Since, there are no specific
software requirements for the docker images present in RBP,
developers can use any linux image to build their own
docker image.
Acknowledgments of the developer work is provided

within the structure of the skeleton.R. In skeleton.R there is a
field indicating developer affiliation and email for contacts.

Developer is free to decide to use this prototype or
to adapt a different Linux docker distribution for his/
her application. Docker images designed by the core
developers of RBP are located in docker.io/repbioinfo
(docker.com), the images developed by third parties
can be instead placed in any public-access docker
repository.
RBP requires that any operation, implying the use

of any R/Bioconductor packages or the use of an ex-
ternal software, has to be implemented in a docker
container. Only reformatting actions, e.g. table as-
sembly, data reordering, etc., can be handled outside
a docker image.
Any new RBP module (R function(s)/docker image(s))

must be associated with an explanatory vignette, access-
ible online as html document, and with a set of test data
accessible online. Thus, all instruments needed to ac-
quire confidence on module functionalities are provided
to the final user.
Docker images are labelled with the extension YYYY.NN,

where YYYY is the year of insertion in the stable version
and NN a progressive number. YYYY changes only if any
update on the program(s), implemented in the docker
image, is done. This because any of such updates will affect
the reproducibility of the workflow. Previous version(s) will
be also available in the repository. NN refers to changes in
the docker image, which do not affect the reproducibility of
the workflow.
A new module can be submitted to the info@reprodu-

cible-bioinformatics.org and RBP core team will verify
the compliance with Sandve [5] rules. Specifically, to
guarantee the compliance with Sandve rules, RBP core
team will check that:

� Each new workflow produces for each analysis step
a log file, thus tracking how the results are produced
(Sandve rule 1).

� All workflow/module steps are executed through
scripts, thus avoiding manual data manipulation
steps (Sandve rule 2).

� All computation events are executed within a docker
container and the versions of the software

Fig. 1 Reproducible Bioinformatics Project structure
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embedded in the docker image is shown as tag of
the docker image (Sandve rule 3, 4).

� All intermediate results are available as part of the
final results (Sandve rule 5).

� In case random seeds are used, they are recorded in
a file and provided as part of final output of the
module (Sandve rule 6).

� Raw data used to generate plots should be made
available with plots (Sandve rule 7).

� Sandve rules 8 and 9 are not considered mandatory,
because are mostly dependent from the workflow/
module. The RBP core team will check if compliance
to these rules will improve the overall quality of
workflow/module output.

� License associated with the modules/workflows
embedded in docker4seq must guarantee public
access to the scripts and docker images (Sandve
rule 10).

Rules 8 and 9, reported in Table 1, are not considered
mandatory.
Ones validated, the R functions controlling the new

module are inserted into docker4seq stable release. Par-
tially validated modules will be placed in development
branch and moved to stable one when compliance with
Sandve’s rules is fulfilled.

4SeqGUI is a Java based graphical interface to dock-
er4seq functions. It is designed to provide a GUI to users
having limited knowledge of R scripting. Currently the
GUI embeds only general-purpose workflows, such as
RNAseq, miRNA-seq and Chip-seq workflow.

Results
The stable branch of docker4seq R package contains all
the R functions required to handle all the steps of RNA-
seq workflow (Fig. 2a), ChIP-seq workflow (Fig. 2b), and
miRNA-seq workflow (Fig. 2c). Docker4seq also provides
a wrapper function for the bcl2fastq Illumina tool to
convert the Illumina sequencer output in demultiplexed
fastq files (Fig. 2). Then, the fastq files can be handled
with any of the three different workflows. The counts
table produced by RNAseq or miRNAseq workflows can
be used to data visualization (pca, principal component
analysis function), to evaluate the statistical power of the
experiment (experimentPower function), to define the
optimal sample size of the experiment for the detection
of differentially expressed genes (sampleSize function)
and to detect differentially expressed genes/transcripts
(wrapperDeseq2 function). Sample size/statistical power
estimation of the experiment and differential expression
are calculated respectively via RnaSeqSampleSize [14]
and DESeq2 Bioconductor packages [15].

Fig. 2 Workflows available in the stable branch of docker4seq. a Whole transcriptome sequencing workflow, b ChIP sequencing workflow, and c
miRNA sequencing workflow. The names followed by parenthesis are the docker4seq functions used to execute the analysis steps. Black indicate
elements in common among more than one workflow
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In the development branch, we work on three work-
flows (i) Patient Derived Xenograft (PDX) workflow, (ii)
human small non-conding (snc) RNAs workflow, and (iii)
B-cell clonality and Minimal Residual Disease detection.
In the first workflow we provide a pipeline for DNA

(from EXOMEseq data) and RNA (from RNAseq data)
somatic variant calling. The DNA variant calling workflow
embeds the pre-processing procedure suggested by the
GATK best practice (Fig. 3a). RNAseq data preparation
for variant calling (Fig. 3c) requires the use of STAR 2 step
procedure [16], which provides significantly increased sen-
sitivity to novel splice junctions. Then, after sorting and
duplicates marking, OPOSSUM [17] is used to remove in-
tronic regions and to merge overlapping reads. We have
also implemented a specific procedure (Fig. 3b), based on
xenome software [18], to discriminate between human
reads and mouse host reads in the sequences produced by
the analysis of patients derived xenografts (PDX, [19]). As
part of the somatic variant calling workflow we are
implementing MUTECT 1 and 2 [20] (Fig. 4a) to call
somatic variants as well as PLATYPUS [21] for extracting

information of joined-samples Single Nucleotide Variants
(SNVs)(Fig. 4b).
We are also expanding the RNAseq module adding

the reference-free Salmon aligner [22], which employs
less memory for the alignment task than STAR, but pro-
viding similar results [23].
The second workflow, used in the analysis described in

the paper by Ferrero et al. [24], is focus on the analysis
of sncRNAs as reported in Fig. 5. The quality of the
FASTQ files are checked using FastQC software. The
reads associated with good quality values are clipped
from the adapter sequences using Cutadapt. The
trimmed reads are then mapped against an in-house ref-
erence of human small RNA sequences composed of: (i)
1881 precursor miRNA sequences downloaded from
miRBase (Release 21) (ii) 32,826 piRNA sequences from
piRBase v1.0, and (iii) 5171 small RNA sequences from
Database of Small Human non-coding RNAs (DASHR)
database v 1.0 shorter than 80 bp.
The alignment is performed using the BWA algorithm.

Small RNAs quantification is performed differently between

Fig. 3 Variant calling workflows under refinement in the development branch of docker4seq. a SNVs calling in DNA workflow. The function
snvPreprocessing requires that users provides its own copy of the GATK software, because of Broad Institute license restrictions. This function
returns a bam file sorted, with duplicates marked after GATK indel realignment and quality recalibration. b Data preprocessing for samples
derived by Patient Derived Xenografths (PDX). The xenome function discriminates between the mouse host reads and the human tumor reads,
then DNA or RNA SNV calling workflows can be applied. c SNVs calling in RNA workflow. The function star2steps generates a sorted bam, where
duplicates are marked and processed by opossum for removal of intronic regions and merging of overlapping reads. The names followed by
parenthesis are the docker4seq functions used to execute the analysis steps. Black indicate elements in common between more than
one workflow
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miRNAs and non miRNAs sncRNAs. The miRNA expres-
sion is quantify using two methods, called annotation-based
or the position-based method respectively. In the annotat
ion-based method, mature miRNAs expression quantifica-
tion is performed by counting the read mapped on miRBase
mature miRNA sequences using an GenomicRanges R pack-
age. Since not all miRNA mature sequences are annotated in
miRBase, the position-based read count method is per-
formed by considering the read mapping position within the
precursor miRNA sequences. The result of the two quantifi-
cation methods are merged into a final miRNA count
matrix. In this matrix each mature miRNA not annotated in
miRBase but quantified using the position-based method is
reported with suffix Novel. Quantification of non miRNA an-
notations is performed counting the read alignment reported
by BWA output sam files. The identification of Differentially
Expressed sncRNAs is performed using Deseq2 package as
reported in the RNAseq workflow.
The third workflow is based on the HashClone frame-

work [25, 26] a new suite of bioinformatics tools provid-
ing B-cells clonality assessment and minimal residual
disease (MRD) monitoring over time from deep sequen-
cing data, was integrated in the Docker4seq package. In
particular, a parallel version of the standard HashClone
workflow (Fig. 6) was developed exploiting the docker
architecture.
All the modules described above are implemented in

22 docker images deposited in the docker hub (https://
hub.docker.com/u/repbioinfo/).
As part of the RBP we have also developed a GUI, 4Seq-

GUI (https://github.com/mbeccuti/4SeqGUI). The GUI is
implemented in JAVA and can be exploited to perform
whole transcriptome sequencing workflow (Fig. 2a), ChIP

Fig. 4 Variant calling workflows under development in the development branch of docker4seq. a Somatic SNVs detection using GATK MUTECT 1
or 2. b Platypus based join mutations caller. Dashed blocks are not implemented, yet

Fig. 5 sncRNA workflow. The sncRNA pipeline starts from a
reference composed by the set of sncRNAs that contains all sncRNA
characterized by a length minor than 80 bp. Then, two types of
scripts are used one dedicated to the detection of known and novel
microRNAs while the other is focused on sncRNAs

Kulkarni et al. BMC Bioinformatics 2018, 19(Suppl 10):349 Page 10 of 100

https://hub.docker.com/u/repbioinfo
https://hub.docker.com/u/repbioinfo
https://github.com/mbeccuti/4SeqGUI)


sequencing workflow (Fig. 2b), and miRNA sequencing
workflow (Fig. 2c).

Discussion
RBP core developers created frameworks for RNA/
miRNA quantification and analysis. ChIPseq workflow
was also developed and variant calling workflows for
DNA and RNA are under active development. A pecu-
liar feature of RBP is the acceptance of demonstrative
workflows, i.e. bioinformatics procedures described in a
biological/medical paper. A demonstrative workflow is
wrapped in a docker image and it is supported by a tu-
torial, which describes step by step how the analysis is
done to guarantee the reproducibility of published data.

Conclusions
Bioinformatics workflows are becoming an essential part
of many research papers. However, absence of clear and
well-defined rules on the code distribution make the re-
sults of most published researches unreproducible [27].
Recently, Almugbel and coworkers [28] described an in-
teresting infrastructure to embed Bioconductor based
packages. However, Bioconductor does not cover all
steps of any possible bioinformatics workflow, thus
providing a limited framework for developing complex

pipelines. Differently, RBP represents a new instrument,
which expands the idea of Almugbel [28], providing a
more flexible infrastructure allowing the bioinformatics
community to spread their work under the guidance of
rules, which guarantee inter-laboratory reproducibility
and do not limit docker implementations to Bioconduc-
tor packages. Moreover the RBP project, differently by
others projects i.e. snakemake and nextflow, is specific-
ally designed for the R community.
The RBP workflows are designed to work on a single

machine with multi-cores, which do not need to be ne-
cessary a high-end server [29]. In [29] we describe that
RNAseq, miRNA-seq and ChIP-Seq workflows (Fig. 2)
can be executed efficiently on a consumer computer
equipped with Intel i7 CPU (8 threads), 250 Gb SSD disk
and 32 Gb of RAM. Recently, with the implementation
of the reference free aligner Salmon [22] the minimal
RAM requirements dropped to 8 Gb. This make pos-
sible the execution of the workflows available in RBP
nearly any modern laptop with Linux operating system.
Of course, a high-end server allow an higher level of
parallelization in the analysis of multiple samples. The
advantage of a high-end server become also evident in
case of the analysis of large datasets, e.g. whole genome
variant calling or thousands of RNAseq experiments.

Fig. 6 HashClone pipeline. The HashClone strategy is organized in three steps: The first step (red box) is used to detect k-mer in all patients’
samples. The second step (green box) focus on the generation of sequence signatures leading to the identification of the set of putative clones
present in each of the patients’ sample; the third step (blue box) is used to the characterization and evaluation of the cancer clones
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A future work will be to extend our project to deal
with cluster and cloud architectures. Two possible direc-
tions will be investigated (i) to exploit the swarm mode
provided by docker considering each service as a “sin-
gle-shoot” service, and (ii) to provide an automatic
translation of our workflow specified in R into an
equivalent workflow specified in snakemake format or in
nextflow format.
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ABSTRACT

The role of non-coding RNAs in different biological processes and diseases is 
continuously expanding. Next-generation sequencing together with the parallel 
improvement of bioinformatics analyses allows the accurate detection and quantification 
of an increasing number of RNA species. With the aim of exploring new potential 
biomarkers for disease classification, a clear overview of the expression levels of 
common/unique small RNA species among different biospecimens is necessary. However, 
except for miRNAs in plasma, there are no substantial indications about the pattern of 
expression of various small RNAs in multiple specimens among healthy humans. 

By analysing small RNA-sequencing data from 243 samples, we have identified 
and compared the most abundantly and uniformly expressed miRNAs and non-miRNA 
species of comparable size with the library preparation in four different specimens 
(plasma exosomes, stool, urine, and cervical scrapes). 

Eleven miRNAs were commonly detected among all different specimens while 
231 miRNAs were globally unique across them. Classification analysis using these 
miRNAs provided an accuracy of 99.6% to recognize the sample types. piRNAs and 
tRNAs were the most represented non-miRNA small RNAs detected in all specimen 
types that were analysed, particularly in urine samples. With the present data, the 

www.impactjournals.com/oncotarget/                      Oncotarget, 2018, Vol. 9, (No. 3), pp: 3097-3111

                        Research Paper



Oncotarget3098www.impactjournals.com/oncotarget

INTRODUCTION

The discovery of many stable extracellular small 
RNAs has changed our view of gene expression regulation, 
including the role that these molecules may play in several 
complex processes previously partially understood such 
as cell-to-cell communication [1]. In this respect, with 
an astonishing number of publications in the last decade, 
microRNAs (miRNAs) represent the most explored small 
non-coding RNA (sncRNA) species in humans [2]. A 
large number of studies has demonstrated that cellular 
and extracellular miRNA altered expression is associated 
with a wide variety of diseases, including cancer [3, 4]. 
However, little is known about the presence within the 
same matrix of other common species of sncRNAs such as 
piwi-interacting RNAs (piRNAs), small nucleolar RNAs 
(snoRNAs), tRNAs etc. All these versatile RNA species 
are known to be key components of molecular interactions 
and gene regulation in eukaryotes [5]. 

The field of circulating extracellular RNA molecules 
is rapidly growing thanks to the implementation of 
Next-Generation Sequencing (NGS) technologies 
and bioinformatics solutions that analyze the huge 
amount of data released from sequencing. With such 
high-throughput approach, all extracellular RNAs can 
be quantified and tested as potential sources of new 
diagnostic and therapeutic biomarkers in many different 
types of biological samples [6]. To achieve this, RNA-
Sequencing (RNA-Seq) has emerged as a powerful tool in 
transcriptomics, gene expression profiling and biomarker 
discovery. Sequencing cell-free nucleic acids from liquid 
biopsies additionally provides exciting possibilities for 
molecular diagnostics, and might help establish disease-
specific biomarker signatures [7]. Lower complexity, not 
known post-processing modifications, simple detection 
and amplification methods, tissue-restricted expression 
profiles, and sequence conservation between humans and 
model organisms make extracellular miRNAs and other 
sncRNAs ideal candidates for non-invasive biomarkers to 
reflect and study various physiopathological conditions in 
the body [8]. It is possible to extract and quantify high-
quality sncRNAs from a wide range of cell and tissue 
sources, including cell lines, fresh and formalin-fixed 
paraffin-embedded tissues, plasma, serum, urine and other 
body fluids [8–10]. Despite this increasing interest, the 
field is still largely in an exploratory and descriptive phase. 
There are no standardized methods for sample collection, 
isolation, or analysis. There is also no general agreement 
on the terms for a good quality sample definition, and 
each specimen (body fluid or surrogate tissue) under 

various disease/injury conditions are likely to have diverse 
contents and different criteria for quality assessment [7, 
11]. A growing number of isolation methods for profiling 
circulating extracellular RNA molecules have been 
developed but still, there is no gold standard for the most 
efficient inclusive or selective protocols [6]. However, 
the complexity of the small RNA-Seq workflow bears 
challenges and biases that researchers need to be aware 
of, in order to generate high-quality data [12].

The creation of large repositories including data 
from different human specimens, isolation methods, 
detection platforms, and analysis tools is essential to 
increase our understanding of the extent and types of 
extracellular RNA material present in different body 
fluids/surrogate tissues. At present, there are few large 
datasets describing the extracellular contents in biofluid 
samples from healthy controls [13–17]. Besides, previous 
studies on extracellular sncRNAs have investigated very 
small numbers or pooled samples with the purpose of 
identifying a specific class of RNAs [18]. The largest 
investigations of samples focused almost exclusively on 
miRNAs, with the main limitation of measuring either 
only targeted miRNAs in large numbers of individuals or 
the whole known miRNome in very small populations. In 
a recent work it has been described the largest group of 
plasma-based miRNAs and the first broadest variety of 
extracellular (non-miRNA) sncRNAs in a large population 
[15]. In another similar work, authors profiled the small 
RNA (16–32 nts) payload of human biofluids by NGS. 
Extracellular RNAs were isolated from plasma, urine and 
saliva samples from 55 young male athletes and sequenced 
to establish a sncRNA pattern at steady state [6].

In the present study, we investigated pattern and 
expression levels of miRNAs and other sncRNAs of 
comparable size in four different biospecimens representing 
ideal surrogate tissues for diagnostic and screening 
programs. Specifically, we analysed data from small 
RNA-Seq from 125 plasma-derived exosomes, 48 urine, 
31 cervical scrapes, and 39 stool samples collected from 
healthy subjects. For cervical scrapes and stool, this is the 
first study investigating sncRNAs by NGS. In addition, 
urine and stool samples were paired with those from plasma 
collected from the same subjects.

RESULTS

Overview of study samples and pipeline analysis

We analysed small RNA-Seq data of RNA extracted 
from exosomes from 125 plasma samples of healthy 

most uniformly expressed small RNAs in each sample type were also identified. A 
signature of small RNAs for each specimen could represent a reference gene set in 
validation studies by RT-qPCR. 

Overall, the data reported hereby provide an insight of the constitution of the human 
miRNome and of other small non-coding RNAs in various specimens of healthy individuals. 
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donors derived from three different studies (respectively 39 
for the Study 1, 46 for the Study 2, and 40 for the Study 3) 
(Materials and Methods). Additionally, sequencing was 
performed on RNA from 39 faecal samples (Study 1), 
48 urine samples (Study 2), and cervical scrapes from 31 
Human Papilloma Virus (HPV) negative women. Some of 
the plasma sample donors provided at the same occasion 
a sample of stool (39 from Study 1) or urine (46 from 
Study 2). 

Total RNA was isolated from samples with specific 
kits for each type of specimens while library preparation 
for small RNA-Seq was performed adopting the same kit 
and protocol. Libraries were run at the same sequencing 
facility. Finally, all bioinformatics analyses (i.e. pre-
processing of raw data) were performed following the 
same pipeline by the same operator. 

To explore the landscape of sncRNA expression levels 
in different biospecimens, we designed a computational 
strategy for small RNA-Seq data analysis (Figure 1A). 
We updated the miRNA analysis pipeline published by 
our group [19] by adding a second phase focused on the 
analysis of small RNA-Seq reads unmapped against the 
human miRNome (Materials and Methods). 

Initially, small RNA-Seq datasets were pre-
processed and quality controlled to remove adapter 
sequences and low-quality reads. The processing 
information about the 243 datasets analysed is provided 
in Supplementary Table 1A and 1B. Quality check 
confirmed that were no reads shorter than 15 nucleotides 
and the rate of low quality reads (quality score < 30) 
was on average below 8%, with urine and stool samples 
providing the best rates (<1%).

Identification of miRNAs and non-miRNA 
sncRNAs

miRNA mapping analysis showed remarkable 
differences among specimens for read alignment rates 
(Figure 1B, 1C and Supplementary Figure 1A). Consistently 
with the highest rates of read alignment (Figure 1C), urine 
samples were generally associated with a high number of 
reads (median reads = 12.38 million) followed by plasma 
exosomes (median reads = 11.34 million), stool (median 
reads = 4.88 million), and cervical scrapes (median  
reads = 4.13 million) (Supplementary Figure 2A).

Datasets from plasma exosome and urine samples 
were characterized by the highest miRNA alignment rates 
(16.3% and 11.0%, of reads aligned, respectively) while 
datasets from stool and cervical scrape samples were 
associated on average with low miRNome alignment rates 
(0.7% and 1.2% of reads aligned, respectively). 

Of the 1,823 miRNA annotations from miRBase, 
a range from 19.9% (cervical scrapes) to 73.8% (plasma 
exosomes study 2) of human miRNAs were detected 
in all the investigated specimens. A median of 58.61% 
of miRBase annotations were detected across the four 

specimen types. Specifically, miR-486-5p was the 
most expressed miRNA in plasma exosomes samples 
(median reads = 180,173 reads) while miR-320a (median 
reads = 198 reads), miR-6813-5p (median reads = 5,911 
reads), and miR-30a-5p (median reads = 25,910 reads) 
were the highest expressed in cervical scrapes, stool, and 
urine, respectively (Supplementary Figure 2B).

Since a large fraction of sequencing reads did 
not map on miRNome (Supplementary Table 1A), the 
alignment analysis was extended to other candidate 
sncRNA annotations by initially remapping reads on the 
human genome. Then, mapped reads were assigned to 
sncRNA annotations quantifiable using our size selection 
criterion. These annotations included sncRNAs annotated 
in GENCODE v24 database [20] (transcript length ≤70 
bp) as well as piRNA (average length 31±1 bp) and 
tRNA (average length 74±7 bp) species annotated in the 
Database of Small Human non-coding RNAs (DASHR) 
release 1 [21] (Supplementary Table 1C). The alignment 
rates observed were higher for cervical scrapes (88.4%) 
followed by urine (81.1%), and plasma exosome samples 
(69.5%). As expected, stool datasets were associated with 
the lowest alignment rate on the human genome (28.1%) 
consistently with the presence of microbiome RNAs 
and other RNAs introduced by the diet, contributing to 
the large fraction of faecal RNA content (Supplementary 
Table 1A and Supplementary Figure 1A). In urine, 
most reads were assigned to piRNA (44.5%) or tRNA 
annotations (45.1%). Conversely, in the other specimens, 
a low assignment rate was observed ranging 1.8–3.4% 
for piRNAs and 1.0–3.3% for tRNAs, respectively 
(Supplementary Figure 1B). Homologous piRNAs 
annotated to different loci were associated with the same 
number of reads across samples.

Common and specific miRNAs among different 
specimens

Considering the individual datasets from plasma 
exosome samples, it was evident a study-specific influence 
on the read alignment distribution with samples from the 
study 1 characterized, on average, by the overall highest 
alignment on miRNome annotations (28.3% aligned 
reads). However, PCA on miRNAs and other sncRNA 
annotations expressed in at least one study (within study 
median number of reads >20) showed a distinct cluster 
formed by all plasma exosome samples with respect 
to other biospecimens (Supplementary Figure 1C). A 
comparable result was obtained by computing a pairwise 
correlation analysis: datasets from the three plasma 
exosome studies clustered together and were clearly 
separated from the others (Supplementary Figure 1D). 
Given the results from the PCA and correlation analyses, 
plasma exosome samples from the three studies were 
merged into a single group after read count correction with 
Surrogate Variable Analysis (SVA). The identification of 
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pattern of miRNAs detectable in the different specimens 
was performed by considering miRNAs characterized 
by a median of normalized reads higher than 20 in at 
least one specimen. Using this threshold, cumulatively, 
394 miRNAs were quantified in at least one specimen 
(Figure 2A, Supplementary Table 2A). Eleven miRNAs 
were identified as commonly detectable in all types of 
specimens: miR-320a, miR-589-5p, miR-636, miR-1273a, 
miR-3960, miR-4419a, miR-4497, miR-4709-5p, miR-
4792, miR-7641-1, and miR-7641-2.

Functional enrichment analysis of validated target 
genes of the 11 shared miRNAs revealed biological 
processes related to mRNA translation and transcription 
including translational initiation (GO:0006413, p = 
1.9 × 10–8) or positive regulation of transcription, DNA-
templated (GO:0045893, p = 4.2 × 10–7) (Supplementary 
Table 2B).

Plasma exosome samples were characterized by 
the highest number of specimens-specific miRNAs (155 
miRNAs) followed by stool (55 miRNAs), urine (22 
miRNAs), and cervical scrape samples (one miRNA) 
(Figure 2A, 2B). Considering only the specimen-specific 
miRNAs, miR-122-5p was the most expressed in plasma 
exosome samples (median reads = 32,512 reads) while 
miR-655-5p (median reads = 792 reads), miR-204-5p 
(median reads = 750 reads) and miR-4741 (median reads 
= 28 reads) were the most abundantly expressed in stool, 
urine, and cervical scrapes, respectively (Supplementary 
Figure 2C). 

PCA analysis of the highly-expressed sets of 
miRNAs showed a good accuracy in the classification 
of different biospecimens (Figure 2C). To identify the 
discriminative miRNAs in the specimen classification, 
we also performed a classification and attribute selection 

Figure 1: �(A) Schematic representation of the computational pipeline applied in the analysis of small RNA-Seq dataset from healthy 
individuals. The modules of the pipeline designed for miRNAs and other sncRNAs are depicted in orange and green, respectively. (B) 
Bar plot showing for each specimen, the average number of sequencing reads aligned to miRNA annotations (green), unmapped on 
miRNA annotations but mapped on human genome (red), and unmapped on both miRNA annotations and the human genome (blue).  
(C) Table reporting the average, minimum, and maximum number of reads (in million) composing the starting datasets, aligned in the 
different analysis phases, or assigned to specific RNA annotations. HS= Homo sapiens. 
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analysis. Using a Random Forest classifier, we obtained 
an accuracy of 99.6% with only one sample incorrectly 
classified (Supplementary Table 2C). All the miRNAs 
analysed were associated with a high chi-square statistic 
(merit) in the attribute selection analysis with miR-204-5p, 
miR-5698, and miR-335-3p associated with the highest 
merit (Supplementary Table 2D).

For a subset of patients, paired data from plasma 
and stool samples or from plasma and urine samples were 
available allowing a comparison between expression 
levels of sncRNAs in the different specimens from the 
same subject. As reported in Supplementary Table 2E, 
2F, a low co-expression was generally observed either 
between plasma-stool or plasma-urine samples. The only 
exception was miR-3665 which was characterized by a 
positive correlation between plasma and urine samples 
(r = 0.59, p = 2.0 × 10–5).

Prediction of candidate miRNA isoforms (isomiRs) 
was also performed using our datasets. As reported in 
Supplementary Table 2G, 832 isomiRs associated with 
more than 20 supporting reads in at least one specimen 
type were detected. Overall, 94.4% of isomiRs were 
detected in plasma exosome or urine samples consistently 
with the higher number of aligned reads in these samples. 

The isomiRs with the highest number of supporting 
reads were a 3′ variant of miR-486/miR-486-2 in plasma 
samples, a 5′ variant of miR-934 in urine sample, a 5′ 
variant of miR-7704 in cervical scrapes, and a 3′ variant 
of miR-583 in stool samples. Among the previously 
identified 11 common miRNAs, eight were associated to 
an isomiR predicted in only one or two types of specimens 
(particularly in plasma or urine samples) (Supplementary 
Table 2H). 

Expression pattern of other sncRNAs

Cumulatively, 615 non-miRNA sncRNAs were 
quantified in at least one specimen. Of this set of 
annotations, 112 sncRNAs were commonly detected in all 
the analysed sample types (Figure 3A and Supplementary 
Table 3A). Coherently with the highest alignment rates, 
piRNAs were the most represented type of sncRNAs 
in urine, plasma exosomes, and stool (Supplementary 
Figure 2D). Urine samples emerged as the specimen 
characterized by the highest piRNA and tRNA contents 
(Supplementary Figure 1B). Among the other sncRNAs 
identified there were tRNAs, mitochondrial RNAs, and 
snoRNAs particularly in plasma exosomes. Consistently, 

Figure 2: �(A) Venn diagram reporting the number of miRNAs detected in different specimens from healthy individuals and their overlap. 
(B) Heat map showing the log10 number of normalized reads supporting the miRNAs specifically detected in one specimen or commonly 
detected among them. (C) PCA plot showing the small RNA-Seq datasets separation obtained using miRNAs detected in samples analysed.
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considering those sncRNAs specific of each specimen, 
the highest number of sncRNAs was identified in urine  
(n = 127) and the same were grouped substantially apart 
from the other datasets in a PCA analysis using the 
sncRNA expression levels (Figure 3B). 

PiR-31068 was the most abundant molecule in 
urine samples (Supplementary Figure 2D). The tRNA 
chr1.tRNA2-GlyCCC showed the highest expression 
levels among the sncRNAs specific in urine samples 
(median reads = 419 reads) while piR-43137 was the most 
abundant plasma exosome-specific sncRNA (median 
reads  = 366 reads), and piR-36705 the most abundant 
stool-specific sncRNA (median reads = 131 reads) 
(Figure 3C and Supplementary Figure 2F). No specific 
sncRNAs of cervical scrapes were identified.

The specificity of these sets of sncRNAs was 
confirmed using a Random Forest classification algorithm 
which exactly classified 236 samples out of 243 (97.1%) 
(Supplementary Table 3B). The attribute selection analysis 
evidenced tRNAs chr19.tRNA2-GlyTCC, chr2.tRNA12-
PseudoCTC, and chr6.tRNA150-MetCAT as the sncRNAs 
with the highest merit in the classification (Supplementary 
Table 3C).

Regression analysis between paired plasma exosome 
and stool samples or plasma exosome and urine samples 
from the same individuals showed a low coherent 
expression for sncRNAs detected (Supplementary 
Table 3D, 3E).

Assessing inter-individual variability in sncRNA 
expression in each specimen type

Independently of the extensive intrinsic variability 
among subject’s extracellular RNA levels for each 
specimen, we selected the highly abundant sncRNAs 
with the lowest variable expression levels (i.e. potential 
reference sncRNAs) across all subjects. To achieve this, 
the highly-expressed miRNAs and sncRNAs specifically 
detected in plasma exosomes, stool, or urine (Figure 2A 
and 3A) characterized by the smallest expression 
variation in each specimen were identified by computing 
the median and the Median Absolute Deviation (MAD) 
of the expression levels (Supplementary Tables 2I 
and 3F). Specifically, the analysis highlighted miR-
142-5p, miR-655-5p, and miR-196a-1-5p as potential 
reference miRNAs in plasma exosomes, stool, and urine, 

Figure 3: �(A) Venn diagram reporting the number of non-miRNA sncRNA species detected in different specimens from healthy individuals 
and their overlap. (B) PCA plot showing the small RNA-Seq datasets separation obtained using the non-miRNA RNA species detected in 
the samples analysed. (C) Heat map showing the log10 number of normalized reads supporting the non-miRNA RNA species detected in 
one specimen only or commonly detected among them. 
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respectively (Figure 4A, 4B). Considering the isomiRs 
predicted for the reference miRNAs reported in Figure 4A, 
all the isomiRs predicted for reference miRNAs in plasma 
and urine were also identified in these sample types while 
no isomiRs were predicted for reference miRNAs in 
stool samples (Supplementary Table 2D). The analysis of 
reference non-miRNA sncRNAs highlighted piR-43137, 
chr6.tRNA59-IleAAT, and piR-33543 as the candidate 
sncRNAs for plasma exosome, stool, and urine samples, 
respectively (Figure 4C, 4D).

To further investigate the reference sncRNAs 
identified, an integrative analysis of public resources was 
performed (Supplementary Table 4A, 4B). Considering 
the top 10 reference miRNAs and sncRNAs characterized 
by the low ratio between MAD and median expression 
(Figure  4A, 4C), their expression was compared 
with RNA-Seq data from specimens collected in five 
independent studies and two databases publicly available. 

All the 10 most stably expressed miRNAs in plasma 
exosomes were also detected (average reads >20) in 
exosome data (analysed individuals, n = 40) from [15], 
plasma samples (n = 55) from [6], and venous blood 
samples data (n = 3) from [22]. Six out of 10 stably 
expressed urine miRNAs were detected in urine RNA 
(n = 4 and n = 55 analysed by [22] and [6], respectively). 
Interestingly, six of the 10 top miRNAs were also detected 
in samples from kidney (n = 11) or bladder (n = 2) small 
RNA-Seq data from DASHR database. The expression of 
the top 10 miRNAs in stool samples was not confirmed 
in stool data (n = 2) from [22], but two miRNAs were 
detected in colon samples (n = 8) by [23]. 

Among the reference non-miRNA sncRNAs, piR-
62011 was detected as abundant in our plasma exosome 
data as well as plasma, serum and whole blood data 
from DASHR. Chr6.tRNA152-ValCAC was detected in 
our urine set and in small RNA-Seq data from DASHR 

Figure 4: �(A) Bar plot showing the top 10 miRNAs characterized by the lower ratio between the MAD and the median expression levels 
in plasma exosome, stool, or urine samples. (B) Box plot showing the log10 number of normalized reads supporting miRNAs characterized 
by the lower ratio between the MAD and the median expression level in plasma exosomes stool, or urine samples. (C) Bar plot showing 
the top 10 non-miRNA sncRNA species characterized by the lower ratio between the MAD and the median expression levels in plasma 
exosome, stool, or urine samples. (D) Box plot showing the log10 number of normalized reads supporting non-miRNA sncRNA species 
characterized by the lower ratio between the MAD and the median expression level in plasma exosomes stool, or urine samples.
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kidney tissues [21]. All the others reference non-miRNA 
sncRNAs were generally associated with low expression 
in most of the datasets analysed.

DISCUSSION

The study of the expression patterns of different 
sncRNAs in a wide spectrum of tissues, along with  
investigations into the functions of these molecules, 
is yielding novel insights in the fast-growing field 
of non-coding RNAs in the normal cell biology and 
pathogenesis. miRNAs have been extensively studied 
in the extracellular space but little is still known about 
the presence of other sncRNAs [15]. As diagnostic and 
therapeutic procedures move from biopsies in the direction 
to less invasive methodologies, sncRNAs analysed in 
different biospecimens represent attractive candidates as 
biomarkers for complex diseases [12].

In the present study, we investigated expression 
patterns of sncRNAs in different human biospecimens that 
could be easily and minimally invasively collected also 
in the context of screening programs. The data presented 
hereby were obtained from healthy subjects representing, 
on average, the steady state in normal conditions of the 
human organism.

The first analysis was focused on miRNA expression 
distribution across different investigated specimens. 
Globally, setting up an arbitrary threshold of median 20 
reads, almost 400 miRNAs (out of an average of 1,046 
unique miRNAs identified across specimens with at least 
one read) were detected, with many of them specific to 
one or few specimen types. A large set of miRNAs was 
expressed only in plasma exosomes (n = 155) while less 
miRNAs were private of stool or urine and only one of 
cervical scrapes. Plasma exosomes also shared several 
miRNAs with other specimens (particularly urine with 109 
expressed miRNAs in common). Interestingly, considering 
the whole set of highly expressed miRNAs, it was possible 
to accurately group samples of the same biological type 
independently from the others. This aspect is important 
in search of specific biomarkers representing an altered 
status of a tissue in relation to a disease [24]. Conversely, 
eleven miRNAs presented a similar pattern of expression 
among all specimens. The most commonly investigated 
resulted miR-320a whose downregulation is associated 
with different diseases including cancer [25–30]. The 
relevance of an ubiquitous high expression of this miRNA 
related to a healthy status is supported by our findings as 
well. miR-589-5p, miR-636, and miR-4792 have been 
also described previously in other studies. miR-589-5p 
resulted a good inhibitor of MAP3K8 and suppressor of 
CD90+ cancer stem cells in hepatocellular carcinoma 
[31]. On the other hand, miR-636 was proposed as a good 
biomarker for several diseases in a large set of tissues and 
biofluids such as diabetic kidney disease [32], colorectal 
cancer [33], and pancreatic cancer [34]. Finally, miR-4792 

was found dysregulated in oral submucous fibrosis [35], 
in nasopharyngeal carcinoma tissues [36] and in uterine 
leiomyoma [37]. Surprisingly, the rest of the commonly 
expressed miRNAs were not studied in detail before. 
Besides being found dysregulated in many studies in 
relation to different diseases, those miRNAs commonly 
expressed across different types of samples could be 
taken into consideration as multi-specimen markers. We 
have compared our results to those of available datasets 
on same specimens or anatomically-related tissues  
[6, 15, 16, 21, 22, 38]. The total number of reads obtained 
and the proportion of the detected sncRNA species is 
comparable to other studies previously published with the 
exception of the study of Yeri and colleagues that included 
YRNAs [6, 15, 38]. For instance, the high expression of 
the above mentioned miR-320a and miR-589-5p were also 
observed in all other datasets. 

Notably, in our study, we could compare the co-
expression of sncRNAs in plasma exosomes/urine or 
plasma exosomes/stool collected from the same subjects. 
Again, in the search of specific markers related to disease, 
it is important to have an overview on the similarities/
differences across different biotypes at an individual level. 
Apparently, except for very few miRNAs mostly detected 
in urine/plasma, we could not observe any significant 
relationship between the expression of same sncRNAs in 
different biospecimens. This aspect is very important, in 
the sense that a multi-specimen miRNA panel may be more 
relevant for accurately describing a disease status, providing 
different miRNA behaviours across tissues. Similar findings 
were reported by us in a study on miRNA expression levels 
in both stool and whole plasma of healthy subjects with 
different dietary habits. Despite similar associations were 
observed between miRNA and diet (vegans, vegetarian vs 
omnivorous) or lifestyle habits, miRNA expression levels 
were not related between the two different specimens [39].

Since isomiRs have emerged as widely expressed in 
normal and cancer tissues [40, 41], we further investigated 
whether they were also detectable in the analysed 
specimens. As reported in Supplementary Table 2C–2D, 
many isomiRs were predicted in our datasets particularly 
in plasma and urine samples. Interestingly, among the 11 
miRNAs commonly expressed in all specimens, eight 
were associated to an isomiR predicted in only one or two 
types of them. 

miRNA profiling by NGS in different specimens 
in relation to healthy status and pathological conditions 
is becoming more and more frequent, especially in 
whole plasma [15]. Less explored is the field of other 
non-miRNA sncRNAs, although RNA sequencing 
potentialities, new annotation tools available and an 
increasing number of studies demonstrating their role in 
the normal physiology of the organism are appearing [42]. 
These ‘new’ small RNAs may play an important role in 
RNA silencing, micro-guarding and cancer [43]. In our 
study, we have confirmed that small RNA-Seq provide a 
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huge number of reads not mapping to the miRNome in all 
type of samples analysed, particularly in stool. However, 
there is still not a consensus on how to comprehensively 
analyse these RNA molecules. In the present study, we 
focused on RNA species with a size between 30 to 70 
nucleotides, due to the characteristics of the libraries 
prep kit employed, specific for small RNA sequencing. 
Considering these criteria, we have obtained a potential 
list of thousands of RNAs (>30,000) which we have used 
to filter the remapped reads after their annotation (from 
DASHR and GENCODE databases). Despite several 
different sncRNAs identifiable with our thresholds (misc_
RNA, Mt_tRNA, piRNA, rRNA, snoRNA, snRNA, 
sRNA, tRNA), we have mainly identified piRNAs and 
tRNAs. In urine, we observed the largest number of 
“private” sncRNAs other than miRNAs (n = 127). Cervical 
scrapes had the less abundant number of these species and 
none of them was private. In total, 112 sncRNAs resulted 
expressed in all the biospecimens. Again, plasma exosome 
and urine samples shared many molecules in common 
(n = 150). Interestingly, as for miRNAs, also for the other 
sncRNAs, several molecules were characteristics of a 
single specimen while others were in common. Each body 
fluid appears to have clear differences in extracellular 
RNA expression profiles. For example, there appears to 
be a high proportion of piRNAs in urine samples, when 
compared with other RNA biotypes. This is quite similar 
to what observed by Yeri et al. [6] which observed an 
overrepresentation in urine of piRNAs and tRNAs. 
piRNAs hold great promise as potential biomarkers, owing 
to their sncRNA features such as small size, stability 
in biofluids and archival materials, and the variety of 
detection methods. Moreover, considering there are 
10–25 times more piRNA species (20,000–50,000) than 
miRNAs, the impact of their deregulation is likely at least 
as relevant. Additionally, piRNA expression patterns have 
been shown to be deregulated in a variety of cancer types 
[44–46]. Recently, the study of tRNAs and their role in the 
regulation of gene expression is revealing new interesting 
aspects in molecular biology. tRNA-derived small RNAs, 
named tRNA halves (tiRNAs) and tRNA fragments (tRFs), 
have been reported to be abundant and their dysregulation 
to be associated with cancer [43]. Interestingly, we have 
not identified snoRNAs and other sncRNAs as reported 
in other studies [6, 47]. Better sncRNA tissue atlases that 
include more comprehensive profiles of the small RNA 
species will be necessary for better comparisons.

Expression patterns of miRNAs have been 
extensively studied but there is still controversy on the best 
endogenous control(s) to employ as reference in studies 
by RT-qPCR or microarray, especially when analysing 
biofluids [24]. An overview of the expression levels of 
sncRNAs in a large set of biofluids/biospecimen could 
provide a good base for the research of endogenous controls 
to be used in case-control studies when searching for 
sncRNAs as biomarkers of disease [24]. We propose miR-

142-5p, miR-655-5p, and miR-196a-1-5p as miRNAs with 
a high and stable expression in plasma exosome, stool, and 
urine respectively, while piR-43137, chr6.tRNA59-IleAAT, 
and piR-33543 as the candidate references among other 
sncRNAs in plasma exosomes, stool, and urine respectively. 
miR-142-5p has been found dysregulated in plasma but not 
in exosomes [47–49] although it has been demonstrated that 
in rats the activation of the acute stress response modifies 
its profile in plasma exosomes [50]. miR-655-5p and miR-
196a-1-5p have never been studied in stool and urine, except 
for miR-196a reported to be altered in focal segmental 
glomerulosclerosis [51]. Considering the top 10 reference 
miRNAs detected in plasma exosomes, stool, or urine 
sample group, we observed a general coherence between 
the specificity of isomiR and reference miRNA expression. 
The only exceptions were two 5′ variants of miR-204. 
However, these variants were detected by imposing two 
and three 5′ mismatches on a 14- and 15 nt sub-sequence 
of miR-204, respectively. The read alignment against such 
small sequences makes the read assignment less reliable 
reinforcing the hypothesis that a deeper sequencing depth 
is required to characterize properly the expression of these 
miRNA variants. 

The biological samples used in the present work are 
very attractive for the research of non-invasive biomarkers. 
Blood plasma and urine belong to the group of easily 
accessible body fluids, and they are among the most 
frequently used diagnostic material for the development of 
surrogate cancer biomarkers [52, 53]. From the first work 
reporting the presence in plasma of miRNAs by Lawrie and 
colleagues [54], a growing number of studies have evaluated 
their expression in relation to a wide range of diseases 
and focused on the biology and features of circulating 
miRNAs [55]. Circulating miRNAs are considered as a 
tool employed in the horizontal gene transfer between cells 
within the tumor or between tumor and host cells: this is 
a strong biological rationale to use them as a new class of 
cancer biomarkers. miRNAs and other sncRNAs can be 
released by the cell by passive leakage into circulation. 
However, these molecular species can be released in a 
more active way from the cells by secretion of shedding 
microvesicles or exosomes containing free sncRNAs or in 
the form of ribonucleoprotein complexes [56]. Bladder cells 
are in direct contact with urine making this body fluid an 
ideal source for the detection of cancer biomarkers. Urine is 
collected noninvasively, and the procedure is relatively fast 
and cost-efficient compared with other clinical samples. In 
addition, sampling can be repeated at different times, and 
this makes urine an attractive candidate as a screening test 
for urogenital cancers that needs constant monitoring [53]. 
Stool has been extensively used as a potential substrate 
for developing non-invasive molecular screening tests for 
gastrointestinal diseases including colorectal cancer and for 
microbiome analyses. There is a rationale for determination 
of noncoding RNAs expression levels in stool which 
includes the observations that colonocytes are continuously 
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shed into the faecal stream, with a periodicity of exfoliation 
roughly every 3–4 days. In addition, sncRNAs are 
extremely stable, enabling accurate and reproducible 
detection in the stool without need of special stabilization or 
logistical requirements. Conventional stool-based screening 
tests present several limitations including low sensitivity 
and specificity for advanced adenoma and pre-cancerous 
lesions. No optimal method has been established yet based 
on faecal DNA- and mRNA-based testing [57]. The role of 
diet and other lifestyle factors on miRNA and other sncRNA 
expression profiles in relation to disease risk is still scarcely 
explored [58]. Dietary components have been implicated in 
many pathways involved in diseases, including apoptosis, 
cell-cycle control, inflammation, and angiogenesis. Those 
pathways are also regulated by different RNAs [59]. 
Interestingly, recent discoveries point to a role of faecal 
miRNAs also introduced by the diet on shaping the human 
microbiota [60]. Cervical exfoliated cells are widely used in 
cervical cancer screening, both for HPV testing and Pap test. 
Recently, their use has been extended to miRNA analyses 
[61]. These few studies show that the potential application 
of miRNA detection in cervical exfoliated cells deserves 
further exploration, also as an additional option for triage of 
HPV-positive women in population-based screening.

We acknowledge that the present study has some 
limitations but also several strengths. Among the latter, 
we can consider the large number of samples sequenced, 
especially for plasma-exosomes, and the possibility to 
analyse different biospecimens of the same subjects to 
understand different/similar patterns according to tissue of 
origin. To our knowledge, we report the largest description 
of sncRNA data from plasma-derived exosome, as well as 
the first investigation of this kind on cervical scrape and 
stool samples by NGS in healthy subjects. Importantly, the 
outcomes of our study derive from samples analysed with 
the same protocols by the same operators and analysed 
by the same pipeline from raw sequencing data to final 
results. Other studies usually combine different datasets 
from different studies. 

Among the limitations of our study, we can list that 
the library preparation is optimized for miRNAs while we 
have also adapted it for detecting a group of other sncRNAs. 
Additionally, we could not control analyses considering 
known potential confounders (age, gender) since not all the 
samples were provided with this information. Finally, some 
of the samples were investigated only in subjects of one 
gender only (i.e., urine in males only). 

Small RNA-Seq holds promise for exhaustively 
analyse miRNAs and other sncRNAs in many different 
types of specimens, as we demonstrated in our study. These 
RNA molecules are currently investigated for their potential 
use as diagnostic/prognostic tools. The high resistance 
to degradation of sncRNAs makes these molecules 
particularly attractive for researchers that constantly cope 
with a wide range of incubations and storage conditions, 
as well as different origins of samples [62]. However, an 

optimization and standardization of both the biological and 
computational procedures to investigate sncRNA expression 
levels are necessary. Combining molecular aspects with 
bioinformatics and an epidemiological approach should 
provide stronger markers to be investigated specifically in 
particular biospecimens. 

MATERIALS AND METHODS

Study participants

All samples included in the study were collected from 
healthy donors participating to different studies running 
in our laboratories who donated their blood (for plasma 
extraction), stool, and /or urine for research purposes 
[63, 64]. For cervical scrapes, samples were collected 
in the context of a national screening programme (New 
Technologies for Cervical Cancer screening (NTCC) study, 
[65]). All subjects provided written informed consent 
according to the Helsinki declaration. The design of the 
study was approved by the local Ethics Committees.

Stool samples (study 1) 

In a hospital-based study for colorectal cancer 
diagnosis, subjects resulting negative to colonoscopy 
and to any inflammatory disease were included in the 
present study. For the same individuals, we have collected 
also plasma samples (n = 39). Naturally evacuated 
stool samples were collected in special tubes with RNA 
stabilizing solution, returned at the time of performing 
colonoscopy and stored at –80°C until RNA extraction.

Urine (study 2)

 The study population included men recruited 
between the years 2008–2012 in the Turin Bladder Cancer 
Study (TBCS) who donated an aliquot of blood and urine. 
A full description of controls is available in Pardini et 
al. [66]. For almost all subjects, we have collected also  
plasma samples (n = 46).

Urine samples from each participant were collected 
in the morning, stored at 4°C until the processing 
consisting of centrifugation at 3,000g for 10 min. The 
urine supernatant aliquots were then transferred in tubes 
and stored at –80°C until use. 

Exosome isolation from plasma

In addition to the subjects described above for whom 
plasma samples were available (Study 1 and Study 2), 
we have included also 40 plasma samples collected from 
healthy blood donors for a Leukaemia study (Study 3). 

For all subjects, human plasma samples were 
obtained from 5–8 ml of blood centrifuged for 10 min at 
1000 rpm. Plasma aliquots (about 200–300 μl each) were 
then stored at –80°C until use. Exosomes were isolated 
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from 200 μl of plasma using the ExoQuick exosome 
precipitation solution (System Biosciences, Mountain 
View, CA, USA) according to the manufacturer’s 
instructions with minor modifications. Briefly, the 
plasma was mixed with 50.4 μl of ExoQuick solution and 
refrigerated at 4°C overnight (at least 12 h). The mixture 
was then further centrifuged at 1500 g for 30 min. The 
exosome pellet was dissolved in 200 μl of nuclease free 
water; RNA was extracted immediately from the solution.

Cervical scrapes

The study is nested in a large Italian multi-
centre randomised controlled trial recruiting women in 
population-based screening programs that actively invite 
women aged 25–64 years (NTCC Study, [65]). NTCC 
recruitment was conducted between 2002 and 2004. 
In the present study, only samples from HPV negative 
women were included. Cervical scrape samples have 
been collected and stored in Specimen Transport Medium 
(STM), or RNA-later at –80°C until RNA extraction.

RNA extraction and quality control

Total RNA from plasma exosomes was extracted with 
the miRNeasy plasma/serum mini kit (Qiagen) using the 
QiaCube extractor (Qiagen). RNA from stool was extracted 
using the Stool Total RNA Purification Kit (Norgen Biotek 
Corp). Total RNA from urine was extracted with Urine 
microRNA Purification kit (Norgen biotek corp), following 
the manufacturer’s standard protocol.

RNA from cervical scrape was extracted from 
samples stored in STM or RNA-later, using the 
miRCURY™ RNA Isolation Kit - Cell & Plant (Exiqon) 
following manufacturer`s protocol. 

RNA quality and quantity was verified according to 
MIQE guidelines (http://miqe.gene-quantification.info/). 
For all samples, RNA concentration was quantified by 
Qubit® 2.0 Fluorometer with Qubit® microRNA Assay Kit 
(Invitrogen).

Library preparation for small RNA-Seq

Small RNA transcripts were converted into barcoded 
cDNA libraries. Library preparation was performed with 
the NEBNext Multiplex Small RNA Library Prep Set 
for Illumina (New England BioLabs Inc., USA). For 
each library, 6 μL of RNA (min 35 ng) were used in all 
the experimental procedures as starting material. Each 
library was prepared with a unique indexed primer so 
that the libraries could all be pooled into one sequencing 
lane. Multiplex adaptor ligations, reverse transcription 
primer hybridization, reverse transcription reaction and 
PCR amplification were performed according to the 
protocol for library preparation (Protocol E7330, New 
England BioLabs Inc., USA). After PCR amplification, 
the cDNA constructs were purified with the QIAQuick 

PCR Purification Kit (Qiagen, Germany) following the 
modifications suggested by the NEBNext Multiplex Small 
RNA Library Prep Protocol and loaded on the Bioanalyzer 
2100 (Agilent, Germany) using the DNA High Sensitivity 
Kit (Agilent, Germany) according to the manufacturer’s 
protocol. Libraries were pooled together (24plex) and 
further purified with a gel size selection.

A concluding Bioanalyzer 2100 run with the High 
Sensitivity DNA Kit (Agilent Technologies, Germany) 
that allows the analysis of DNA libraries regarding size, 
purity and concentration completed the workflow of 
library preparation. The obtained sequence libraries were 
subjected to the Illumina sequencing pipeline, passing 
through clonal cluster generation on a single-read flow 
cell (Illumina Inc., USA) by bridge amplification on the 
cBot (TruSeq SR Cluster Kit v3-cBOT-HS, Illumina Inc., 
USA) and 50 cycles sequencing-by-synthesis on the HiSeq 
2000 (Illumina Inc., USA) (in collaboration with EMBL, 
Heidelberg, Germany).

Computational analyses (additional information 
in Supplementary Material)

Analysis of miRNAs

miRNA data analysis was performed following 
the optimized workflow proposed in [19]. The obtained 
FASTQ files from small RNA-seq were quality-checked 
using FastQC software.

Reads shorter than 14 nucleotides were discarded 
from the analysis; the remaining reads were clipped from 
the adapter sequences using Cutadapt software (http://
journal.embnet.org/index.php/embnetjournal/article/
view/200). The trimmed reads were mapped against the 
precursor miRNA sequences downloaded from miRBase 
(Release 21) by the Shrimp algorithm. A matrix of integer 
values called counting matrix was created. 

Since plasma datasets were generated in independent 
studies and presented a large variability, a SVA [67] was 
performed to correct the read counts. IsomiR analysis 
was performed using isomiRID algorithm [68] in default 
settings. A maximum of three mismatches between reads 
and reference miRNA sequences was considered for the 
analysis.

Analysis of other sncRNAs

The set of small RNA-Seq reads not aligned by 
SHRiMP over miRNA sequences were aligned against 
human genomic sequence hg38 (GRCh38) using Bowtie2 
v2.2.7 in default settings [69]. Reads alignment files were 
used to quantify the expression of ncRNA annotations 
from Gencode v24 [70] and DASHR database [21]. The 
annotations with median reads greater than 20 were 
selected. Then, read counts were normalized by computing 
the library size factor [71]. The SVA [67] was performed 
to correct the read counts of plasma studies. 
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Bioinformatic tools and data integration

The list and the expression levels of sncRNAs 
identified in the different specimen types were compared 
using Venn diagrams and heatmap.2 R functions. 
PCA analysis was performed using prcomp R function 
and autoplot function from ggfortify R package. The 
contribution of each sncRNA expression level to the 
classification of specimen type was evaluated using 
Weka 3.6.12 [72]. miRNA functional enrichment analysis 
was performed using EnrichR web tool [73] on the list 
of validated miRNA targets annotated in miRWalk 2.0 
database [74]. 

The set of sncRNAs identified in this study 
was compared with public lists sncRNAs detected in 
specimens and tissues from healthy individuals as reported 
in supplementary materials of target publications and 
databases. 
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