
UNIVERSITY OF TORINO

Ph.D. in Modeling and Data Science
XXXIV cycle

Final dissertation

Workflow models for heterogeneous distributed systems

Supervisor: Marco Aldinucci Candidate: Iacopo Colonnelli

ACADEMIC YEAR 2020/2021

Summary

The role of data in modern scientific workflows becomes more and more crucial. The
unprecedented amount of data available in the digital era, combined with the recent
advancements in Machine Learning and High-Performance Computing (HPC), let
computers surpass human performances in a wide range of fields, such as Computer
Vision, Natural Language Processing and Bioinformatics. However, a solid data
management strategy becomes crucial for key aspects like performance optimisation,
privacy preservation and security.

Most modern programming paradigms for Big Data analysis adhere to the
principle of data locality: moving computation closer to the data to remove transfer-
related overheads and risks. Still, there are scenarios in which it is worth, or even
unavoidable, to transfer data between different steps of a complex workflow.

The contribution of this dissertation is twofold. First, it defines a novel method-
ology for distributed modular applications, allowing topology-aware scheduling
and data management while separating business logic, data dependencies, parallel
patterns and execution environments. In addition, it introduces computational
notebooks as a high-level and user-friendly interface to this new kind of workflow,
aiming to flatten the learning curve and improve the adoption of such methodology.

Each of these contributions is accompanied by a full-fledged, Open Source imple-
mentation, which has been used for evaluation purposes and allows the interested
reader to experience the related methodology first-hand. The validity of the proposed
approaches has been demonstrated on a total of five real scientific applications in
the domains of Deep Learning, Bioinformatics and Molecular Dynamics Simulation,
executing them on large-scale mixed cloud-High-Performance Computing (HPC)
infrastructures.

ii

Acknowledgements

A Ph.D. program is like a long and non-linear path that asymptotically approaches
scientific, professional, and human maturity. Following such a path translates into a
long journey, where pride and satisfaction for newly acquired notions entangle with
discouragement and frustration for those still to be learned. Although one’s thirst
for knowledge can play a role in reaching the final destination of this journey, what
mattered in my experience was travelling with the right crew. The current Section
is dedicated to all its members.

First of all, this entire dissertation would have never seen the light without Prof.
Marco Aldinucci. Marco has been my supervisor in so many directions that listing
all of them would require a new dissertation. He taught me to think critically about
distributed computing and to reason about theoretical concepts rather than blindly
follow new trendy terms and software. He always encouraged me to adopt my own
research approach, even when we had different views on a given topic. Furthermore,
he always helped me when needed, especially for those problems that could not be
solved with algorithms and coding.

Looking at the world through different eyes is the only way to approach the truth.
A special thanks goes to the reviewers of this dissertation, Rosa M. Badia and Ian
T. Foster, my industrial tutor Claudia Misale, and the dissertation chair Marco
Danelutto for their precious suggestions and words of encouragement. I promise I
will do my best to “keep up with the good work” as long as I can. Another heartfelt
thanks goes to my colleagues: Yasir Arfat, Barbara Cantalupo, Bruno Casella,
Alberto Riccardo Martinelli, Doriana Medić, Gianluca Mittone, and Alberto Mulone.
You shared with me the joys and sorrows of research. Neither a pandemic kept us
from working together, sharing ideas, drinking alcohol and having fun.

Neither discovery nor research can exist without inspiration. Mom, I have to
thank you for always supporting me during my entire life, even when this meant
putting my needs before yours. Thanks to you, I have the best family one could
wish for. And you, Alice, have been my primary source of inspiration during these
last years. I watched you fight against the enemies inside you, day after day, and
nothing gave me more strength than seeing a smile on your face at the end of the
battle. What I learned during these years is that if we fight together, we can win.
But “if I cannot break your fall, I’ll pick you up right off the ground. If you felt
invisible, I won’t let you feel that now”.

iii

Contents

1 Introduction 1
1.1 Results and contributions . 3

1.1.1 Hybrid workflows and the StreamFlow framework 4
1.1.2 Literate workflows and the Jupyter-workflow stack 4

1.2 List of publications . 5
1.2.1 Publications organised by venue 5
1.2.2 Publications organised by topic 7

1.3 Research projects and activities . 9
1.3.1 European projects . 9
1.3.2 National projects . 10
1.3.3 Other research activities . 10

1.4 Funding . 11

2 Background 13
2.1 Workflows . 13
2.2 Workflow management systems . 15
2.3 Distributed systems . 18

2.3.1 Grid computing . 19
2.3.2 High-performance computing 21
2.3.3 Cloud computing . 23

2.4 Container-based virtualisation . 25
2.4.1 Containers on HPC . 27
2.4.2 Container-based workflows 28

2.5 Literate computing . 29
2.5.1 Jupyter Notebooks . 30
2.5.2 Workflows with Jupyter . 32
2.5.3 Jupyter Notebooks on HPC 33

3 Hybrid workflows 37
3.1 Hybrid acyclic workflows . 38

3.1.1 Topologies of deployment locations 38
3.1.2 Mapping relations . 41

iv

3.2 Operational semantics . 42
3.2.1 Execution plan . 46
3.2.2 Soundness . 51

3.3 Advanced topics . 55
3.3.1 Advanced topologies of deployment locations 55
3.3.2 Dynamic and cyclic workflows 56

4 StreamFlow 59
4.1 Implementation . 59

4.1.1 The StreamFlow file . 60
4.1.2 Task-container mapping patterns 63
4.1.3 The WMS integration layer 63
4.1.4 Model life-cycle management 65
4.1.5 Workflow scheduling . 67
4.1.6 Data transfers . 69

4.2 Evaluation . 70
4.2.1 Single-cell RNA sequencing 71
4.2.2 The CLAIRE COVID-19 universal pipeline 75

5 Distributed literate workflows 79
5.1 Literate computing semantics . 79
5.2 Literate workflows semantics . 81
5.3 Hybrid literate workflows . 84

6 Jupyter-workflow 87
6.1 Implementation . 87

6.1.1 Coordination metadata format 88
6.1.2 The DependencyResolver component 89
6.1.3 Jupyter stack extension . 90
6.1.4 Serialisation . 91
6.1.5 Examples . 92

6.2 Evaluation . 95
6.2.1 DNN hyperparameter search 95
6.2.2 Training and serving DNNs 98
6.2.3 Interactive simulations at scale 100
6.2.4 The 1000-genome literate workflow 102

7 Conclusion 107
7.1 Conclusion and remarks . 107
7.2 Future work . 108

v

Chapter 1

Introduction

When considering data-oriented workflows, all the aspects of data management
become crucial for performance optimisation, privacy preservation and security.
Modern programming paradigms for Big Data analysis, such as MapReduce [1] and
Resilient Distributed Datasets [2], focus on the principle of data locality: moving
computation closer to the data to remove data transfer overheads and risks. More
recently, the successful adoption of federated learning approaches [3], [4] to data
analytics shifted the support for distributed environments from a scalability-related
feature to an unwaivable requirement, as data cannot be moved by contract.

Besides, there are scenarios in which it is worth, or even unavoidable, to transfer
data between different modules of a complex application. For example, in HPC
centres, the combination of centralised shared file systems and bursty I/O patterns
constitutes scalability’s main bottleneck. Recently, HPC facilities started to equip
worker nodes with local, high-end burst buffers [5] where each process of a dis-
tributed application can read and write intermediate results or persist its state to
implement checkpoint/restart. This strategy allows reducing pressure on global
storage nodes and channels, improving performance and scalability at the cost of
increased complexity. Modern deep neural networks [6], [7] provide another use case.
Their training phase requires computing power amounts and interconnection speeds
that only the biggest HPC centres in the world can offer. However, input datasets
are commonly generated, analysed, and pre-processed on much more comfortable
cloud resources, and trained models are transferred back to long-lived cloud services
for inference purposes.

When performing data transfers, an educated application of the security-by-design
principle requires encrypting any sensitive content with an adequately robust cypher
suite every time it moves through an insecure channel or is sent to an untrusted party.
However, effectively dealing with security-related aspects is not trivial, especially
for users without a strong Computer Science background.

In addition, modern applications require portability of deployments, avoiding
vendor and technology lock-in and fostering cross-stack executions to handle time-
critical emergency computations. Indeed, efficiently implementing urgent computing

1

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

[8] in a single infrastructure is not trivial. Shared HPC facilities require the manual
intervention of system administrators to arrange a high-priority queue, reserve
some hardware resources to that queue, and notify other users that their jobs
will likely be preempted or killed for the duration of the operation. On the other
hand, cloud orchestrators provide elasticity mechanisms to dynamically change the
number of agents involved in a distributed execution, allowing users to request
additional resources to face load peaks. Nevertheless, the cloud virtualisation layer
prevents high-performance libraries, e.g. Message Passing Interface (MPI) or linear
algebra libraries, relying on hardware-specific optimisations and low latency network
protocols commonly available on HPC bare-metal computing nodes.

Cross-stack (e.g. cloud-HPC) infrastructures can solve these problems, offloading
computation to the best suitable architecture as long as computing power is available
and using different stacks only as backup solutions. The main drawbacks of these
configurations are their need for complex deployment strategies, cross-stack life-
cycle management, and explicit data transfers between the different modules of a
distributed application. Plus, guaranteeing reproducibility of executions requires
a detailed description of the execution environment, the data transfer operations
and the mapping between application tasks and processing locations in charge of
running them.

Moving all those management features from the host application to the workflow
coordination plane has undoubted advantages in portability, maintainability, and
soundness. Indeed, it allows moving from a tightly coupled approach, where business
logic is interleaved with platform-specific optimisations, to a loosely coupled one,
where those concerns are clearly separated. In addition, a Workflow Management
System (WMS) receiving a topology-aware workflow representation can automatically
adopt scheduling optimisation techniques that take data locality into account,
prevent unallowed data movements by executing steps in a confined environment,
and adequately protect data during transfers, letting the data scientists focus on
the business code.

Also, modern modular applications based on software containers [9] and their
related architecture paradigms (e.g. the microservices pattern) can highly benefit
from a topology-aware WMS. Indeed, if containers introduce unprecedented benefits
in software portability and experiments reproducibility [10], successfully orchestrat-
ing multi-container applications and data transfers between their components is a
complex task. In particular, the ephemeral nature of file systems makes it crucial
to wisely manage the life-cycle of each container, ensuring data availability while
avoiding resource wastes.

Still, programming paradigms and tools are useless if people are not willing to
adopt them. Despite all the advantages of a loosely coupled approach, domain
experts often prefer to use general-purpose languages to develop their applications,
i.e. stick with a tightly coupled strategy. Likely reasons behind this behaviour are
the additional effort required to learn a full-fledged WMS or coordination language,

2

1 – Introduction

the increased difficulty in maintaining coherence between host and coordination
logic in a still-developing application, and the lack of a de-facto standard toolchain
for scientific workflows.

With their capability to unify imperative code and declarative metadata in a
unique format, computational notebooks [11] are halfway between high-level coordi-
nation languages and low-level distributed computing libraries, the two alternative
ways to develop distributed scientific applications. In addition, the widespread
diffusion of Jupyter Notebooks [12] in almost all areas of computational science
(particularly in the data science field) implies that many domain experts are already
familiar with them, removing the need to learn an additional, workflow-specific tool.

The contribution of this dissertation is twofold. First, it defines a novel methodol-
ogy to describe distributed modular applications, allowing topology-aware scheduling
and data management while separating business logic, data dependencies, parallel
patterns and execution environments. In addition, it introduces computational
notebooks as a high-level and user-friendly interface to this new kind of workflow,
aiming to flatten the learning curve and improve the adoption of such methodology.
Each of these contributions is accompanied by a full-fledged, Open Source imple-
mentation, which has been used for evaluation purposes and allows the interested
reader to experience the related methodology first-hand. These contributions are
summarised in detail in Sec. 1.1.

This dissertation is the final result of a three-year Ph. D. programme, during
which the author published 11 research articles in journals and conferences. Some
are directly related to this thesis, while the others refer to different topics, mainly
parallel computing, Deep Learning (DL) and medical statistics. Sec. 1.2 contains
a list of all author’s publications. Plus, the author took part to several research
projects and activities, which are listed in Sec. 1.3. Finally, Sec. 1.4 lists the funding
sources that made this work possible.

1.1 Results and contributions

The first two contributions of this work are a hybrid workflow abstraction capable of
expressing topology-aware workflows and the implementation of a novel WMS, called
StreamFlow, capable of orchestrating hybrid workflows across mixed cloud-HPC
architectures. These aspects are introduced in Sec. 1.1.1 and expanded in Chapters 3
and 4. Then, the second part of the thesis introduces literate workflows, a novel
paradigm to model (hybrid) workflows as computational notebooks, and Jupyter-
workflow, which extends the Jupyter stack to support such paradigm. Sec. 1.1.2
summarises these last contributions, which are then discussed in detail in Chapters 5
and 6.

3

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

1.1.1 Hybrid workflows and the StreamFlow framework

A hybrid workflow model combines a standard workflow model, expressing depen-
dencies among different steps of a modular application, and a topology of deployment
locations, describing a set of heterogeneous execution environments and the commu-
nication channels between them. Each workflow step can be mapped onto one or
more locations for execution, and the same location can be contended by multiple
steps.

There are several advantages in including execution environments directly in the
workflow model. A topology-aware WMS can statically evaluate the soundness of
execution plans and implement scheduling policies based on data locality. A domain
expert can select the best environment for executing each workflow step and easily
shift from one configuration to another by modifying the step-location mapping. A
researcher willing to reproduce an experiment has a clear vision of the execution
environment used in the original work and can port the application onto a different
architecture without touching the workflow logic.

The StreamFlow framework serves as runtime support for hybrid workflows
[13]. It fully supports the Common Workflow Language (CWL) open standard [14]
to model workflows and several well-known external formats to model topologies
of deployment locations (e.g. Helm charts for Kubernetes deployments or Slurm
scripts for HPC workloads). It has successfully orchestrated complex workflows in
Bioinformatics and DL on mixed cloud-HPC environments, and further applications
are currently under development.

1.1.2 Literate workflows and the Jupyter-workflow stack

The literate workflows paradigm [15] treats each cell of a computational notebook
as a workflow step, using the related metadata to express dependencies, parallel
patterns and, in the case of hybrid workflows, location topologies and the step-
location mapping relation. Literate workflows interleave host and coordination logic
in the same document but at the same time keep them well separated, promoting
clarity and maintainability.

Execution semantics of standard computational notebooks are inherently se-
quential: cells are executed one at a time, either in the order of appearance (bulk
execution) or on the user’s command (interactive execution). The proposed method-
ology can extract a workflow Directed Acyclic Graph (DAG) by defining sequentially
equivalent parallel semantics so that independent cells can be executed concurrently,
obtaining the same output of a sequential case.

Jupyter-workflow extends the IPython software stack to support hybrid literate
workflows, relying on StreamFlow for scheduling, orchestration and fault-tolerance.
It has been successfully evaluated on large-scale HPC and cloud environments
with four practical applications in the domains of DL, scientific simulation and
Bioinformatics.

4

1 – Introduction

1.2 List of publications

This section lists all the author’s publications in reverse chronological order. Research
works are organised along two dimensions: Sec. 1.2.1 categorises them based on the
venue, and then Sec. 1.2.2 groups them by the targeted topic. Among them, J1, J5,
C1 and C3 are direct results of this dissertation, but all cover topics and use-cases
that served as inspirations for the main contributions.

1.2.1 Publications organised by venue

Book chapters

B1 M. Aldinucci, D. Atienza, F. Bolelli, M. Caballero, I. Colonnelli, J. Flich,
J. A. Gómez, D. González, C. Grana, M. Grangetto, S. Leo, P. López, D. Oniga,
R. Paredes, L. Pireddu, E. Quiñones, T. Silva, E. Tartaglione, and M. Zapater,
«The DeepHealth Toolkit: A Key European Free and Open-Source Software
for Deep Learning and Computer Vision Ready to Exploit Heterogeneous
HPC and Cloud Architectures», in Technologies and Applications for Big Data
Value, E. Curry, S. Auer, A. J. Berre, A. Metzger, M. S. Perez, and S. Zillner,
Eds., Cham: Springer International Publishing, 2022, ch. 9, pp. 183–202, isbn:
978-3-030-78307-5. doi: 10.1007/978-3-030-78307-5_9

B2 E. Quiñones, J. Perales, J. Ejarque, A. Badouh, S. Marco, F. Auzanneau, F.
Galea, D. González, J. R. Hervás, T. Silva, I. Colonnelli, B. Cantalupo, M.
Aldinucci, E. Tartaglione, R. Tornero, J. Flich, J. M. Martinez, D. Rodriguez,
I. Catalán, J. Garcia, and C. Hernández, «The DeepHealth HPC Infrastructure:
Leveraging Heterogenous HPC and Cloud Computing Infrastructures for IA-
based Medical Solutions», in HPC, Big Data, and AI Convergence Towards
Exascale: Challenge and Vision, O. Terzo and J. Martinovič, Eds., Boca Raton,
Florida: CRC Press, 2022, ch. 10, pp. 191–216, isbn: 978-1-0320-0984-1. doi:
10.1201/9781003176664

Journal papers

J1 I. Colonnelli, M. Aldinucci, B. Cantalupo, L. Padovani, S. Rabellino, C.
Spampinato, R. Morelli, R. Di Carlo, N. Magini, and C. Cavazzoni, «Distributed
workflows with Jupyter», Future Generation Computer Systems, vol. 128,
pp. 282–298, 2022, issn: 0167-739X. doi: 10.1016/j.future.2021.10.007

J2 O. D. Filippo, J. Kang, F. Bruno, J.-K. Han, A. Saglietto, H.-M. Yang, G. Patti,
K.-W. Park, R. Parma, H.-S. Kim, L. D. Luca, H.-C. Gwon, M. Iannaccone,
W. J. Chun, G. Smolka, S.-H. Hur, E. Cerrato, S. H. Han, C. di Mario,
Y. B. Song, J. Escaned, K. H. Choi, G. Helft, J.-H. Doh, A. T. Giachet, S.-J.
Hong, S. Muscoli, C.-W. Nam, G. Gallone, D. Capodanno, D. Trabattoni,
Y. Imori, V. Dusi, B. Cortese, A. Montefusco, F. Conrotto, I. Colonnelli, I.

5

https://doi.org/10.1007/978-3-030-78307-5_9
https://doi.org/10.1201/9781003176664
https://doi.org/10.1016/j.future.2021.10.007

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

Sheiban, G. M. de Ferrari, B.-K. Koo, and F. D’Ascenzo, «Benefit of Extended
Dual Antiplatelet Therapy Duration in Acute Coronary Syndrome Patients
Treated with Drug Eluting Stents for Coronary Bifurcation Lesions (from
the BIFURCAT Registry)», The American Journal of Cardiology, 2021, issn:
0002-9149. doi: 10.1016/j.amjcard.2021.07.005

J3 M. Aldinucci, V. Cesare, I. Colonnelli, A. R. Martinelli, G. Mittone, B.
Cantalupo, C. Cavazzoni, and M. Drocco, «Practical Parallelization of Scientific
Applications with OpenMP, OpenACC and MPI», Journal of Parallel and
Distributed Computing, vol. 157, pp. 13–29, 2021. doi: 10.1016/j.jpdc.2021.
05.017

J4 F. D’Ascenzo, O. De Filippo, G. Gallone, G. Mittone, M. A. Deriu, M. Ian-
naccone, A. Ariza-Solé, C. Liebetrau, S. Manzano-Fernández, G. Quadri, T.
Kinnaird, G. Campo, J. P. Simao Henriques, J. M. Hughes, A. Dominguez-
Rodriguez, M. Aldinucci, U. Morbiducci, G. Patti, S. Raposeiras-Roubin, E.
Abu-Assi, G. M. De Ferrari, F. Piroli, A. Saglietto, F. Conrotto, P. Omedé,
A. Montefusco, M. Pennone, F. Bruno, P. P. Bocchino, G. Boccuzzi, E. Cerrato,
F. Varbella, M. Sperti, S. B. Wilton, L. Velicki, I. Xanthopoulou, A. Cequier,
A. Iniguez-Romo, I. Munoz Pousa, M. Cespon Fernandez, B. Caneiro Queija, R.
Cobas-Paz, A. Lopez-Cuenca, A. Garay, P. F. Blanco, A. Rognoni, G. Biondi
Zoccai, S. Biscaglia, I. Nunez-Gil, T. Fujii, A. Durante, X. Song, T. Kawaji, D.
Alexopoulos, Z. Huczek, J. R. Gonzalez Juanatey, S.-P. Nie, M.-a. Kawashiri,
I. Colonnelli, B. Cantalupo, R. Esposito, S. Leonardi, W. Grosso Marra, A.
Chieffo, U. Michelucci, D. Piga, M. Malavolta, S. Gili, M. Mennuni, C. Mon-
talto, L. Oltrona Visconti, and Y. Arfat, «Machine learning-based prediction of
adverse events following an acute coronary syndrome (PRAISE): a modelling
study of pooled datasets», The Lancet, vol. 397, no. 10270, pp. 199–207, 2021,
issn: 0140-6736. doi: 10.1016/S0140-6736(20)32519-8

J5 I. Colonnelli, B. Cantalupo, I. Merelli, and M. Aldinucci, «StreamFlow:
cross-breeding cloud with HPC», IEEE Transactions on Emerging Topics in
Computing, vol. 9, no. 4, pp. 1723–1737, 2021. doi: 10.1109/TETC.2020.
3019202

Conference papers

C1 I. Colonnelli, B. Cantalupo, C. Spampinato, M. Pennisi, and M. Aldinucci,
«Bringing AI pipelines onto cloud-HPC: setting a baseline for accuracy of
COVID-19 diagnosis», in ENEA CRESCO in the fight against COVID-19, F.
Iannone, Ed., ENEA, 2021. doi: 10.5281/zenodo.5151511

C2 G. Agosta, W. Fornaciari, A. Galimberti, G. Massari, F. Reghenzani, F.
Terraneo, D. Zoni, C. Brandolese, M. Celino, F. Iannone, P. Palazzari, G.
Zummo, M. Bernaschi, P. D’Ambra, S. Saponara, M. Danelutto, M. Torquati,

6

https://doi.org/10.1016/j.amjcard.2021.07.005
https://doi.org/10.1016/j.jpdc.2021.05.017
https://doi.org/10.1016/j.jpdc.2021.05.017
https://doi.org/10.1016/S0140-6736(20)32519-8
https://doi.org/10.1109/TETC.2020.3019202
https://doi.org/10.1109/TETC.2020.3019202
https://doi.org/10.5281/zenodo.5151511

1 – Introduction

M. Aldinucci, Y. Arfat, B. Cantalupo, I. Colonnelli, R. Esposito, A. R.
Martinelli, G. Mittone, O. Beaumont, B. Bramas, L. Eyraud-Dubois, B. Goglin,
A. Guermouche, R. Namyst, S. Thibault, A. Filgueras, M. Vidal, C. Alvarez,
X. Martorell, A. Oleksiak, M. Kulczewski, A. Lonardo, P. Vicini, F. L. Cicero,
F. Simula, A. Biagioni, P. Cretaro, O. Frezza, P. S. Paolucci, M. Turisini, F.
Giacomini, T. Boccali, S. Montangero, and R. Ammendola, «TEXTAROSSA:
Towards EXtreme scale Technologies and Accelerators for euROhpc hw/Sw
Supercomputing Applications for exascale», in Proc. of the 24th Euromicro
Conference on Digital System Design (DSD), Palermo, Italy: IEEE, Aug. 2021.
doi: 10.1109/DSD53832.2021.00051

C3 I. Colonnelli, B. Cantalupo, R. Esposito, M. Pennisi, C. Spampinato, and M.
Aldinucci, «HPC Application Cloudification: The StreamFlow Toolkit», in 12th
Workshop on Parallel Programming and Run-Time Management Techniques for
Many-core Architectures and 10th Workshop on Design Tools and Architectures
for Multicore Embedded Computing Platforms, PARMA-DITAM 2021, January
19, Budapest, Hungary, ser. OASIcs, vol. 88, Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021, 5:1–5:13. doi: 10.4230/OASIcs.PARMA-DITAM.2021.5

C4 V. Cesare, I. Colonnelli, and M. Aldinucci, «Practical Parallelization of
Scientific Applications», in 28th Euromicro International Conference on Paral-
lel, Distributed and Network-Based Processing, PDP 2020, Västerås, Sweden,
March 11-13, IEEE, 2020, pp. 376–384. doi: 10.1109/PDP50117.2020.00064

C5 M. Drocco, P. Viviani, I. Colonnelli, M. Aldinucci, and M. Grangetto, «Ac-
celerating Spectral Graph Analysis Through Wavefronts of Linear Algebra
Operations», in 27th Euromicro International Conference on Parallel, Dis-
tributed and Network-Based Processing, PDP 2019, Pavia, Italy, February
13-15, IEEE, 2019, pp. 9–16. doi: 10.1109/EMPDP.2019.8671640

C6 P. Viviani, M. Drocco, D. Baccega, I. Colonnelli, and M. Aldinucci, «Deep
Learning at Scale», in 27th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing, PDP 2019, Pavia, Italy, February
13-15, IEEE, 2019, pp. 124–131. doi: 10.1109/EMPDP.2019.8671552

1.2.2 Publications organised by topic

Workflow modelling and management

This topic is the main subject of the dissertation, and related works are discussed
extensively in the following Chapters. In particular, J5 introduces the StreamFlow
framework, a WMS that serves as runtime support for hybrid workflows. Chapter 4
is entirely dedicated to that topic. C1 and C3 describe the CLAIRE COVID-19
universal pipeline and its implementation with StreamFlow, extensively discussed

7

https://doi.org/10.1109/DSD53832.2021.00051
https://doi.org/10.4230/OASIcs.PARMA-DITAM.2021.5
https://doi.org/10.1109/PDP50117.2020.00064
https://doi.org/10.1109/EMPDP.2019.8671640
https://doi.org/10.1109/EMPDP.2019.8671552

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

in Sec. 4.2.2. J1 contains descriptions of hybrid literate workflows and the Jupyter-
workflow WMS, introduced in Chapters 5 and 6, respectively. B2 and B1 introduce
the software stack developed in the context of the DeepHealth European project,
where StreamFlow is used to orchestrate DL training and inference pipelines on
top of HPC4AI, a multi-tenant cloud-HPC system at Università di Torino. Finally,
C2 describes the TEXTAROSSA European project, one of the projects containing
StreamFlow in their software stack.

Parallel computing

The shift toward parallel computing platforms has many drivers likely to sustain this
trend for several years to come. Consequently, parallel programming methodologies
evolve in two directions: an enhancement in applications performances and a rise in
the level of abstraction of concurrency management primitives.

Algorithmic skeletons [16], [17], i.e. standard parallel programming patterns
for which one or more pre-defined and optimised implementations exist, play a
crucial role in this process. When multiple implementations of the same pattern are
available, choosing the best option is a non-trivial task. C5 empirically compares
multiple implementations of a Generalised Fourier Transform kernel on heterogeneous
machines equipped with one or more Graphics Processing Unit (GPU) accelerators,
showing how the best performing library varies depending on the matrix size.

These paradigms work well because they are explicitly parallel: the programmers
can directly design their applications within a specific programming model and verify
the embedded sequential code’s compliance with programming model constraints.
The crucial aspect for optimal performances becomes the choice of the correct
pattern to represent data/control communication patterns between subsequent
parallel sections of an application.

As a rule of thumb, reducing the amount of communication and avoiding global
synchronisations improves scalability and reduces overhead at the price of higher
complexity. C6 proposes a novel approach to Deep Neural Network (DNN) training
that substitutes the all-reduce operation of distributed Stochastic Gradient De-
scent with an asynchronous nearest-neighbour pattern, improving scalability while
retaining good convergence properties.

Difficulty increases when dealing with legacy applications designed with a purely
sequential programming mindset, possibly using global variables, aliasing, random
number generators, and stateful functions. Re-designing from scratch with an
explicitly parallel approach is still the most effective option to achieve scalable and
efficient parallel codes. Still, this approach cannot effectively support the industrial
adoption of parallel computing key technologies, where human productivity and
time-to-solution are equally, if not more, essential aspects than performance.

C4 and J3 propose a semi-automatic methodology to modernise an existing
sequential scientific code with a little re-designing effort, making it a parallel and
robust code. Such methodology is then successfully tested on four real-world

8

1 – Introduction

scientific codes using the shared memory model (via OpenMP), message-passing
model (via MPI), and General Purpose Computing on GPU model (via OpenACC).

Statistics and Machine Learning in medicine

The combination of statistics and medicine has been ubiquitous in the scientific
literature of the last century. The statistical analysis of clinical trials is fundamental
to validating new treatments and drugs, but extracting knowledge from these
datasets is complex, as they are often noisy, incomplete and unbalanced.

Techniques from classical statistics, such as propensity scores [18], [19] or Cox
proportional hazard models [20], are still widely used in contemporary research.
Indeed, J2 applies these techniques to a large dataset of patients treated with
percutaneous coronary intervention for coronary bifurcations to evaluate the optimal
duration of dual antiplatelet therapy.

In recent years, with the rise of Artificial Intelligence (AI) and Machine Learning
(ML), medical research started to successfully apply more modern and sophisticated
techniques to extract knowledge from clinical trials [21]. In this setting, J4 derives a
risk stratification model based on AdaBoost [22] to predict all-cause death, recurrent
acute myocardial infarction and major bleeding after an acute coronary syndrome.

The explosion of DL models to solve image recognition and object detection
problems in the last decade gave a massive boost to AI-assisted diagnosis techniques
based on images, typically X-Ray and Computed Tomography (CT) scans. These
strategies rely on deep Convolutional Neural Networks (CNNs) to classify patients
according to the presence or absence of disease-related features in medical images.
However, the use of different datasets, pre-processing pipelines and DNNs makes
it impossible to fairly compare the performance of different approaches. C1 and
C3 describe the CLAIRE COVID-19 universal pipeline, a reproducible workflow
capable of automating the comparison of state-of-the-art DL models to diagnose
COVID-19. The interested reader can find an extensive discussion of this pipeline
in Sec. 4.2.2.

1.3 Research projects and activities

This section lists the research projects and activities in which the author took part
during his Ph. D. program. In particular, Sec. 1.3.1 lists the international research
projects funded by the European Commission, Sec. 1.3.2 enumerates the national
Italian projects, and Sec. 1.3.3 discusses other research activities.

1.3.1 European projects

DeepHealth (EC H2020 IA, ICT-2018-11, 2019, 36 months, 14.8M€, G.A. 825111).
The “Deep-Learning and HPC to Boost Biomedical Applications for Health” project
aims to offer a unified framework assembled with state-of-the-art techniques in DL

9

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

and Computer Vision, completely adapted to exploit underlying heterogeneous HPC
and Big Data architectures.

ACROSS (EC H2020 IA, EuroHPC-01-2019, 2021, 36 months, 8M€, G.A. 955648).
The “HPC Big Data Artificial Intelligence cross-stack platform towards exascale”
project will co-design and develop an HPC, Big Data, and AI convergent platform,
supporting complex workflows in the aeronautics, weather and energy domains and
their execution on top of the next generation of pre-exascale infrastructures, still
being ready for exascale systems, and on.

TEXTAROSSA (EC H2020 RIA, EuroHPC-01-2019, 2021, 36 months, 6M€, G.A.
956831). The “Towards extreme scale technologies and accelerators for Euro-HPC
HW/SW supercomputing applications for exascale” project aims at applying a
co-design approach to heterogeneous HPC solutions, supported by the integration
and extension of intellectual properties, programming models and tools derived from
European research projects.

EUPEX (EC H2020 RIA, EuroHPC-02-2020, 2021, 48 months, 41M€, G.A. 101033975):
The “European Pilot for Exascale” project will pave the way for a self-reliant Euro-
pean HPC industry, capable of delivering exascale-class supercomputers designed in
Europe.

1.3.2 National projects

HPC4AI (Regione Piemonte, POR FESR Regione Piemonte, 2018, 24 months,
4.5M€). The “High-PerformanceComputing for Artificial Intelligence” project aims
at creating a federated competence centre on HPC, AI and Big Data analytics to
co-design with industries and SMEs research and technology transfer projects.

QWaaS (CINECA ISCRA-C, 2021, 9 months). The “Quantum Workflows as a
Service” project aims at investigating how to build hybrid computational workflows
involving Quantum Computing and HPC in a picture where Quantum Computers
acts as accelerators of HPC traditional platforms, but the two souls can remain as
loosely coupled as possible.

1.3.3 Other research activities

HPC-Europa3 scholarship Participation at the HPC-Europa3 transnational access
programme, under the supervision of Dr. Eduardo Quiñones Moreno, on the topic
of I/O performance optimisation in large-scale DL workloads.

10

1 – Introduction

IBM Mentorship Participation at the IBM T.J. Watson mentorship programme,
under the supervision of Dr. Claudia Misale, on the topic of large-scale distributed
workflows over mixed cloud-HPC infrastructures.

CWL Technical Team Member of the Common Workflow Language Technical Team1,
with the aim of proposing, implementing and approving new features of the CWL
Standard before the CWL Leadership Team final vote.

Workflow Benchmarking Group Co-chair of the Workflow Benchmarking Group
(WfBG)2, an international working group aiming at developing a community agree-
ment on benchmarking suites and performance metrics for real-world workflows,
and collaboratively maintaining a catalogue of state-of-art implementations of these
suites for various workflow languages and frameworks.

1.4 Funding

This work has been partially supported by the DeepHealth project3, “Deep-Learning
and HPC to Boost Biomedical Applications for Health” which has received funding
from the European Union’s Horizon 2020 research and innovation programme under
grant agreement No. 825111 [23], the ACROSS project4, “HPC Big Data Artificial
Intelligence open Stack Platform Towards Exascale” which has received funding
from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No. 955648 [24], and the HPC4AI project5, which has been funded
by the Region Piedmont POR-FESR 2014-20 (INFRA-P) [25].

1https://www.commonwl.org/governance/
2https://workflows.community/groups/benchmarking/
3https://deephealth-project.eu/
4https://www.acrossproject.eu/
5https://hpc4ai.it/

11

https://www.commonwl.org/governance/
https://workflows.community/groups/benchmarking/
https://deephealth-project.eu/
https://www.acrossproject.eu/
https://hpc4ai.it/

Chapter 2

Background

This chapter is devoted to a general introduction of the key concepts addressed
in the thesis, together with a state-of-the-art discussion of research advancements
and open problems in the covered scientific area. Sec. 2.1 tries to unify business
and scientific workflows domains under a generic enough definition of workflows as
directed bipartite graphs. Sec. 2.2 gives an overview of the main WMSs features for
workflow modelling and runtime phases. Sec. 2.3 introduces distributed computing
and describes the principal execution infrastructures for large-scale distributed
applications. Sec. 2.4 presents the container-based virtualisation approach and its
role in the modern workflows ecosystem. Finally, Sec. 2.5 introduces the literate
computing paradigm and lists previous attempts to use notebooks as workflow
modelling tools and high-level interfaces to HPC facilities.

2.1 Workflows
Workflow models, thanks to their generality, represent a powerful abstraction for
designing complex applications and executing them on large-scale distributed archi-
tectures, such as HPC centres, Grid environments, and the cloud. A drawback of such
generality is that no consistent and commonly agreed definition of workflow seems
to exist in computer science literature. For instance, the Workflow Management
Coalition [26] identifies a workflow as the (partial) automation of a business process,
during which data or tasks are passed from one participant to another according to
a set of procedural rules. Conversely, the Encyclopedia of Database Systems [27]
defines a (scientific) workflow as the description of a process for accomplishing a
scientific objective, usually expressed as tasks organised and orchestrated according
to their data (and possibly other) dependencies. These definitions indirectly assume
a specific paradigm to model and execute tasks: a control-driven one in the former
and a dataflow-like one in the latter. Such paradigms are the most common ways
to describe the business and scientific workflows, respectively, but an acceptable
definition should subsume both scenarios.

In order to be as generic as possible, this work defines a workflow as a directed
13

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

bipartite graph. The nodes of this graph can refer to either the computational steps
of a modular application or the ports through which they communicate. Its edges
encode dependency relations between steps as links from steps to (output) ports
and from (input) ports to subsequent steps. More formally:

Definition 2.1.1. A workflow is a directed bipartite graph W = (S, P,D), where
S is the set of steps, P is the set of ports, and D ⊆ (S × P) ∪ (P × S) is the set of
dependency links. �

Let In(s),Out(s) ⊆ P be the sets of input and output ports of a step s. Their
definitions can be formally written as follows:

In(s) = {p ∈ P : (p, s) ∈ D}
Out(s) = {p ∈ P : (s, p) ∈ D}

(2.1)

In the simplest case, the behaviour of s can be described with a function fs, taking
arguments in the In(s) domain and returning values in the domain of Out(s). In
this generic setting, a path connecting step s to step t introduces a partial execution
order s ≺ t, but no further assumption is made on the nature of dependencies.
On the other hand, constraining the domain and codomain of fs, its evaluation
semantics, or its triggering strategy is equivalent to impose a specific paradigm
to express the workflow [28]. Notice that the functional nature required for the
workflow steps does not exclude stateful computations, as they can still be modelled
using a feedback loop, i.e. a port p ∈ In(s) ∩ Out(s) carrying the current state of
step s.

Directed bipartite graphs have already been proposed in the literature to model
workflows. Petri Nets [29], widely used to express control flows, are bipartite graphs
by definition, and also dataflow graphs can be seen as bipartite graphs [30]. Both
models come with token-pushing semantics [31]: steps are enabled by the presence
of tokens in their input ports. The main difference between the two families of
models relies on the nature of such tokens, particularly their ability to carry data.
Nevertheless, differences are more subtle than they look. Some extensions to the
Petri Nets paradigm (e.g. Coloured Petri Nets [32]) support (typed) data tokens,
which can be used to construct dataflow graphs. On the other hand, dataflow
graphs can easily model the “pure communication” tokens of standard Petri Nets as
empty data tokens. The bipartite graph model proposed in this work is somehow
pluripotent, as it can be reconciled into each specific case by supplying additional
constraints and details.

A formal definition of the workflow model allows to univocally determine its
expressive power, i.e. the set of applications that can be described as workflows
and the limitations introduced by additional constraints. For example, a directed
graph is flexible enough to express sequential, concurrent, and iterative workflow
patterns [33]. Conversely, the DAG abstraction adopted by many workflow systems
drops support for iterative patterns (and therefore stateful computations), but it

14

2 – Background

can prevent deadlocks whenever each step terminates in a finite amount of time.
Furthermore, the model can be extended to support more complicated scenarios.
For example, conditional workflow patterns can be supported by describing each
step s with a tuple (f (1)

s , . . . , f (n)
s , cs) where cs is a condition evaluated on In(s) to

determine which function f (k)
s should be executed to produce values on Out(s).

2.2 Workflow management systems
When expressing an application in terms of a workflow model, it is necessary to
distinguish between two different classes of semantics [34]:

• The host semantics, which define the subprogram in each workflow step (i.e.
the body of fs), usually expressed in a general-purpose programming language
(e.g. Java, C++, or Python) or as a shell script;

• The coordination semantics, which define the interactions between steps through
a declarative markup syntax, an imperative Domain-Specific Language (DSL),
or a graph-based modelling interface.

Tools in charge of exposing coordination semantics to the users and orchestrating
workflow executions are known as Workflow Management Systems (WMSs). The
WMS landscape is quite variegated: it embraces both high-level tools, mainly focused
on resolving typical domain-specific modelling issues, and low-level specifications,
aimed at executing tasks at scale on multi-process infrastructures.

Several surveys exist on WMSs, comparing their different functionalities [35]–[37],
focusing on their evolution [38], or providing classification based on their support
for extreme-scale applications [39]. The current section contains a general overview
of the WMSs features supporting the two main phases of a workflow life-cycle: the
modelling phase, during which a domain expert describes the different functional
components of an application, and the runtime phase, during which the WMS
deploys and manages the computational units required for the workflow execution.

Standard WMSs are user-driven systems specifically developed to satisfy domain
requirements. They provide domain experts with a paradigm to describe, manage
and share complex business processes or scientific analyses to ensure reproducibility
and scalability. Typically, workflows can either be described programmatically or
modelled using high-level declarative DSLs or advanced Graphical User Interfaces
(GUIs), more suitable for users with little programming experience.

Many scientific WMSs, such as Kepler1 [40], Askalon2 [41], Pegasus3 [42], Taverna4

1https://kepler-project.org/
2http://www.askalon.org/
3https://pegasus.isi.edu/
4https://taverna.incubator.apache.org/

15

https://kepler-project.org/
http://www.askalon.org/
https://pegasus.isi.edu/
https://taverna.incubator.apache.org/

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

[43], Triana [44], and Galaxy5 [45], emerged with the diffusion of web services and
Grid technologies, which allow users to access robust services and infrastructures
more naturally than before [46]. Therefore, they were mainly targeted towards
these architectures and not focused on portability. Over time, by evolving in strict
contact with the scientific community, they acquired maturity from the functional
design point of view and started providing some additional features, e.g. workflow
distribution formats and repositories, and supporting newer architectures, like cloud
computing and software containers.

Being Grid native, most of these tools support distributed workflows out of the
box, providing automatic scheduling and data transfers management in the absence
of a unique storage space shared among all the worker nodes. However, each WMS
adopts its own technological stack for the communication layer, often relying on low-
level external libraries that must be properly installed and pre-configured on each
node involved in the workflow execution. For instance, Triana, Askalon and Pegasus
depend on Grid-oriented libraries and tools (the GAP interface [47], the GLARE
library [48], and HTCondor [49], respectively) to perform tasks offloading and data
transfers, limiting the spectrum of supported execution environments. Conversely,
Kepler implements an actor model through the Ptolemy library [50], modelling
communication channels between pairs of interacting actors as abstract FIFO queues
called receivers. In principle this approach is more platform-independent, as each
actor pair can specify a different receiver implementation to exchange data. However,
the Ptolemy library is more focused on single-node parallelism, and the only available
distributed receiver relies on the Java Remote Method Invocation (RMI) protocol
[51].

Other approaches privilege portability by providing a set of pluggable executors
targeting a diverse set of infrastructures, such as public cloud services, batch
schedulers (e.g. HTCondor, PBS, Slurm) and Kubernetes clusters. In most cases,
such executors are agentless and do not require any specific software installed on the
worker nodes. Nevertheless, different steps of the same workflow cannot be managed
by different executors, and the control plane (i.e. the WMS process itself) must
communicate with all the workers directly. Within these products, workflows are
usually described through a product-specific DSL. For example, Apache Airflow6 and
Snakemake7 [52] workflows are essentially Python scripts extended by declarative
code that can be executed on distributed infrastructures. Other systems adopt Unix-
style approaches for defining workflows: in Makeflow8 [53] the end-user expresses
a workflow in a technology-neutral way using a syntax similar to Make, while the

5https://galaxyproject.org/learn/advanced-workflow/
6https://airflow.apache.org/
7https://snakemake.readthedocs.io/en/stable/
8http://ccl.cse.nd.edu/software/makeflow/

16

https://galaxyproject.org/learn/advanced-workflow/
https://airflow.apache.org/
https://snakemake.readthedocs.io/en/stable/
http://ccl.cse.nd.edu/software/makeflow/

2 – Background

Nextflow9 [10] framework builds workflows using the Unix pipe concept. Together
with Taverna, Nextflow is one of the few products to support cycles in workflows,
while the other WMSs constrain workflow models to be DAGs. Finally, other
WMSs adopt a lower-level approach by exposing an Application Programmable
Interface (API) in a general-purpose programming language. For example, Toil [54]
and DagOnStar [55] allow users to model workflows as pure Python scripts. Also
Pegasus [42] exposes Python, Java, and R APIs to express workflows, but then such
high-level descriptions are translated in DAX, the Pegasus low-level XML-based
representation of workflow DAGs.

Since product-specific DSLs tightly couple workflows to a single software, actually
limiting portability and reusability, there are also efforts in defining workflow
specification languages or standards. For example, the CWL10 [14] is an open
standard for describing workflow DAGs following a JSON or YAML syntax or
a mixture of the two. One of the first and most used CWL implementations is
CWL-Airflow [56], which adds support for CWL to Apache Airflow, but also other
products (e.g. Galaxy, Snakemake, Toil, and Nextflow) offer some compatibility
with CWL. Other examples of workflow modelling open standards are the Workflow
Description Language (WDL)11, which is similar to CWL in terms of expressive
power, and the Serverless Workflow Specification12, which aims to describe event-
based interactions among serverless applications. The latter is much more flexible,
supporting iterations, data filters, and service invocations, but it is more oriented
to a control-driven paradigm, with limited support for dataflow patterns.

An alternative approach to complex and feature-rich WMSs privileges perfor-
mance over accessibility, exposing lower-level programming models directly to the
users and coordinating the execution of many fine-grained tasks on distributed
architectures. Big Data frameworks like Spark [57], Flink [58], and Storm [59], and
parallel programming libraries like HyperLoom [60], Dask [61], COMP Superscalar
(COMPSs) [62], Ray [63], and Parsl [64], belong to this category.

These libraries allow users to parallelise existing sequential applications by iden-
tifying functions that can be executed as asynchronous remote tasks. Concurrency
can be expressed either imperatively, by explicitly calling the library API, or declar-
atively, through annotations. Asynchronicity is typically implemented with the
futures paradigm [65]: an asynchronous function immediately returns a future object
that can be passed as argument to another asynchronous function. The workflow
execution plan, typically a layered dataflow model [66], is automatically built just-in-
time by the runtime layer of the framework. Each asynchronous function invocation

9https://www.nextflow.io/
10https://www.commonwl.org/
11https://openwdl.org/
12https://serverlessworkflow.io/

17

https://www.nextflow.io/
https://www.commonwl.org/
https://openwdl.org/
https://serverlessworkflow.io/

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

is a step of the workflow, and if it receives in input a future from another invocation,
then there is a dependency between the two.

These tools are often used for programming HPC workflows, being a reasonable
middle ground between high-level WMSs and explicit message passing libraries in
terms of complexity and performance. Since all worker nodes share a common file
system in HPC facilities, most of these tools do not support automatic data transfers
(COMPSs is an exception). The main drawback is that host and coordination logics
are interleaved in the same program, which must be entirely written in one of the
supported languages.

Several tools adopt a similar idea for the automatic collection of provenance
data from scripts. For instance, yesWorkflow [67] allows users to insert special,
language-independent comments in a script to explicitly describe the data flow. Its
interpreter can then rely on such comments to generate a dataflow representation
of the script. Similarly, RDataTracker [68] allows users to initialise and store
automatic provenance collection for a portion of an R script by explicitly calling
its APIs, possibly relying on more advanced functions to manipulate the output.
The W2Share approach [69] takes a step further, trying to (semi-)automatically
derive Taverna executable workflows from abstract representations extracted by
yesWorkflow. However, the amount of human intervention required in each phase is
still significant.

Other tools, such as noWorkflow [70], adopt a fully automatic strategy by
extracting the data flow from a static analysis of the Python code’s Abstract Syntax
Tree (AST). Analogously, Baranowski et al. [71] explore the AST of Ruby scripts
targeting GridSpace execution environment [72] to extract workflow models. The
CXXR project [73] extends the R interpreter to automatically retrieve provenance
data, while the LLVM-SPADE stack [74] augments binaries with provenance tracking
logics at compile time. These approaches guarantee great flexibility in extracting
the data flow and the environment state at any given time. However, it is difficult
to properly set the granularity of retrieved information while operating at such a
low and application-agnostic level. In addition, these solutions only target a single
language and quite often only a specific version of it.

2.3 Distributed systems

The concept of distributed computing is so broad that a proper definition cannot
but depend on the context in which it is inserted. In this work, a distributed
system is regarded as a collection of independent computing elements [75], where
the word independent means that each computing element has its own clock and
its own memory address space. Plus, a distributed system can be heterogeneous,
meaning that different computing elements can have different hardware architectures,
e.g. in terms of endianness, and equip different kinds of accelerators, e.g. GPUs,
neuromorphic devices, or manycore processors.

18

2 – Background

The absence of a shared address space implies that the computing elements can
only communicate through the network, exchanging messages. Such communications
can be explicit, as in message-passing libraries like MPI [76] and message queue
implementations like Apache Kafka13 [77], or hidden behind higher-level abstractions,
such as Distributed File-Systems (DFSs) or Partitioned Global Address Spaces
(PGASs). However, programming a distributed application requires a lot of effort
and compromises, as it is theoretically impossible to have an available, consistent,
and partition-tolerant application [78].

The two main reasons for adopting a distributed software stack are high availability
and scalability. The former relies on redundant components to ensure service
availability in case of failure. The latter offloads different portions of a workload to
multiple, potentially interacting computing nodes to improve performances (strong
scalability) or deal with larger problems (weak scalability). Recently, the diffusion of
federated learning techniques [3], [4] for data analysis added data federation to the
motivations behind distributed systems.

Workflow abstractions are inherently modular and require an explicit encoding
of all the necessary communications between subsequent steps. For these reasons,
workflows lend themselves well to distributed executions. Indeed, many of the
most popular WMSs were specifically created to address the then-emerging Grid
platforms (see Sec. 2.2). Later on, with the advent of cloud computing and HPC
facilities, WMSs started to include these technologies in their range of supported
execution environments. The rest of the current section is devoted to exploring the
peculiarities of these architectures in more detail. In particular, Sec. 2.3.1 introduces
Grid environments and their logical stack, Sec. 2.3.2 describes high-performance
computing centres, and Sec. 2.3.3 deals with cloud platforms.

2.3.1 Grid computing

Grid computing aims to define and provide flexible, secure and coordinated resource
sharing in dynamic collections of individuals or institutions, called Virtual Organi-
sations (VOs) [79]. In contrast to the other computing technologies discussed below,
a Grid is fully decentralised [80]: different members of a VO can live within different
control domains, and they interact with each other without the mediation of a
centralised service provider acting as a trusted third party.

Interoperability is the most crucial aspect of a solid Grid architecture, aiming to
support relationships among any potential participants. The lack of a centralised
infrastructure makes it necessary to rely on standardised open protocols for negoti-
ating and sharing resources, authenticating and authorising users, and managing
the life-cycle of VOs. Still, interoperability among different Grids requires them to
implement the same protocols. A key role in inter-Grid compatibility is played by

13https://kafka.apache.org/

19

https://kafka.apache.org/

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

two factors: an hourglass model for the Grid architecture and a de-facto standard
implementation of the Grid technological stack.

The stack of traditional Grid architectures contains five layers [79]. The lowest
one is the Fabric layer. It contains physical and logical resources that must be shared
between members of a VO, like computing power, storage and network resources,
and some mechanisms for discovering their state and capabilities and managing
quality of service. Right above, the Connectivity layer defines communication and
authentication protocols for secure network transactions, supporting, for example,
routing, naming, single sign-on and delegation. The Resource layer builds on the
Connectivity layer to define protocols for more advanced features involving single
resources, like life-cycle management, monitoring and accounting. Connectivity and
Resource layers constitute the neck of the hourglass: they contain a few widely-used
protocols that can easily be implemented on top of a diverse set of resources (in
the Fabric layer) and form the basis for constructing advanced services in the
upper portion of the stack. The Collective layer contains protocols that involve
either a global state of Grid or a collection of resources, like directory services
for resource discovery, co-allocation and distributed task scheduling. Grid-based
WMSs introduced in Sec. 2.2 also belong to this layer. Finally, the Applications
layer contains the user-level applications running in the context of a VO, which are
expressed in terms of services and protocols defined at any lower layer.

The de-facto standard implementation of the Grid architecture is the Globus
Toolkit [81], a set of Open Source protocols, services and libraries specifically
developed to support Grid applications. Among the Toolkit components, it is worth
mentioning the Grid Resource Allocation Management (GRAM) protocol [82] for
secure allocation and monitoring of computational resources, the Metacomputing
Directory Service (MDS) [83] for resource discovery, the Grid Security Infrastructure
(GSI) protocols [84] for authentication, single sign-on and delegation, and the
GridFTP protocol [85] for high-speed data transfers. The existence of a de-facto
standard implementation immensely facilitates compatibility among different Grid
implementations. In contrast, the lack of a standard interface is the main obstacle
to interoperability between today’s clouds [86].

Another fundamental difference between Grid and cloud architectures is the
compute model: cloud resources are virtualised and provisioned to users on-demand,
while Grids rely mainly on queue-based schedulers that provision bare-metal re-
sources through the GRAM interface [86]. Nevertheless, Grid protocols are, in
principle, extremely flexible. GRAM supports on-demand resource provisioning
through advanced reservations, and there exist some efforts to provide virtualised
Grid resources in the literature [87].

Even if in the last years the cloud paradigm has become the widely preferred
solution to host and provide services in the enterprise community, several Grid
environments still survive in the research field. One of the most famous examples
is the Worldwide LHC Computing Grid (WLCG) [88], which aims at storing,

20

2 – Background

distributing and analysing the data measured by the Large Hadron Collider (LHC)
detectors ad CERN.

2.3.2 High-performance computing

In the traditional meaning, the terms High-Performance Computing (HPC) refer to
clusters of tightly-coupled, massively parallel machines aiming to provide significantly
greater sustained performance than mainstream computer systems [89]. Such clusters
are often called supercomputers, and the terms cluster computing are often used as
a synonym of HPC.

A typical HPC stack includes vast amounts of cores and memory per computing
node, massively parallel hardware accelerators, low-latency networking technologies
and storage systems, and highly-optimised software libraries. This entire stack’s
main (and often sole) aim is to push performances to the maximum achievable
amount. At the time of writing, the most powerful supercomputers in the world
reach hundreds of Pflop/s on the HPLinpack benchmark [90], and enormous research
efforts focus on reaching exascale performances (i.e. 1018 flop/s) [91]–[93].

Providing such levels of performance unavoidably brings extreme complexity
in both the usage and maintenance of these systems. Any virtualisation layer is
forbidden, as the virtualised overlay introduces a significant overhead and hinders
compilers from applying hardware-specific optimisations. Consequently, all the
users of an HPC cluster directly access the same bare metal nodes, forcing system
administrators to put massive efforts into configuring secure authentication and
authorisation toolchains and properly segmenting data accesses.

If the presence of high-end hardware and specialised software allows applications
to achieve extreme performances, pushing them to the limit requires a deep knowledge
of the entire HPC stack. For instance, linear algebra libraries such as BLAS [94]
and LAPACK [95] play a crucial role in scientific applications like Computational
Fluid Dynamics (CFD) and DL. However, proper tuning requires a tight coupling
with the underlying hardware, which is so complex that often the best way to
achieve maximum performance is to switch between implementations, according
to the matrix size, the type of operation, and the presence or absence of hardware
accelerators [96].

Explicit message passing is the most common communication paradigm in HPC,
as it provides programmers with the highest amount of flexibility, and the MPI [76]
is the de-facto standard in this field. According to Flynn’s taxonomy [97], MPI
applications are classified as Single Program Multiple Data (SPMD). Indeed, the
same code is executed on multiple, potentially distributed computing elements by
a single mpirun command, which returns when the global execution terminates
(either successfully or after a failure). Properly compiled implementations of MPI
can take advantage of both the Remote Direct Memory Access (RDMA) capabilities
of active network boards and the userspace hardware access brought by their related
software stacks. At the same time, low-latency technologies and proper in-network

21

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

aggregation mechanisms guarantee high performances also in the presence of small
messages. Again, pushing performances to the limit requires complex compilation
toolchains and deep knowledge of the HPC stack.

The MPI communication layer is usually combined with other libraries and tools,
realising the so-called MPI/X programming model. For instance, MPI/OpenMP
can improve intra-node parallelism management [98], while MPI/CUDA can offload
multi-node computations to NVidia GPUs [99], [100]. Multiple versions of fine-tuned
scientific libraries, frameworks, and compilers are usually made available to HPC
users through environment modules14, even if recently system administrators are
exploring alternative mechanisms such as ad-hoc package managers (e.g. Spack
[101]) or software containers (e.g. Singularity [102]). In any case, since HPC users
do not have privileged rights, installing and configuring additional software often
requires a direct intervention of system administrators.

Typical HPC architectures contain some publicly exposed frontend nodes, where
users land after logging in, and several worker nodes, which are in charge of executing
computations and cannot usually access the Internet. Frontend and worker nodes
share some portions of the file system, where one or more shared DFS are mounted.
Such DFSs are parallel network file systems designed with performance in mind,
such as Lustre15 [103], GPFS16, or BeeGFS17. Plus, worker nodes can host local,
high-end burst buffers [5], usually based on the Non-Volatile Memory Express
(NVMe) protocol, where a program can temporarily persist its input and output
data to reduce pressure on the global storage nodes and channels, especially during
checkpointing phases.

Traditionally, all worker nodes on an HPC cluster were homogeneous in terms
of hardware architectures and software stacks. With the approach of exascale,
HPC facilities are starting to become more modular. Indeed, the number and
variety of HPC applications significantly increased in the last decades, and different
applications come with different requirements. For instance, Bioinformatics software
usually needs vast amounts of memory, large-scale CFD simulations need sustained
high performances on double-precision operations, and DL requires efficient I/O and
powerful GPUs. Consequently, modern HPC infrastructures offer multiple modules,
i.e. multiple sets of racks optimised for different kinds of workloads. Developing
proper technologies to orchestrate complex workflows across multiple HPC modules
is still an open research problem, but the hybrid workflow models proposed in this
thesis (see Chapter 3) are a step in this direction.

HPC users can access frontend nodes through secure remote shells, commonly

14https://modules.readthedocs.io/
15https://www.lustre.org/
16https://www.ibm.com/docs/en/gpfs/
17https://www.beegfs.io/

22

https://modules.readthedocs.io/
https://www.lustre.org/
https://www.ibm.com/docs/en/gpfs/
https://www.beegfs.io/

2 – Background

based on the Secure SHell (SSH) protocol, but they cannot directly interact with
worker nodes. Instead, they can assign batch jobs to one or more queues, specifying
the resources required for execution. A queue-based manager will then schedule
jobs executions, according to a First In First Out (FIFO) order or a priority-based
policy, as soon as enough computing nodes are available. Slurm18 [104], PBS19, and
LSF20 are among the most widespread queue managers in modern HPC facilities.
The absence of high-level GUIs, the batched scheduling of jobs, and the somehow
exotic ways to manage software dependencies make HPC usage highly complex for
domain experts without a strong computer science background. Indeed, finding an
effective way to improve accessibility to HPC facilities is still an open problem in
computer science. In recent years, the combination of interactive job queues and
literate computing is spreading as an alternative way to offer HPC services, but the
related solutions are still at an early stage (see Sec. 2.5.3).

2.3.3 Cloud computing

According to the classical NIST definition [105], cloud computing is “a model for
enabling ubiquitous, convenient, on-demand network access to a shared pool of
configurable computing resources”. In a sense, it is the antithesis of HPC, where
resources are tightly coupled, homogeneous, and accessed according to queue-based
scheduling.

Cloud providers offer portions of a large-scale distributed system to their users
according to an Anything as a Service (XaaS) paradigm, where a technology managed
by the provider is delivered to end-users over the Internet [106]. The former three
layers of XaaS stack were: Software as a Service (SaaS), where clients merely utilise
applications entirely managed by the cloud provider; Platform as a Service (PaaS),
where clients deploy and configure applications on top of the provider-managed
infrastructure; Infrastructure as a Service (IaaS), where clients have full control over
operating systems and libraries and can partially configure hardware resources such
as storage and networking [105]. With the spread of the XaaS paradigm, new and
more specific acronyms have been added to the “anything” list, such as Machine
Learning as a Service (MLaaS) [107] or Big Data Analytics as a Service (BDAaaS)
[108].

Akin to HPC, the IaaS paradigm usually gives users access to computing resources
through a remote shell. Apart from that, the two architectures are tremendously
different from each other. HPC users share the entire computing stack, from bare
metal resources to the operating system kernels. In contrast, within the IaaS
paradigm, each user gains privileged access to its own virtualised resources, i.e.

18https://slurm.schedmd.com/
19https://www.openpbs.org/
20https://www.ibm.com/docs/en/spectrum-lsf/

23

https://slurm.schedmd.com/
https://www.openpbs.org/
https://www.ibm.com/docs/en/spectrum-lsf/

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

hyper-converged Virtual Machines (VMs), virtualised storage, and Software-Defined
Networks (SDNs).

At first glance, it could seem that the IaaS paradigm gives users more control
over their infrastructure than the HPC approach, as the combination of on-demand
access and privileged capabilities makes cloud resources very flexible. The downside
is that a user has no control over whatever exists between the physical hardware and
its VM. As a consequence, compilers cannot apply hardware-specific optimisations.
Plus, with overprovisioning, multiple virtual cores are allocated to the same physical
core so that each application can use only a fraction of the actual CPU time.
Consequently, software performances can fluctuate significantly from one run to the
other, and such fluctuations depend on factors that are not under users’ control, such
as the current load of the underlying infrastructure or the cloud control plane itself.
Recently, with the diffusion of DL workloads, many cloud providers started to offer
bare metal resources and hardware accelerators alongside the classical virtualised
options, but the related costs are commonly very high.

On the other hand, a cloud environment is ideal for hosting long-lived public
services, such as web servers or databases, which are not compatible with the air-
gapped worker nodes and the one-shot allocation model of HPC. Moreover, hybrid
cloud solutions allow for partitioning the modules of complex applications between
public and private nodes, publishing only those services that need to be accessed
and hiding the others behind configurable firewalls. Nevertheless, more flexibility
necessarily comes with increased complexity in deploying, configuring and managing
applications.

For this reason, several tools have been developed with the precise aim to
seamlessly support hybrid cloud deployments of complex applications composed
of heterogeneous intercommunicating services. These tools expose to the user just
an agnostic and straightforward interface, usually a DSL. This approach is often
referred to as Infrastructure as Code (IaC), and the tools in charge of translating
infrastructure descriptions into their runtime deployment and life-cycle management
are known as orchestrators.

There are two leading families of orchestrators: agentless and agent-based. The
first family concentrates on the deployment and configuration phases, with no
support for life-cycle management. Infrastructures are described through either a
DSL [109]–[111] or a GUI [112], and interpreted by an agentless architecture. A
centralised server communicates with both the cloud control plane to deploy IaaS
instances and the instances themselves to configure them. At the time of writing,
one of the most popular tools of this kind is Ansible21 from Red Hat.

Agent-based orchestrators support both deployment and life-cycle management
of infrastructures. The control plane installs an agent on each instance during the

21https://www.ansible.com/

24

https://www.ansible.com/

2 – Background

configuration phase to continuously collect information on the system’s state. When
the system state differs from the one described in the infrastructure declaration, the
orchestrator tries to restore the correct one. With this strategy, systems can provide
advanced orchestration features, such as self-healing, auto-scaling, and garbage
collection. The first implementations of this approach, such as LCFG [113] and
CfEngine [114], date back to the first half of the ’90s. More recent examples are
present in scientific literature, such as Engage [115], SALSA [116], and Roboconf
[117], and among industrial products, like Juju22, Chef23, and Puppet24.

Workflows’ reproducibility can enormously benefit from an IaC approach, as it of-
fers a repeatable way to recreate the entire execution environment for an experiment.
On the other hand, advanced orchestration technologies can rely on workflows for
expressing complex deployment and management processes. For instance, Mietzner
et al. [118] adopt WS-BPEL, the OASIS Web Services Business Process Execution
Language [119], to describe the provisioning of complex SaaS architectures, while
Brogi et al. [120] propose Petri Nets to define applications management proto-
cols in TOSCA, the OASIS Topology and Orchestration Specification for Cloud
Applications [121].

2.4 Container-based virtualisation

Operating system containers, or simply containers in modern terminology, are
lightweight virtualised environments that trade isolation for efficiency [9]. While
VMs rely on a hypervisor to implement virtualisation at the hardware abstraction
layer, containers running on the same host share the operating system kernel, moving
virtualisation at the operating system layer. This design undoubtedly allows for
better peak performances, but guaranteeing isolation among different containers is
much more complex than isolating VMs, both in terms of security and performance.

Akin to standard virtualisation terminology, a container image contains the
instructions for starting a container instance (often simply called container). As
containers are much more lightweight than VMs, each container is usually dedicated
to a single application and its dependencies. This approach increases modularity,
reduces the attack surface, and improves maintainability. A container runtime
process running on the host is in charge of converting images into isolated execution
environments and managing their life-cycle.

Early containerisation technologies, like OpenVZ25 or Linux-VServer26, were

22https://jujucharms.com/
23https://www.chef.io/chef/
24https://puppet.com/
25https://openvz.org/
26http://linux-vserver.org/

25

https://jujucharms.com/
https://www.chef.io/chef/
https://puppet.com/
https://openvz.org/
http://linux-vserver.org/

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

based on colossal kernel reengineering efforts to guarantee isolation at the process
level, with each solution adopting a different (although similar) strategy to achieve
this goal [9]. In recent years, the significant updates in Linux kernel isolation-related
features and the creation of container-related standardisation communities, such as
the Open Container Initiative27, significantly reduced the implementation-specific
differences in container runtime systems.

In containers ecosystems, the term isolation is commonly referred to two different
contexts: resources isolation, which regulates the usage of hardware resources for
each container instance, and security isolation, which segments access and visibility
to global operating system’s objects (e.g. PIDs, user and group ids, file descriptors).
In modern implementations of Linux container runtimes, resources isolation is
achieved through limits and control groups, while security isolation is obtained
through namespaces, system call filtering (SecComp), and access control modules
(SELinux, AppArmor).

Container file systems are usually ephemeral: file writes are allowed, but restarting
the container instance restores the whole file system to the initial state, as described
in its image. For permanent data storage, persistent volumes can be mounted to
the file system of one or more containers. A volume can be managed directly by the
container runtime or point to a portion of the host’s file system. The second option
must be used carefully because it significantly reduces the isolation level between
host and container contexts.

Among modern implementations, Docker28 containers are undoubtedly the most
widespread. Their success is probably due to the relatively user-friendly speci-
fication format for creating Docker images (i.e. the Dockerfile), the support for
image inheritance, which saves users from building everything from scratch every
time, and the possibility to distribute images through public and private registries.
The fundamental merit of Docker is to have pushed the containerisation idea to
the mainstream, consequently generating significant improvements in the whole
ecosystem. As an example, the aforementioned Open Container Initiative was
established by Docker in cooperation with many of the major cloud providers.

Recently, containers gave birth to new software architecture paradigms. An
example is the microservices pattern, where a modular application is decomposed
into multiple interacting containers, each dedicated to a single module. The clear
advantages of this approach are better maintainability, less intrusive system updates,
and easy extensibility with new modules. A drawback comes from the complexity of
deploying and connecting a potentially high number of containers, manage their life-
cycle, and recover from failures. To ease these tasks, some container orchestrators

27https://opencontainers.org/
28https://www.docker.com/

26

https://opencontainers.org/
https://www.docker.com/

2 – Background

started to flourish. Among them, Kubernetes29 has become the de-facto standard
for container orchestration during the last years, and the vast majority of cloud
providers include a managed Kubernetes service in their offering. Kubernetes comes
with a very flexible YAML-based DSL describing both deployment and runtime
orchestration features for multi-agent applications.

Even if containers were initially thought of for performance-oriented platforms,
as HPC systems are, their adoption in this field is still quite limited compared to
the cloud. Sec. 2.4.1 gives an overview of this topic. Sec. 2.4.2 focuses instead on
the workflow domain, where containers bring undoubted advantages in portability
and reproducibility.

2.4.1 Containers on HPC

Regarding performance, overheads introduced by containerised software with no
network and storage virtualisation are almost negligible compared to bare metal
executions [122], [123]. Still, adoption of software containers in HPC environments
is significantly limited, with most data centres stuck on legacy software distribution
systems like environment modules.

There are two main obstacles to the widespread adoption of containers in HPC.
The first one mainly affects Docker containers: if the container runtime daemon
runs with root permissions in an HPC environment, a malevolent root user inside a
container can manage to get privileged access to the host operating system. This is a
serious hazard for HPC systems because they are typically shared by different groups
of users (a.k.a. tenants). To date, this issue is solved by many rootless container
stacks, either directly deriving from Docker (e.g. udocker [124], socker [125], and
Occam [126]) or with entirely alternative implementations (e.g. Podman30, Shifter
[127], Charliecloud [128], and Singularity [102]).

The second issue, still unsolved, involves performances portability. As discussed
above, HPC software stacks need complex compilation toolchains, tightly coupled
with the underlying hardware, in order to achieve maximum performance. This
requirement implies that container images should be built directly on the HPC
nodes, allowing compilers to apply hardware-specific optimisations. Still, building
containers requires almost always privileged permissions (Charliecloud and Podman
are exceptions) and should be managed directly by system administrators. Plus, the
exact configuration of a given compilation toolchain that maximises performance is
strictly related to each specific HPC facility. Conversely, images built elsewhere or
downloaded from public registries can significantly reduce peak performance.

29https://kubernetes.io/
30https://podman.io/

27

https://kubernetes.io/
https://podman.io/

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

2.4.2 Container-based workflows

Portability and reproducibility have always been two fundamental aspects of scientific
workflows. Nevertheless, the combination of the two is undoubtedly a non-trivial
requirement to satisfy, as it is necessary to guarantee that a program running on top
of potentially very diverse execution environments will give identical results. First,
it is necessary to provide identical versions of all the libraries directly or indirectly
involved in the computation. On top of that, some numerical stability problems can
arise when running the same code on different platforms, e.g. on Linux and Mac OS
X [10]. Fortunately, with the diffusion of lightweight containerisation technologies
like Docker and Singularity [102], a straightforward solution for these issues finally
appeared. Nowadays, container-based tasks are supported by many WMSs on the
market, either as an alternative to native execution or as first-class citizens [129].

The typical way to support containerisation in WMSs is through a one-to-one
mapping between steps and containers, i.e. a container image is associated with
each step in the workflow graph. In this setting, the execution flow of a single step
always consists of three sequential actions: deploy the container, execute the step
inside it, and finally undeploy the container. Drawing a parallel with the famous
Flynn’s taxonomy [97], this execution pattern could be defined as Single-Task
Single-Container (STSC).

Compared with a Multiple-Tasks Single-Container (MTSC) alternative, the STSC
pattern comes with a decisive advantage. Since containers’ file system is commonly
ephemeral, every step execution runs inside a clean and consistent environment
(except for potential temporary files saved into persistent folders). For its part,
an MTSC execution can provide some performance improvements in those cases
when the step execution is high-speed (comparable with the startup and shutdown
overheads of a container, generally in the order of milliseconds). Moreover, an MTSC
approach can also be useful when a process inside the container must complete a
heavy initialisation phase before being ready to perform steps or when some data
dependencies reside in the ephemeral file system, to avoid additional data transfers
when recreating containers.

The Single-Task Multiple-Containers (STMC) setting is more interesting, as it
allows using multiple, possibly heterogeneous environments to execute a single step.
For example, with an STMC approach, it would be possible to run an MPI step on
top of multiple nodes or a MapReduce-based step with multiple instances of Apache
Spark.

Finally, the most general setting of Multiple-Tasks Multiple-Containers (MTMC)
would also allow concurrent step executions, i.e. a configuration in which steps s1
and s2 run contemporarily on different resources and s1 produces data consumed by
s2. The support for this last configuration becomes fundamental when dealing with
stream-based workflows [39]. In principle, also an MTSC configuration enables the
concurrent execution of steps into the same resource, but here the advantage is less
valuable. Indeed, it is far easier to obtain the same behaviour in an STSC setting

28

2 – Background

with a single step charged with launching and managing all the required processes.
Unfortunately, a many-to-many step-image association is not enough to model an

*MC configuration, as it is also necessary to explicitly specify the connections among
different containers. Some ways to define multi-agent environments with containers
are already present on the market, from simple libraries like Docker Compose31 and
Singularity Compose32 to complex orchestrators like Kubernetes. One option is to
rely on them for the environment definition, substituting the original one-to-one
step-container association with a many-to-one step-environment association and
treating an entire multi-agent environment as the unit of deployment. Some WMSs
natively designed on top of Kubernetes, e.g. Argo Workflows33, adopt precisely this
approach. Despite offering great flexibility in interacting with Kubernetes resources,
these products are tightly coupled with such technology and do not allow for step
offloading on different environments, such as HPC sites. Conversely, the hybrid
workflows approach proposed in this work offers a flexible and technology-agnostic
way to specify each of the *T*C patterns directly in the workflow model (see Chapter
3).

2.5 Literate computing

Donald Knuth introduced literate programming in the early ’80s as a programming
approach where code fragments and their documentation in natural language are
interleaved in the same source file [130]. A literate program can be compiled by a
specific tool to obtain two different products: it can either be tangled to a code file
or woven into a documentation manual. The original language, called WEB, mixed
PASCAL code with LATEX documentation, but several other examples support
additional programming languages and documentation frameworks.

Drawing inspiration from literate programming, Millman and Pérez developed the
concept of literate computing [11]. The main difference between the two approaches
lies in their execution model. A literate program can be tangled to produce code,
but compilation and execution of such code are beyond the paradigm’s scope. In
contrast, literate computing targets interactive environments, in which users can
immediately and repeatedly execute commands. Plus, the results of such executions
are stored as part of the file format, together with source code and documentation.
Literate computing files are called computational notebooks, or simply notebooks
when the context is clear. In recent years, several literate computing technologies
have seen widespread diffusion. Jupyter Notebooks [12], formerly known as IPython
Notebooks, are undoubtedly the market leaders. Their ecosystem is described in

31https://docs.docker.com/compose/
32https://singularityhub.github.io/singularity-compose/
33https://argoproj.github.io/argo-workflows/

29

https://docs.docker.com/compose/
https://singularityhub.github.io/singularity-compose/
https://argoproj.github.io/argo-workflows/

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

Listing 2.1: Jupyter Notebook document cell format (general and code)
Generic cell metadata
{

"cell_type": "type",
"metadata": {},
"source": "single string or [list, of, strings]",

}

Code cell metadata
{

"cell_type": "code",
"execution_count": 1,# Integer or null
"metadata": {

"collapsed": True, # Whether the output of the cell is collapsed
"scrolled": False, # Any of true, false or "auto"

},
"source": "[some multi-line code]",
"outputs": [{

List of output dicts (described below)
"output_type": "stream",
...

}],
}

greater detail in Sec. 2.5.1. Among others, significant examples are knitr34 and
Apache Zeppelin35 notebooks.

The capability to unify imperative code and declarative metadata in a unique
format puts literate computing halfway between high-level coordination languages
and low-level distributed computing libraries, the two classes of tools commonly
used for workflow modelling. Furthermore, the widespread diffusion of notebook
technologies implies that many domain experts are already familiar with them,
removing the need to learn additional, workflow-specific tools. For such reasons, the
literature contains some efforts to use Jupyter Notebooks for workflow modelling,
even if, as far as the author knows, this thesis is the first attempt to establish
explicit models and semantics for literate workflows. Sec. 2.5.2 briefly describes the
most relevant approaches in this direction.

Literate computing (in particular Jupyter Notebooks) has also been evaluated
as a high-level interface to HPC resources. Indeed, feature-rich, user-friendly web
dashboards that serve as Integrated Development Environments (IDEs) for literate
computing technologies are far more accessible for domain experts than SSH-based
remote shells. Plus, market-leading cloud providers already offer computational
notebooks as interfaces to compose, execute, and scale ML pipelines on cloud
resources. Sec. 2.5.3 explores the state-of-the-art in this topic.

2.5.1 Jupyter Notebooks

Jupyter Notebooks have been designed to support scientific computing, from

34https://yihui.org/knitr/
35https://zeppelin.apache.org/

30

https://yihui.org/knitr/
https://zeppelin.apache.org/

2 – Background

Browser Notebook Server Kernel

Jupyter
Notebook

HTTP ZeroMQ

File I/O

Figure 2.1: Sketch of the Notebook Server architecture.

interactive exploration to publication of a readable and replicable research object
[131]. In practice, a Jupyter Notebook is a JSON document containing an ordered
list of cells with code, explanatory text, mathematics, plots and rich media. The
format of each cell type is regulated by a versioned JSON Schema36, as reported in
Listing 2.1 for generic and code cells.

As sketched in Fig. 2.1, users interact with Jupyter Notebooks through a notebook
server, a web-based computational environment for creating and executing such
documents. When a user triggers the execution of a cell, its code is sent to a
dedicated, potentially remote process called kernel, which is in charge of interpreting
the code, storing the notebook’s global context, and managing the input and output
streams. ZeroMQ37, a TCP-based messaging library, implements the bidirectional
communication protocol between the server and the kernel.

Initially thought as a high-level interface for the IPython project [132], nowadays
the Jupyter ecosystem supports interactive programming in numerous languages
with dedicated kernels and boasts a rich set of helper tools for, among other things,
converting notebooks to standard file formats (nbconvert), publishing them on
the web (nbviewer), and offering Jupyter as a service on cloud platforms (e.g.
JupyterHub38, Google Colaboratory39).

Although Jupyter Notebooks have seen a widespread diffusion in almost all areas
of computational science, they are now ubiquitous in the data science field [133].
The reasons behind this trend are disparate. The possibility to discuss algorithms
and visualise results in the same document is fundamental for data scientists, as
every step in a data analysis pipeline can significantly affect its outcome. Plus, the
long-standing compatibility with the Python ecosystem and the support offered
by all the major DL frameworks on the market (e.g. PyTorch [134], TensorFlow
[135], MxNet [136]) undoubtedly play a role. Another crucial aspect of the Jupyter

36https://nbformat.readthedocs.io/en/latest/format_description.html
37https://zeromq.org/
38https://jupyterhub.readthedocs.io/en/stable/
39https://colab.research.google.com

31

https://nbformat.readthedocs.io/en/latest/format_description.html
https://zeromq.org/
https://jupyterhub.readthedocs.io/en/stable/
https://colab.research.google.com

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

ecosystem is the possibility to run kernels on desktop machines, cloud resources
or HPC facilities using the same high-level interface. This aspect allows data
scientists to move the computation where the (large) datasets reside and to scale
their experiments on huge amounts of computing power.

2.5.2 Workflows with Jupyter

Despite their attractive properties as workflow modelling tools, bare Jupyter Note-
books are unsuitable for complex workflows executions. Indeed, notebooks’ purely
sequential execution flow makes it impossible to exploit the inherent concurrency of
workflow graphs. Nevertheless, some efforts to modify the Jupyter stack to overcome
this limitation have been proposed in the literature.

Cloud-based scientific platforms like KBase [137], [138] and GenePattern 2.0 [139]
have built their primary user interface on Jupyter. However, their main goals are to
offer an integrated Bioinformatics programming environment, provide an extensive
pipeline database, introduce user-friendly interfaces, and offload computation to their
own target infrastructure, specifically an HTCondor cluster. The resulting notebooks
are tightly coupled with the underlying software stack, preventing portability to the
broader Jupyter ecosystem.

Netflix’s nteract40 framework adopts a more self-contained approach. It allows
users to augment notebooks with input data and schedule them for batched execution.
Outputs are also saved in notebook format, facilitating inspection and debugging.
This approach’s primary limitation is its coarse granularity, as it only allows to map
an entire notebook to a single workflow step.

The Script-of-Scripts (SoS) project [140] moves the execution unit to the finer-
grained level of single cells and introduces multi-language notebooks, called SoS
Notebooks. Each cell of an SoS Notebook can declare a different host language,
with the SoS runtime automatically handling object conversions during inter-cells
communications. Dependencies between different steps can be specified directly
in the code cells through a template-based mechanism. Despite its clarity and
flexibility, this approach introduces a technology lock-in in notebooks, as their
execution requires an interpreter able to disentangle the mix of coordination and
application logic inside code cells.

The Notebooks into Workflows (NiW) project [141] adopts a different strategy.
Instead of directly using notebooks as workflow descriptions, it statically translates
a Jupyter Notebook into a WINGS workflow [142], which can be independently
executed, published, and reproduced. Even if the extraction of the workflow structure
is fully automatic, there are strict compatibility requirements for notebooks: any
newly generated data must be written into files, and all the code using the same file
must be placed in a single cell.

40https://nteract.io/

32

https://nteract.io/

2 – Background

Several attempts to extract the data stream through cell executions have appeared
in the literature. For instance, Dataflow Notebooks [143] modify the behaviour of
the IPython Out dictionary, indexing each cell execution with a unique persistent
identifier and allowing users to refresh all the dependent cells after a cell re-execution.
Nodebook41 automatically tracks dependencies across IPython cells through static
AST analysis and caches their outputs, enforcing a consistency based on the position
of the cells in the notebook. The nbsafety Jupyter kernel [144] combines dataflow
tracing with liveness and initialised variable analysis to detect staleness generated
by cell re-executions in Python Notebooks. The Vizier framework [145] implements
an entirely new computational notebook stack, in which each cell is executed on a
separated program context, and communications between cells are explicitly handled
by producing and consuming datasets, i.e. sets of named relational tables. All
these approaches aim to prevent the issues caused by out-of-order executions and
repeated executions of Notebook cells, which are among the principal causes of
reproducibility issues in the Jupyter ecosystem [146].

A different strategy to scale-up Jupyter Notebooks is to let users explicitly inject
parallelism into their business code. This approach is proposed by ipyparallel, the
official IPython parallel extension. However, several other task-based programming
libraries allow an interactive construction of the task graph from Jupyter Notebooks
(e.g. Techila, PyCOMPSS, Dask, Ray, and Parsl). The main disadvantage of this
strategy is that it forces a tight coupling between business and parallel logic. The
way such coupling is realised strongly depends on the chosen parallel library, making
it impossible to migrate from one parallel solution to another without touching the
business code.

2.5.3 Jupyter Notebooks on HPC

Given their widespread diffusion and their relatively high-level interface, Jupyter
Notebooks have already been investigated as a way to bridge the gap between
non-IT practitioners and HPC infrastructures.

Offloading standard Jupyter kernels from a server outside the data centre to the
air-gapped worker nodes is not an option, as communications between notebooks
and kernels require bidirectional connections. One of the most common approaches
is to install a Jupyter-based service (e.g. a JupyterHub instance or a custom
Jupyter Notebook spawner) directly on the login nodes of a data centre or on some
publicly exposed instances of a tightly-coupled cloud service [147]–[152]. Appropriate
authentication chains can then percolate the user identity from the web interface
down to the HPC worker nodes, ensuring secure access to the computing resources
running the Jupyter kernels. At the same time, a custom job scheduling interface
instantiates interactive Jupyter kernels on worker nodes.

41https://multithreaded.stitchfix.com/blog/2017/07/26/nodebook/

33

https://multithreaded.stitchfix.com/blog/2017/07/26/nodebook/

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

Even if the software architecture of such approaches is always similar to the
one sketched in Fig. 2.2, the implementation details differ from one solution to
the other, being tightly coupled with the underlying HPC stack. The lack of a
de-facto standard is undoubtedly one of the biggest obstacles to broad adoption.
Other significant drawbacks are the need to modify the authentication mechanism,
with all its security implications, and the setup and maintenance difficulties of such
platforms, which are non-trivial even for expert system administrators.

34

2 – Background

Login node

Browser

Browser

Browser

Notebook
spawner app

Notebook
Server

Notebook
Server

Notebook
Server

Worker node

Kernel

Worker node

Kernel

Worker node

Kernel

HPC control plane

Auth
service

Job scheduling
interface

Storage
system

HTTP

HTTP

HTTP

ZeroMQ

ZeroMQ

ZeroMQ

Figure 2.2: Sketch of the common architecture of a HPC Jupyter interface. Orange blocks usually need
to be developed or extended to integrate Jupyter in the existing software stack.

35

Chapter 3

Hybrid workflows

In general, a hybrid workflow can be defined as a workflow whose steps can span
multiple, heterogeneous, and independent computing infrastructures [39]. Each of
these aspects has significant implications.

Support for multiple infrastructures implies that each step must potentially
target a different deployment location1 in charge of executing it. That location must
have access to all the input dependencies, and it is likely to store all the output
dependencies on its local scope. Locations can be heterogeneous, exposing different
methods and protocols for authentication, communication, resource allocation and
job execution. Plus, they can be independent of each other, meaning that direct
communications and data transfers among them may not be allowed. A suitable
model for hybrid workflows must then be composite, enclosing a specification of the
workflow dependencies, a topology of the involved locations, and a mapping relation
between steps and locations. This thesis aims at giving a formal definition of hybrid
workflow models.

As discussed in Sec. 2.2, several products offer partial support for heterogeneous
or distributed workflows, although with limitations. For example, many WMSs
can execute workflows over heterogeneous architectures using connectors. However,
they cannot split different portions of the same workflow among multiple execution
environments, or they require the presence of unique storage space accessible from
all compute units. More advanced WMSs like Triana, Askalon and Pegasus allow
automated data transfers among different workers, but they require all compute
units to be managed by a single orchestration tool. More importantly, all these
details are not explicitly encoded in the workflow descriptions, making it difficult to
extract and compare the runtime execution strategies of different WMSs.

A formal way to describe a workflow model not only in terms of steps and
dependencies, but also in terms of runtime semantics, can serve as a low-level
intermediate representation to compare different WMSs or migrate a model from

1In this dissertation, the term location always refers to the execution site of a step, as in e.g. [153], [154].

37

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

one WMS to another. Plus, it can serve as a coordination interface for a new class
of topology-aware WMSs, where users can explicitly map steps onto (families of)
processing elements to couple each step with the best-suited execution environment.

As described in Sec. 2.1, a workflow can be represented as a bipartite graph
(see Def. 2.1.1), but the majority of WMSs on the market simplify this model
to a DAG. Even if this choice strongly reduces the expressive power, DAGs are
much easier to handle: start and end steps are always clearly identifiable, and
there can be no deadlocks (at least at the coordination level). For this reason, the
following discussion starts introducing hybrid acyclic workflows in Sec. 3.1, giving
the fundamental definitions of location topology and mapping relations. Sec. 3.2
gives formal operational semantics for such models, discussing how a WMS can
validate them through static soundness analysis and enact them by constructing a
proper execution plan. Sec. 3.3 concludes the chapter by covering some advanced
concepts.

3.1 Hybrid acyclic workflows

A hybrid acyclic workflow can be seen as the composition of two graphs: a bipartite
workflow DAG specifying dependencies between its steps and a directed graph
modelling the topology of (potentially heterogeneous) deployment locations. For
each step, a many-to-many mapping relationM states the set of locations in charge
of executing it. More formally:

Definition 3.1.1. A hybrid acyclic workflow is a tuple (W,Γ,M), where W =
(S, P,D) is a workflow DAG, Γ = (L,C) is a topology of deployment locations, and
M : S → L is a many-to-many mapping relation. �

The workflow DAG is equivalent to the model described in Def. 2.1.1, with
the additional constraint that dependency links cannot form cycles. Therefore,
the following discussion will concentrate on the other two graphs: the topology of
deployment locations and the mapping relation.

3.1.1 Topologies of deployment locations

Definition 3.1.2. A topology of deployment locations is a directed graph Γ =
(L,C), where the set of nodes L contains the locations and the set of links C ⊆ (L×L)
contains communication channels between them. �

In the simplest case, all locations li ∈ L are equal to each other, but the
model can be refined to include typed locations to represent homogeneous sets of
locations and deployment groups to model the co-allocation of multiple locations
during the execution of a single step. Sec. 3.3.1 will further dig into these details.
Also, communication channels can be typed to represent different communication
technologies (e.g. SSH, HTTPS, FTP).

38

3 – Hybrid workflows

ldriver

l1 l2

l3l4

(a) Star topology.

ldriver

l1 l2

l3l4

(b) Hybrid ring-star topology.

ldriver l1 l2

(c) Linear topology.

Figure 3.1: Examples of location topologies. Control locations are coloured in grey, while processing
locations are left blank.

Even if the majority of communication protocols are bidirectional, not always
both parties can initiate a connection. For instance, a private server behind a NAT
can connect to a public cloud instance, but the converse is not always true. In order
to reflect these considerations, the direction of channel (l1, l2) in a topology refers
to the capability of l1 to initiate connections with l2, even if the communication
protocol is always assumed to be bidirectional.

Each location can have two distinct roles. A control location, which belongs to
the WMS control plane, actively participates in management activities like data
transfers, scheduling, or fault-tolerance. A processing location can only execute or
delegate commands sent by control locations. A control location can also act as a
processing location, sending commands to itself or executing commands received
from other controllers. Let C (li, lj) be a communication path, i.e. a sequence of
channels c1, . . . , cm ∈ C connecting li to lj. With this execution model, it is clear
that a processing location lp can execute a command only if a path C (lc, lp) exists,
where lc is a control location. In order to be consistent with this statement, assume
each location li connected to itself with a channel (li, li) ∈ C. For the sake of
brevity, such channels will not be explicitly mentioned when describing topologies
henceforth.

When considering actual WMSs implementations, the most common topology
is a star, with a single control location ldriver connected to all the other locations
through unidirectional channels. Such architecture, represented in Fig. 3.1a, is
general enough to support a wide range of real scenarios: ldriver can be a process
running on a desktop machine, a public server on a cloud instance, or a login node
in a data centre. The location topology representation of a star architecture with n
processing locations is the following:

Γs =
(
{ldriver, l1, . . . , ln},

n⋃
i=1
{(ldriver, li)}

)
(3.1)

Data movements between different locations are always possible in a star topology,
but they require two copy operations: a first one from the source to the driver and
a second one from the driver to the destination.

39

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

There are other cases in which a topology-aware WMS can significantly optimise
data transfers. For example, consider the hybrid ring-star topology of Fig. 3.1b:

Γrs =
(
{ldriver, l1, . . . , ln},

n⋃
i=1

{
(ldriver, li),

(
li, l(i+1) mod n

)})
(3.2)

In this case, a data transfer between locations li and li+1 can pass through a single
channel, which directly connects them. If channels are homogeneous and there is
no contention on network resources, the cost of data transfers can be cut by half
compared to a pure star topology. In addition, relying on direct channels help to
reduce the contention on ldriver, further boosting the overall performance.

There are also situations in which a topology-aware WMS is necessary. Consider
the linear topology of Fig. 3.1c:

Γl = ({ldriver, l1, l2}, {(ldriver, l1), (l1, l2), (l2, l1)}) (3.3)

A WMS pretending to communicate directly with all the processing locations cannot
transfer data from l1 to l2, as the latter is not reachable from ldriver. This is the case
of low-level task-based libraries, such as Spark [57], Ray [63], or Parsl [64]. These
libraries rely on all-to-all topologies in which a central control plane is connected to
all the workers, and each worker can open connections with all the others. In this
setting, data transfers between processing locations can always happen in a single
step, but scenarios like the one in Fig. 3.1c require to instantiate a portion of the
control plane (e.g. the Spark master or a Ray local scheduler) directly on location
l1, in fact transforming it to a control location.

Conversely, in a topology-aware WMS a control location lc can rely on chained
delegations to communicate with every location li for which there exists a communi-
cation path C (lc, li), without requiring a direct channel between them. Particularly,
in the case of Fig. 3.1c ldriver can delegate to l1 the execution of a command on
l2. This scenario is not uncommon in real cases: l2 could be a private resource on
a hybrid cloud or could not trust ldriver, but only l1, in a federated environment.
An actual WMS can implement this feature in several ways, e.g. with tunneling
connections, nested remote command executions, or delegation certificates [155],
choosing the best technique for each use case.

Location topologies can also include multiple control locations. One of the most
common topologies in actual implementations of distributed WMSs is the distributed
star depicted in Fig. 3.2a, where each control location is connected to all the others.
Such topology can be used for either active-active configurations, where the workload
is shared among all control locations, or active-passive scenarios, where there is only
one active control location at a time, which can be replaced in case of failure. For
instance, multiple Spark masters can be configured in an active-passive setting with
the help of a Zookeeper service [156].

Another common scenario is the hierarchical topology shown in Fig. 3.2b, where
a central control location is connected to multiple peripheral locations, managing

40

3 – Hybrid workflows

l1 l2

l3

l4 l5 l6

(a) Distributed star topology with 3 control loca-
tions and 3 processing locations.

l1

l2 l3

l4 l5 l6 l7

(b) 2-level hierarchical topology with 3 control
locations and 4 processing locations.

Figure 3.2: Examples of location topologies with multiple control locations. Control locations are coloured
in grey, while processing locations are left blank.

disjoint subsets of processing locations to reduce scheduling and transfer overhead.
The Ray distributed library adopts this topology [63]. Hybrid workflow models are
general enough to describe all these architectures without forcing a topology-aware
WMS to stick with a single configuration for all occasions.

3.1.2 Mapping relations

In hybrid workflow models, the mapping relationM : S → L states which locations
are in charge of executing each workflow step. In the simplest case, steps map onto
single locations, but extending the mapping to more abstract scenarios is possible.
For instance, steps can map onto location types, charging the WMS scheduler to
choose the best location among the compatible ones (see Sec. 3.3.1).

The mapping relation forms a many-to-many relationship between steps and
locations, but the semantics of one-to-many links is different in the two directions.
Multiple locations related to a single step express a spatial constraint: all locations
must be active before scheduling the step, and the execution will span all of them.
Conversely, multiple steps related to a single location introduce a temporal constraint:
the same location must execute all the steps one after the other, or even concurrently
if it can handle multiple executions, and each step cannot start until its related
location is available.

Note that the concept of spatio-temporal composition model has been already
proposed in the literature to combine software components and workflow models
in a unique programming paradigm [157], supporting explicit parallelism through
skeletons [158], [159]. Among other advantages, these models can express the
co-allocation of multiple workflow steps, which cannot be expressed in traditional
workflow DAGs without violating the acyclic requirement. Hybrid workflows could
easily be extended with an additional step-to-step mapping relation to support this
feature, but for the sake of simplicity, this dissertation does not treat this more
advanced scenario.

41

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

ldriverl1 l2

s1

s2 s3

p3p2p1

Figure 3.3: Example of a hybrid workflow. Steps are represented as squares and ports as circles.
Dependency links between steps and ports are depicted as arrows with black-filled heads. Locations
are represented as squashed rectangles and communication channels as arrows with white-filled heads.
Control locations are coloured in grey, while processing locations are left blank. Finally, mapping relations
are expressed as dotted arrows.

As a drawback, traditional spatio-temporal approaches collapse spatial and
temporal planes into a single, component-based representation, making it difficult to
properly manage the life-cycle of components with both spatial and temporal ports,
especially in the presence of control structures in the coordination language. Instead,
hybrid workflows keep the two dimensions separated and offer precise semantics for
each life-cycle management operation, allowing a WMS implementation to infer an
optimised execution plan for each well-formed workflow model (see Sec. 3.2.1).

Figure 3.3 shows a toy example of hybrid workflow. A step s1 produces three
different outputs, which correspond to ports p1, p2 and p3. A second step s2 depends
on port p1, and a third step s3 depends on p2 and p3. None of them produces other
outputs. This DAG is accompanied by a simple star location topology with a single
control location ldriver and two processing locations l1 and l2. Step s1 is executed
locally by the driver, while s2 and s3 are offloaded to l1 and l2, respectively. Since
the driver is directly connected to both l1 and l2, all data transfers and remote
executions can be performed straightforwardly.

In symbolic notation, Fig. 3.3 can be written as follows:

W =
(
{s1, s2, s3}, {p1, p2, p3},

{
(s1, p1), (s1, p2), (s1, p3),
(p1, s2), (p2, s3), (p3, s3)

})
Γ = ({ldriver, l1, l2}, {(ldriver, l1), (ldriver, l2)})
M = {(s1, ldriver), (s2, l1), (s3, l2)}

(3.4)

3.2 Operational semantics
Sec. 3.1 introduced the syntax of hybrid workflow models for both symbolic and
graphical representations. The current section focuses instead on their operational
semantics, describing how a topology-aware WMS is supposed to enact such models
at runtime.

42

3 – Hybrid workflows

Consider the example in Fig. 3.3 again. Suppose that step s1 completed success-
fully, producing data tokens on its output ports p1, p2, and p3. In order to simplify
the discussion, all tokens produced by a step are supposed to carry the related data
directly. In addition, each step s is supposed to execute only once so that there is
a one-to-one mapping between ports and tokens. A step can run multiple times
in actual workflow executions, producing a list or even a stream of tokens into its
output ports. The following discussion can be adapted to this scenario by explicitly
creating a different version of a port p ∈ Out(s) for each execution of s to recover a
one-to-one mapping with tokens. Still, explicitly treating this scenario would only
add unnecessary complexity to the discussion.

Let P(li) ⊆ P be the set of ports whose data tokens reside on li ∈ L. Since step
s1 has been executed on ldriver, then Out(s1) ⊆ P(ldriver). Indeed, each location is
supposed to store its output data locally, or at least in a place that it can reach
directly. Consider now step s2. In a standard workflow DAG, s2 would be ready
to be executed, as its only input port p1 contains a token. Things get a bit more
complicated with hybrid models. Step s2 is related to location l1, but l1 must be
up and running prior to take part in data transfers and execute commands. Plus,
p1 data must reside on l1 before executing s2. In light of these considerations, it
seems reasonable to impose three preconditions for executing a hybrid workflow
step: all its input ports should contain values, its related location should be up and
running, and all its input data should reside on that location. The first condition is
implicit in the semantics of the standard workflow DAG, but a suitable operational
semantics for hybrid workflows must reflect the other two.

Henceforth, let 〈l,P(l), s〉 be the location configuration representing location l
in state s containing data related to ports P(l). Let a location have two possible
states, active (A) and inactive (I), and two related transitions, deploy and undeploy.
Moreover, let 〈l,P(l),−〉 refer to a location l in any allowed state. The deploy
semantics is relatively straightforward:

〈l,P(l),−〉 deploy−−−−→ 〈l,P(l), A〉 (3.5)
Inactive locations can neither execute steps nor take part in data transfers. Hence,
the deployment operation would be preliminary to all other activities involving
the location. It is reasonable to suppose that control locations can always deploy
and undeploy processing locations, independently of the topology. However, all the
control locations are always considered active, as a location cannot deploy itself. In
addition, it is worth noting from Eq. (3.5) that deploying an already active location
does not affect its configuration. Consequently, the deploy operation is reentrant.

The undeploy operation is quite delicate. There are cases in which location data
are not persistent, as with container-based technologies like Docker and Kubernetes
(see Sec. 2.4). This eventuality implies that when a location goes inactive, all its
data must be considered lost:

〈l,P(l),−〉 undeploy−−−−−→ 〈l, ∅, I〉 (3.6)
43

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

A positive side of this approach is that a location failure can be treated as a spurious
undeploy operation without introducing additional semantics. As for deployments,
the undeploy operation is reentrant and does not affect already inactive locations.

Data transfers are the most complicated operations in hybrid workflows, as they
involve an analysis of the location topology. Even if processing locations can be
instructed to move data autonomously in a realistic WMS implementation, only
the control plane can initiate data transfers. Given that, when performing transfers
between locations li and lj , a control location must initiate connections with both li
and lj .

Within location topologies, such requirement assumes a precise meaning in terms
of communication channels. Let N (li) ⊆ L be the set of neighbours of location
li ∈ L, s.t.

N (li) = {lj : (li, lj) ∈ C} (3.7)
As discussed in Sec. 3.1.1, lj ∈ N (li) means that li can initiate a bidirectional
connection with lj . Such connection can be used to perform three different actions:
send data to lj , receive data from lj , or initiate a connection to a location lk ∈ N (lj)
and delegate the data transfer operation. Each involved location must be active to
participate in these actions. However, since deploy operations are always considered
feasible, they can be safely excluded from the following discussion. The feasibility
of a transfer operation can then be defined only in terms of communication paths.

Theorem 3.2.1. A transfer operation between locations li and lj is feasible iff there
exist a control location lc and two communication paths C (lc, li) and C (lc, lj).

Proof. With no loss of generality, consider a topology with a single control location
lc. If there are multiple control locations, the proof needs to be verified for at least
one of them. Since only control locations can initiate data transfers, lc must be able
to initiate a connection with both li, to receive the data, and lj , to send data. Since
both operations require the same considerations, focus only on the former.

As discussed before, a location can only interact with its neighbours. If li ∈ N (lc),
then lc can directly receive data from li. Otherwise, it can only open a connection
with each lk ∈ N (lc) and implement a chained delegation according to a breadth-first
search. If there is a communication path C (lc, li), then such search will at a certain
point find a location ll s.t. li ∈ N (ll), so that ll can receive data from li and
propagate them through the multi-hop connection spanning C (lc, ll). Otherwise,
the receive operation cannot be performed. The same reasoning applies to the send
operation, involving the existence of a path C (lc, lj).

An alternative strategy would be to send data directly from li to lj. If li = lc,
then such operation is feasible, but it implies the existence of paths C (li, li), which
always exists, and C (li, lj). The same goes when lj = lc. Instead, if both li and
lj are processing locations, this strategy needs a path C (lc, li) to initiate the send
operation and a path C (li, lj) to send data to lj, implying the existence of a path
C (lc, lj).

44

3 – Hybrid workflows

Given a port p ∈ P and a location lj ∈ L, transferring p data to lj is possible iff
there is at least one feasible data transfer operation from a location li s.t. p ∈ P(li)
to location lj . The following corollary formally states this intuition:

Corollary 3.2.2. Given a port p, a transfer of its related data to location lj is
feasible iff there exist a control location lc, a location li ∈ L s.t. p ∈ P(li) and two
communication paths C (lc, li) and C (lc, lj).

Proof. If there exists no location li s.t. p ∈ P(li), it is evident that no transfer
operation is allowed. Conversely, given li ∈ L s.t. p ∈ P(li), the feasibility of the
transfer operation is established by Theorem 3.2.1.

Therefore, finding the optimal strategy for a data transfer is equivalent to finding
the shortest path on a directed graph. A WMS can also rely on more detailed
location topologies for better optimisation: channels can be weighted according
to their performances, and such weight can be dynamically adjusted to take into
account concurrent transfers that temporarily reduce the channel bandwidth.

When dealing with feasible operations, the transfer semantics for data related to
port p ∈ P(ls) are as follows:

{〈l,P(l), A〉 : l ∈ T (ls, ld)} transfer(p)−−−−−−→{〈l,P(l), A〉 : l ∈ (T (ls, ld) \ ld)}∪
{〈ld,P(ld) ∪ {p}, A〉}

(3.8)

where ls, ld ∈ L are the source and destination locations and T (ls, ld) is the set of
locations involved in the transfer operation. Contrary to what the reader could
expect, the transfer(p) semantics is not simply defined in terms of ld because this
alternative hides many dangerous subtleties behind a more intuitive notation. The
main flaw is a lack of unambiguity: multiple locations can store data from port p,
and there can be multiple transfer strategies for a single pair of locations (ls, ld).
By requiring the explicit set of involved locations T (ls, ld), the transfer semantics
become unequivocal. Plus, note that transfer is always feasible when p ∈ P(ld), as
ld ∈ N (ld), but Eq. (3.8) does not affect the configuration of ld. Consequently, also
transfer operations are reentrant.

Eventually, the execute operational semantics for a mappingM(s):

{〈l,P(l) ∪ In(s), A〉 : l ∈M(s)} execute(s)−−−−−−→ {〈l,P(l) ∪Out(s), A〉 : l ∈M(s)} (3.9)

This last rule explicitly states that all the output data produced by s reside on
each related location, as assumed at the beginning of this section. Plus, it implies
that each port p ∈ In(s) contains a value, as p can be included in P(l) only due
to either a transfer operation (which in turn requires p to be non-empty as per
Corollary 3.2.2) or a previous execute operation.

Note that Eq. (3.9) remains deliberately general on the operational semantics of
s itself. For example, it is not explicitly stated if data tokens in the set In(s) are

45

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

still present on a location l after the execution of s or if they are “consumed” during
the operation. This choice is in line with the generality of the proposed approach,
which aims at augmenting generic workflow models with topology-awareness without
imposing strict requirements on such models. However, as a consequence, execute
semantics cannot be considered reentrant.

Regarding the feasibility of execute operations, it is clear that a control location
must send a command to all the involved locations to offload computation. The
following theorem states precisely that:

Theorem 3.2.3. An execute operation on a set of locations l =M(s) is feasible iff
there exists a control location lc and a path C (lc, li) for each location li ∈ l.

Proof. When a step s ∈ S is mapped onto a single location li ∈ L, the proof is
very similar to the one of Theorem 3.2.1 for transfer feasibility and is then omitted.
Consider now a step s mapped onto a set of locations l. In this case, there are two
possible strategies for offloading computation. A first option is to directly send a
command to each member of l, which requires a path C (lc, li) for each li ∈ l. An
alternative is to send the command only to a single location li ∈ l, which executes
it on the whole set of processing locations (as it commonly happens with SPMD
libraries like MPI). For this operation to be feasible, a control location lc must
initiate a connection with location li, requiring a path C (lc, li). Then, li must
initiate a connection with all the other locations l \ li, requiring the presence of a
path C (li, lj) for each lj ∈ (l \ li). This condition again implies the existence of a
path C (lc, li) for each li ∈ l.

Now that the operational semantics have been defined, they can be used to derive
an execution plan for a hybrid workflow, represented as a workflow DAG itself.
Sec. 3.2.1 explores this topic in detail, comparing hybrid models and pure DAGs in
terms of suitability.

3.2.1 Execution plan

Let us define as static a workflow DAG whose execution flow is entirely determined
at compile time. For instance, the workflow DAG of Fig. 3.3 is static, as it contains
no conditional or iterative branch whose behaviour depends on runtime values. If a
hybrid model augments a static workflow DAG, it is possible to statically compile
it into an execution plan, which takes the shape of a static workflow DAG of the
same kind. This is an essential property of hybrid models, as such plans can be
fully understood also by a topology-unaware WMS.

Definition 3.2.4. Given a hybrid model (W,Γ,M) based on a static workflow
DAG W = (S, P,D), its execution plan can be statically inferred and expressed as
another static workflow DAG W ′ = (S′, P ′, D′), where S′ contains the operational
steps to execute the hybrid model, P ′ contains location configurations, and D′ =
(S′ × P ′) ∪ (P ′ × S′) contains the dependency links. �

46

3 – Hybrid workflows

<latexit sha1_base64="yREZhMXZZfX4hLkUiz581fDHyLY=">AAAB/HicbVDLSsNAFJ34rPUV7dLNYBHqpiRS1GXBjcsK9gFtKJPpTTt0MgkzEzGE+ituXCji1g9x5984abPQ1gMDh3PuZc49fsyZ0o7zba2tb2xubZd2yrt7+weH9tFxR0WJpNCmEY9kzycKOBPQ1kxz6MUSSOhz6PrTm9zvPoBULBL3Oo3BC8lYsIBRoo00tCuDkOiJDDN4BJpomNXU+dCuOnVnDrxK3IJUUYHW0P4ajCKahCA05USpvuvE2suI1IxymJUHiYKY0CkZQ99QQUJQXjYPP8NnRhnhIJLmCY3n6u+NjIRKpaFvJvOoatnLxf+8fqKDay9jIjZnCbr4KEg41hHOm8AjJoFqnhpCqGQmK6YTIgnVpq+yKcFdPnmVdC7q7mW9cdeoNhtFHSV0gk5RDbnoCjXRLWqhNqIoRc/oFb1ZT9aL9W59LEbXrGKngv7A+vwBBPSU+A==</latexit>

execute(s)

<latexit sha1_base64="QAKxA1YNu76bYTYrW1cuxFJ3ksU=">AAACLHicbVDLSgMxFM3Ud32NunQTLEIFKTNS1GXFjTsrWBU6pWTSO21oJjMkd4Qy9IPc+CuCuFDErd9h+lho64HA4Zx7yL0nTKUw6HkfTmFhcWl5ZXWtuL6xubXt7uzemSTTHBo8kYl+CJkBKRQ0UKCEh1QDi0MJ92H/cuTfP4I2IlG3OEihFbOuEpHgDK3Udi8DCREGkqmuBCqPaRAz7HEm8/qwLI9owLN0ognMrzMcls3RMb0ItOj2MNDjWNsteRVvDDpP/CkpkSnqbfc16CQ8i0Ehl8yYpu+l2MqZRsElDItBZiBlvM+60LRUsRhMKx8fO6SHVunQKNH2KaRj9XciZ7Exgzi0k6O1zaw3Ev/zmhlG561cqDRDUHzyUZRJigkdNUc7QgNHObCEcS3srpT3mGYcbb9FW4I/e/I8uTup+KeV6k21VCtP61gl++SAlIlPzkiNXJE6aRBOnsgLeScfzrPz5nw6X5PRgjPN7JE/cL5/AIeJp7g=</latexit>hl, P(l) [Out(s), Ai

<latexit sha1_base64="e0bLHiDmRohxRK1aeWxR18XboPA=">AAACK3icbVDJSgNBFOxxjXGLevTSGIQEQpgRUY8uF71FMAtkQujpvEkae3qG7jdCGPI/XvwVD3pwwav/YWc5uBU0FFWv6PcqSKQw6Lpvztz8wuLScm4lv7q2vrFZ2NpumDjVHOo8lrFuBcyAFArqKFBCK9HAokBCM7i9GPvNO9BGxOoGhwl0ItZXIhScoZW6hXNfQoi+ZKovgcoK9SOGA85kVhuVZJn6PE2mmsDsSo1KplyhZ74W/QH6epLqFopu1Z2A/iXejBTJDLVu4cnvxTyNQCGXzJi25ybYyZhGwSWM8n5qIGH8lvWhbaliEZhONrl1RPet0qNhrO1TSCfq90TGImOGUWAnx1ub395Y/M9rpxiedDKhkhRB8elHYSopxnRcHO0JDRzl0BLGtbC7Uj5gmnG09eZtCd7vk/+SxkHVO6oeXh8WT0uzOnJkl+yREvHIMTkll6RG6oSTe/JIXsir8+A8O+/Ox3R0zplldsgPOJ9fg2inLQ==</latexit>hl, P(l) [In(s), Ai

(a) execute(s)

<latexit sha1_base64="K68CCgBySXUdYwjCFTE9X5wzALA=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5JIUZcFNy4r2Ae0oUwmk3boPMLMRIihX+LGhSJu/RR3/o2TNgttPTBwOOde7pkTJoxq43nfTmVjc2t7p7pb29s/OKy7R8c9LVOFSRdLJtUgRJowKkjXUMPIIFEE8ZCRfji7Lfz+I1GaSvFgsoQEHE0EjSlGxkpjtz7iyEwVzyOSMJnNx27Da3oLwHXil6QBSnTG7tcokjjlRBjMkNZD30tMkCNlKGZkXhulmiQIz9CEDC0ViBMd5Ivgc3hulQjGUtknDFyovzdyxLXOeGgni5h61SvE/7xhauKbIKciSQ0ReHkoThk0EhYtwIgqgg3LLEFYUZsV4ilSCBvbVc2W4K9+eZ30Lpv+VbN132q0W2UdVXAKzsAF8ME1aIM70AFdgEEKnsEreHOenBfn3flYjlaccucE/IHz+QOQ7JOm</latexit>

deploy

<latexit sha1_base64="qhcoo1vIie6PyRclH9Rf6QLPBXQ=">AAACF3icbVBNSwMxFMz6WevXqkcvwSJUqGVXinosePFYwarQLSWbvm1Ds9kleSuUpf/Ci3/FiwdFvOrNf2Nae9DWgcAwM4+8N2EqhUHP+3IWFpeWV1YLa8X1jc2tbXdn98YkmebQ5IlM9F3IDEihoIkCJdylGlgcSrgNBxdj//YetBGJusZhCu2Y9ZSIBGdopY5bDSREGEimehKorNAgZtjnTOaNUVkeVehxoEWvj4GeJDpuyat6E9B54k9JiUzR6LifQTfhWQwKuWTGtHwvxXbONAouYVQMMgMp4wPWg5alisVg2vnkrhE9tEqXRom2TyGdqL8nchYbM4xDmxxvbWa9sfif18owOm/nQqUZguI/H0WZpJjQcUm0KzRwlENLGNfC7kp5n2nG0VZZtCX4syfPk5uTqn9arV3VSvXytI4C2ScHpEx8ckbq5JI0SJNw8kCeyAt5dR6dZ+fNef+JLjjTmT3yB87HN/DFnxc=</latexit>hl, P(l),�i

<latexit sha1_base64="3w6I4lZoJxyfop3RUHAH5A+/F4E=">AAACF3icbVDLSsNAFJ34rPVVdelmsAgVpCRS1GXFjcsKtgpNKJPpTTs4mYSZG6GE/oUbf8WNC0Xc6s6/cdpm4evAwOGcc5l7T5hKYdB1P525+YXFpeXSSnl1bX1js7K13TFJpjm0eSITfRMyA1IoaKNACTepBhaHEq7D2/OJf30H2ohEXeEohSBmAyUiwRlaqVep+xIi9CVTAwlUHlI/ZjjkTOatcU0eHNIzX4vBEH09TfQqVbfuTkH/Eq8gVVKg1at8+P2EZzEo5JIZ0/XcFIOcaRRcwrjsZwZSxm/ZALqWKhaDCfLpXWO6b5U+jRJtn0I6Vb9P5Cw2ZhSHNjnZ2vz2JuJ/XjfD6DTIhUozBMVnH0WZpJjQSUm0LzRwlCNLGNfC7kr5kGnG0VZZtiV4v0/+SzpHde+43rhsVJu1oo4S2SV7pEY8ckKa5IK0SJtwck8eyTN5cR6cJ+fVeZtF55xiZof8gPP+BRAonys=</latexit>hl, P(l), Ai

(b) deploy

<latexit sha1_base64="QzbMHhQzYWKG3+6Q6H6pa/ACXF8=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFclUSKuiy4cVnBPqANZTKZtEPnEWYmSoj9FDcuFHHrl7jzb5y0WWjrgYHDOfdyz5wwYVQbz/t21tY3Nre2KzvV3b39g0O3dtTVMlWYdLBkUvVDpAmjgnQMNYz0E0UQDxnphdObwu89EKWpFPcmS0jA0VjQmGJkrDRya0OOzETxPBURSZjMZiO37jW8OeAq8UtSByXaI/drGEmcciIMZkjrge8lJsiRMhQzMqsOU00ShKdoTAaWCsSJDvJ59Bk8s0oEY6nsEwbO1d8bOeJaZzy0k0VQvewV4n/eIDXxdZBTkaSGCLw4FKcMGgmLHmBEFcGGZZYgrKjNCvEEKYSNbatqS/CXv7xKuhcN/7LRvGvWW82yjgo4AafgHPjgCrTALWiDDsDgETyDV/DmPDkvzrvzsRhdc8qdY/AHzucPQMCUnQ==</latexit>

undeploy

<latexit sha1_base64="qhcoo1vIie6PyRclH9Rf6QLPBXQ=">AAACF3icbVBNSwMxFMz6WevXqkcvwSJUqGVXinosePFYwarQLSWbvm1Ds9kleSuUpf/Ci3/FiwdFvOrNf2Nae9DWgcAwM4+8N2EqhUHP+3IWFpeWV1YLa8X1jc2tbXdn98YkmebQ5IlM9F3IDEihoIkCJdylGlgcSrgNBxdj//YetBGJusZhCu2Y9ZSIBGdopY5bDSREGEimehKorNAgZtjnTOaNUVkeVehxoEWvj4GeJDpuyat6E9B54k9JiUzR6LifQTfhWQwKuWTGtHwvxXbONAouYVQMMgMp4wPWg5alisVg2vnkrhE9tEqXRom2TyGdqL8nchYbM4xDmxxvbWa9sfif18owOm/nQqUZguI/H0WZpJjQcUm0KzRwlENLGNfC7kp5n2nG0VZZtCX4syfPk5uTqn9arV3VSvXytI4C2ScHpEx8ckbq5JI0SJNw8kCeyAt5dR6dZ+fNef+JLjjTmT3yB87HN/DFnxc=</latexit>hl, P(l),�i

<latexit sha1_base64="NUXoEfLlebhCenKOGNzvadKJtO4=">AAACEnicbVDLSgNBEJz1GeMr6tHLYBAihLArQT0GvOgtgnlANoTZSW8yZHZ2mekVQsg3ePFXvHhQxKsnb/6Nk8dBEwsaiqpuuruCRAqDrvvtrKyurW9sZray2zu7e/u5g8O6iVPNocZjGetmwAxIoaCGAiU0Ew0sCiQ0gsH1xG88gDYiVvc4TKAdsZ4SoeAMrdTJnfkSQvQlUz0JVBapD1GCQwNYpLe+Fr0++npqdnJ5t+ROQZeJNyd5Mke1k/vyuzFPI1DIJTOm5bkJtkdMo+ASxlk/NZAwPmA9aFmqWASmPZq+NKanVunSMNa2FNKp+ntixCJjhlFgOyOGfbPoTcT/vFaK4VV7JFSSIig+WxSmkmJMJ/nQrtDAUQ4tYVwLeyvlfaYZR5ti1obgLb68TOrnJe+iVL4r5yuFeRwZckxOSIF45JJUyA2pkhrh5JE8k1fy5jw5L8678zFrXXHmM0fkD5zPH/4unZ0=</latexit>

hl, ;, Ii

(c) undeploy

<latexit sha1_base64="JP0xZIi0qF7oXe/OADoU0RFmUeE=">AAAB/XicbVDLSgMxFL3js9bX+Ni5CRahbsqMFHVZcOOygn1AW0omzbShSWZIMkIdir/ixoUibv0Pd/6NmXYW2nogcDjnXu7JCWLOtPG8b2dldW19Y7OwVdze2d3bdw8OmzpKFKENEvFItQOsKWeSNgwznLZjRbEIOG0F45vMbz1QpVkk780kpj2Bh5KFjGBjpb573BXYjJRIjcJSh1RNy/F53y15FW8GtEz8nJQgR73vfnUHEUkElYZwrHXH92LTS7EyjHA6LXYTTWNMxnhIO5ZKLKjupbP0U3RmlQEKI2WfNGim/t5IsdB6IgI7mWXVi14m/ud1EhNe91Im48RQSeaHwoQjE6GsCjRgihLDJ5ZgopjNisgIK0yMLaxoS/AXv7xMmhcV/7JSvauWatW8jgKcwCmUwYcrqMEt1KEBBB7hGV7hzXlyXpx352M+uuLkO0fwB87nD9qqlXE=</latexit>

transfer(p)

<latexit sha1_base64="Bo+hmlZ6QhBEF86Fkh6qAIbn6l8=">AAACH3icbVDLSsNAFJ34rPVVdelmsAgVSklE1GXFjcsKVoWmlMn0ph06mYSZG6GE/Ikbf8WNC0XEXf/GadqFrwMDh3POZe49QSKFQdedOAuLS8srq6W18vrG5tZ2ZWf31sSp5tDmsYz1fcAMSKGgjQIl3CcaWBRIuAtGl1P/7gG0EbG6wXEC3YgNlAgFZ2ilXuXUlxCiL5kaSKCyl5m8Tv2I4ZAzmbXyWiEd1emFr8VgiL4ukr1K1W24Behf4s1JlczR6lU+/X7M0wgUcsmM6Xhugt2MaRRcQl72UwMJ4yM2gI6likVgullxX04PrdKnYaztU0gL9ftExiJjxlFgk9PNzW9vKv7ndVIMz7uZUEmKoPjsozCVFGM6LYv2hQaOcmwJ41rYXSkfMs042krLtgTv98l/ye1xwzttnFyfVJu1eR0lsk8OSI145Iw0yRVpkTbh5JE8k1fy5jw5L8678zGLLjjzmT3yA87kC0xnow8=</latexit>hls, P(ls), Ai <latexit sha1_base64="oG0F7EveUKI6L6rkCvT5OkQlh18=">AAACH3icbVDLSsNAFJ34rPVVdelmsAgVSklE1GXFjcsKVoWmlMn0ph06mYSZG6GE/Ikbf8WNC0XEXf/GadqFrwMDh3POZe49QSKFQdedOAuLS8srq6W18vrG5tZ2ZWf31sSp5tDmsYz1fcAMSKGgjQIl3CcaWBRIuAtGl1P/7gG0EbG6wXEC3YgNlAgFZ2ilXuXUlxCiL5kaSKCyl/XzOvUjhkPOZNbKa4V0VKcXvhaDIfq6SPYqVbfhFqB/iTcnVTJHq1f59PsxTyNQyCUzpuO5CXYzplFwCXnZTw0kjI/YADqWKhaB6WbFfTk9tEqfhrG2TyEt1O8TGYuMGUeBTU43N7+9qfif10kxPO9mQiUpguKzj8JUUozptCzaFxo4yrEljGthd6V8yDTjaCst2xK83yf/JbfHDe+0cXJ9Um3W5nWUyD45IDXikTPSJFekRdqEk0fyTF7Jm/PkvDjvzscsuuDMZ/bIDziTLxu2ovE=</latexit>hld, P(ld), Ai

<latexit sha1_base64="Bo+hmlZ6QhBEF86Fkh6qAIbn6l8=">AAACH3icbVDLSsNAFJ34rPVVdelmsAgVSklE1GXFjcsKVoWmlMn0ph06mYSZG6GE/Ikbf8WNC0XEXf/GadqFrwMDh3POZe49QSKFQdedOAuLS8srq6W18vrG5tZ2ZWf31sSp5tDmsYz1fcAMSKGgjQIl3CcaWBRIuAtGl1P/7gG0EbG6wXEC3YgNlAgFZ2ilXuXUlxCiL5kaSKCyl5m8Tv2I4ZAzmbXyWiEd1emFr8VgiL4ukr1K1W24Behf4s1JlczR6lU+/X7M0wgUcsmM6Xhugt2MaRRcQl72UwMJ4yM2gI6likVgullxX04PrdKnYaztU0gL9ftExiJjxlFgk9PNzW9vKv7ndVIMz7uZUEmKoPjsozCVFGM6LYv2hQaOcmwJ41rYXSkfMs042krLtgTv98l/ye1xwzttnFyfVJu1eR0lsk8OSI145Iw0yRVpkTbh5JE8k1fy5jw5L8678zGLLjjzmT3yA87kC0xnow8=</latexit>hls, P(ls), Ai <latexit sha1_base64="9gEj3kM9mj3JLoSc8XwrToxOvag=">AAACKnicbVDLSgMxFM34tr6qLt0Ei1BByowUddnixmUFawtNKZn0ThvMZIbkjlCGfo8bf8WNC0Xc+iGmYxe+DgQO59zLzTlhqqRF33/zFhaXlldW19ZLG5tb2zvl3b1bm2RGQFskKjHdkFtQUkMbJSropgZ4HCrohHeXM79zD8bKRN/gJIV+zEdaRlJwdNKg3GQKImSK65ECqgb5cHpCWcxxLLjKW9NqIR1TJrKUsjxlzm4yI0djZKZYGpQrfs0vQP+SYE4qZI7WoPzMhonIYtAoFLe2F/gp9nNuUAoF0xLLLKRc3PER9BzVPAbbz4uoU3rklCGNEuOeRlqo3zdyHls7iUM3OQthf3sz8T+vl2F00c+lTjMELb4ORZmimNBZb3QoDQhUE0e4MNL9lYoxN1yga7fkSgh+R/5Lbk9rwVmtfl2vNKrzOtbIATkkVRKQc9IgV6RF2kSQB/JEXsir9+g9e2/e+9fogjff2Sc/4H18Ar7Up2M=</latexit>hld, P(ld) [{p}, Ai

(d) transfer(p)

Figure 3.4: Execution plan representations of hybrid workflows’ operational semantics. Each operation
becomes a step in a workflow DAG. The related steps are filled in orange to distinguish them from the
steps of the original workflow, which are left blank.

An execution plan W ′ = (S′, P ′, D′) can contain only four kinds of operations in
S′, corresponding to the four operational semantics described above. The shape of
these steps in terms of their input and output ports is reported in Fig. 3.4. Note
that each step receives one or more location configurations in input and returns
different configurations for the same locations in output. Since DAGs do not allow
feedback loops, this is the only way to represent stateful elements like locations.
Plus, it is worth noting from Fig. 3.4d that the transfer block explicitly propagates
all the locations in T (ls, ld) as outputs, even if the transfer semantics only affect
the configuration of ld. Such forwarding aims at making the locations available for
further transfer or undeploy operations if needed.

Fig. 3.5 shows an example for the hybrid model of Fig. 3.3. Note that in the
example the execute(s) operation is assumed to preserve data tokens related to its
input ports In(s) after execution, but the same plan is valid also in the contrary
case. There can be multiple correct execution plans for a single hybrid workflow
model: a possible strategy to build an execution plan is reported in Algorithm 1.
Since the original workflow DAG is required to be static, it is always possible to:

• remove all the dead paths before building the execution plan, ensuring that
each s ∈ S will be executed at runtime (line 1);

• sort the steps according to a topological order that takes into account their
dependencies (line 2).

The execution plan W ′ = (S′, P ′, D′) is then initialised with empty steps and links
sets, and the location configuration with the proper initial state is added to P ′
for each location l ∈ L (lines 3–8). Then, each step s ∈ S mapped onto a set of
locations l = M(s) generates its sub-plan (lines 9–22). First, it is necessary to
transfer input data for each port p ∈ In(s) to each location li ∈ l (lines 12–19).
Note that, since steps are sorted according to valid execution order, if both the
original workflow DAG and the topology of deployment locations are sound, there
should always be a valid ls at line 13. Even if formal requirements for soundness
will be stated in Sec. 3.2.2, the reader can trust the author that all the examples
presented in this section are correct. Before executing the transfer (line 18), all

47

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

Algorithm 1: A possible strategy for generating an execution plan.

Data:
Hybrid model (W, Γ,M) where W = (S, P, D) is a static DAG.

Result:
Execution plan W ′ = (S′, P ′, D′), again a static DAG.

Procedure:
1 Remove dead paths from W s.t. each step is actually executed.
2 Sort s ∈ S in a topological order according to the dependencies in D.
3 Initialise
4 S′ ← ∅
5 P ′ ← {〈l, ∅, A if l is control else −〉 : l ∈ L}
6 D′ ← ∅
7 W ′ ← (S′, P ′, D′)
8 end
9 For s ∈ S do

10 l←M(s)
11 For li ∈ l do
12 For p ∈ In(s) do
13 For lj ∈ T (ls, li) do
14 if lj is not control then
15 W ′ ← add(W ′, lj

deploy−−−−→ lj)
16 end
17 end

18 W ′ ← add(W ′, T (ls, li)
transfer(p)
−−−−−−−→ T (ls, li))

19 end
20 end

21 W ′ ← add(W ′, l
execute(s)
−−−−−−→ l)

22 end
23 For 〈li,P(li), A〉 ∈ Out(W ′) do
24 if 〈li,P ′(li), I〉 ∈ In(W ′) then
25 W ′ ← add(W ′, li

undeploy−−−−−−→ li)
26 end
27 end
28 W ′ ← optimise(W ′)
29 return W ′

processing locations in T (ls, li) must be activated through a deploy operation (lines
13–17), while control locations are active by default. Finally, line 21 executes step
s, propagating its outputs Out(s) to each location li ∈ l.

Let In(W) and Out(W) be the inputs and outputs of a workflow model W =
(S, P,D), i.e.

In(W) = {p ∈ P : p /∈ Out(s) ∀s ∈ S}
Out(W) = {p ∈ P : p /∈ In(s) ∀s ∈ S}

(3.10)

When all the steps have been processed, all locations li ∈ Out(W ′) that were
initially inactive are connected to an undeploy operation for deactivation (lines
23–27). Indeed, the idea is that a sound execution plan should restore the initial
state for each involved location. This simple linking strategy for undeploy steps
works well as far as every step s ∈ S′ is actually executed at runtime. In the
presence of dynamic workflows, proper placement of undeploy steps gets far more

48

3 – Hybrid workflows

deploy deploy

undeploy

undeploy

s2 s3

s1transfer(p1)

execute(s2)

〈l1, {p1}, A〉

〈l1, {p1}, A〉

〈l1, ∅, I〉

〈l1, ∅, I〉

〈l1, ∅, A〉

execute(s1)

〈ldriver, {p1, p2, p3}, A〉

〈ldriver, {p1, p2, p3}, A〉

〈ldriver, {p1, p2, p3}, A〉

〈ldriver, {p1, p2, p3}, A〉

transfer(p2)

transfer(p3)

execute(s3)

〈ldriver, ∅, A〉

〈l2, ∅, I〉

〈l2, ∅, I〉

〈l2, ∅, A〉

〈l2, {p2}, A〉

〈l2, {p2, p3}, A〉

〈l2, {p2, p3}, A〉

Figure 3.5: Execution plan for the hybrid workflow example of Fig. 3.3. Time flows from top to bottom.
Sub-plans for each step are framed with dashed lines.

complicated. Sec. 3.3.2 contains a brief discussion on this topic. Finally, line 28
optimises the execution plan by removing redundant deploy, undeploy, and transfer
operations. Note that execute operations can never be removed, as they are part of
the original workflow.

As a concrete example, consider the execution plan in Fig. 3.5. Step s1 is mapped
onto the control location ldriver and takes no input. Therefore, the only action in its
sub-plan is an execute(s1), which produces values of ports p1, p2 and p3 on location
ldriver. Step s2 is instead mapped onto the processing location l1, which needs to be
explicitly deployed. Then, its input port p1 must be transferred to location l1. Since
ldriver stores the only copy of p1 and can initiate a connection with l1, a transfer(p1)
operation involving T (ldriver, l1) = {ldriver, l1} is the only feasible option. After that,

49

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

s1

s2 s3

p3p2p1

l1 l2ldriver

(a) Updated hybrid workflow model.

<latexit sha1_base64="TWFY/XkzzXnN3fYTvESDFGzLyNQ=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5JIUZcFNy4r2Ae0oUwmk3boPMLMRIihX+LGhSJu/RR3/o2TNgttPTBwOOde7pkTJoxq43nfTmVjc2t7p7pb29s/OKy7R8c9LVOFSRdLJtUgRJowKkjXUMPIIFEE8ZCRfji7Lfz+I1GaSvFgsoQEHE0EjSlGxkpjtz7iyEwVzyOSMJnNx27Da3oLwHXil6QBSnTG7tcokjjlRBjMkNZD30tMkCNlKGZkXhulmiQIz9CEDC0ViBMd5Ivgc3hulQjGUtknDFyovzdyxLXOeGgni5h61SvE/7xhauKbIKciSQ0ReHkoThk0EhYtwIgqgg3LLEFYUZsV4ilSCBvbVc2W4K9+eZ30Lpv+VbN132q0m2UdVXAKzsAF8ME1aIM70AFdgEEKnsEreHOenBfn3flYjlaccucE/IHz+QOPHpOg</latexit>

deploy

<latexit sha1_base64="ByP4dtOlp5WSv0JRH1Ml4aCk4Gg=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6rLgxmUF+4A2lMlk0g6dR5iZKCH2U9y4UMStX+LOv3HSZqGtBwYO59zLPXPChFFtPO/bqaytb2xuVbdrO7t7+wdu/bCrZaow6WDJpOqHSBNGBekYahjpJ4ogHjLSC6c3hd97IEpTKe5NlpCAo7GgMcXIWGnk1occmYnieSoikjCZzUZuw2t6c8BV4pekAUq0R+7XMJI45UQYzJDWA99LTJAjZShmZFYbppokCE/RmAwsFYgTHeTz6DN4apUIxlLZJwycq783csS1znhoJ4ugetkrxP+8QWri6yCnIkkNEXhxKE4ZNBIWPcCIKoINyyxBWFGbFeIJUggb21bNluAvf3mVdM+b/mXz4u6i0WqWdVTBMTgBZ8AHV6AFbkEbdAAGj+AZvII358l5cd6dj8VoxSl3jsAfOJ8/PvKUlw==</latexit>

undeploy

<latexit sha1_base64="MRoeIwoZGdWOZaT3ICD/fp4WolY=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48VTFtoQ9lsJ+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fikrZNMMfRZIhLVDalGwSX6hhuB3VQhjUOBnXByN/c7T6g0T+SjmaYYxHQkecQZNVby9SD3ZoNqza27C5B14hWkBgVag+pXf5iwLEZpmKBa9zw3NUFOleFM4KzSzzSmlE3oCHuWShqjDvLFsTNyYZUhiRJlSxqyUH9P5DTWehqHtjOmZqxXvbn4n9fLTHQb5FymmUHJlouiTBCTkPnnZMgVMiOmllCmuL2VsDFVlBmbT8WG4K2+vE7aV3Xvut54aNSa9SKOMpzBOVyCBzfQhHtogQ8MODzDK7w50nlx3p2PZWvJKWZO4Q+czx/FiI6c</latexit>s1<latexit sha1_base64="TWFY/XkzzXnN3fYTvESDFGzLyNQ=">AAAB+HicbVDLSsNAFJ3UV62PRl26GSyCq5JIUZcFNy4r2Ae0oUwmk3boPMLMRIihX+LGhSJu/RR3/o2TNgttPTBwOOde7pkTJoxq43nfTmVjc2t7p7pb29s/OKy7R8c9LVOFSRdLJtUgRJowKkjXUMPIIFEE8ZCRfji7Lfz+I1GaSvFgsoQEHE0EjSlGxkpjtz7iyEwVzyOSMJnNx27Da3oLwHXil6QBSnTG7tcokjjlRBjMkNZD30tMkCNlKGZkXhulmiQIz9CEDC0ViBMd5Ivgc3hulQjGUtknDFyovzdyxLXOeGgni5h61SvE/7xhauKbIKciSQ0ReHkoThk0EhYtwIgqgg3LLEFYUZsV4ilSCBvbVc2W4K9+eZ30Lpv+VbN132q0m2UdVXAKzsAF8ME1aIM70AFdgEEKnsEreHOenBfn3flYjlaccucE/IHz+QOPHpOg</latexit>

deploy
<latexit sha1_base64="627XeCJwgHnrZERX/Ff3qTYp1Qs=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4rmFZoQ9lsJ+3SzSbsboQS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dkobm1vbO+Xdyt7+weFR9fiko5NMMfRZIhL1GFKNgkv0DTcCH1OFNA4FdsPJ7dzvPqHSPJEPZppiENOR5BFn1FjJ14O8MRtUa27dXYCsE68gNSjQHlS/+sOEZTFKwwTVuue5qQlyqgxnAmeVfqYxpWxCR9izVNIYdZAvjp2RC6sMSZQoW9KQhfp7Iqex1tM4tJ0xNWO96s3F/7xeZqKbIOcyzQxKtlwUZYKYhMw/J0OukBkxtYQyxe2thI2poszYfCo2BG/15XXSadS9q3rzvllr1Ys4ynAG53AJHlxDC+6gDT4w4PAMr/DmSOfFeXc+lq0lp5g5hT9wPn8Axw2OnQ==</latexit>s2

<latexit sha1_base64="hQWJEjHZEKf00wu4Whx8dKh/49c=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0m0qMeCF48VTFtoQ9lsN+3SzSbsToQS+hu8eFDEqz/Im//GbZuDVh8MPN6bYWZemEph0HW/nNLa+sbmVnm7srO7t39QPTxqmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ7dzvPHJtRKIecJryIKYjJSLBKFrJN4P8cjao1ty6uwD5S7yC1KBAa1D97A8TlsVcIZPUmJ7nphjkVKNgks8q/czwlLIJHfGepYrG3AT54tgZObPKkESJtqWQLNSfEzmNjZnGoe2MKY7NqjcX//N6GUY3QS5UmiFXbLkoyiTBhMw/J0OhOUM5tYQyLeythI2ppgxtPhUbgrf68l/Svqh7V/XGfaPWrBdxlOEETuEcPLiGJtxBC3xgIOAJXuDVUc6z8+a8L1tLTjFzDL/gfHwDyJKOng==</latexit>

s3

<latexit sha1_base64="ByP4dtOlp5WSv0JRH1Ml4aCk4Gg=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQi6rLgxmUF+4A2lMlk0g6dR5iZKCH2U9y4UMStX+LOv3HSZqGtBwYO59zLPXPChFFtPO/bqaytb2xuVbdrO7t7+wdu/bCrZaow6WDJpOqHSBNGBekYahjpJ4ogHjLSC6c3hd97IEpTKe5NlpCAo7GgMcXIWGnk1occmYnieSoikjCZzUZuw2t6c8BV4pekAUq0R+7XMJI45UQYzJDWA99LTJAjZShmZFYbppokCE/RmAwsFYgTHeTz6DN4apUIxlLZJwycq783csS1znhoJ4ugetkrxP+8QWri6yCnIkkNEXhxKE4ZNBIWPcCIKoINyyxBWFGbFeIJUggb21bNluAvf3mVdM+b/mXz4u6i0WqWdVTBMTgBZ8AHV6AFbkEbdAAGj+AZvII358l5cd6dj8VoxSl3jsAfOJ8/PvKUlw==</latexit>

undeploy

<latexit sha1_base64="ZwQtvvpuMipi+PCyLoujpYjG7iI=">AAACAXicbVDLSsNAFJ34rPUVdSO4GSxC3YREirosuHFZwT6gDWEynbRDZyZhZiKUEDf+ihsXirj1L9z5N07aLLT1wIXDOfdy7z1hwqjSrvttrayurW9sVraq2zu7e/v2wWFHxanEpI1jFsteiBRhVJC2ppqRXiIJ4iEj3XByU/jdByIVjcW9nibE52gkaEQx0kYK7OMBR3oseaYlEioiMq8nQebl54Fdcx13BrhMvJLUQIlWYH8NhjFOOREaM6RU33MT7WdIaooZyauDVJEE4Qkakb6hAnGi/Gz2QQ7PjDKEUSxNCQ1n6u+JDHGlpjw0ncW9atErxP+8fqqjaz+jIkk1EXi+KEoZ1DEs4oBDKgnWbGoIwpKaWyEeI4mwNqFVTQje4svLpHPheJdO465RazplHBVwAk5BHXjgCjTBLWiBNsDgETyDV/BmPVkv1rv1MW9dscqZI/AH1ucP4w2XGw==</latexit>

transfer(p1)

<latexit sha1_base64="oGKmfUSbJ+wCs10BeGm2ttqusog=">AAACJXicbZA7SwNBEMf34ivGV9TSZjEIFhLuoqiFhWJjGcE8IBfC3mYuWbK3d+zOCeHIl7Hxq9hYGESw8qu4eRRqHFjmx39mmJ1/kEhh0HU/ndzS8srqWn69sLG5tb1T3N2rmzjVHGo8lrFuBsyAFApqKFBCM9HAokBCIxjcTuqNR9BGxOoBhwm0I9ZTIhScoZU6xStfQoi+ZKongcpO5o1OqJ8lM7CpMkunI98CvfG16PXR19P+TrHklt1p0EXw5lAi86h2imO/G/M0AoVcMmNanptgO2MaBZcwKvipgYTxAetBy6JiEZh2Nr1yRI+s0qVhrO1TSKfqz4mMRcYMo8B2Rgz75m9tIv5Xa6UYXrYzoZIUQfHZojCVFGM6sYx2hQaOcmiBcS3sXynvM804WmML1gTv78mLUK+UvfPy2f1Z6fp4bkeeHJBDckw8ckGuyR2pkhrh5Im8kDcydp6dV+fd+Zi15pz5zD75Fc7XNx+gpFc=</latexit>hl1, {p1, p2, p3}, Ai

<latexit sha1_base64="oGKmfUSbJ+wCs10BeGm2ttqusog=">AAACJXicbZA7SwNBEMf34ivGV9TSZjEIFhLuoqiFhWJjGcE8IBfC3mYuWbK3d+zOCeHIl7Hxq9hYGESw8qu4eRRqHFjmx39mmJ1/kEhh0HU/ndzS8srqWn69sLG5tb1T3N2rmzjVHGo8lrFuBsyAFApqKFBCM9HAokBCIxjcTuqNR9BGxOoBhwm0I9ZTIhScoZU6xStfQoi+ZKongcpO5o1OqJ8lM7CpMkunI98CvfG16PXR19P+TrHklt1p0EXw5lAi86h2imO/G/M0AoVcMmNanptgO2MaBZcwKvipgYTxAetBy6JiEZh2Nr1yRI+s0qVhrO1TSKfqz4mMRcYMo8B2Rgz75m9tIv5Xa6UYXrYzoZIUQfHZojCVFGM6sYx2hQaOcmiBcS3sXynvM804WmML1gTv78mLUK+UvfPy2f1Z6fp4bkeeHJBDckw8ckGuyR2pkhrh5Im8kDcydp6dV+fd+Zi15pz5zD75Fc7XNx+gpFc=</latexit>hl1, {p1, p2, p3}, Ai

<latexit sha1_base64="oGKmfUSbJ+wCs10BeGm2ttqusog=">AAACJXicbZA7SwNBEMf34ivGV9TSZjEIFhLuoqiFhWJjGcE8IBfC3mYuWbK3d+zOCeHIl7Hxq9hYGESw8qu4eRRqHFjmx39mmJ1/kEhh0HU/ndzS8srqWn69sLG5tb1T3N2rmzjVHGo8lrFuBsyAFApqKFBCM9HAokBCIxjcTuqNR9BGxOoBhwm0I9ZTIhScoZU6xStfQoi+ZKongcpO5o1OqJ8lM7CpMkunI98CvfG16PXR19P+TrHklt1p0EXw5lAi86h2imO/G/M0AoVcMmNanptgO2MaBZcwKvipgYTxAetBy6JiEZh2Nr1yRI+s0qVhrO1TSKfqz4mMRcYMo8B2Rgz75m9tIv5Xa6UYXrYzoZIUQfHZojCVFGM6sYx2hQaOcmiBcS3sXynvM804WmML1gTv78mLUK+UvfPy2f1Z6fp4bkeeHJBDckw8ckGuyR2pkhrh5Im8kDcydp6dV+fd+Zi15pz5zD75Fc7XNx+gpFc=</latexit>hl1, {p1, p2, p3}, Ai

<latexit sha1_base64="jw8LQodSaHxv9IP2RklKtir8R5E=">AAACAHicbVDLSsNAFJ3UV62vqAsXboJFqJuSlKIuC25cVrAPaEOYTG/aoZNJmJmIJWTjr7hxoYhbP8Odf+OkzUJbDwwczrmXuef4MaNS2fa3UVpb39jcKm9Xdnb39g/Mw6OujBJBoEMiFom+jyUwyqGjqGLQjwXg0GfQ86c3ud97ACFpxO/VLAY3xGNOA0qw0pJnngxDrCYiTOERSKIgq0kvbWQXnlm16/Yc1ipxClJFBdqe+TUcRSQJgSvCsJQDx46Vm2KhKGGQVYaJhBiTKR7DQFOOQ5BuOg+QWedaGVlBJPTjypqrvzdSHEo5C309mZ8rl71c/M8bJCq4dlPKYx2Nk8VHQcIsFVl5G9aICiCKzTTBRFB9q0UmWGCidGcVXYKzHHmVdBt157LevGtWW/WijjI6RWeohhx0hVroFrVRBxGUoWf0it6MJ+PFeDc+FqMlo9g5Rn9gfP4ADRmWow==</latexit>

execute(s2)

<latexit sha1_base64="oGKmfUSbJ+wCs10BeGm2ttqusog=">AAACJXicbZA7SwNBEMf34ivGV9TSZjEIFhLuoqiFhWJjGcE8IBfC3mYuWbK3d+zOCeHIl7Hxq9hYGESw8qu4eRRqHFjmx39mmJ1/kEhh0HU/ndzS8srqWn69sLG5tb1T3N2rmzjVHGo8lrFuBsyAFApqKFBCM9HAokBCIxjcTuqNR9BGxOoBhwm0I9ZTIhScoZU6xStfQoi+ZKongcpO5o1OqJ8lM7CpMkunI98CvfG16PXR19P+TrHklt1p0EXw5lAi86h2imO/G/M0AoVcMmNanptgO2MaBZcwKvipgYTxAetBy6JiEZh2Nr1yRI+s0qVhrO1TSKfqz4mMRcYMo8B2Rgz75m9tIv5Xa6UYXrYzoZIUQfHZojCVFGM6sYx2hQaOcmiBcS3sXynvM804WmML1gTv78mLUK+UvfPy2f1Z6fp4bkeeHJBDckw8ckGuyR2pkhrh5Im8kDcydp6dV+fd+Zi15pz5zD75Fc7XNx+gpFc=</latexit>hl1, {p1, p2, p3}, Ai

<latexit sha1_base64="zH/nxCEer+nEe0V58Ohk12phZw8=">AAACFnicbVDLSsNAFJ34tr6qLt0MFqGLWhIp6lJwo7sKVoWmlMn0Jh2cTMLMjVBCv8KNv+LGhSJuxZ1/4zTNwteBgcM553LnniCVwqDrfjozs3PzC4tLy5WV1bX1jerm1pVJMs2hwxOZ6JuAGZBCQQcFSrhJNbA4kHAd3J5O/Os70EYk6hJHKfRiFikRCs7QSv3qvi8hRF8yFUmgsp974wb1IU5xZAAb9NzXIhqir4tAv1pzm24B+pd4JamREu1+9cMfJDyLQSGXzJiu56bYy5lGwSWMK35mIGX8lkXQtVSxGEwvL84a0z2rDGiYaPsU0kL9PpGz2JhRHNhkzHBofnsT8T+vm2F43MuFSjMExaeLwkxSTOikIzoQGjjKkSWMa2H/SvmQacbRNlmxJXi/T/5Lrg6a3mGzddGqndTLOpbIDtkldeKRI3JCzkibdAgn9+SRPJMX58F5cl6dt2l0xilntskPOO9fJwafTQ==</latexit>

hl1, ;, Ii

<latexit sha1_base64="zH/nxCEer+nEe0V58Ohk12phZw8=">AAACFnicbVDLSsNAFJ34tr6qLt0MFqGLWhIp6lJwo7sKVoWmlMn0Jh2cTMLMjVBCv8KNv+LGhSJuxZ1/4zTNwteBgcM553LnniCVwqDrfjozs3PzC4tLy5WV1bX1jerm1pVJMs2hwxOZ6JuAGZBCQQcFSrhJNbA4kHAd3J5O/Os70EYk6hJHKfRiFikRCs7QSv3qvi8hRF8yFUmgsp974wb1IU5xZAAb9NzXIhqir4tAv1pzm24B+pd4JamREu1+9cMfJDyLQSGXzJiu56bYy5lGwSWMK35mIGX8lkXQtVSxGEwvL84a0z2rDGiYaPsU0kL9PpGz2JhRHNhkzHBofnsT8T+vm2F43MuFSjMExaeLwkxSTOikIzoQGjjKkSWMa2H/SvmQacbRNlmxJXi/T/5Lrg6a3mGzddGqndTLOpbIDtkldeKRI3JCzkibdAgn9+SRPJMX58F5cl6dt2l0xilntskPOO9fJwafTQ==</latexit>

hl1, ;, Ii

<latexit sha1_base64="4i+PfjQqv2dfHACnfwTONVr3+p4=">AAACFnicbVC7SgNBFJ31GeMramkzGIQUGnZDUMuAjXYRzAOyIcxO7iaDs7PLzF0hLPkKG3/FxkIRW7Hzb5w8Co0eGDiccy537gkSKQy67peztLyyurae28hvbm3v7Bb29psmTjWHBo9lrNsBMyCFggYKlNBONLAokNAK7i4nfusetBGxusVRAt2IDZQIBWdopV7h1JcQoi+ZGkigspdVxifUhyjBkQE8ode+FoMh+noa6BWKbtmdgv4l3pwUyRz1XuHT78c8jUAhl8yYjucm2M2YRsEljPN+aiBh/I4NoGOpYhGYbjY9a0yPrdKnYaztU0in6s+JjEXGjKLAJiOGQ7PoTcT/vE6K4UU3EypJERSfLQpTSTGmk45oX2jgKEeWMK6F/SvlQ6YZR9tk3pbgLZ78lzQrZe+sXL2pFmuleR05ckiOSIl45JzUyBWpkwbh5IE8kRfy6jw6z86b8z6LLjnzmQPyC87HNyimn04=</latexit>

hl2, ;, Ii

<latexit sha1_base64="4i+PfjQqv2dfHACnfwTONVr3+p4=">AAACFnicbVC7SgNBFJ31GeMramkzGIQUGnZDUMuAjXYRzAOyIcxO7iaDs7PLzF0hLPkKG3/FxkIRW7Hzb5w8Co0eGDiccy537gkSKQy67peztLyyurae28hvbm3v7Bb29psmTjWHBo9lrNsBMyCFggYKlNBONLAokNAK7i4nfusetBGxusVRAt2IDZQIBWdopV7h1JcQoi+ZGkigspdVxifUhyjBkQE8ode+FoMh+noa6BWKbtmdgv4l3pwUyRz1XuHT78c8jUAhl8yYjucm2M2YRsEljPN+aiBh/I4NoGOpYhGYbjY9a0yPrdKnYaztU0in6s+JjEXGjKLAJiOGQ7PoTcT/vE6K4UU3EypJERSfLQpTSTGmk45oX2jgKEeWMK6F/SvlQ6YZR9tk3pbgLZ78lzQrZe+sXL2pFmuleR05ckiOSIl45JzUyBWpkwbh5IE8kRfy6jw6z86b8z6LLjnzmQPyC87HNyimn04=</latexit>

hl2, ;, Ii

<latexit sha1_base64="c5w6Yhu7XNHOagV3Dwac5ASwARc=">AAACAHicbVDLSsNAFJ34rPUVdeHCTbAIdRMSKeqy4MZlBfuANoTJ9KYdOpmEmYlYQjb+ihsXirj1M9z5N07aLLT1wMDhnHuZe06QMCqV43wbK6tr6xubla3q9s7u3r55cNiRcSoItEnMYtELsARGObQVVQx6iQAcBQy6weSm8LsPICSN+b2aJuBFeMRpSAlWWvLN40GE1VhEGTwCSRXkdelnbn7umzXHdmawlolbkhoq0fLNr8EwJmkEXBGGpey7TqK8DAtFCYO8OkglJJhM8Aj6mnIcgfSyWYDcOtPK0ApjoR9X1kz9vZHhSMppFOjJ4ly56BXif14/VeG1l1Ge6GiczD8KU2ap2CrasIZUAFFsqgkmgupbLTLGAhOlO6vqEtzFyMukc2G7l3bjrlFr2mUdFXSCTlEduegKNdEtaqE2IihHz+gVvRlPxovxbnzMR1eMcucI/YHx+QMLk5ai</latexit>

execute(s1)

<latexit sha1_base64="FUfgG4ffIZXev4NETujJdX0VfN0=">AAACFnicbVDLSsNAFJ34tr6qLt0MFqGLWhIp6lJx47KCVaEpZTK9SQcnkzBzI5TQr3Djr7hxoYhbceffOE2z8HVg4HDOudy5J0ilMOi6n87M7Nz8wuLScmVldW19o7q5dWWSTHPo8EQm+iZgBqRQ0EGBEm5SDSwOJFwHt2cT//oOtBGJusRRCr2YRUqEgjO0Ur+670sI0ZdMRRKo7OfeuEF9iFMcGcAGPfW1iIbo6yLQr9bcpluA/iVeSWqkRLtf/fAHCc9iUMglM6bruSn2cqZRcAnjip8ZSBm/ZRF0LVUsBtPLi7PGdM8qAxom2j6FtFC/T+QsNmYUBzYZMxya395E/M/rZhge93Kh0gxB8emiMJMUEzrpiA6EBo5yZAnjWti/Uj5kmnG0TVZsCd7vk/+Sq4Omd9hsXbRqJ/WyjiWyQ3ZJnXjkiJyQc9ImHcLJPXkkz+TFeXCenFfnbRqdccqZbfIDzvsXGn6fRQ==</latexit>

hl1, ;, Ai

(b) Updated execution plan DAG.

Figure 3.6: The same example of Fig. 3.3, but with step s1 mapped onto location l1 instead of ldriver.
Comparison of how such update reflects on the hybrid workflow model and the execution plan DAG.
The sub-plan relative to step s3 remains unchanged, so it is not reported.

step s2 can run on l1, but since it does not produce outputs, it does not affect the
state of l1. Finally, l1 can be undeployed as no other step needs it. The sub-plan
for step s3 is similar.

Note that all transfers involving the same location are forced to be sequential.
For example, all transfer operations involving ldriver depend on each other in Fig. 3.5.
Multiple transfers between the same locations can easily be merged by a generalised
transfer semantics transfer(p), where p = {p1, . . . , pn} is a set of ports s.t. pi ∈ P(ls)
for each pi ∈ p. Plus, if a location can handle multiple simultaneous connections, a
proper WMS implementation can further increase the degree of parallelism.

It is also worth noting how the execution plan fails to explicitly represent the
dependencies between steps and ports initially encoded in the workflow DAG, even
if they somehow resurface at the sub-plans interconnection level. This flaw can make
it hard to directly manage execution plans, as slight and intuitive modifications in
the hybrid workflow model can translate into non-trivial reorganisations of the plan.

Consider, for example, the hybrid model in Fig. 3.6a. It is equal to the one
50

3 – Hybrid workflows

in Fig. 3.3, but with step s1 mapped onto l1 instead of ldriver. This update is
straightforward on the hybrid model, but it requires significant modifications to
the execution plan, as inferred from Fig. 3.6b. First, it is necessary to modify
the sub-plan of s1 to deploy l1 before launching the execute operation, but this is
intuitive as the configuration of s1 has been changed on the hybrid model. Then, the
sub-plans of s2 and s3 can be attached by replacing ldriver with l1 in their transfer
operations. Nevertheless, since s2 is executed on the same location as s1, the plan
can be dramatically simplified by removing unnecessary deployment and transfer
operations.

Comparing the suitability of the two syntaxes, i.e. the modelling effort needed
to describe the same workflow [160], it is clear how hybrid models are more user-
friendly than pure execution plans. Still, even if suitability can be a good reason in
itself to adopt a new workflow model [161], pure DAGs have the clear advantages
to be well-known to domain experts, well-studied in literature, and compatible
with whatever WMS on the market. Also, a WMS can provide users with a set of
predefined deploy, undeploy, and transfer blocks for the most common technologies
and scenarios. As an example, the Ystia suite2 adopts this approach to orchestrate
workflows on cloud-HPC infrastructures. The possibility to automatically translate
a static hybrid workflow to an (optimised) execution plan combines the best of two
worlds.

All the models presented in this section were supposed to be sound. However, it
is still unclear how a user (or a WMS) can know if a hybrid model is sound. The
straightforward but not so satisfying answer is: when at least one correct execution
plan exists to enact it. Sec. 3.2.2 formally defines when a hybrid model can be
considered sound and discusses how such property can be statically inferred.

3.2.2 Soundness

Automatic soundness analysis is a fundamental concept in workflow modelling, as a
paradigm made to express large and complex applications cannot rely on runtime
trial and error as the only debugging tool. Given that, the concept of soundness has
been extensively treated in literature for most workflows abstractions, from Petri
Nets and their extensions [162], [163] to dataflow models [164]. This section gives a
formal definition of soundness for hybrid workflow models and their execution plans.

As discussed before, a hybrid workflow aims at augmenting a workflow DAG
with topology awareness. Given that, the soundness of the original DAG cannot
but be a requirement for the soundness of its hybrid counterpart. However, the
way to prove it is strictly related to its semantics and is out of this dissertation’s
scope. In any case, when building an execution plan from a workflow DAG all the
data dependencies between workflow steps must be preserved. Let D (s1, s2) be a

2https://ystia.github.io/

51

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

dependency path, i.e. a sequence of dependencies d1, . . . , dn ∈ D connecting s1 to
sn. In a sound plan, the dependency paths connecting the execute operations in D′
should reflect those connecting the related steps of the original workflow DAG in D.

In a sound binding graph, each step s ∈ S should be mapped onto at least
one location l ∈ L. Otherwise, it is not clear which locations are in charge of its
execution. A WMS can provide a default binding, e.g. to the control location ldriver,
when a user does not explicitly specify it for a step. Conversely, unbound locations
are perfectly admissible: they can still serve as bridges for multi-hop data transfers.

Consider now location topologies. For sure, models requiring unfeasible transfers
cannot be considered sound, as no proper execution plan can be generated for them.
Plus, all execution operations should be feasible, too. According to Theorem 3.2.1,
the latter requirement is satisfied iff there is a control location lc ∈ L able to initiate
a communication with each location li ∈ M(s) for any step s. The feasibility of
transfer operations is more complicated, as it also involves data tokens, but the
exact set of locations storing data from a port p at a given time depends on each
specific execution plan. Still, it is not a realistic option to require an exploration of
the execution plans space to determine the soundness of a model. The following two
statements ensure that, for static DAGs and typical WMS implementations, the
feasibility condition for execute operations is also sufficient to ensure the feasibility
of all transfer operations.

Theorem 3.2.5. Let a hybrid workflow (W,Γ,M) augment a static DAG W =
(S, P,D) and have a single control location lc ∈ L. If there exists a path C (lc, li) for
each location li s.t. li ∈ M(s) for any step s ∈ S, then there exists an execution
plan W ′ = (S′, P ′, D′) in which all transfer operations are feasible.

Proof. Consider the execution plan generation strategy of Algorithm 1. In order to
prove the theorem, it is sufficient to show that this strategy always generates an
execution plan in which all transfers are feasible. Consider a port pi ∈ (Out(si) ∩
In(sj)), and let li ∈ M(si) and lj ∈ M(sj). First of all, line 12 requires the
existence of at least one location ls s.t. pi ∈ P(ls). Since steps are topologically
sorted according to their dependencies in D, step sj must be processed after si so
that pi ∈ P(li). Let then ls = li. Since li ∈M(si), then, by hypothesis, there exists
a path C (lc, ls), and since also lj ∈M(sj) there must be a path C (lc, lj), as there is
only one control location lc ∈ L. By Corollary 3.2.2, this is sufficient to prove the
feasibility of the transfer operation.

Corollary 3.2.6. Let a hybrid workflow (W,Γ,M) augment a static DAG W =
(S, P,D) and have a set of control locations lc ⊆ L s.t. there exist a path C (lc, l′c)
for each lc, l

′
c ∈ lc. If there exists a path C (lc, lk) between any lc ∈ lc and each

location lk s.t. lk ∈ M(s) for any step s ∈ S, then there exists an execution plan
W ′ = (S′, P ′, D′) in which all transfer operations are feasible.

52

3 – Hybrid workflows

Proof. Since each control location can initiate connections with all the others, the
statement can be trivially proven by combining Corollary 3.2.2 with the fact that,
for each lc, l′c ∈ lc, there exists a path C (lc, lk) iff there exists another path C (l′c, lk)
for any lk ∈ L.

Even if limited to static DAGs, these statements strongly suggest the possibility
that sufficient conditions for the existence of a feasible plan can be inferred directly
from the hybrid workflow model. Guided by this assumption, which for sure needs
to be tested on more general scenarios, the following statement introduces a precise
definition for the soundness of a topology of deployment locations, which only relies
on communication paths.

Definition 3.2.7. Given a hybrid workflow (W,Γ,M), its topology of deployment
locations Γ = (L,C) is sound if, for each port pi ∈ (Out(si) ∩ In(sj)), it contains
at least a control location lc ∈ L s.t. there exist two communication paths C (lc, li)
and C (lc, lj) with li ∈M(si) and lj ∈M(sj). �

Note that the soundness requirement in Def. 3.2.7 is stricter than the hypotheses
of Theorem 3.2.5 and Corollary 3.2.6, as in the former case the control location lc
must be the same location for both (si, li) and (sj , lj). Such requirement is general
enough to cover the (probably purely theoretical) situation in which multiple control
locations cannot communicate with each other. The following statements take into
account all the previous considerations to define soundness for binding graphs and
hybrid workflow models.

Definition 3.2.8. Given a hybrid workflow (W,Γ,M), its mapping relationM :
S → L is sound ifM(s) /= ∅ for every step s ∈ S. �

Definition 3.2.9. Given a hybrid workflow (W,Γ,M), it is sound if the original
workflow model W = (S, P,D) is sound, its topology of deployment locations
Γ = (L,C) is sound, and its mapping relationM : S → L is sound. �

One or more execution plans can be generated to enact a sound hybrid workflow
model at runtime, but only a subset of them is sound. As discussed above, a
sound execution plan W ′ = (S′, P ′, D′) must execute all the steps s ∈ S, and the
dependency paths connecting the related execute operations in D′ must not violate
the dependency paths between the steps themselves in D. Another fundamental
aspect is that all the operations in S′ should be feasible. Otherwise, the plan cannot
be enacted. Plus, a plan that deploys initially inactive processing locations without
undeploying them at the end should also be considered unsound, as it can lead
to undesirable situations. For instance, consider a workflow requesting over half a
thousand VMs to a cloud provider without releasing them after completion. The
formal definition of soundness reported below captures all these considerations.

Definition 3.2.10. Given a sound hybrid model (W,Γ,M), its execution plan
W ′ = (S′, P ′, D′) is sound if:

53

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

1. 〈l,P(l), s〉 ∈ In(W ′) implies that 〈l,P ′(l), s〉 ∈ Out(W ′);

2. each operation s′ ∈ S′ is feasible;

3. for each pair of steps si, sj ∈ S, the existence of a dependency path D (si, sj)
in D implies the existence of D (execute(si), execute(sj)) in D′.

�

Even if limited to static workflows, the following statement establishes a funda-
mental property: there always exists a sound execution plan for a sound hybrid
workflow model.

Theorem 3.2.11. Given a sound hybrid model (W,Γ,M) based on a static workflow
DAG W = (S, P,D), there always exists a sound execution plan W ′ = (S′, P ′, D′)
for it.

Proof. Consider the execution plan generation strategy of Algorithm 1. In order
to prove the theorem, it is sufficient to show that this strategy always generates a
sound execution plan.

Requirement 1 can be proven by induction. As P ′ is initially populated with
a configuration for each location and no operation can generate new locations,
In(W ′) contains a configuration 〈li,P(li), s〉 for each li ∈ L. If there is no operation
s′ ∈ S′ s.t. li ∈ In(s′), then 〈li,P(li), s〉 ∈ Out(W ′), and Requirement 1 is trivially
satisfied. Otherwise, it is necessary to distinguish between two cases: s = A and
s = I. In the former case, the only operation that can change the state of li is
the undeploy operation, but Algorithm 1 never binds li to an undeploy operation
if 〈li,P(li), A〉 ∈ In(W ′). Conversely, 〈li,P(li), I〉 can only be attached to either a
deploy or an undeploy operation, as transfers and executions require active locations.
Since in Algorithm 1 an undeploy operation is always the last operation involving
a location, either li is directly connected to an undeploy, or it is connected to a
deploy, a (potentially empty) sequence of transfers and executions, and finally an
undeploy. In any case, the undeploy operation returns 〈li,P ′(li), I〉, and no further
operation modify its state, so 〈li,P ′(li), I〉 ∈ Out(W ′).

The proof of Requirement 2 is very similar to the one of Theorem 3.2.5, and it is
therefore omitted. Requirement 3 states that dependency paths between execute
operations in D′ must mimic the dependency paths between the related steps
in D. As Algorithm 1 explicitly sorts the steps in a topological order according
to their dependencies in D, a step sj can never be processed before step si if
there exists a dependency path D (si, sj). Consider a pair of steps si, sj ∈ S and
suppose that exists a dependency path D (si, sj) involving only one port pi s.t.
Out(si)∩ In(sj) = {pi}. LetM(si) contain only location li so that execute(si) adds
pi data to P(li). Before this operation, there was no location 〈li,P(li), A〉 ∈ P ′

s.t. pi ∈ P(li). In addition, since the DAG is static, pi data token cannot be
generated by multiple alternative steps. Consequently, every operation involving pi

54

3 – Hybrid workflows

must depend, either directly or indirectly, on the execution of si. Let nowM(sj)
contain only location lj , s.t. the execution of sj only requires pi to be stored on lj .
The execute(sj) operation must then depend on execute(si), directly if li = lj or
indirectly through a transfer if li /= lj . In any case, there always exists a dependency
path D (execute(si), execute(sj)) in D′, satisfying Requirement 3.

The same reasoning can trivially be extended to the case when D (si, sj) contains
one or more intermediate steps, each with one or more involved ports, as it is
sufficient to repeat the proof for every pair of steps sk, sl s.t. Out(sk) ∩ In(sl) /= ∅.
The case when a single step s is bound to multiple locations is also trivial. Indeed,
even if the same data tokens are stored on multiple locations after the execution of
s, this does not affect in any way the temporal dependencies between subsequent
steps executions.

3.3 Advanced topics

The previous sections formally introduced hybrid workflow models for static acyclic
workflows with flat topologies of deployment locations. Being static, these models
represent a perfect ground for unambiguous statements without the need to impose
constraints or limitations on the underlying semantics. Conversely, the current
section deals with more complex but more realistic models with a more relaxed
approach.

The goal here is not to extend the formalism to cover all the features of hybrid
workflows, which would be highly demanding and useless at the same time. Instead,
the current section gives the reader an outlook of possible extensions of the baseline
introduced so far, together with a brief discussion on their advantages and com-
plexities. In particular, Sec. 3.3.1 introduces hierarchical location topologies, while
Sec. 3.3.2 deals with dynamic workflow graphs.

3.3.1 Advanced topologies of deployment locations

In all hybrid models discussed so far, the mapping relation directly links steps with
the locations in charge of executing them. An execution plan cannot prescind from
such detailed information, but some cases could greatly benefit from more abstraction.
Consider, for example, a hybrid model with two equal locations l1, l2 ∈ L and three
steps s1, s2, s3 ∈ S independent of each other. Since the two locations are equal,
they could execute any of the steps, but such a detailed step-location mapping
requires to statically assign two steps to the same location. There are cases in which
a much better strategy would be to assign the three steps to any of the locations
l1 and l2 and let a scheduler automatically decide the single mappings, either at
runtime according to a FIFO policy or at compile time applying some pre-configured
decision rules.

55

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

Location types serve precisely this purpose. In a typed location topology, each
location comes with a type (or even multiple types if necessary), locations of the
same type are considered interchangeable, and the mapping of a step onto a location
type assumes the meaning of “execute the step on any location of the proper type”.
This kind of mapping must necessarily be resolved to a basic step-location mapping
before executing the step so that all the concepts introduced in the previous sections
are still valid. This resolution mechanism can safely be implemented either at
compile time or directly at runtime, but static soundness analysis becomes much
more cumbersome in the latter case.

Notice that the concept of type automatically brings to mind more powerful
techniques, such as inheritance and composition. Here the golden rule is: location
topologies can become as complex as needed, but the more complexity is preserved
at runtime, the more difficult it becomes to validate them for soundness statically.

Another critical aspect concerns deployment and undeployment operations.
Sec. 3.2 introduced semantics in which the deploy and undeploy granularity is
the single location, but in actual implementations, there are cases in which the unit
of deployment is a group of locations. Consider, for example, Kubernetes Pods,
which can be composed of multiple and heterogeneous containers that are forced to
co-exist for their entire life-cycle.

In order to represent such settings, multiple locations can be gathered in de-
ployment groups, which represent the units of deployment for a location topology.
This concept needs extended operational semantics, which are reported below for a
deployment group l = {l1, . . . , ln}.{

〈li,P(li),−〉 : li ∈ l
} deploy−−−−→

{
〈li,P(li), A〉 : li ∈ l

}
(3.11){

〈li,P(li),−〉 : li ∈ l
} undeploy−−−−−→

{
〈li, ∅, I〉 : li ∈ l

}
(3.12)

All the properties and theorems discussed in previous sections remain valid with
deployment groups. The only thing that could look problematic at first glance is the
proper placement of undeploy operations in an execution plan, but since Eq. (3.12)
depends on all the involved locations, there is no risk of early deactivations.

As a final note, introducing both deployment groups and typed locations in a
hybrid model is perfectly fine, and StreamFlow does precisely that (see Chapter 4).
In this setting, it is necessary to distinguish three different layers in a location
topology: the units of deployment, represented by the deployment groups, the units
of mapping, i.e. the location types, and the units of scheduling, i.e. the single
locations.

3.3.2 Dynamic and cyclic workflows

Sec. 3.1 introduced hybrid models for acyclic workflows, and Sec. 3.2.1 further
constrained them to be static when dealing with execution plans. On the other
hand, realistic workflows usually contain more complex constructs, such as choices

56

3 – Hybrid workflows

and iterations with conditions depending on runtime data. It is then crucial to ensure
that hybrid models can be coupled with more general workflows, but unfortunately
the way to do it cannot prescind from the specific semantics of the workflow model.

Static workflows are never a problem, not even when they contain cycles. Indeed,
a cycle can easily be unrolled into a DAG at compile time when the number of
iterations can be determined a priori. Conversely, the way to resolve dynamic
constructs varies from one representation to the other. Consider, for example, a
port pi ∈ P and two different steps si, sj ∈ S s.t. pi ∈ (In(si) ∩ In(sj)). In that
case, a model can adopt XOR semantics, executing either si or sj , and it can choose
the candidate step randomly or according to a specific policy, implementing an
Exclusive choice or a Deferred choice pattern [165]. This is what happens typically
with Petri Nets [29]. Another model, such as the CWL dataflow model [14], can
instead rely on AND semantics (implementing a Parallel split pattern), propagating
a copy of the token to both si and sj , while a third model can completely disallow
a configuration with multiple steps depending on the same port.

Another important aspect, which is again related to the specific workflow model,
is the discarded step of a conditional branch. Most models skip the related steps
and the whole set of their successors, which are not executed. However, for instance,
CWL propagates a null value to the outputs of a discarded sub-workflow so that if
a step sj depends on another step si and si is discarded, sj is still executed, perhaps
with a default input value. The same reasoning applies to the stopping conditions
of non-determinate iterative branches.

On the one hand, imposing specific requirements on the workflow models seman-
tics would strongly and unnecessarily limit the field of application of the proposed
approach. On the other hand, an overarching analysis of its compatibility with
all the existing workflow models is beyond the scope of this work, whose aim is
introducing the general idea of hybrid workflows and not doing a roundup of their
subtleties. Nevertheless, there is room for some general considerations, starting
from dynamic settings.

The main issue with dynamic conditions is to find a proper way to handle
deployments and undeployments in an execution plan. Indeed, some of the steps
can be skipped in a dynamic workflow, leaving the entire branch of successors
unexecuted when the workflow ends. Suppose that a step si belongs to one of these
branches and that it is the unique step bound to a location li ∈ L. Deployment
operational blocks, as conceived in Sec. 3.2.1, do not accept any input dependency
other than the location to deploy. As a consequence, li should always be deployed,
even when si is not executed.

The reverse situation, i.e. when the successor of an unexecuted step should
undeploy an active location li, is also problematic. Indeed, it violates Requirement 1
for execution plans soundness (see Def. 3.2.10). The introduction of conditional
deployment and undeployment blocks can seem a trivial solution, but it requires
specifying semantics for conditions, which cannot but depend on the semantics of

57

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

the coupled workflow. Another strategy could be to build a different execution plan
for each static version of the execution flow, but there are cases in which this is
either unfeasible or too complex to be managed in a reasonable amount of time.

Dynamic loops present similar issues: a loop with no iterations is equal to a
discarded branch in a condition, and the loop termination logic contains nothing but
another condition. Plus, care must be taken to place undeploy steps outside loop
iterations. Otherwise, still necessary ports could be deleted, violating Requirement 2
of Def. 3.2.10. However, hybrid cyclic workflows require far deeper thought, as more
subtle issues are to be faced. For instance, should different iterations of the same
step be forced to run on the same location li, or can a runtime mapping operation
modify the model according to some logic?

Note that the presence of dynamic workflows only affects static soundness analysis
and compatibility with standard WMSs, as a topology-aware WMS can always
generate an execution plan incrementally at runtime. Still, a further investigation of
dynamic models is a must. In this thesis, the hybrid workflows approach is coupled
with two paradigms: the CWL standard (see Sec. 4.1.5) and the literate computing
(see Sec. 5.3). The former adopts a dataflow model with conditional branches, while
the latter is inherently sequential, but none of them is iterative. Coupling hybrid
workflows with a non-DAG paradigm is an unescapable path for future research.

58

Chapter 4

StreamFlow

The StreamFlow framework1 has been created as runtime support for hybrid acyclic
workflows on multi-container environments [13]. The interested reader is referred to
Chapter 3 and Sec. 2.4.2 for a detailed discussion of such concepts. Being focused on
the execution phase, StreamFlow does not offer any intrinsic way to model workflows.
Instead, it has been designed to seamlessly integrate with external coordination
semantics, allowing users to augment existing workflows with hybrid capabilities.
In particular, it is fully compliant with the CWL open standard. The same design
concept applies to most supported execution environments, which are described
in an external, well-known format whenever such format exists (e.g. Helm2 charts
for Kubernetes deployments or Slurm scripts for HPC workloads). This chapter
details the StreamFlow implementation (Sec. 4.1) and evaluates it, both in terms of
programmability and performances, with two real applications in the domains of
Bioinformatics and DL (Sec. 4.2).

4.1 Implementation

The StreamFlow framework’s logical stack is depicted in Fig. 4.1. It should be
clear from the higher portion of the figure that a StreamFlow execution needs three
different types of inputs: workflow descriptions, location topology descriptions, and a
StreamFlow file with the step-location mapping (Sec. 4.1.1). Such mapping relation
translates into an MTSC pattern by default, but StreamFlow can be explicitly
configured to adopt any task-container mapping pattern (Sec. 4.1.2). The first
operational step is a translation of an external workflow format into StreamFlow’s
internal representation. Currently, only CWL-based workflows are supported, but
the integration with additional design tools and formats is in plans (Sec. 4.1.3).
Before actually executing a step, it is necessary to deploy the related location. The

1https://streamflow.di.unito.it
2https://helm.sh/

59

https://streamflow.di.unito.it
https://helm.sh/

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

Workflow description
files

HPC
Docker/

Kubernetes
…

CWL
interpreter

StreamFlow
extensions

Connector

StreamFlow executor

Data manager
Deployment

manager
Scheduler

Location topology
description files

StreamFlow file

Figure 4.1: StreamFlow framework’s logical stack. Coloured portions refer to existing technologies, while
white ones are directly part of StreamFlow’s codebase. In particular, the yellow area is related to the
definition of the workflow’s dependency graph, while the blue area refers to the execution environments.

DeploymentManager component has precisely the role of deploying locations when
needed and destroying them as soon as they become useless (Sec. 4.1.4). The
Scheduler component is then in charge of selecting the best locations to execute
each step while guaranteeing that all requirements are satisfied. Each step can
generate one or more jobs, i.e. runtime command instances running on top of their
assigned locations to process a given input-output data partition (Sec. 4.1.5). Finally,
the DataManager component, which knows where each job’s input and output data
reside, must ensure that each location can access all the data dependencies required
to complete the assigned job, performing data transfers only when necessary (Sec.
4.1.6).

4.1.1 The StreamFlow file

When launching a StreamFlow execution from the Command Line Interface (CLI),
its only argument is the path of a YAML file, conventionally called streamflow.yml.
The crucial role of that file is to map each workflow step onto the location that
should execute it. Moreover, to ensure this mapping is unambiguous, each location
and each step should be uniquely identifiable.

In order to effectively represent complex location topologies, StreamFlow relies
on a three-level hierarchical format (see Sec. 3.3.1). Each deployment group, called

60

4 – StreamFlow

Listing 4.1: StreamFlow file format
"version": "v1.0",
Workflow descriptions
"workflows": {

"workflow-name": {
"cwl-example": {

"type": "cwl", # Only the CWL type is supported
"config": {

Pointers to the CWL workflow description files
"file": "example.cwl",
"settings": "input-values.yml"

},
"bindings": [

{
Posix-based name of the selected workflow step
"step": "/step1",
"target": {

Model-service pair where the step must run
"model": "model-name",
"service": "service-name",
The step requires 2 instances of the selected service
"locations": 2,

}
}

]
}

}
},
Model descriptions
"models": {

"model-name": {
"type": "docker" | "singularity" | "docker-compose" | "helm" | "ssh" | "occam" | "slurm" | "...",
"external": "true" | "false",
"config": {

This schema depends on the selected model type
...

}
}

}

model, is managed independently by a dedicated implementation of a Connector
interface, which acts as a proxy for the underlying orchestration library. Models
constitute the units of deployment, as all their components are always co-allocated
when one of them executes a step. A single model can include multiple location
types, called services. Services are the units of mapping, as StreamFlow users can
map each workflow step with a single service for execution. Finally, multiple replicas
of the same service can coexist in a given model. Each service can then refer to one
or more running instances, called locations3, which constitute the units of scheduling.
Indeed, each step can be offloaded to a configurable number of locations to be
processed.

This section describes the StreamFlow file syntax and the strategies adopted
to guarantee naming uniqueness. Listing 4.1 reports a commented example of a
StreamFlow file to help the reader follow the discussion. Interested readers can find

3Locations were called resources in the original StreamFlow article [13]. Nevertheless, the term resources is
commonly used to indicate hardware resources (e.g. cores, memory and disk space) provided by each unit in
an execution environment. Therefore, their name has been changed to avoid potential ambiguities.

61

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

the complete and authoritative specification of the StreamFlow file format in the
official JSON Schema document4.

A valid StreamFlow file contains the version number (which currently only accepts
the v1.0 value) and two main sections: workflows and models. The workflows
section consists of a dictionary of uniquely named workflow specifications, i.e. objects
containing three fields: the type field identifies which language has been used to
describe the workflow; the config field includes the paths to the files containing
such descriptions; the bindings list contains the step-service mapping relations.

Many WMSs and coordination languages on the market express workflows as
nested dependency graphs, in which each node can refer to either a simple step or a
nested sub-workflow. Therefore, StreamFlow adopts a Posix-like naming scheme,
mapping simple steps to files and sub-workflows to folders. In particular, the most
external workflow description is mapped onto the root folder. This scheme allows
for easy and unambiguous identification of steps, given that there exists an intuitive
way to assign a name to each step in the workflow’s graphical structure and that this
name has the univocity constraint required by a typical file system representation.
Fortunately, most coordination languages on the market satisfy these requirements,
and the CWL standard is not an exception.

The models section contains a dictionary of uniquely named model specifications,
i.e. objects with two distinct fields: the type field identifies which Connector imple-
mentation should be used for its creation, destruction and management; the config
field contains a dictionary with configuration parameters for the corresponding
Connector.

Usually, the config parameters are directly extracted from the tools used to
interact with the underlying orchestration library (e.g. the helm CLI for Helm
charts or the docker-compose CLI for Docker Compose). A user who is familiar
with these libraries can easily understand the StreamFlow format. The best way to
unambiguously identify services in a model strictly depends on the model specifica-
tion itself. For instance, in Docker Compose models, it is sufficient to take a key
in the services dictionary, while for Kubernetes and Helm, the user is explicitly
required to fill in the name attribute of each container in a Pod template with a
unique identifier.

The format adopted for the bindings list takes into account all previous con-
siderations on unambiguous identification of steps and services. Each list element
contains a target object, with a (model, service) pair that uniquely identifies
a service and a step attribute containing a path in the aforementioned Posix-
based naming scheme. A step can also be bound to multiple locations through the
locations numeric field, which defaults to 1. If the path resolves to a folder, i.e.
to a sub-workflow, the same target is applied recursively in the file system hierarchy

4https://raw.githubusercontent.com/alpha-unito/streamflow/master/streamflow/config/schemas/
v1.0/config_schema.json

62

https://raw.githubusercontent.com/alpha-unito/streamflow/master/streamflow/config/schemas/v1.0/config_schema.json
https://raw.githubusercontent.com/alpha-unito/streamflow/master/streamflow/config/schemas/v1.0/config_schema.json

4 – StreamFlow

unless a more specific configuration, i.e. another entry in the bindings list with a
deeper path in its step field, overrides it. Bindings can also be grouped, i.e. a single
element of the bindings list can, in turn, be a list of bindings. These groups model
step-to-step bindings, translating themselves into co-allocations of the involved steps
and locations at runtime.

4.1.2 Task-container mapping patterns

Since models are not redeployed after each step execution when multiple steps
are bound to the same service, StreamFlow implements by default an MTSC
pattern. This design choice minimises data transfers to achieve better performances,
seamlessly reusing all the outputs stored on the ephemeral portion of a container file
system. As a drawback, it gives up the clean and consistent execution environment
commonly provided by containers, which can be problematic if traces left by previous
jobs can have unexpected effects on the next ones.

If an STSC pattern is required, it can be induced by adding a recycle directive to
a binding entry in the StreamFlow file. Such directive induces a redeployment of the
related service before executing a job. In this case, StreamFlow will automatically
handle all required data transfers, ensuring that at least one copy of each job output
is stored in a persistent location before deleting the container.

If a single step is mapped onto multiple locations, StreamFlow implements an
STMC pattern, executing the related job only on the first location. An additional
STREAMFLOW_HOSTS environment variable contains the comma-separated list of allo-
cated hostnames. This strategy allows for straightforward compatibility with the
standard launcher-based SPMD libraries, such as MPI.

Finally, even if the CWL standard alone cannot explicitly describe co-allocations,
the MTMC pattern can be expressed with the help of step-to-step bindings, forcing
the co-allocation of multiple steps and their related locations.

4.1.3 The WMS integration layer

As stated before, one of the design choices for the StreamFlow approach is to rely on
existing coordination languages instead of coming with yet another way to describe
workflow models. In particular, it is fully compliant with the CWL open standard.
Being a fully declarative language, CWL is far simpler to understand than its
Make-like or dataflow-oriented alternatives. Moreover, some existing WMSs provide
at least a partial compatibility with CWL format, even when it is not their primary
coordination language. Last but not least, the CWL’s reference implementation,
called cwltool5, is written in Python, allowing StreamFlow to use the official library
to obtain a compiled workflow representation and handle some complex aspects of
the standard (e.g. the evaluation of inline JavaScript code).

5https://github.com/common-workflow-language/cwltool

63

https://github.com/common-workflow-language/cwltool

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

CWL description file

CWL semantics dataflow

Workflow semantics dataflow

Parallel execution dataflow

StreamFlow executor

User-level workflow
description

cwltool internal
representation of a workflow

StreamFlow internal
representation of a workflow

Semantic dataflow explicitly
expressing data-parallelism

Runtime master-worker
execution model

Figure 4.2: StreamFlow framework’s layered dataflow model. Yellow blocks refer to the CWL runtime
library’s workflow representations, called cwltool, while the white ones are internal representations
adopted by the different layers of the StreamFlow framework.

CWL semantics can be used to describe a workflow through a declarative JSON
or YAML syntax, written in one or more files with .cwl extension. Optionally, an
additional configuration file contains a list of input parameters to initialise a workflow
execution. The cwltool library natively translates the CWL semantics in a low-
level macro dataflow graph [166] and implements multi-threaded runtime support.
Nevertheless, even if CWL is the primary coordination language in StreamFlow, it is
still worthwhile to avoid too tight coupling between CWL logics and the StreamFlow
runtime to support additional coordination languages in the future if needed.

For this reason, the StreamFlow framework adopts a layered dataflow model [66],
as depicted in Fig. 4.2. First, a Translator component compiles the CWL dataflow
semantics into an internal macro dataflow graph representation. Notice that this
representation supports much broader semantics, including loops, stream-based input
ports and from-any activation policies. This double step in the compilation process
can ensure an adequate decoupling of the StreamFlow’s workflow representation
to any specific coordination language, making it easier to include new languages
in the future. On the other hand, a strongly modular structure of the code allows
the co-existence of a robust core implementation of the dataflow model with some
CWL-specific components (e.g. a CWLTokenProcessor object in charge of build
tokens from raw output data), enabling full CWL support.

CWL workflows are not entirely static, as they support conditional branches
through the when directive. As mentioned in Sec. 3.3.2, a null value is propagated
to the outputs of a discarded sub-workflow so that the resulting token still activates
subsequent steps while skipping the internal ones. This aspect can be problematic
for the proper treatment of undeploy operations in an execution plan. However,

64

4 – StreamFlow

the issue can trivially be solved by introducing conditional deploy and undeploy
semantics so that the related operations are executed only when the branch condition
is satisfied.

When dealing with explicit parallel semantics, whether data-parallel constructs
as Scatter/Gather or stream-parallel patterns like pipeline executions, the same
node of a dataflow graph can be executed multiple times. Therefore, the runtime
support needs a lower, parallelism-aware layer that represents each workflow step as
the set of its execution units. In StreamFlow, such execution units are called jobs
and are the only entities directly visible to the underlying runtime components for
scheduling, execution and fault tolerance purposes. The unique parallel execution
pattern natively included in CWL standard is the scatter, in which a list of input
data is partitioned among multiple, identical tasks that can be executed in parallel
by multiple nodes. Still, in principle, the StreamFlow runtime can support stream
processing pipelines, as the related parallel patterns can be trivially implemented
through token-pushing semantics.

The StreamFlow control plane implements a master-worker pattern, i.e. a
centralised control node manages all the aspects of workflow executions, including
data transfers, jobs scheduling, and fault tolerance. Regarding availability and
performance, the pros and cons of such design choice are discussed in detail in
Sec. 4.1.6.

4.1.4 Model life-cycle management

In StreamFlow, the model deployment and the subsequent step execution happen
in two distinct phases, leaving the models’ life-cycle management to an external
orchestration library whenever possible. This strategy allows StreamFlow users to
rely on all the orchestration features provided by a mature product (e.g. autoscal-
ing, restarting policies, affinity-based scheduling) without additional constraints.
Moreover, they can adopt the original deployment description language, avoiding
the extra effort needed to learn a new syntax.

As discussed in Sec. 3.2.1, deployment and undeployment steps can be explicitly
embedded in an execution plan DAG. A potential drawback of this approach is
that, since deployment steps have no dependencies, a standard scheduler will try to
execute them as soon as possible, according to an eager allocation strategy. Some
models can be up and running long before they are needed in this setting, wasting
both energy and money. Even worse, in the case of conditional branches, a model
could be deployed and never be used. For such reasons, StreamFlow adopts a
more practical lazy approach, letting a model be deployed by the first fireable step
requiring it.

Since a single model instance can execute multiple steps, a consensus strategy is
needed when concurrent steps require the same model. Centralising the deployment
and life-cycle management to a unique DeploymentManager component is undoubt-
edly the easiest way to guarantee consensus. The Unified Modeling Language (UML)

65

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

deploy(model_config: ModelConfig): Connector
get_connector(model_name: String): Connector
undeploy(model_name: String)
undeploy_all()

<<interface>>
DeploymentManager

Figure 4.3: UML class diagram for the DeploymentManager interface.

copy(src: String,
 dst: String,
 locations: List<String>,
 kind: ConnectorCopyKind,
 soure_remote: Optional<String>)
deploy()
get_available_locations(service: String): List<String>
run(location: String,
 command: List<String>,
 environment: Optional<Map<String, String>>,
 workdir: Optional<String>,
 capture_output: Optional<Boolean>): Any
undeploy()

<< interface >>

Connector

Figure 4.4: UML class diagram for the Connector interface.

diagram of this component is reported in Fig. 4.3. Being unique and centralised, it
can easily handle multiple concurrent deployment requests, i.e. calls to the deploy
method, by deploying each model once and returning a pointer to each caller.

Under the hood, the DeploymentManager asynchronously offloads the actual
orchestration operations to an underlying library through a pluggable implementation
of the Connector interface, whose UML diagram is shown in Fig. 4.4. This design
adheres to the separation of concerns principle, providing an easy way to add support
for additional infrastructures if required. Several Connector implementations come
out of the box with StreamFlow, supporting Docker and Singularity containers,
Docker Compose files, Helm charts, SSH-accessible machines, queue-based HPC
workload managers (Slurm and PBS), and Occam, the Docker-based supercomputing
centre of Università di Torino [126].

As discussed in Sec. 3.2.1, a model should be undeployed as soon as the last
task needing it has been completed. This logic is relatively easy to implement when
dealing with static coordination models as CWL, but things get more complicated

66

4 – StreamFlow

in the dynamic setting. Probably the best strategy for the second case would be to
set a grace period, after which the model is undeployed if no new step requires it.

For now, in dynamic scenarios, StreamFlow undeploys all models at the end of
the entire workflow execution through the undeploy_all method. Moreover, the
same method is invoked in case of unrecoverable failures. This approach is very
straightforward, but it can lead to resource wastes if some models remain unused
for a long time.

Finally, there are some cases in which a workflow step should be executed on a
given target location, but the life-cycle of such location is managed externally by
an independent orchestration infrastructure. In those cases, StreamFlow can be
instructed to skip deployment and undeployment phases for a model by marking it
as external in the StreamFlow file.

4.1.5 Workflow scheduling

The workflow scheduling strategy is a fundamental component of a WMS, mainly
for the significant impact on the overall execution performances. It is common
for WMSs to allow users to specify some minimum hardware requirements for a
step, e.g., the number of cores or the amount of memory. Such requirements are
generally configurable using optional parameters in the coordination language, while
the actual mapping on top of adequate worker nodes is left to the specific executor
implementation.

It is much easier for a scheduling algorithm to work with homogeneous location
pools, in which all the nodes have the same characteristics in terms of cores, memory,
network and persistence. Nevertheless, different steps can require diverse resources
in a real scenario, resulting in sub-optimal workloads for homogenous pools. The
case of hybrid workflows is even more complicated. The non-uniform data access
makes data locality a crucial aspect in scheduling optimisation. Plus, it is no longer
true that a job can be executed on any worker node equipped with enough hardware.

In StreamFlow, the services exposed by each model can be identified as capabilities,
and a job can be executed on top of it only if all its requirements are satisfied.
StreamFlow straightforwardly manages this association by identifying each location
type with a single service and specifying which service is required by each step
(through the bindings list described in Sec. 4.1.1).

The model life-cycle is managed by an external orchestration library, so that
resources can either be inferred from the environment description file or obtained
by querying the orchestrator’s control plane. The step-related resource constraints
(specified in the workflow description) and the requirement-capability associations
(i.e. mapping relations specified in the StreamFlow file) are then directly managed
by the Scheduler component when selecting the target location.

Even if only a single target service can be specified for each step, multiple
replicas of the same service could exist at the same time and, if the underlying
orchestrator provides auto-scaling features, their number could also change in

67

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

get_location(job: Job,
 available_locations: List<String>,
 jobs: Map<String, JobAllocation>,
 locations: Map<String, LocationAllocation>
): Optional<String>

<< interface >>
Policy

Figure 4.5: UML class diagram for the Policy interface.

time. Extracting the list of compatible locations for a given step (by calling the
get_available_locations method of the appropriate Connector instance) and
applying a scheduling policy to find the best target are Scheduler component’s
responsibilities.

Given the very complex nature of the execution environments managed by
StreamFlow, it is improbable that a universally best scheduling strategy exists.
Indeed, many factors (e.g. costs, computing power, data locality, load balancing)
can affect workflow execution efficiency. For this reason, StreamFlow implements a
Policy interface to allow users to implement their custom strategies.

As can be seen from the UML class diagram shown in Fig. 4.5, the Policy interface
only contains a single method, called get_location, with four input arguments: the
job argument, containing a characterisation of the current job in terms of resource
requirements and data dependencies; the available_locations argument, which
is the list of all the locations which satisfy the requirement-capability association for
the current step; the list of previously allocated jobs and the respective involved
locations, to support load-balancing features.

The StreamFlow Scheduler component processes fireable steps according to a
simple FIFO order, with no support for preemption. Moreover, since each scheduling
policy can only process one task at a time, all those strategies requiring global
knowledge of the tasks queue (e.g. the various flavours of backfilling or a “shortest
job first” approach) cannot currently be implemented. Even if this can result in
sub-optimal scheduling solutions, the proposed approach drastically reduces the
implementation complexity.

A very general scheduling policy, serving as a default strategy, comes out of
the box with StreamFlow. When a step becomes fireable, the algorithm iterates
over all available locations, starting from those containing at least one of its data
dependencies to privilege data locality. Then, it reserves the first one that does
not contain jobs in the running state and satisfies all the constraints. If the search
fails, the task is inserted into a waiting queue: a new scheduling attempt will be
performed as soon as a running job notifies its termination.

68

4 – StreamFlow

transfer_data(src: String,
 src_job: Optional<Job>,
 dst: String,
 dst_job: Optional<Job>,
 symlink_if_possible: Boolean)

<<interface>>
DataManager

Figure 4.6: UML class diagram for the DataManager interface.

4.1.6 Data transfers

Hybrid workflow executions make it necessary to waive the comfort brought by a
globally shared data space, leaving to the WMS the task of explicitly moving the data
whenever required. Since large data transfers are very time-consuming operations,
especially for long distances and in the absence of dedicated high-throughput
communication networks, the WMS should always select the best communication
channel between two endpoints and avoid unnecessary data movements.

As mentioned in Sec. 4.1.3, StreamFlow adopts a star topology of deployment
locations (see Sec. 3.1.1), i.e. it implements a master-worker pattern for the control
plane, where the driver acts as the master [167], [168]. The reader’s first impression
could be that imposing a star topology is a substantial limitation to the flexibility
of a hybrid workflow model. Indeed, in principle, it can describe any topology and
statically validate its soundness.

In reality, such topology is much less limiting than it could appear. Despite
some potential performance and robustness issues of the centralised control plane,
the master-worker is a widely adopted pattern for the runtime support of parallel
and distributed systems. Indeed, a centralised architecture makes it possible to
effectively maintain a coherent global knowledge of the system, simplifying the
implementation of algorithms for task graphs unfolding, scheduling, load-balancing,
and fault-tolerance [169], [170].

Indeed, the master-worker pattern is adopted by many WMSs and task-based
parallel libraries, such as Makeflow [53], Pegasus [42], COMPSs [62], HyperLoom
[60], and other well-known systems, such as Kubernetes and Apache Spark [57]. In
reality, most of the weaknesses of the master-worker schema can be mitigated with
little efforts, such as excluding the master from large data exchanges by allowing
direct data movements among workers. This task can be done directly by the WMS
(as in COMPSs) or by delegating data transfers to external software, e.g. HTCondor
(as in Pegasus and Makeflow).

This solution is also adopted in StreamFlow, where a DataManager component,
whose UML diagram is in Fig. 4.6, has been designed to orchestrate data transfers,
avoid redundant movements, and keep the driver outside the data path whenever

69

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

possible. In particular, transfers can always be avoided when both tasks run on
the same location, but this can also happen when two locations share a data space
(e.g. a persistent volume) or if a step explicitly performs a data transfer before
completing. The transfer_data method investigates the actual need for a transfer
by checking if the destination path exists on the target service and computing
digests of both source and destination paths. If the destination path does not exist
or digests are different, then a data movement is unavoidable.

Plus, two locations in the same model could directly communicate through a
channel, removing the need for a double copy operation through the control plane.
For example, since all Occam nodes share the /archive and /scratch portions of
the file system, only a local copy on the target location is required to transfer a data
dependency in one of such folders. Such optimisations are managed by the copy
method of the corresponding Connector implementation. Conversely, locations
belonging to different models are supposed to be independent of each other, so they
always communicate through the driver.

Notice that the star topology adopted by StreamFlow is only the upper layer
of a hierarchical topology. Indeed, the driver location is supposed to communicate
directly with each model through a Connector interface, but this does not imply
that the driver location must directly communicate with every location in a model.
Instead, each Connector implementation can rely on local communication channels
to implement multi-step connections or even nested connections through inner
Connector instances, e.g., offloading tasks to a Docker container running on top of
a VM exposing an SSH port.

Summing up, the only actual limitations of this approach are the absence of
inter-model channels and the single point of failure represented by the single driver
location. Improvements in both directions are currently under development and
represent a crucial plan for the StreamFlow evolution. In particular, additional
communication channels can easily be modelled by users in a dedicated section of
the StreamFlow file. At the same time, the master-worker pattern can be made
robust by replicating the master using a third-party distributed coherent database,
as it happens with etcd in the Kubernetes control plane.

4.2 Evaluation

The current section describes the experimental evaluation of the StreamFlow ap-
proach on two real scientific pipelines in the fields of Bioinformatics and DL. In
particular, Sec. 4.2.1 shows how hybrid workflows can free HPC facilities from pro-
cessing the low demanding steps of an RNA sequencing pipeline, offloading them to
cheaper cloud locations without significantly increasing the overall time-to-solution.
Then, Sec. 4.2.2 seamlessly offloads a highly parallel and computationally demanding
DNN hyperparameter search to a large HPC facility, while the other steps of a
complex DL pipeline are processed by a single cloud VM.

70

4 – StreamFlow

4.2.1 Single-cell RNA sequencing

This section showcases the advantages of hybrid workflows’ flexibility, allowing users
to choose the best target location for each step. The selected use case is a pipeline
for single-cell RNA sequencing (scRNA-seq). The idea behind the scRNA-seq
technique is to isolate single cells through microfluidic approaches by capturing
their transcripts through emulsion droplets loaded with chemical reagents and
generating sequencing libraries in which the transcripts are tagged to track their
cell of origin. One of the most popular platforms for single-cell analysis, marketed
by 10X Genomics, can analyse from 500 to 20,000 cells in each run. Combined
with high-throughput sequencing producing billions of reads, scRNA-seq allows the
assessment of fundamental biological properties of cells populations and biological
systems at unprecedented resolution. The problem with this technique is the noise,
which is exaggerated by the need for very high amplification from the small amounts
of RNA found in each cell. Denoising the data and estimating an adequate amount
of sequencing reads covering each gene in the cell is crucial to define a reliable RNA
count matrix, representing how many transcripts have been captured for each cell
and each gene.

The count matrix creation is performed according to the adopted scRNA-seq
experimental technology and the used sequencing approach. For example, consider
a typical 10X Genomics experiment followed by an Illumina Novaseq sequencing.
The first part of the analysis is performed by a tool called CellRanger [171], which
deals with two substeps: the creation of the fastq files (the raw sequences of the
four bases, called reads) from the flowcell provided in output by the sequencer and
the alignment of the reads against the reference genome, counting for each gene
how many reads have been captured. Once the count matrix has been computed, a
quantitative analysis of the results is performed: cells with similar transcriptomic
profiles are clustered and characterised according to some reference databases. This
operation can be performed using ad-hoc software developed in Python or R. This
pipeline uses two main R packages to analyse the count matrix: Seurat [172], [173]
for normalisation, dimensionality reduction and clustering of cells, and SingleR [174]
for labelling the clusters, i.e. identifying the cell type according to public single-cell
data annotation databases.

The pipeline relies on a published dataset [175] concerning Gene Editing in
Hematopoietic Stem Cell as a test case. In particular, this dataset was produced
to compare the efficiency of different gene-editing approaches and, for this reason,
the whole experiment is composed of 6 different single-cell samples sequenced inde-
pendently. This complex experimental design resulted in a particularly challenging
and time-consuming dataset, making a flexible, automated and scalable WMS
particularly desirable.

This section describes two experiments with two different combinations of Occam
and Helm environments. Fig. 4.7 provides a graphical representation of the hybrid
workflow model for a single-cell pipeline. The workflow dependency graph is a simple

71

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

CellRanger

R environment

CellRanger mkfastq

CellRanger count

Seurat

SingleR

Sca6er

Figure 4.7: Dependency graph and model bindings for the single-cell workflow. In this case, the first
step creates six different sequences, which can then be processed independently of each other for the
remaining three steps.

DAG with four different steps, while the topology contains two distinct location
types (i.e. container images): a CellRanger image for the first two steps and an R
image with Seurat, SingleR, and their dependencies for the last two steps.

The first step produces six outputs, which can be processed independently by
the rest of the pipeline. In CWL, this can be easily implemented using the scatter
directive, which generates six jobs for each related step. Since these jobs cannot be
executed in a distributed fashion, the maximum number of nodes from which the
workflow execution can take some benefit is equal to the fan-out of the initial parallel
split. Therefore, if enough hardware resources are available, the best strategy would
be to allocate six locations of each type, implementing an MTSC mapping (see
Sec. 2.4.2).

A hybrid workflow model can be beneficial to perform a data preprocessing phase
on a dedicated HPC structure before moving data to the cloud to complete the
remaining steps. Indeed, in the examined case, the total size of the initial data is
almost 60GB, but modern sequencing machines can achieve 10 billion sequences
per flowcell, corresponding to about 3TB of data. Plus, the cellranger count
command requires a pretty high amount of resources to be performed: the official
documentation reports 8 cores and 32GB of memory as minimum requirements, but
a significant speedup can be appreciated until up to 32 cores and 128GB of memory.

Without hybrid workflows, the best strategy would be to execute the entire set
of tasks on top of six HPC nodes to take full advantage of the available grade of
parallelism while avoiding data transfers. Moreover, this solution is better than
hybrid alternatives when using total wall clock time as the only evaluation metric.
Therefore, it is worth using this setting as a baseline to evaluate the significance of

72

4 – StreamFlow

0 2000 4000 6000 8000 10000 12000
Seconds since start

occam6
occam5
occam4
occam3
occam2
occam1

CellRanger mkfastq CellRanger count Seurat SingleR

Figure 4.8: Execution timeline for the StreamFlow single-cell application on six Occam nodes, each
allocated to both a CellRanger and an R environment containers.

performance loss when switching to a mixed cloud-HPC configuration.
The first experimental setting reserves six Light nodes on the Occam facility, each

of which having 2x Intel Xeon E5-2680 v3 (12 core each, 2.5GHz) CPUs and 128GB
(8x16, 2133MHz) of memory, and allocates each node to both a CellRanger and
an R environment containers. An additional Occam node has been reserved to the
StreamFlow control plane. This architecture is described by a topology containing
a single model with two services (the two Docker images), each of which exposes six
locations. As mentioned in Sec. 4.1.6, all Occam nodes share the /archive folder,
mounted as an NFS export, and the /scratch folder, with a LUSTRE parallel
file system. The input data of the pipeline have been manually copied on the
/archive file system, and StreamFlow has been configured to use a folder on the
/scratch hierarchy as its output folder so that no automatic data transfers are
needed. Fig. 4.8 shows the timeline for this execution. Its whole duration is more
or less 3h15m, dominated by the CellRanger count and Seurat steps. White space
between subsequent bars represents the time needed by StreamFlow to perform
internal tasks, which is negligible compared to the time needed to complete the
workflow steps.

The second experimental setting dedicates the HPC structure to the first two
steps, offloading the rest of the workflow to a cloud environment. This configuration
makes sense for three reasons. First of all, the third and fourth steps need less
computing power, and they strongly underexploit the computing resources available
in an HPC facility. Plus, the outputs of the last step of a pipeline must often be
stored in a database or visualised in a web application, and the cloud is undoubtedly
the most natural place to host these services. Finally, by observing intermediate
data in the workflow model, it is possible to notice that output data of the second
step have a total size of about 15-30MB, allowing to transfer them to a remote
infrastructure without introducing significant overhead.

In this setting, the third and fourth steps of the pipeline are offloaded to a
73

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

0 2000 4000 6000 8000 10000 12000
Seconds since start

kube6
kube5
kube4
kube3
kube2
kube1

occam6
occam5
occam4
occam3
occam2
occam1

CellRanger mkfastq CellRanger count Seurat SingleR

Figure 4.9: Execution timeline for the StreamFlow single-cell application in a hybrid configuration, with
six Occam nodes allocated to CellRanger as many replicas and six Kubernetes worker nodes allocated to
as many R environment containers.

virtualised Kubernetes cluster running on top of the GARR6 cloud, based on
OpenStack7, containing six worker nodes with 4 virtual CPUs and 8GB of memory
each. The related location topology contains two different models: the first one with
six Occam nodes, with an instance of the CellRanger container allocated on each of
them, and the second one with six Kubernetes Pods, each with an instance of the R
environment container and a podAntiAffinity parameter to ensure that each Pod
is allocated on a different worker node. Note that there is no need to modify the
CWL description of the workflow to run it on the new environment: changes only
involve model descriptions and the streamflow.yml file.

On Kubernetes, the StreamFlow output folder of each container has been mapped
onto a persistent volume managed by Cinder, the OpenStack’s block storage service,
configured with a readWriteOnce access mode. Therefore, no shared data space
exists between different worker nodes, but the scheduling policy described in Sec. 4.1.5
ensures that each SingleR task is executed by the node where its required input
data already reside, removing the need for data transfers. Since the StreamFlow
control plane still runs inside an Occam node, the only unavoidable data movement
is from Occam to Kubernetes, between the second and the third steps.

The timeline for this second run is reported in Fig. 4.9. The first important thing
to observe is how the whole duration of this hybrid execution is comparable with
the previous full-HPC configuration. This result is mainly due to the combination

6https://garr.it/it/
7https://www.openstack.org/

74

https://garr.it/it/
https://www.openstack.org/

4 – StreamFlow

Classification

Explainability

TC scans Segmentation

Augmentation

Cross-
Validation

Performance
metrics

Pre-
processing

Noise reduction: contrast, normalisation

Dataset, e.g.,
BIMCV-COVID19 120k

images from 1300+ patients

 Rotations, translations, reflection, …

Segmentation of region of interest
Primary metrics
- Sensitivity (true and false
positives)
- Specificity (true and false
negatives)

Derived metrics
- Accuracy
- AUC of TPR vs FPR
- Diagnostic Odds Ratio

Pre-training
Classification

Explainability

Explainable (with heat map) classifications of COVID-19
lesions, e.g. crazy paving, consolidation, ground glass.

Figure 4.10: The CLAIRE COVID-19 universal pipeline. Yellow steps belong to the data preparation
phase of the pipeline, which is executed only once per dataset. Blue steps belong to the core training phase,
which is repeated multiple times for each hyperparameters configuration to implement cross-validation.

of two factors. Firstly, the time needed to transfer data from the Occam facility
to the GARR cloud is negligible compared to the time needed to complete the
steps themselves. Moreover, the Seurat task seems not to benefit from additional
computing power, making it quite useless to commit HPC machines for its execution.
In a situation like this, it is pretty clear that the hybrid workflows approach
can be beneficial to obtain a more efficient resource allocation without significant
performance drops.

4.2.2 The CLAIRE COVID-19 universal pipeline

This section explores how StreamFlow can help bridge HPC and DL workloads. The
related use case is the CLAIRE COVID-19 universal pipeline [176], [177], sketched
in Fig. 4.10. When the COVID-19 pandemic broke out, among the initiatives aimed
at improving the knowledge of the virus, containing its diffusion, and limiting its
effects, the Confederation of Laboratories for Artificial Intelligence Research in
Europe (CLAIRE)8 task force on AI & COVID-19 supported the set up of a novel
European group to study the AI-assisted diagnosis of COVID-19 pneumonia [178].

At the pandemic’s start, several studies outlined the effectiveness of radiology

8https://https://claire-ai.org/

75

https://https://claire-ai.org/

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

imaging for COVID-19 diagnosis through chest X-Ray and mainly CT, given the
pulmonary involvement in subjects affected by the infection. Even if X-Ray scans
represent a cheaper and most effective solution for large-scale screening, their low
resolution led DL models to show lower accuracy than those obtained with CT
data. Consequently, CT scans have become the gold standard for the investigation
of lung diseases. Several research groups worldwide began to develop DL models
for diagnosing COVID-19, mainly in the form of deep CNNs, applying lung disease
analysis from CT scan images.

Despite the large number of proposed models and techniques, different and not
comparable architectures, pipelines and datasets make it impossible to select the
most promising ones. Trying to solve this problem, the CLAIRE task force on AI &
COVID-19 started working on the definition of a reproducible workflow capable of
automating the comparison of state-of-the-art DL models to diagnose COVID-19.
This workflow subsequently evolved towards the CLAIRE COVID-19 universal
pipeline, composed of two main parts:

• a data preparation phase (yellow blocks in Fig. 4.10), comprising pre-processing,
where standard techniques for cleaning the training images are applied, and
segmentation, for extracting and selecting the region of interest through an
autoencoder DNN (e.g. DeepLabV3 [179], U-Net [180], or Tiramisu [181]) to
improve the quality of the data. This phase is performed once for each dataset;

• a core training phase (blue blocks in Fig. 4.10), composed of standard DL steps
such as data augmentation, to generate image variants, model pre-training, to
generate an initial set of weights for initialisation, and eventually classification,
during which a CNN (e.g. GoogLeNet [182], AlexNet [183], ResNet [184],
DenseNet [185], or Inception-ResNet [186]) labels each image with a class. In
this setting, each class is identified with a kind of lesion typical of the disease.
This phase is performed once per hyperparameters configuration.

The pipeline robustness is further increased by applying cross-validation to the
classification step, i.e. repeating the training process on different portions of the
dataset. Performance metrics are then obtained by collecting and averaging all the
measures from all the trained instances.

The universal pipeline aims to analyse some of the best DNNs in the literature,
together with a systematic exploration of networks hyperparameters, allowing a
deeper search for the best model. Each of these configurations generates a different,
independent variant of the pipeline. The resulting number of the CLAIRE COVID-
19 pipelines variants is 990. Exploring the entire spectrum of variants requires
two non-trivial ingredients: a supercomputer of adequate computational power,
equipped with many latest generation GPUs, and a mechanism capable of unifying
and automating the execution of all variants of the workflow on a supercomputer.

The input of the universal pipeline is the most extensive dataset publicly available
76

4 – StreamFlow

Augmentation
Classification

Pre-training
DNN weights

standard
image dataset

images

Classification

Classification

Bcast

Generate
cross-validation

array of
variants

Scatter

images
batches

Reduce

Performance
metrics

Performance
metrics

Performance
metrics

… …

Pipeline instance

Augmentation
Classification

Pre-training
DNN weights

standard
image dataset

images

Classification

Classification

Bcast

Generate
cross-validation

array of
variants

Scatter

images
batches

Reduce

Performance
metrics

Performance
metrics

Performance
metrics

… …

Pipeline instance

Scatter

Array of p
permutations of

< dataset-i,
iper-param-j,
classDNN-k >

Reduce

Baseline
performance of
state of the art

methods:
Sensitivity,
Specificity,

…

…

Figure 4.11: Unfolded core training phase of the CLAIRE-COVID19 universal pipeline.

related to COVID-19’s pathology course, i.e. the BIMCV-COVID19+ dataset9 [187],
with more than 120k images from 1300 patients. Supposing to train each pre-trained
model for 20 epochs on such dataset, a single variant of the pipeline takes over 15
hours on a single NVidia V100 GPU, one of the most powerful accelerators in the
market. Therefore, exploring all the 990 pipeline variants would take over two years
on the most powerful GPU currently available.

Since the universal pipeline has an embarrassingly parallel structure (see Fig. 4.11),
using a supercomputer can reduce the execution time to one day. In the best
case, running all the variants concurrently on 990 different V100 GPUs only takes
15 hours of wall-clock time. Nevertheless, pre-training and post-training steps
like performance metrics extraction and comparison can safely run locally on the
practitioner’s desktop machine or a cloud-hosted VM, as they do not require much
computing power. Therefore, the optimal execution of this pipeline advocates a
hybrid workflow model.

In practice, for this experiment, the StreamFlow control plane has been launched
on a cloud-based host node. The entire data preparation phase and the post-training
steps have been executed locally, while different portions of the training spectrum
have been offloaded to three heterogeneous architectures:

• the ENEA CRESCO D.A.V.I.D.E. HPC cluster, composed of 45 nodes with

9https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/

77

https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

 0

 1000

 2000

 3000

 4000

 5000

 6000

T
im

e
(s

)

Slurm jobs

Pending

Running

Figure 4.12: Execution times of the Classification step for 60 variants of DenseNet-121 on top of the
CINECA MARCONI100 cluster.

2 IBM POWER8 sockets, 256 GB of RAM and 4 NVidia P100-SMX2 GPUs
each, provided on-demand through bare SSH connections;

• the CINECA MARCONI100 cluster, a Slurm-managed HPC facility with 32
IBM POWER9 cores, 256 GB of RAM and 4 NVidia V100 GPUs per node;

• the High-Performance Computing for Artificial Intelligence (HPC4AI) infras-
tructure at Università di Torino, a multi-tenant cloud-HPC system with 80
cores and 4 GPUs per node, managed by OpenStack [25].

As an interface towards cloud-HPC infrastructures, StreamFlow seamlessly managed
data movements and remote step execution with each of these infrastructures,
automatically transferring the training results to the control node and rescheduling
failed jobs through its fault tolerance layer.

Fig. 4.12 shows the time taken to train in parallel 60 DenseNet-121 models
with different hyperparameters on top of MARCONI100. Each training has been
configured to run for 50 epochs, with early stopping after 10 epochs without
accuracy improvements. Detailed information on the experiment’s results in terms
of DNN accuracy are available elsewhere [188]. Excluding the queueing times,
training the 60 models on a single V100 GPU would have required two days, while
MARCONI100 only took slightly more than 80 minutes to complete the entire
step. Scheduling the entire workload on the Cloud would have been highly costly:
reserving a p2.16xlarge EC2 instance with 16 V100 GPUs on AWS costs 14.4$/hour.
Moreover, note that 60 models constitute only a tiny portion of the solution space
covered by the CLAIRE COVID-19 pipeline. In this scenario, hybrid workflows can
significantly drop the total cost without affecting the overall performance.

78

Chapter 5

Distributed literate workflows

Despite all the advantages of scientific WMSs in modularity, portability, and re-
producibility, domain experts often prefer to stick with standard, general-purpose
languages to develop and publish their experiments. Some apparent reasons behind
this choice are the additional effort required to learn a new framework, the increased
difficulty in maintaining coherence between host and coordination logic, and the
lack of a de-facto standard WMS that everyone should know and use.

In order to overcome this problem, this thesis introduces literate workflows as a
new paradigm, able to interleave host and coordination logic in the same document
but at the same time to keep them separated. The name derives from the concept
of literate computing (see Sec. 2.5), whose primary implementation nowadays is the
Jupyter stack. Several attempts have been made to model workflows with Jupyter
Notebooks (see Sec. 2.5.2), but as far as the author knows, this thesis is the first
attempt to derive a general methodology.

A computational notebook is essentially a list of code cells executed sequentially
in a given order (Sec. 5.1). The idea is to treat each cell as a workflow step,
using the related metadata to express input and output dependencies. A workflow
DAG can be extracted from this representation, and independent steps can be
executed concurrently (Sec. 5.2). Plus, notebook metadata can describe topologies
of deployment locations, and each cell can be mapped onto a different location,
modelling hybrid literate workflows that can be executed in a distributed fashion
(Sec. 5.3).

5.1 Literate computing semantics
A computational notebook can be seen as an ordered list of cells, each containing
code, code executions output, or natural language documentation. In this work,
code cells are treated as the atomic execution units of a notebook. This assumption
is valid also for actual implementations whenever a cell ends successfully. Conversely,
documentation and output cells are ignored, as they do not affect the notebook’s
operational semantics. Some implementations could allow documentation cells to

79

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

ci σi+1ci

ci+1

σi+1ci

Send code to the driver Execute cell and update status Send output to the notebook

ci+1 ci+1

oi oi oi

code

stdout
〈ci, σi〉

σi

Figure 5.1: Execution steps of a cell ci in a computational notebook. Its code is sent to the driver
process, which updates its state from σi to σi+1 and returns the execution stdout to the output cell oi

for visualisation.

reference variables from the notebook state, but the following discussion can easily
be extended to include such cases.

Let then a notebook N be composed of a sequence of code cells c1, . . . , cn, where
every ci is, in turn, a sequence of instructions in the notebook’s host language.
Each cell is executed in a state, a partial mapping σ : Ide → Obj from host
language identifiers to first-class objects (e.g. values, expressions, functions). In
most implementations, the state is preserved across subsequent cell executions, and
a unique global state exists at a given point in time. A dedicated driver process (e.g.
the kernel in Jupyter Notebooks or the interpreter in Apache Zeppelin) manages
that state, guaranteeing a unique total order of cells executions.

Fig. 5.1 depicts the steps of a cell execution. Let In(c) and Out(c) be the sets of
identifiers read and written by the instructions of cell c, respectively. By representing
a cell waiting to be evaluated as a configuration 〈c, σ〉, s.t. In(c) ⊂ dom(σ), the
execution relation

〈c, σ〉 → σ′

expresses that the execution of cell c in state σ produces a new state σ′, s.t.
Out(c) ⊂ dom(σ′). A cell execution can also produce something on the driver’s
stdout, which is flushed back to the notebook to be visualised in the related output
cell o. With this formalism, if 〈ci, σi〉 → σi+1 for every i ∈ [1, n], the execution of a
sequence c1; . . . ; cn of cells can be written as follows

〈c1; . . . ; cn, σ1〉 → σn+1 (5.1)

so that each cell in the sequence is executed in the state produced by the previous
one.

Computational notebooks usually support two different execution modes: interac-
tive execution and bulk execution. In both cases, the execution of cells is sequential,
and each cell is executed in the state resulting from the execution of the last cell in
temporal order, as described in Eq. (5.1). For bulk mode, which executes all the code
cells in the same order in which they appear in the notebook, the execution order

80

5 – Distributed literate workflows

specified by the operator ‘;’ is well defined. Conversely, the interactive execution
mode allows users to execute cells repeatedly, out-of-order, or even ignore some
of them. Nevertheless, given that a unique total order of cell executions is always
guaranteed by hypothesis, it is always possible to treat the history of cell executions
as a (potentially infinite) notebook executed in bulk mode, recovering Eq. (5.1).

Requiring a total execution order for cells contrasts with the flexibility of standard
workflow abstractions, where independent steps can always run concurrently. Sec. 5.2
introduces a methodology to relax this constraint while preserving consistency with
a fully sequential execution.

5.2 Literate workflows semantics
The bulk execution mode enables a concurrent distributed execution of the cells
by defining sequentially equivalent parallel semantics. Since the cells c1, . . . , cn are
totally ordered by their position in the notebook, the control-flow graph is the linear
chain of cells. Given that, it is possible to statically compute the execution graph with
the highest degree of parallelism by Bernstein’s conditions [189], initially designed
for parallelising compilers. Such conditions describe the three cases that induce
data dependencies between pairs of cells, which prevent their parallel execution.
When i < j, cj depends on ci if at least one of the following conditions holds:

• Out(ci) ∩ In(cj) /= ∅. In this case there is a true data dependency, whereby ci

modifies an identifier read by cj ;

• Out(ci) ∩Out(cj) /= ∅. In this case there is an output dependency, whereby ci

and cj modify the same identifier;

• In(ci) ∩Out(cj) /= ∅. This is a so-called anti-dependency, whereby cj modifies
an identifier read by ci.

In all other cases, namely when

Out(ci) ∩ In(cj) = Out(ci) ∩Out(cj) = In(ci) ∩Out(cj) = ∅

the cells ci and cj do not interfere and can be executed in any order, hence also in
parallel.

As discussed below, this work relaxes Bernstein’s conditions by proposing a
strategy to reconcile clashes due to output dependencies. Notice the importance
of avoiding output dependencies in designing concurrent semantics for notebooks:
the execution of all cells produces an output on the initial state of the notebook,
where indeed the identifier representing the standard output conflicts. The proposed
relaxation aims at preserving the output of all cells, which in the sequential execution
involve the same identifier (the notebook’s output), but in different moments.

First, it is necessary to know the sets In(c) and Out(c) for all the cells c ∈N to
evaluate Bernstein’s conditions. An interpreter can automatically extract these sets

81

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

from the cell’s code, akin to what noWorkflow does for scripts [70], or a user can
explicitly list their members in the cell’s metadata, similarly to the yesWorkflow
approach [67]. In any case, this discussion assumes In(c) and Out(c) to list all input
and output dependencies for cell c correctly.

In preparation for their parallel execution, all notebook cells are arranged in
a DAG from the control-flow chain, defining a workflow in which nodes are con-
figurations and edges are data dependencies. Let DAG evaluation be the order
derived from applying data dependencies. A DAG evaluation sequence can then be
described as a composition of atomic cells c using ‘;’ (sequential composition) and
‘|’ (parallel composition). For example,

c1; (c2 | (c3; c4))

describes the execution of c1 followed by the parallel execution of c2 and the
sequential execution of c3 and c4.

DAG evaluation supports the automatic parallelisation of independent cells. In
particular, given a notebook N = [c1, . . . , cn], a simple strategy to obtain a valid
DAG evaluation consists in connecting ci to cj , with i < j, whenever ∃x ∈ In(cj) s.t.
x ∈ Out(ci) and x /∈ Out(ck) for each k ∈ (i, j). It is possible to prove by induction
that such strategy always complies with the Bernstein’s conditions.

Theorem 5.2.1. Given a notebook N = [c1, . . . , cn], the DAG obtained by connect-
ing ci to cj, with i < j, whenever ∃x ∈ In(cj) s.t. x ∈ Out(ci) and x /∈ Out(ck) for
each k ∈ (i, j) preserves sequential consistency.

Proof. Sequential consistency is guaranteed by the validity of Bernstein’s conditions.
True data dependencies are trivially preserved by the strategy, as it explicitly adds
a link ci → cj whenever ∃x ∈ Out(ci) ∩ In(cj). Output and anti-dependencies are
instead preserved by creating a separate context σi for each cell ci. Anti-dependencies
can then be ignored, since if there exists an x ∈ In(ci)∩Out(cj), the cell ci will still
receive σh(x) with h < i, and any cell cl with l > j will receive σk(x) with k ≥ j,
independently of the actual order of execution between ci and cj. The discussion
for output dependencies is similar, but in addition, the strategy ensures that if
x ∈ Out(ci) ∩ Out(ck) ∩ In(cj), with i < k < j, then the cell cj always receives
σk(x), independently of the actual order of execution between ci and ck.

This strategy is effective when outputs of subsequent cells are alternative to
each other, i.e. whenever x ∈ Out(ci) ∩ Out(cj) means that σj(x) overwrites the
previous value. Still, all those cases when the resulting x is a combination of the
two values require explicitly putting x into In(cj), inducing a true data dependency
between the cells. A typical case is the stdout, which is populated according to the
total execution order of cells in the sequential case, but in the parallel case would
induce a true data dependency between any pair of cells. In order to overcome this
problem, cells are assumed independent according to a relaxation of Bernstein’s

82

5 – Distributed literate workflows

conditions that allows output conflicts (thus removing the output dependency case),
assuming the existence of a user-defined associative operator] that reconciles all
conflicting identifiers while avoiding output dependencies. Formally, given c1, . . . , cn

independent cells, their parallel execution is described as

〈c1 | · · · | cn, σ〉 →
⊎

1≤i≤n σ
′
i if 〈ci, σi〉 → σ′i ∀i ∈ [1, n] (5.2)

where each σi is the restriction of σ to the set In(ci) and the reconciled state⊎
1≤i≤n σ

′
i is the union of the states for non-conflicting identifiers or the reduction of

objects for conflicting identifiers. That is,

(σ] σ′)(x) =

σ(x) if x ∈ dom(σ) \ dom(σ′)
σ′(x) if x ∈ dom(σ′) \ dom(σ)
σ(x)] σ′(x) if x ∈ dom(σ) ∩ dom(σ′)

(5.3)

where the] operator on objects is provided by the user.
Even though the] operator resembles a Reduce operator, its pragmatics is not the

parallelisation accumulation behaviour. In the sequential evaluation, accumulation
generally induces a true data dependency, which cannot be easily removed without
changing the cell business code. The] operator aims at carrying the merging of
the cell’s outputs in a single, adequately typed identifier. This behaviour is inspired
by merging stdout of remotely executing processes aiming to preserve single-cell
outputs rather than overwriting them.
Theorem 5.2.2. Given an associative operator] that correctly reconciles conflicting
identifiers of states σ1, . . . , σn, the DAG evaluation preserves sequential equivalence
of successfully terminating global parallel executions.

Proof. Two cells with true data dependency cannot be executed in parallel, and anti-
dependencies can be ignored, as discussed while proving Theorem 5.2.1. The parallel
execution of two cells generates a reconciled state σ1] σ2 that includes all the non-
conflicting identifiers of σ1 and σ2 with the same value of the sequential evaluation,
as per Eq. (5.3), and all the conflicting identifiers of σ1 and σ2 computed by the user-
defined associative operator]. The existence and correctness of the (user-defined)
] operator is an assumption, which is satisfied by common operators such as list
and string concatenation and value reduction. The merged state subsumes that the
result of the execution of the two cells is executed in any sequential order. Since]
is an associative operator, the same argument scales to the transitive closure of the
merged state of a sequence of cells executed in parallel, including all their output
identifiers. All the identifiers available in the last state of the sequential execution
are also available in the merged state of the parallel evaluation, with identical
or equivalent values for conflicting identifiers. For this, the parallel execution is
considered sequentially equivalent.

The DAG evaluation can also support the data parallelism paradigm – the
Map/ApplyToAll functions – by way of an explicit metadata annotation on a cell c

83

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

Default notebook’s executor (e.g. Jupyter kernel)

Executors deployed on other locations

Serialisation and
communication

ldriver

l1 l2 ln

Figure 5.2: Runtime architecture of a computational notebook’s distributed execution under a star
location topology.

receiving as input one or more lists L1, . . . , Lk and a list operator such as the dot
product or the cartesian product. Hereafter, such cells are denoted as Map(c).

Consider, for instance, a Scatter/Gather pattern. The semantics of a Map cell
depend on two (here unspecified) functions: Scatter , which splits states into lists
of states, and Gather , which recombines lists of states into states. The execution
semantics of Map cells can then be described as follows

〈Map(c), σ〉 → Gather(σ′1, . . . , σ′n) if 〈c1, σi〉 → σ′i ∀i ∈ [1, n] (5.4)

where Scatter(σ) = [σ1, . . . , σn]. If two cells Map(c1) and Map(c2) are executed
sequentially in bulk mode and Out(c1) = In(c2), it is possible to rely on a map fusion
transformation [190] to reduce the communication overhead, rewriting each sequence
of type Scatter/Gather/Scatter/Gather as Scatter/LocalCopy/Gather . This kind
of optimisation can be expressed as the following equivalence between configurations:

〈Map(c1); Map(c2), σ〉 = 〈Map(c1; c2), σ〉 (5.5)

Theorem 5.2.3. The Map function preserves sequential equivalence of successfully
terminating parallel executions.

Proof. The Map function generates a list of independent replicas of a cell that satisfy
Bernstein’s conditions by construction.

5.3 Hybrid literate workflows
In order to model the distributed execution of hybrid workflows, configurations
〈c, σ〉 can be extended to global configurations 〈[c, l], σ〉, where the l component
indicates the location in which the execution of c takes place. The global execution
relation can then be specified as

〈[c1, l1]; . . . ; [cn, ln], σ1〉 → σn+1 if 〈[ci, li], σi〉 → σi+1 ∀i ∈ [1, n] (5.6)

Eq. (5.6) has the same meaning as the Eq. (5.1), except that it carries the additional
information that a cell ci is deployed and executed on li ∈ L, where L is the set

84

5 – Distributed literate workflows

of locations in a hybrid workflow model. Assuming a star topology, Eq. (5.1) is
equivalent to Eq. (5.6) when li = ldriver for every 1 ≤ i ≤ n, where ldriver refers to
the default notebook’s kernel (see Fig. 5.2). The binding (ci, li) ∈ B between a cell
ci and a location li can be directly specified in the metadata field of cell ci itself or
determined through more complex policies, as discussed in Sec. 3.3.1.

Just like the local execution relation, also the global execution relation is partial.
However, the remote execution of a cell is assumed to be independent of the location
in which the execution takes place, i.e. 〈[ci, li], σ〉 → σ′ and 〈[ci, lj], σ〉 → σ′′ implies
σ′ = σ′′. This means that the execution of a cell that succeeds locally might fail
remotely, but it must produce the same output in each deployment whenever the
execution is successful. Such assumption guarantees deterministic semantics of
global execution, modulo errors, and it allows to straightforwardly extend all the
properties of DAG evaluation discussed in Sec. 5.2 to the global case. Since the
model resulting from DAG evaluation is a deterministic acyclic graph, it is always
possible to obtain an execution plan (see Sec. 3.2.1) and apply static soundness
analysis to the related hybrid workflow model (see Sec. 3.2.2).

85

Chapter 6

Jupyter-workflow

Jupyter-workflow1 extends the IPython software stack to support hybrid literate
workflows [15] (see Chapter 5). In particular, the code cells of a Jupyter Notebook
are interpreted as the steps of a workflow DAG, while metadata encode dependencies
between cells, topologies of deployment locations and mapping relations. Even if
Jupyter-workflow is limited to IPython-compatible programs, the metadata format
is general enough to be reused with any kernel in the Jupyter ecosystem or with
other computational notebooks frameworks, e.g. Apache Zeppelin. The current
chapter details the Jupyter-workflow implementation (Sec. 6.1) and evaluates it
on large-scale HPC and cloud environments with four practical applications in the
domains of DL, scientific simulation and Bioinformatics (Sec. 6.2).

6.1 Implementation
The Jupyter-workflow logical architecture, reported in Fig. 6.1, consists of three
main components:

• a coordination metadata format to model global cells configurations and location
topologies (see Sec. 6.1.1);

• a dependency resolver component to help users identify the input dependencies
of each cell (see Sec. 6.1.2);

• a Jupyter stack extension to handle coordination metadata, execute cells
remotely and manage data transfers (see Sec. 6.1.3).

Moreover, Jupyter-workflow relies on the dill library [191] to perform data serialisa-
tion (see Sec. 6.1.4) and the StreamFlow framework to coordinate hybrid workflows
(see Chapter 4). The rest of the current section is devoted to a detailed analysis of
each component, discussing the most significant design and implementation choices.

1https://github.com/alpha-unito/jupyter-workflow

87

https://github.com/alpha-unito/jupyter-workflow

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

Browser Notebook Server Kernel

Jupyter
Notebook

HTTP ZeroMQ

File I/O

Figure 6.1: Jupyter-workflow logical stack. White blocks refer to existing technologies (except for
StreamFlow and its connectors, which are coloured in blue), while yellow-ocher ones are directly part of
the Jupyter-workflow codebase.

Listing 6.1: Jupyter-workflow metadata format
Workflow metadata
{

"step": {
"in": [{ # List the members of In(ci)

"type": "name" | "env" | "file" | "control",
"name": "variable name",
"serializer": {

"predump": "code executed before serializing",
"postload": "code executed after serializing"

},
"value": "value to assign to the name",
"valueFrom": "can take value from a different variable"

}],
"autoin": True | False, # Resolve In(ci) automatically
"out": [# List the members of Out(ci)

...
],
"scatter": {

"items": ["variable name" | "scatter subscheme"],
"method": "dotproduct" | "cartesian" | ...

}
},
"target": {# Part of the StreamFlow format

"deployment": {# Description of the execution environment
...

},
"service": "target service inside the model",
"locations": "number of workers to reserve"

},
"version": "v1.0"

}

6.1.1 Coordination metadata format

In the Jupyter Notebook format, each cell is accompanied by a metadata field
containing custom values (see Listing 2.1). Jupyter-workflow extends the code cell
metadata format with a workflow section to express the dataflow dependencies,
i.e. the set In(ci) of input dependencies and the set Out(ci) of return values, and
the location binding (ci, li) for each cell ci. This approach is similar to the one
adopted by YesWorkflow [67], but the main difference is that, in Jupyter-workflow,
the dataflow description is separated from the host code so that the same format
can be used in combination with any underlying kernel. A high-level schema of the

88

6 – Jupyter-workflow

workflow section is reported in Listing 6.1.
A step subsection contains two lists, called in and out, describing input depen-

dencies and return values, respectively. Jupyter-workflow supports four different
families of dependencies in the type field:

• names, which are transferred to the destination program’s state;

• environment variables, which are added to the target shell’s environment;

• files, for which Jupyter-workflow automatically manages both data transfers
and path remappings on the target location;

• controls, which are only used to force additional dependency relations between
workflow steps without carrying any data value.

Note that control dependencies are necessary whenever a cell updates the state of
an external location, e.g. inserts a record into a database, and this update does not
modify any variable in the program state.

The cell-location binding is expressed in a target subsection, while locations
are described in a model subsection. Both of them are exact transpositions of
their corresponding StreamFlow directive (see Sec. 4.1.1), as well as the distinction
between units of deployment, binding, and scheduling. Iterable cell inputs, e.g. lists
or dictionaries, can be scattered across multiple locations for parallel execution.
Scattering schemes can be specified through a dedicated scatter section in the
step metadata (Listing 6.1). In particular, an items list contains the elements
to scatter, while the method entry specifies which operator (e.g. dotproduct or
cartesian) should be used when scattering over multiple items. The items list
can contain names, file paths, or nested scatter schemes, providing great flexibility
in modelling complex parallel patterns. Rewriting rules can optimise the execution
plan by removing unnecessary directives (see Sec. 5.2).

6.1.2 The DependencyResolver component

In many cases, input dependencies can be automatically inferred with an inspection
of the cell code. Therefore, drawing inspiration from noWorkflow [70], Jupyter-
workflow includes a DependencyResolver component to save practitioners the
burden of manually listing every input name for every cell execution.

In Python, the ast module allows exploring the AST of a code fragment. There-
fore, since the Python language is lexically scoped, it is possible to obtain the set
of input dependencies of a cell by seeking all the names that reside in its global
scope, whose first operation is a Load (i.e. a read from σ), and do not come from
Python builtins or IPython standard namespace. The fact that the dill serialisation
library can autonomously deal with transitive dependencies dramatically simplifies
this task, as it is not necessary to explore names’ definitions external to ci itself.

89

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

Nevertheless, it is worth noting that the proposed strategy cannot entirely cover
all possible scenarios, as both false positives and false negatives can occur. On the
one hand, each name that does not appear in a node of the AST representation
returned by the ast module cannot be recognised by the DependencyResolver
component. This set contains, among others, variables dynamically loaded in eval
constructs, variables accessed directly from the locals and globals dictionaries
and modules dynamically imported by the importlib package. On the other hand,
as the code is statically evaluated without knowing a priori the exact value of
each name, some names can be marked as true dependencies even when they are
never accessed. This case includes variables loaded in untaken paths of conditional
branches, except branches of exception handling patterns or locations of a container
(e.g. a list or a dictionary) that are never accessed.

Given that, Jupyter-workflow lets users combine automatic dependency induction
with explicit metadata to correct potentially wrong behaviours, print the list of
automatically identified dependencies, or even fully disable the DependencyResolver
for a step by setting the autoin field to False.

6.1.3 Jupyter stack extension

Custom metadata are generally not propagated to the backend kernel by the
Jupyter web interface. Therefore, an extension for the frontend stack is required
to include the workflow metadata section when sending messages to the kernel.
The technology used by this component depends on the adopted frontend. For
the classical Jupyter interface, a kernel.js file in a kernel package allows kernel-
specific frontend extensions. Conversely, the newer JupyterLab2 technology needs a
kernel-agnostic frontend plugin, which is currently under development.

When receiving coordination metadata, the kernel backend must correctly process
them during both interactive and bulk execution flows. The current Jupyter-workflow
implementation only extends the IPython kernel. Indeed, it is the most widely used
backend in the Jupyter ecosystem and, since StreamFlow is also implemented in
Python, the integration with the underlying WMS layer is much more manageable.
However, support for other Jupyter kernels is undoubtedly in plans, and most
aspects discussed in this section are still perfectly applicable to a language other
than Python. Indeed, the strict separation between host code and coordination
metadata makes it possible to reuse the same metadata format independently of the
host language, while the message-oriented nature of the Jupyter stack significantly
simplifies language interoperability.

When executing a Notebook in bulk mode, the first step is to obtain a dataflow
representation of its code cells, which takes the form of a DAG (see Sec. 5.2). The
resulting DAG can then be orchestrated by the StreamFlow runtime support, whose

2https://jupyterlab.readthedocs.io/en/stable/

90

https://jupyterlab.readthedocs.io/en/stable/

6 – Jupyter-workflow

ldriver

li

Figure 6.2: Interactive remote execution of a configuration 〈[ci, ls], σ〉. When ls /= ldriver , both code ci

and true data dependencies In(ci) must be transferred to ls. After that, the return values Out(ci) can
be transferred back to ldriver .

control plane runs in the same process as the default Notebook kernel. In particular,
when cell ci enters the fireable state, its code and input dependencies In(ci) are
serialised and transferred to its bound location ls so that the program state can be
reconstructed from them (see Fig. 6.2). StreamFlow manages all the computation
movement aspects, i.e., data transfer, path remapping, locations deployment, and
task scheduling. In particular, an executor script, automatically transferred to
each remote location, is in charge of recreating the program state, executing the
code, and serialising the return values.

The interactive execution flow is much more straightforward: cells are sequen-
tially processed one by one so that there is no need to construct dataflow-based
intermediate representations, and the consistency of the program state is trivially
preserved. However, since the cell execution order cannot be determined a priori in
an interactive scenario, all the components of Out(ci) are always transferred to the
local kernel and merged into the program state after the execution of cell ci.

6.1.4 Serialisation

When dealing with computation movement, serialisation is undoubtedly one of the
most critical aspects to take into account. Indeed, considering a subprogram ci with
a set In(ci) of input dependencies and a set Out(ci) of return values, the presence
of even a single unserialisable element in In(ci) ∪Out(ci) is sufficient to prevent ci

from being executed remotely.
On the other hand, pretending to reason about a perfect serialiser capable of

producing a suitable byte stream for every object and pair of locations is quite
unrealistic. Indeed, it is challenging, if not impossible, to produce a reversible
external representation for some objects, e.g., when their content includes handlers to
kernel objects, system libraries, or hardware-specific, low-level optimisations. Things
worsen when the source and destination locations exhibit significant differences in
operating systems or hardware architectures.

A possible approach to mitigate this kind of problem is to serialise some entities
by reference, i.e., recreate them remotely following the standard procedure instead of

91

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

Listing 6.2: Example of Jupyter-workflow Notebook with scatter pattern
Cell 1 code
import time

lrs = [0.1, 0.001, 0.0001]
wds = [1e-05, 1e-06, 1e-07]

start_time = time.perf_counter()

Cell 2 metadata
"workflow": {

"step": {
"in": [],
"autoin": "true",
"out": [],
"scatter": {

"items": ["lrs", "wds"],
"method": "cartesian"

},
"version": "v1.0"

}

Cell 2 code
for lr in lrs:

for wd in wds:
print("Train model with lr=" + str(lr) + " and wd=" + str(wd))
time.sleep(5) # Simulate model train

Cell 3 code
end_time = time.perf_counter()
print(end_time - start_time)

reconstructing them from a marshalled internal state. The dill library [191] relies on
this strategy for Python modules, regularly imported in the destination program’s
state. Nevertheless, this strategy cannot be applied to stateful objects, which need
information about the internal state to be coherently reconstructed.

A more flexible technique allows developers to register a pair of marshalling
and unmarshalling routines for a particular object type, augmenting a baseline of
standard cases directly handled by the library. This approach has been adopted in
the distributed version of the FastFlow framework [192] and also dill comes with
a @register decorator to extend the standard set of serialisable types. Jupyter-
workflow sticks with this last strategy, adopting dill as the base serialisation library
and adding a dedicated serializer subsection in the input and output dependencies
description, as shown in Listing 6.1. Each entry in this subsection lets users specify
predump and postload routines to transform unsuitable values before marshalling
and reobtaining the original object after unmarshalling, respectively.

6.1.5 Examples

This section presents some toy examples of Jupyter-workflow Notebooks, allowing
the reader to understand better how they are programmed and executed. Note that
users can program the cell metadata with the help of a high-level GUI accessible
from each cell’s toolbar, which is much more intuitive than dealing with JSON
directly.

92

6 – Jupyter-workflow

Listing 6.2 provides a simple example of a parallel parameter search for a DNN,
which will be expanded in Sec. 6.2.1. In order to keep things as simple as possible,
the complex training code has been substituted with a sleep of 5 seconds, which
is enough to appreciate the presence of parallelism in the execution flow. The
Notebook is composed of two code cells. The first one is executed locally in the
kernel’s context, and it simply initialises the two lists lrs and wds containing
learning rate and weight decay values, respectively. Plus, it initialises a timer to
measure the execution time of cell 2, which is then printed by cell 3.

In this simple example, Jupyter-workflow only manages the execution of cell 2,
which is decorated with workflow metadata. It contains a nested for loop that
iterates over the defined parameter lists, producing all possible combinations. This
pattern is equivalent to a cartesian product between lrs and wds. In particular, cell
2 must process nine combinations of parameters.

Supposing that each execution lasts 5 seconds (as proxied by the sleep instruc-
tion), the sequential execution of cell 2 will last at least 45s. However, using the
scatter directive in the cell metadata, the total execution time is reduced to a
theoretical optimum of 5s whenever enough hardware resources are available, i.e.
when the target locations provide at least nine cores. The actual execution time will
be slightly higher because of overheads introduced by the workflow construction and
orchestration machinery (∼ 1s) and, in the case of remote executions, the latency
and bandwidth of the involved communication channel.

Two crucial aspects emerge from the simple example in Listing 6.2. First, the
execution has been parallelised without modifying the sequential code but simply
working at the metadata level. As a consequence, the Notebook is compatible with
any kernel able to correctly understand the workflow metadata, independently
of the underlying technology stack used for parallelisation, data serialisation and
distributed execution.

Second, the input dependencies of cell 2 have not been explicitly listed, but
they have been automatically inferred by the system, as specified by the autoin
option. This feature can save users from writing a lot of boilerplate code, which
is error-prone and sometimes counter-intuitive. For example, in cell 2, the time
module is also an input dependency, as it must be explicitly imported in the program
context prior to calling the sleep function.

Listing 6.3 provides a different example, in which the code inside cells cannot be
parallelised, but there is still room for optimisation by concurrently executing cells
without inter-dependencies. Note that this kind of parallelism cannot be exploited
in the interactive execution mode but only using the DAG-based bulk execution
provided by Jupyter-workflow.

Again, the first cell initialises the input parameters and starts a timer, which
will be used by cell 4 to print the total execution time of the Notebook. Cells 2
and 3 process two different parameters, i.e. a and b, and are not dependent on
each other, so they can be executed in parallel if there are enough resources. Their

93

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

Listing 6.3: Example of Jupyter-workflow Notebook with concurrent cell execution
Cell 1 code
import time

a = 1
b = 2

start_time = time.perf_counter()

Cell 2 metadata
"workflow": {

"step": {
"in": [],
"autoin": "true"
"out": [

{
"name": "control_a",
"type": "control"

}
]

},
"version": "v1.0"

}

Cell 2 code
print("Processing " + str(a))
time.sleep(5)

Cell 3 metadata
"workflow": {

"step": {
"in": [],
"autoin": "true"
"out": [

{
"name": "control_b",
"type": "control"

}
]

},
"version": "v1.0"

}

Cell 3 code
print("Processing " + str(b))
time.sleep(7)

Cell 4 metadata
"workflow": {

"step": {
"in": [

{
"name": "control_a",
"type": "control"

},
{

"name": "control_b",
"type": "control"

}
],
"autoin": "true",
"out": []

},
"version": "v1.0"

}

Cell 4 code
end_time = time.perf_counter()
print(end_time - start_time)

94

6 – Jupyter-workflow

execution time is proxied by two sleep instructions of 5 and 7 seconds, respectively,
leading to a sequential execution time of at least 12s. However, Jupyter-workflow
can reduce the theoretical optimum to 7s, i.e. to the longest step’s execution time.

Listing 6.3 also provides a use case where explicit input dependencies are needed
for proper workflow execution. Indeed, by considering only code-related dependencies
cell 4 could be executed in parallel with cells 2 and 3, as it does not require input
variables produced by those cells. However, this is not the desired behaviour. To
handle this case, two artificial control dependencies can be injected as output
variables of cells 2 and 3 and as input variables of cell 4. This setting forces cell
4 to wait for cells 2 and 3 to complete before executing, leading to correct time
measurement.

Note again that no modification has been made to the business code inside cells.
Control dependencies have been injected at the coordination (i.e., metadata) level,
and concurrency has been automatically inferred from the code structure. A much
more complex application of the same concepts is described in Sec. 6.2.4 below.

6.2 Evaluation

The current section contains an experimental evaluation of how the Jupyter-workflow
approach can be effectively applied to standard scientific pipelines in DL, scientific
simulation, and Bioinformatics, enabling interactive analysis at scale and promoting
literate computing as a full-fledged workflow modelling paradigm.

In particular, Sec. 6.2.1 analyses a Notebook-based implementation of the
CLAIRE COVID-19 universal pipeline classification step. Sec. 6.2.2 describes
a hybrid cloud-HPC workflow to perform a training+serving pipeline of a DNN,
relying on the HPC computing power for the training step and on the cloud XaaS
paradigm for inference. In Sec. 6.2.3, a Quantum ESPRESSO3 [193] simulation
workflow is used to represent a broad class of traditional HPC molecular dynamics
simulation tools to investigate how Jupyter-workflow can enable interactive simula-
tions at scale. Finally, in Sec. 6.2.4, a Bioinformatics pipeline based on the 1000
Genomes project [194] is used to analyse performances in the cloud.

6.2.1 DNN hyperparameter search

This section relies on a Jupyter-workflow implementation of the most computationally
intensive portion of the COVID-19 universal pipeline to demonstrate how the
proposed approach effectively combines usability and scalability. The pipeline is
composed of a data processing section and a core training workflow, and its goal
is to perform a metrics assessment on 11 variants of DNN models, each with its

3http://www.quantum-espresso.org

95

http://www.quantum-espresso.org

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

1) configuration

2) training

3) visualization

Gather

2 22 2

Local
context

Local
context

MARCONI 100
HPC facility

1

3

Jupyter Notebook Workflow representation Execution environment

ScaOer

Figure 6.3: Graphical representation of the Jupyter-workflow execution plan for the CLAIRE-COVID19
Notebook.

hyper-parameters. The interested reader can find a detailed description of the
pipeline in Sec. 4.2.2.

The Notebook version of the classification step used in this experiment performs
a hyperparameter search for 4 different DenseNet models [185]: DenseNet-121,
DenseNet-161, DenseNet-169, and DenseNet-201. In order to improve classification
performances, it adopts a transfer learning approach: weights pre-trained on the
ImageNet dataset [195] are fine-tuned on a pre-processed subset of the BIMCV-
COVID19 dataset [187] using a standardly configured Adam optimiser [196] (β1 = 0.9,
β2 = 0.999, ε = 10−8). Such transfer learning process is configured to run for at most
50 epochs, with early stopping after 10 epochs without improving the validation
loss.

The Notebook explores 12 different configurations for each model by varying
3 hyperparameters: learning rate (10−3, 10−4, 10−5), weight decay (5e−4, 5e−5),
and LR decay step (10, 15). Plus, it performs 5-fold cross-validation on each
configuration to reduce variability in the obtained classification metrics, with a total
of 60 variants of each model’s training process. With Jupyter-workflow, the code
can be easily split into three main sections (as shown in Fig. 6.3):

• an initial configuration section, containing the module imports and the hyper-
parameters’ grid;

• a training section, i.e. a single Notebook cell containing the main training loop;

• a visualisation section, where the metrics of each training experiment can be
efficiently analysed through the matplotlib interactive backend.

By marking each multi-valued hyperparameter and the set of cross-validation folds
as scatter input parameters of the training cell, Jupyter-workflow automatically
generates the cartesian product of input configurations and schedules them for

96

6 – Jupyter-workflow

 0

 2000

 4000

 6000

 8000

 10000

 12000

T
im

e
 (

s
)

Slurm jobs

Pending

Running

Figure 6.4: Execution times for the 240 DenseNet training experiments running in parallel on 240
GPU-equipped nodes of the CINECA MARCONI 100 facility.

concurrent execution. Nevertheless, the actual amount of concurrency strongly
depends on the chosen execution environment. In order to fully take advantage
of their embarrassingly parallel nature, the 240 training steps are offloaded to 240
GPU nodes of the CINECA MARCONI 100 facility, equipped with 2 IBM POWER9
AC922 sockets (16 cores, 3.1 GHz each), 256 GB of RAM, and 4 NVIDIA V100
GPUs (16 GB of memory each). Moreover, only a single GPU has been requested
for each job, trading off training speed for a shorter waiting time in the Slurm queue.

Conversely, the other cells are executed directly in the local context of the Jupyter-
workflow kernel, running on a desktop machine equipped with an Intel i7-7700K CPU
(4 cores, 8 threads, 4.20 GHz). Notice that the DependencyResolver component
correctly identified all the implicit input dependencies, containing aliases of Python
modules (i.e., modules imported using the import as directive) and remote dataset
paths. Moreover, the serialisation and deserialisation of the program context worked
properly even between two different hardware architectures (an x86_64 Intel CPU
on the local workstation and a ppc64le POWER9 on the MARCONI 100 nodes),
without the need to implement any custom predump and postload logic.

Fig. 6.4 shows the execution time reported by the Slurm sacct command for each
of the training jobs, including both the time spent in the waiting queue (Pending
state) and the actual DNN training time (Running state). Overhead related to
data transfers to and from the remote facility was negligible and has not been
reported. The vast majority of configurations benefited from the early stopping
criterion shortly after 10 epochs, lasting between 50 and 70 minutes. Nevertheless,
a cell’s global execution (scatter) can complete only after the tail of the slowest jobs,
which took more than 3 hours to terminate. Despite this, the obtained speedup
is substantial. Considering only the time spent in the Running state, a single
V100 GPU would require about 288 hours to complete the training. Conversely,
Jupyter-workflow allows a ×92 faster execution without sacrificing the Jupyter

97

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

1) preprocessing

2) training

3) serving

2

Local
context

Kubernetes
cluster

HPC4AI
facility

1

3

Jupyter Notebook Workflow representation Execution environment

Figure 6.5: Graphical representation of the Jupyter-workflow execution plan for the TensorFlow train-
ing+serving Notebook.

high-level interactive visualisation tools.

6.2.2 Training and serving DNNs

In the DL field, training+serving pipelines can highly benefit from a mixed cloud-
HPC execution. Indeed, even if HPC facilities with heterogeneous computing nodes
are ideal for model training, their queue-based workload management and limited
Internet access are unsuitable for the serving phase, as inference usually comes with
strict real-time requirements and needs a publicly exposed REST API. This section
describes how Jupyter-workflow can efficiently orchestrate pre-processing, training,
and serving tasks for a DNN using TensorFlow [135], offloading the execution of
each step to the most suitable infrastructure (see Fig. 6.5).

Since the experiment evaluates design-related aspects rather than performances,
the Notebook only sets up a playground with a very small CNN trained on the
Fashion-MNIST dataset [197]. After a local data pre-processing phase, the training
step is offloaded to a bare metal node of the HPC4AI facility [25], equipped with 2
Intel Xeon Gold 6230 sockets (20 cores, 2.10 GHz each), 496 GB of RAM, and 4
NVIDIA V100-SXM2 GPUs (32 GB of memory each). Moving data from the local
kernel to the remote HPC infrastructure is straightforward, as Fashion-MNIST is
relatively small (less than 30 MB). Therefore, the already pre-processed dataset
can be treated as a name dependency, letting StreamFlow manage serialisation and
transfer operations. Conversely, it is more efficient for massive datasets to move
pre-processing and training steps close to the data. This scenario can be handled
by explicitly modifying the dataset path through a value directive in the metadata.
These two data management strategies are sketched in Listing 6.4. Even if the host
code has been simplified for clarity, it is worth noting that switching between the
two different scenarios only requires a regrouping of program instructions in the
code cells without modifying the business logic.

98

6 – Jupyter-workflow

Listing 6.4: Data handling strategies in Jupyter-workflow
/***
Small dataset --> name dependency

[1] dataset_path = "/home/myuser/dataset/path"
dataset = Preprocess(Load(dataset))

Workflow metadata for cell [2]: */
{

"step": {
"in": [{

"name": "dataset",
"type": "name"

}],
...

},
"target": {...}

}
/* [2] model_spec = ...

model = Model(model_spec).fit(dataset)

**
Huge dataset -> remote path injection

[1] dataset_path = "/home/myuser/dataset/path"

Workflow metadata for cell [2]: */
{

"step": {
"in": [{

"name": "dataset_path",
"type": "name",
"value": "/remote/dataset/path"

}],
...

},
"target": {...}

}
/* [2] dataset = Preprocess(Load(dataset_path))

model = Model(model_spec).fit(dataset) */

Concerning serialisation, some internal data structures prevent the dill library
from successfully parsing TensorFlow networks. However, Jupyter-workflow easily
solves this issue by putting some custom logic in the related serializer section.
In particular, it is possible to explicitly save the model to a file using Keras utilities,
transfer it to the remote executor, and load it again in the target program’s state.
Moreover, if necessary, the deserialisation logic can be extended to upload the model
on one or more GPU devices.

As soon as the training step terminates, the resulting model is stored in a
Docker container, published as a Kubernetes Pod hosting the TensorFlow Serving
framework. In this case, the Pod is automatically deployed on the HPC4AI cloud
infrastructure by the StreamFlow Helm connector, but cell executions can also be
bound to externally managed models (i.e., marked as external in the coordination
metadata). Therefore, the current example can be configured to send trained models
directly to a production server for Continuous Integration (CI) purposes, strongly
reducing the gap between prototyping and deployment phases in the development
life-cycle.

99

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

4

11

4

Sca&er

5

6

davinci-1 HPC
Facility

Jupyter Notebook Workflow representation Execution environment

55

Sca&er Sca&er

6 6 6 6

scatter([T])

scatter([T,P],

 cartesian)

Figure 6.6: Graphical representation of the Jupyter-workflow execution plan for the Quantum ESPRESSO
Notebook.

Notice that the DependencyResolver can correctly identify all the input de-
pendencies (both Python modules and pre-processed datasets). Nevertheless, the
trained model file needs to be explicitly listed in the input dependencies of the
TensorFlow Serving initialisation step because the DependencyResolver cannot
discriminate between strings and file paths.

6.2.3 Interactive simulations at scale

This section empirically evaluates the Jupyter-workflow capabilities to enable in-
teractive simulations of realistic, large-scale systems. In particular, it analyses
the weak scalability of a Notebook containing a multi-step simulation workflow in
Quantum ESPRESSO, which implements a Car-Parrinello simulation of a mixture
of H2O, NH3 and CH4 molecules to represent the so-called primordial soup. Such
simulation explores the phase space to find where C H, O H and N H bonds break
up, forming more complex organic molecules. Several Car-Parrinello simulations
at different pressure-temperature points (P, T) are needed to simulate the phase
diagram.

As represented in Fig. 6.6, the workflow proceeds as follows. Common to all
configurations, the first four cells prepare a starting state at room temperature
and pressure from a random distribution of the three molecules. Then the pipeline
forks to simulate different temperatures through Nosé-Hoover thermostats (cell
5). Finally, for each temperature T , the simulation forks again to simulate each
temperature at several P values using the Parrinello-Rahman constant pressure
Lagrangian (cell 6).

The following discussion focuses on the last two steps, as others are trivial. Using
the Jupyter-workflow metadata format, cell 5 can be parallelised by scattering

100

6 – Jupyter-workflow

on T , while cell 6 can use a cartesian product operator to scatter over all (P, T)
combinations. In the interactive execution mode, where concurrency is confined
inside single cells, cell 6 can start only when all cell 5 tasks terminate, and all their
outputs have been copied back to the driver node. This mode allows users to inspect
cell outputs immediately, but it can introduce significant overhead. Conversely,
in the bulk evaluation mode, data are moved only if necessary, and redundant
Gather/Scatter combinations are removed to increase concurrency (see Sec. 5.2).

Table 6.1: Weak scalability for the Quantum ESPRESSO simulation when executed manually on PBS
and in both Jupyter-workflow (Notebook) execution modes.

Step Nodes PBS (s) Notebook Interactive (s) Notebook Bulk (s)

Cell 5
2 408 461 413
4 407 490 415
8 407 553 418

Cell 6
2 459 536 465
8 459 706 469
32 461 1861 474

Each workflow step is offloaded to two CPU nodes of davinci–1, the Leonardo
S.p.A. HPC system, each equipped with 2 Intel Xeon Platinum 8260 sockets (24 cores,
2.40 GHz each) and 1 TB of RAM. Weak scalability of the application is evaluated
by running it on 1, 4 and 16 (P, T) points, comparing for each setting the time to
complete steps 5 and 6 with bare PBS, interactive notebooks and bulk evaluation.
The results are reported in Table 6.1. Notice how the overhead introduced by the
interactive execution mode becomes predominant with 16 (P, T) points, while it
remains negligible in the bulk evaluation mode. These results empirically confirm
the effectiveness of the parallel patterns rewriting rules in optimising the execution
plan.

The example Notebook discussed here is a basic setup to test the effectiveness
of the proposed approach. One can easily improve it, as the Notebook is general
enough to be adapted for any simulation of the P -T phase diagram of any material,
scaling a single (P, T) point simulation up to several thousands of nodes. Peak
performances are not an issue: the Quantum ESPRESSO suite has been shown to
scale well to petascale systems, and it is currently addressing the exascale challenges
[198]. However, much of the Quantum ESPRESSO performance derives from the
linked matrix multiplication libraries, tightly coupled with the underlying hardware
technology at compile time.

Tweaking performances of these libraries is out of reach of a large portion of
domain experts, but linking Quantum ESPRESSO with low-performing or badly-
compiled versions of BLAS [94] and LAPACK [95] can have a massive impact on
the time-to-solution (see Sec. 2.3.2). With its capability to seamlessly offload com-
putation to optimised execution environments on HPC facilities, Jupyter-workflow

101

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

11) init

2) individuals Sca0er

3) merge_individuals

Jupyter Notebook Workflow representation

22

4) siBing

5) mutations_overlap

6) frequency

Sca0er

Gather

3

Sca0er

4

Sca0er

55 66

Figure 6.7: Graphical representation of the Jupyter-workflow execution plan for the 1000-genome
workflow.

enables domain experts to run simulations interactively, exploring and validating the
outputs of the first (lightweight) steps before proceeding with the heaviest portions
of the pipeline.

6.2.4 The 1000-genome literate workflow

This section investigates Jupyter-workflow strong scalability on distributed in-
frastructures. In particular, a 1000-genome workflow instance is executed on a
Kubernetes cluster running on top of the HPC4AI OpenStack-based cloud. A
detailed description of the 1000-genome workflow initially implemented in Pegasus is
available in the literature [199]. Fig. 6.7 shows the Jupyter Notebook representation
of the workflow (as a list of 6 cells) and the corresponding DAG automatically
extracted by the Jupyter-workflow runtime. Notice how the amount of concurrency
enabled by the DAG evaluation strategy becomes significant when dealing with
complex workflows.

The 1000-genome pipeline has been selected as a representative of large-scale
scientific workflows for three main reasons:

• Pegasus is a state-of-the-art representative of High Throughput Computing
(HTC) WMSs, supporting distributed execution environments without a unique
shared data space (via HTCondor);

• the code of each workflow step is written in Bash or Python, both supported
by the IPython kernel;

• the critical portion of the pipeline is a highly parallel step, composed of 2000
independent short tasks (∼120s each), which are unsuitable for queue-based

102

6 – Jupyter-workflow

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 100 200 300 400 500

S
tr

o
n
g
 s

c
a
la

b
il
it

y

Cores

Execution

DryRun

Figure 6.8: Speedup obtained executing the 1000-genome workflow on the HPC4AI cloud. The blue
curve refers to the actual execution. The orange curve shows a DryRun of the same workflow to assess
Jupyter-workflow overhead (the business code is substituted with sleeps matching execution time).

batch workload managers but can efficiently be executed at scale by on-demand
cloud locations (e.g. Kubernetes).

The porting of the host code to Jupyter-workflow merely requires creating a
cell for each step by copy-pasting the original code. Concerning coordination logic,
the two WMSs adopt a diverse approach. Pegasus requires users to model a static
workflow graph, specifying all the input and output dependencies of each step at
compile time. This strategy is compelling in terms of expressiveness, as expressible
graphs are not limited to the composition of a predefined set of patterns. The
Jupyter-workflow approach favours simplicity and usability, but it is limited by the
original sequential nature of Jupyter Notebooks, even if parallel patterns and DAG
evaluation strongly mitigate the constraints.

Jupyter-workflow can seamlessly deal with dynamic outputs. This requirement
is fundamental for a prototyping technology, where the exact structure of output
dependencies is often not known a priori. Moreover, dynamically generated DAGs
also increase reusability since the same Notebook can perform entire families of
similar experiments by simply changing the input values (as analysed in Sec. 6.2.3).
Conversely, encoding dynamic data dependencies in a Pegasus workflow requires
users to embed complex just-in-time compilation steps in the workflow graph
explicitly.

The experiment discussed in this section measures the strong scaling of an 8-
chromosomes instance of the 1000-genome workflow running on up to 500 concurrent
Kubernetes Pods. In particular, the underlying Kubernetes cluster comprises 3
control plane VMs (4 cores, 8GB of RAM each) and 16 large worker VMs (40 cores,
120GB of RAM each), interconnected with a 10Gbps Ethernet. Each Pod reserves 1
core and 2GB of RAM and mounts a 1GB tmpfs. Only the individuals step is

103

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

taken into account for performance evaluation, as it constitutes by far the bottleneck
of the workflow. Plus, the experiment relies on a slightly modified version of the
pipeline, which better addresses distributed architectures. Indeed, in the original
implementation, a chromosome input file is made available to all involved workers in
its entirety, and each of them selects a different partition. This operation generates
massive traffic on the networking layer when workers do not share the file system.
Instead, the Jupyter-workflow implementation scatters the dataset, transferring to
each worker only the required data.

On cloud architectures, all the resources (CPUs, memory, network, disks) are
typically overprovisioned and subject to load generated by other users. Therefore, a
DryRun version of the code has been developed to serve as a baseline. The DryRun
simulates the workflow behaviour without actually using CPU cores and network
bandwidth. The business code is substituted with sleeps of the expected average
timespan of the task sampled from a normal distribution, and communications are
replaced with a small message. Fig. 6.8 compares the strong scalability of real and
DryRun executions. The former scales reasonably well up to 250 containers, then it
starts suffering from the data distribution bottleneck introduced by the Kubernetes
control plane. For its part, the DryRun shows that the intrinsic overhead introduced
by the Jupyter-workflow runtime synchronisations (orange curve) keeps a reasonably
linear gap against ideal speedup (at least up to 500 Pods).

As theoretically expected, the central aspect of performance in a cloud/Kuber-
netes setting is tuning the communication/computation ratio at the Kubernetes
control plane, which does not leave much room for optimisation in I/O-bound
problems like the 1000-genome workflow. Indeed, in this experiment, data transfers
are performed via WebSocket using the kubectl CLI, a portable but suboptimal
baseline strategy to communicate with isolated Kubernetes Pods using the controller
nodes as a bridge.

In these cases, viable optimisation paths concern the distribution or elimination
of data movements. The former can be realised by implementing direct communi-
cation channels between worker Pods, e.g. through the SCP protocol, leaving the
Kubernetes control plane out of the critical path. The latter is enabled by rewriting
rules such as Map fusion (see Sec. 5.2). Undoubtedly a more detailed analysis of
the different overhead sources in Kubernetes-based cloud environments would be
an essential topic for further research. Still, a proper monitoring setting would
require a more isolated environment to suppress or artificially inject the performance
volatility generated by resource sharing in a controlled way.

Another crucial analysis would be comparing state-of-art implementations of the
1000-genome use case with Pegasus and Jupyter-workflow. The main complexity
of such aexperiment derives from the different target execution architectures that
the two WMSs are optimised for. Indeed, Pegasus has been developed to run static
workflow diagrams on top of HTC architectures managed by HTCondor, while
StreamFlow (and consequently Jupyter-workflow) is designed for container-native

104

6 – Jupyter-workflow

cloud applications and queue-based HPC clusters. A proper ad-hoc configuration of
these execution environments and the fine-tuning of all the WMS parameters to
achieve the best performances on top of them are complex activities which require
expert users to reach state of the art. Conversely, comparing an optimised version
of one tool with a suboptimal version of the other will lead to biased and unfair
results. However, developing community consensus on workflow benchmarking
applications and developing reproducible and agnostic methodologies to collect and
report benchmark results are two of the main goals of the Workflow Benchmarking
Group (WfBG). Therefore, a further investigation of this use case is in plan from
this perspective.

105

Chapter 7

Conclusion

7.1 Conclusion and remarks

This thesis introduced two methodological contributions in the field of large-scale
distributed workflows and two full-fledged WMSs implementations designed and
developed according to such methodologies.

Hybrid workflows, introduced in Chapter 3, augment standard workflow models
with topology awareness, incorporating detailed representations of execution environ-
ments in terms of computing locations and communication channels directly in the
workflow definition. This knowledge allows for compile-time soundness evaluation
of the whole model, efficient scheduling strategies based on data-locality, portability
and reproducibility of experiments promoted by the clear separation of workflow
logic and execution architecture.

The StreamFlow framework, described in Chapter 4, provides runtime support for
CWL-based hybrid workflows running on mixed cloud-HPC execution environments.
It has been evaluated on two real scientific pipelines in the fields of Bioinformatics
and DL, showing how the hybrid workflows approach can be beneficial to improve the
resource allocation strategy without significant performance drops, e.g. by offloading
computationally heavy steps to HPC facilities while executing less demanding ones
on cheaper cloud VMs.

Distributed literate workflows, discussed in Chapter 5, augment the inherently
sequential execution model of computational notebooks with sequentially equivalent
parallel semantics and global configurations to represent notebook cells as the
steps of a hybrid workflow DAG. In addition, notebook semantics are augmented
to express explicit parallel patterns (e.g. Scatter/Gather), which can be further
optimised with proper rewriting rules to increase the amount of concurrency in
workflow executions.

The Jupyter-workflow framework, introduced in Chapter 6, extends the IPython
software stack to support distributed literate workflows in Jupyter Notebooks. It
has been evaluated on large-scale HPC and cloud environments with four practical
applications in the domains of DL, scientific simulation and Bioinformatics, showing

107

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

how literate workflows can evolve computational notebooks from a prototyping
technology to a high-level programming paradigm for scientific applications.

In the author’s opinion, the proposed methodologies bring significant advances
in modelling and orchestrating modern workflows. The heterogeneity and complex-
ity of modern applications force monolithic approaches to give way to modular
architectures and patterns for designing and developing software, of which workflow
models are first-class representatives. However, in the same way, the heterogeneity
in contemporary hardware resources and their features (e.g. highly parallel hardware
accelerators, low energy consuming FPGAs, or application-specific quantum solvers)
fosters modular approaches also in the design of execution environments for such
applications.

Hybrid workflows represent an essential methodological step in this direction.
An explicit representation of the entire environment generalises the concepts of
portability and reproducibility from the application plane to the entire execution
process. The separation of concerns brought by hybrid workflow models promotes
cooperation between domain experts, who write the application logic, and computer
scientists, who find the best execution environment for each workflow step according
to specific requirements (e.g. in terms of cost, time-to-solution or energy consump-
tion). At the same time, both of them are free from the burdens of managing
applications deployment and life-cycle and writing explicit data transfers logics,
enhancing productivity. In addition, the flexibility of a loose mapping relation be-
tween steps and locations allows for automatic cross-stack executions of independent
steps, providing a trivial way to offload tasks in urgent computing scenarios.

Finally, the high-level programming paradigm and the user-friendly IDE provided
by computational notebooks, together with a static soundness evaluation, facilitate
the adoption of the proposed methodology among a broad class of users, lowering
the technical barriers to model hybrid workflows and providing a unique interface
to access heterogeneous execution infrastructures.

7.2 Future work

Future research paths from this work can be classified into two main families:
methodology extensions and further empyrical evaluations.

Regarding methodologies, the formalisation of hybrid workflow models must
unavoidably be extended to treat dynamic workflows containing conditional branches
and iterative patterns, exploring at least the primary workflow modelling tools like
Petri Nets [29] and dataflow graphs [34]. In addition, literate workflows could also
greatly benefit from iterative coordination patterns, as many scientific applications
contain iterations in their business logic (e.g. DNN training or molecular dynamics
simulation). The first step in this direction, which is ongoing, is adding a structured,
iterative construct to the CWL standard. Such a construct has been already
proposed to the CWL Leadership Team, and StreamFlow will be the first WMS to

108

7 – Conclusion

implement it.
In parallel, the actual effectiveness of the proposed methodology should be

tested on a broader set of applications. Extending StreamFlow to support other
execution environments, like modular extreme-scale HPC facilities and quantum
solvers, and Jupyter-workflow to integrate other kernels, such as Julia and R, is the
first step to broadening the class of compatible applications. Plus, the addition of an
iterative construct will enable both tools to manage all optimisation-based scientific
workloads, like large-scale simulations based on iterative solvers, distributed and
federated DL workloads, and NISQ-based quantum computing algorithms.

On the other hand, proper dissemination of the proposed methodologies and
tools is essential to find additional use cases in various academic and industrial
domains. In this direction, StreamFlow is currently part of the software stack in
several ongoing European projects (DeepHealth, ACROSS, EUPEX, and others), it
is officially recognised as a fully-compliant implementation of the CWL standard1,
and it is part of the Workflow Community Initiative (WCI)2, a community-supported
common knowledge-base for workflow research and development.

1https://www.commonwl.org/implementations/
2https://workflows.community/systems/streamflow/

109

https://www.commonwl.org/implementations/
https://workflows.community/systems/streamflow/

References

[1] J. Dean and S. Ghemawat, «MapReduce: Simplified Data Processing on Large Clusters»,
in Usenix OSDI ’04, Dec. 2004, pp. 137–150.

[2] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J. Franklin, S.
Shenker, and I. Stoica, «Resilient Distributed Datasets: A Fault-Tolerant Abstraction
for In-Memory Cluster Computing», in Proceedings of the 9th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2012, San Jose, CA, USA, April
25-27, 2012, S. D. Gribble and D. Katabi, Eds., USENIX Association, 2012, pp. 15–28.

[3] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, «Communication-
Efficient Learning of Deep Networks from Decentralized Data», in Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics, AISTATS 2017, 20-22
April 2017, Fort Lauderdale, FL, USA, 2017, pp. 1273–1282.

[4] S. Warnat-Herresthal, H. Schultze, K. L. Shastry, S. Manamohan, S. Mukherjee, V. Garg, R.
Sarveswara, K. Händler, P. Pickkers, N. A. Aziz, S. Ktena, F. Tran, M. Bitzer, S. Ossowski,
N. Casadei, C. Herr, D. Petersheim, U. Behrends, F. Kern, T. Fehlmann, P. Schommers, C.
Lehmann, M. Augustin, J. Rybniker, J. Altmüller, N. Mishra, J. P. Bernardes, B. Krämer,
L. Bonaguro, J. Schulte-Schrepping, E. De Domenico, C. Siever, M. Kraut, M. Desai, B.
Monnet, M. Saridaki, C. M. Siegel, A. Drews, M. Nuesch-Germano, H. Theis, J. Heyckendorf,
S. Schreiber, S. Kim-Hellmuth, P. Balfanz, T. Eggermann, P. Boor, R. Hausmann, H. Kuhn,
S. Isfort, J. C. Stingl, G. Schmalzing, C. K. Kuhl, R. Röhrig, G. Marx, S. Uhlig, E. Dahl,
D. Müller-Wieland, M. Dreher, N. Marx, J. Nattermann, D. Skowasch, I. Kurth, A. Keller,
R. Bals, P. Nürnberg, O. Rieß, P. Rosenstiel, M. G. Netea, F. Theis, S. Mukherjee, M.
Backes, A. C. Aschenbrenner, T. Ulas, A. Angelov, A. Bartholomäus, A. Becker, D. Bezdan,
C. Blumert, E. Bonifacio, P. Bork, B. Boyke, H. Blum, T. Clavel, M. Colome-Tatche, M.
Cornberg, I. A. De La Rosa Velázquez, A. Diefenbach, A. Dilthey, N. Fischer, K. Förstner,
S. Franzenburg, J.-S. Frick, G. Gabernet, J. Gagneur, T. Ganzenmueller, M. Gauder, J.
Geißert, A. Goesmann, S. Göpel, A. Grundhoff, H. Grundmann, T. Hain, F. Hanses, U.
Hehr, A. Heimbach, M. Hoeper, F. Horn, D. Hübschmann, M. Hummel, T. Iftner, A. Iftner,
T. Illig, S. Janssen, J. Kalinowski, R. Kallies, B. Kehr, O. T. Keppler, C. Klein, M. Knop, O.
Kohlbacher, K. Köhrer, J. Korbel, P. G. Kremsner, D. Kühnert, M. Landthaler, Y. Li, K. U.
Ludwig, O. Makarewicz, M. Marz, A. C. McHardy, C. Mertes, M. Münchhoff, S. Nahnsen,
M. Nöthen, F. Ntoumi, J. Overmann, S. Peter, K. Pfeffer, I. Pink, A. R. Poetsch, U. Protzer,
A. Pühler, N. Rajewsky, M. Ralser, K. Reiche, S. Ripke, U. N. da Rocha, A.-E. Saliba,
L. E. Sander, B. Sawitzki, S. Scheithauer, P. Schiffer, J. Schmid-Burgk, W. Schneider,
E.-C. Schulte, A. Sczyrba, M. L. Sharaf, Y. Singh, M. Sonnabend, O. Stegle, J. Stoye,
J. Vehreschild, T. P. Velavan, J. Vogel, S. Volland, M. von Kleist, A. Walker, J. Walter,
D. Wieczorek, S. Winkler, J. Ziebuhr, M. M. B. Breteler, E. J. Giamarellos-Bourboulis,
M. Kox, M. Becker, S. Cheran, M. S. Woodacre, E. L. Goh, J. L. Schultze, COVID-19
Aachen Study (COVAS), and Deutsche COVID-19 Omics Initiative (DeCOI), «Swarm

111

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

Learning for decentralized and confidential clinical machine learning», Nature, vol. 594,
no. 7862, pp. 265–270, Jun. 2021, issn: 1476-4687. doi: 10.1038/s41586-021-03583-3.

[5] J. Bent, G. Grider, B. Kettering, A. Manzanares, M. McClelland, A. Torres, and A.
Torrez, «Storage challenges at Los Alamos National Lab», in IEEE 28th Symposium
on Mass Storage Systems and Technologies, MSST 2012, April 16-20, 2012, Asilomar
Conference Grounds, Pacific Grove, CA, USA, IEEE Computer Society, 2012, pp. 1–5. doi:
10.1109/MSST.2012.6232376.

[6] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan,
R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M.
Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and
D. Amodei, «Language Models are Few-Shot Learners», in Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M.-F.
Balcan, and H.-T. Lin, Eds., 2020. [Online]. Available: https://proceedings.neurips.
cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

[7] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen, and I. Sutskever,
«Zero-Shot Text-to-Image Generation», in Proceedings of the 38th International Conference
on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, M. Meila and T. Zhang,
Eds., ser. Proceedings of Machine Learning Research, vol. 139, PMLR, 2021, pp. 8821–8831.

[8] P. H. Beckman, S. Nadella, N. Trebon, and I. Beschastnikh, «SPRUCE: A System for
Supporting Urgent High-Performance Computing», in Grid-Based Problem Solving En-
vironments - IFIP TC2/ WG 2.5 Working Conference on Grid-Based Problem Solving
Environments: Implications for Development and Deployment of Numerical Software July
17-21, 2006, Prescott, Arizona, USA, P. W. Gaffney and J. C. T. Pool, Eds., ser. IFIP,
vol. 239, Springer, 2006, pp. 295–311. doi: 10.1007/978-0-387-73659-4_16.

[9] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. C. Bavier, and L. L. Peterson, «Container-based
operating system virtualization: a scalable, high-performance alternative to hypervisors»,
in Proceedings of the 2007 EuroSys Conference, Lisbon, Portugal, March 21-23, 2007, 2007,
pp. 275–287. doi: 10.1145/1272996.1273025.

[10] P. Di Tommaso, M. Chatzou, E. W. Floden, et al., «Nextflow enables reproducible com-
putational workflows», Nature Biotechnology, vol. 35, no. 4, pp. 316–319, Apr. 2017, issn:
1087-0156. doi: 10.1038/nbt.3820.

[11] K. J. Millman and F. Pérez, «Developing open-source scientific practice», in Implementing
Reproducible Research, Chapman and Hall/CRC, 2014, pp. 149–183.

[12] H. Shen, «Interactive notebooks: Sharing the code», Nature, vol. 515, no. 7525, pp. 151–152,
Nov. 2014, issn: 0028-0836. doi: 10.1038/515151a.

[13] I. Colonnelli, B. Cantalupo, I. Merelli, and M. Aldinucci, «StreamFlow: cross-breeding
cloud with HPC», IEEE Transactions on Emerging Topics in Computing, vol. 9, no. 4,
pp. 1723–1737, 2021. doi: 10.1109/TETC.2020.3019202.

[14] P. Amstutz, M. R. Crusoe, N. Tijanić, B. Chapman, J. Chilton, M. Heuer, A. Kartashov, J.
Kern, D. Leehr, H. Ménager, M. Nedeljkovich, M. Scales, S. Soiland-Reyes, and L. Stojanovic,
Common Workflow Language, v1.0, 2016. doi: 10.6084/m9.figshare.3115156.v2.

[15] I. Colonnelli, M. Aldinucci, B. Cantalupo, L. Padovani, S. Rabellino, C. Spampinato, R.
Morelli, R. Di Carlo, N. Magini, and C. Cavazzoni, «Distributed workflows with Jupyter»,
Future Generation Computer Systems, vol. 128, pp. 282–298, 2022, issn: 0167-739X. doi:
10.1016/j.future.2021.10.007.

112

https://doi.org/10.1038/s41586-021-03583-3
https://doi.org/10.1109/MSST.2012.6232376
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1007/978-0-387-73659-4_16
https://doi.org/10.1145/1272996.1273025
https://doi.org/10.1038/nbt.3820
https://doi.org/10.1038/515151a
https://doi.org/10.1109/TETC.2020.3019202
https://doi.org/10.6084/m9.figshare.3115156.v2
https://doi.org/10.1016/j.future.2021.10.007

REFERENCES

[16] M. Cole, «A Skeletal Approach to Exploitation of Parallelism», in Proc. of CONPAR
88, ser. British Computer Society Workshop Series, Cambridge University Press, 1989,
pp. 667–675.

[17] M. Cole, «Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal Parallel
Programming», Parallel Computing, vol. 30, no. 3, pp. 389–406, 2004.

[18] P. R. Rosenbaum and D. B. Rubin, «The Central Role of the Propensity Score in Ob-
servational Studies for Causal Effects», Biometrika, vol. 70, no. 1, pp. 41–55, 1983, issn:
00063444.

[19] P. R. Rosenbaum and D. B. Rubin, «Reducing Bias in Observational Studies Using Sub-
classification on the Propensity Score», Journal of the American Statistical Association,
vol. 79, no. 387, pp. 516–524, 1984, issn: 01621459.

[20] D. R. Cox, «Regression Models and Life-Tables», Journal of the Royal Statistical Society.
Series B (Methodological), vol. 34, no. 2, pp. 187–220, 1972, issn: 00359246.

[21] Y. Arfat, G. Mittone, R. Esposito, B. Cantalupo, G. M. De Ferrari, and M. Aldinucci, «A
Review of Machine Learning for Cardiology», Minerva cardiology and angiology, 2021. doi:
10.23736/s2724-5683.21.05709-4.

[22] Y. Freund and R. E. Schapire, «A Decision-Theoretic Generalization of On-Line Learning
and an Application to Boosting», J. Comput. Syst. Sci., vol. 55, no. 1, pp. 119–139, 1997.
doi: 10.1006/jcss.1997.1504.

[23] M. Caballero, J. A. Gómez, and A. Bantouna, «Deep-Learning and HPC to Boost Biomed-
ical Applications for Health (DeepHealth)», in 32nd IEEE International Symposium on
Computer-Based Medical Systems, CBMS 2019, Cordoba, Spain, June 5-7, 2019, IEEE,
2019, pp. 150–155. doi: 10.1109/CBMS.2019.00040.

[24] M. Aldinucci, G. Agosta, A. Andreini, C. A. Ardagna, A. Bartolini, A. Cilardo, B. Cosenza,
M. Danelutto, R. Esposito, W. Fornaciari, R. Giorgi, D. Lengani, R. Montella, M. Olivieri,
S. Saponara, D. Simoni, and M. Torquati, «The Italian research on HPC key technologies
across EuroHPC», in CF ’21: Computing Frontiers Conference, Virtual Event, Italy, May
11-13, 2021, 2021, pp. 178–184. doi: 10.1145/3457388.3458508.

[25] M. Aldinucci, S. Rabellino, M. Pironti, F. Spiga, P. Viviani, M. Drocco, M. Guerzoni,
G. Boella, M. Mellia, P. Margara, I. Drago, R. Marturano, G. Marchetto, E. Piccolo,
S. Bagnasco, S. Lusso, S. Vallero, G. Attardi, A. Barchiesi, A. Colla, and F. Galeazzi,
«HPC4AI, an AI-on-demand federated platform endeavour», in ACM Computing Frontiers,
Ischia, Italy, May 2018. doi: 10.1145/3203217.3205340.

[26] WFMC, «Workflow Management Coalition Terminology & Glossary, Document Number
WFMC-TC-1011, Document Status – Issue 3.0», in Document Status–Issue 3.0. Brussels:
Workflow Management Coalition, Feb. 1999.

[27] B. Ludäscher, S. Bowers, and T. M. McPhillips, «Scientific Workflows», in Encyclopedia
of Database Systems, Second Edition, Springer, 2018. doi: 10.1007/978-1-4614-8265-
9_1471.

[28] W. M. P. van der Aalst, «Three good reasons for using a Petri-net-based workflow manage-
ment system», English, in Information and process integration in enterprises: Rethinking
documents, ser. The Kluwer International Series in Engineering and Computer. Netherlands:
Kluwer Academic Publishers, 1998, pp. 161–182.

[29] W. Reisig and G. Rozenberg, Eds., Lectures on Petri Nets I: Basic Models, Advances in
Petri Nets, the volumes are based on the Advanced Course on Petri Nets, held in Dagstuhl,
September 1996, vol. 1491, Lecture Notes in Computer Science, Springer, 1998, isbn:
3-540-65306-6. doi: 10.1007/3-540-65306-6.

113

https://doi.org/10.23736/s2724-5683.21.05709-4
https://doi.org/10.1006/jcss.1997.1504
https://doi.org/10.1109/CBMS.2019.00040
https://doi.org/10.1145/3457388.3458508
https://doi.org/10.1145/3203217.3205340
https://doi.org/10.1007/978-1-4614-8265-9_1471
https://doi.org/10.1007/978-1-4614-8265-9_1471
https://doi.org/10.1007/3-540-65306-6

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

[30] K. M. Kavi, B. P. Buckles, and U. N. Bhat, «A Formal Definition of Data Flow Graph
Models», IEEE Trans. Computers, vol. 35, no. 11, pp. 940–948, 1986. doi: 10.1109/TC.
1986.1676696.

[31] J. D. Brock, «A formal model of non-determinate dataflow computation», Ph.D. dissertation,
Massachusetts Institute of Technology, Cambridge, MA, USA, 1983.

[32] K. Jensen, «Coloured Petri nets: A high level language for system design and analysis», in
Advances in Petri Nets 1990 [10th International Conference on Applications and Theory of
Petri Nets, Bonn, Germany, June 1989, Proceedings], 1989, pp. 342–416. doi: 10.1007/3-
540-53863-1_31.

[33] W. M. P. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros,
«Workflow Patterns», Distributed Parallel Databases, vol. 14, no. 1, pp. 5–51, 2003. doi:
10.1023/A:1022883727209.

[34] E. Lee and T. Parks, «Dataflow Process Networks», Proc. of the IEEE, vol. 83, no. 5,
pp. 773–801, May 1995.

[35] J. Yu and R. Buyya, «A Taxonomy of Workflow Management Systems for Grid Computing»,
Journal of Grid Computing, vol. 3, no. 3-4, pp. 171–200, 2005. doi: 10.1007/s10723-005-
9010-8.

[36] J. Liu, E. Pacitti, and V. P. et al, «A Survey of Data-Intensive Scientific Workflow
Management», Journal of Grid Computing, vol. 13, no. 4, pp 457–493, Dec. 2015.

[37] S. C. Boulakia, K. Belhajjame, O. Collin, J. Chopard, C. Froidevaux, A. Gaignard, K.
Hinsen, P. Larmande, Y. L. Bras, F. Lemoine, F. Mareuil, H. Ménager, C. Pradal, and
C. Blanchet, «Scientific workflows for computational reproducibility in the life sciences:
Status, challenges and opportunities», Future Generation Comp. Syst., vol. 75, pp. 284–298,
2017. doi: 10.1016/j.future.2017.01.012.

[38] M. P. Atkinson, S. Gesing, J. Montagnat, and I. J. Taylor, «Scientific workflows: Past,
present and future», Future Generation Comp. Syst., vol. 75, pp. 216–227, 2017. doi:
10.1016/j.future.2017.05.041.

[39] R. F. da Silva, R. Filgueira, I. Pietri, M. Jiang, R. Sakellariou, and E. Deelman, «A
characterization of workflow management systems for extreme-scale applications», Future
Generation Comp. Syst., vol. 75, pp. 228–238, 2017.

[40] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. B. Jones, E. A. Lee, J.
Tao, and Y. Zhao, «Scientific workflow management and the Kepler system», Concurrency
and Computation: Practice and Experience, vol. 18, no. 10, pp. 1039–1065, 2006. doi:
10.1002/cpe.994.

[41] T. Fahringer, R. Prodan, R. Duan, J. Hofer, F. Nadeem, F. Nerieri, S. Podlipnig, J. Qin,
M. Siddiqui, H. L. Truong, A. Villazón, and M. Wieczorek, «ASKALON: A Development
and Grid Computing Environment for Scientific Workflows», in Workflows for e-Science,
Scientific Workflows for Grids, 2007, pp. 450–471. doi: 10.1007/978-1-84628-757-2_27.

[42] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. Maechling, R. Mayani, W. Chen,
R. F. da Silva, M. Livny, and R. K. Wenger, «Pegasus, a workflow management system
for science automation», Future Generation Comp. Syst., vol. 46, pp. 17–35, 2015. doi:
10.1016/j.future.2014.10.008.

[43] T. M. Oinn, R. M. Greenwood, M. Addis, M. N. Alpdemir, J. Ferris, K. Glover, C. A. Goble,
A. Goderis, D. Hull, D. Marvin, P. Li, P. W. Lord, M. R. Pocock, M. Senger, R. Stevens,
A. Wipat, and C. Wroe, «Taverna: lessons in creating a workflow environment for the
life sciences», Concurrency and Computation: Practice and Experience, vol. 18, no. 10,
pp. 1067–1100, 2006. doi: 10.1002/cpe.993.

114

https://doi.org/10.1109/TC.1986.1676696
https://doi.org/10.1109/TC.1986.1676696
https://doi.org/10.1007/3-540-53863-1_31
https://doi.org/10.1007/3-540-53863-1_31
https://doi.org/10.1023/A:1022883727209
https://doi.org/10.1007/s10723-005-9010-8
https://doi.org/10.1007/s10723-005-9010-8
https://doi.org/10.1016/j.future.2017.01.012
https://doi.org/10.1016/j.future.2017.05.041
https://doi.org/10.1002/cpe.994
https://doi.org/10.1007/978-1-84628-757-2_27
https://doi.org/10.1016/j.future.2014.10.008
https://doi.org/10.1002/cpe.993

REFERENCES

[44] I. J. Taylor, M. S. Shields, I. Wang, and A. Harrison, «The Triana Workflow Environment:
Architecture and Applications», in Workflows for e-Science, Scientific Workflows for Grids,
Springer, 2007, pp. 320–339. doi: 10.1007/978-1-84628-757-2_20.

[45] E. Afgan, D. Baker, M. van den Beek, D. J. Blankenberg, D. Bouvier, M. Cech, J. Chilton,
D. Clements, N. Coraor, C. Eberhard, B. A. Grüning, A. Guerler, J. Hillman-Jackson,
G. V. Kuster, E. Rasche, N. Soranzo, N. Turaga, J. Taylor, A. Nekrutenko, and J. Goecks,
«The Galaxy platform for accessible, reproducible and collaborative biomedical analyses:
2016 update», Nucleic Acids Research, vol. 44, no. Webserver-Issue, W3–W10, 2016. doi:
10.1093/nar/gkw343.

[46] R. Badia, E. Ayguade, and J. Labarta, «Workflows for Science: A Challenge When Facing
the Convergence of HPC and Big Data», Supercomput. Front. Innov.: Int. J., vol. 4, no. 1,
pp. 27–47, Mar. 2017, issn: 2409-6008. doi: 10.14529/jsfi170102.

[47] I. J. Taylor, M. S. Shields, I. Wang, and O. F. Rana, «Triana Applications within Grid
Computing and Peer to Peer Environments», J. Grid Comput., vol. 1, no. 2, pp. 199–217,
2003. doi: 10.1023/B:GRID.0000024074.63139.ce.

[48] M. Siddiqui, A. Villazón, J. Hofer, and T. Fahringer, «GLARE: A Grid Activity Registration,
Deployment and Provisioning Framework», in Proceedings of the ACM/IEEE SC2005
Conference on High Performance Networking and Computing, November 12-18, 2005,
Seattle, WA, USA, CD-Rom, 2005, p. 52. doi: 10.1109/SC.2005.30.

[49] D. Thain, T. Tannenbaum, and M. Livny, «Distributed computing in practice: the Condor
experience», Concurrency - Practice and Experience, vol. 17, no. 2-4, pp. 323–356, 2005.
doi: 10.1002/cpe.938.

[50] J. Eker, J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer, S. R. Sachs,
and Y. Xiong, «Taming heterogeneity - the Ptolemy approach», Proceedings of the IEEE,
vol. 91, no. 1, pp. 127–144, 2003. doi: 10.1109/JPROC.2002.805829.

[51] D. L. Cuadrado, A. P. Ravn, and P. Koch, «Automated distributed simulation in PTOLEMY
II», in Proceedings of the IASTED International Conference on Parallel and Distributed
Computing and Networks, as part of the 25th IASTED International Multi-Conference on
Applied Informatics, February 13-15 2007, Innsbruck, Austria, H. Burkhart, Ed., IAST-
ED/ACTA Press, 2007, pp. 138–143.

[52] J. Köster and S. Rahmann, «Snakemake - a scalable bioinformatics workflow engine»,
Bioinformatics, vol. 28, no. 19, pp. 2520–2522, 2012. doi: 10.1093/bioinformatics/
bts480.

[53] M. Albrecht, P. Donnelly, P. Bui, and D. Thain, «Makeflow: a portable abstraction for data
intensive computing on clusters, clouds, and grids», in Proceedings of the 1st ACM SIGMOD
Workshop on Scalable Workflow Execution Engines and Technologies, SWEET@SIGMOD
2012, Scottsdale, AZ, USA, May 20, 2012, 2012, p. 1. doi: 10.1145/2443416.2443417.

[54] J. Vivian, A. A. Rao, F. A. Nothaft, et al., «Toil enables reproducible, open source, big
biomedical data analyses», Nature Biotechnology, vol. 35, no. 4, pp. 314–316, Apr. 2017,
issn: 1087-0156. doi: 10.1038/nbt.3772.

[55] D. D. Sánchez-Gallegos, D. D. Luccio, S. Kosta, J. L. G. Compeán, and R. Montella,
«An efficient pattern-based approach for workflow supporting large-scale science: The
DagOnStar experience», Future Gener. Comput. Syst., vol. 122, pp. 187–203, 2021. doi:
10.1016/j.future.2021.03.017.

[56] M. Kotliar, A. V. Kartashov, and A. Barski, «CWL-Airflow: a lightweight pipeline manager
supporting Common Workflow Language», GigaScience, vol. 8, no. 7, Jul. 2019, issn:
2047-217X. doi: 10.1093/gigascience/giz084.

115

https://doi.org/10.1007/978-1-84628-757-2_20
https://doi.org/10.1093/nar/gkw343
https://doi.org/10.14529/jsfi170102
https://doi.org/10.1023/B:GRID.0000024074.63139.ce
https://doi.org/10.1109/SC.2005.30
https://doi.org/10.1002/cpe.938
https://doi.org/10.1109/JPROC.2002.805829
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1093/bioinformatics/bts480
https://doi.org/10.1145/2443416.2443417
https://doi.org/10.1038/nbt.3772
https://doi.org/10.1016/j.future.2021.03.017
https://doi.org/10.1093/gigascience/giz084

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

[57] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen, S.
Venkataraman, M. J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, and I. Stoica, «Apache
Spark: a unified engine for big data processing», Commun. ACM, vol. 59, no. 11, pp. 56–65,
2016. doi: 10.1145/2934664.

[58] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas, «Apache
Flink™: Stream and Batch Processing in a Single Engine», IEEE Data Eng. Bull., vol. 38,
no. 4, pp. 28–38, 2015. [Online]. Available: http://sites.computer.org/debull/A15dec/
p28.pdf.

[59] M. A. U. Nasir, G. D. F. Morales, D. García-Soriano, N. Kourtellis, and M. Serafini, «The
power of both choices: Practical load balancing for distributed stream processing engines»,
in 31st IEEE International Conference on Data Engineering, ICDE 2015, Seoul, South
Korea, April 13-17, 2015, J. Gehrke, W. Lehner, K. Shim, S. K. Cha, and G. M. Lohman,
Eds., IEEE Computer Society, 2015, pp. 137–148. doi: 10.1109/ICDE.2015.7113279.

[60] V. Cima, S. Böhm, J. Martinovic, J. Dvorský, K. Janurová, T. V. Aa, T. J. Ashby, and
V. I. Chupakhin, «HyperLoom: A Platform for Defining and Executing Scientific Pipelines
in Distributed Environments», in Proceedings of the 9th Workshop on Parallel Programming
and RunTime Management Techniques for Manycore Architectures and 7th Workshop on
Design Tools and Architectures for Multicore Embedded Computing Platforms, PARMA-
DITAM@HiPEAC 2018, Manchester, United Kingdom, January 23-23, 2018, 2018, pp. 1–6.
doi: 10.1145/3183767.3183768.

[61] Dask Development Team, Dask: Library for dynamic task scheduling, 2016. [Online]. Avail-
able: https://dask.org.

[62] F. Marozzo, F. Lordan, R. Rafanell, D. Lezzi, D. Talia, and R. M. Badia, «Enabling Cloud
Interoperability with COMPSs», in Euro-Par 2012 Parallel Processing, C. Kaklamanis,
T. Papatheodorou, and P. G. Spirakis, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 16–27, isbn: 978-3-642-32820-6.

[63] P. Moritz, R. Nishihara, S. Wang, A. Tumanov, R. Liaw, E. Liang, M. Elibol, Z. Yang,
W. Paul, M. I. Jordan, and I. Stoica, «Ray: A Distributed Framework for Emerging AI Ap-
plications», in 13th USENIX Symposium on Operating Systems Design and Implementation,
OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018, 2018, pp. 561–577.

[64] Y. Babuji, A. Woodard, Z. Li, D. S. Katz, B. Clifford, R. Kumar, L. Lacinski, R. Chard,
J. M. Wozniak, I. Foster, M. Wilde, and K. Chard, «Parsl: Pervasive Parallel Programming
in Python», in Proceedings of the 28th International Symposium on High-Performance
Parallel and Distributed Computing, ser. HPDC ’19, Phoenix, AZ, USA: ACM, 2019, pp. 25–
36, isbn: 978-1-4503-6670-0. doi: 10.1145/3307681.3325400.

[65] H. G. Baker and C. Hewitt, «The incremental garbage collection of processes», in Proceedings
of the 1977 Symposium on Artificial Intelligence and Programming Languages, USA, August
15-17, 1977, ACM, 1977, pp. 55–59. doi: 10.1145/800228.806932.

[66] C. Misale, M. Drocco, M. Aldinucci, and G. Tremblay, «A Comparison of Big Data
Frameworks on a Layered Dataflow Model», Parallel Processing Letters, vol. 27, no. 01,
pp. 1–20, 2017. doi: 10.1142/S0129626417400035.

[67] T. M. McPhillips, T. Song, T. Kolisnik, S. Aulenbach, K. Belhajjame, K. Bocinsky, Y. Cao,
F. Chirigati, S. C. Dey, J. Freire, D. N. Huntzinger, C. Jones, D. Koop, P. Missier, M.
Schildhauer, C. R. Schwalm, Y. Wei, J. Cheney, M. Bieda, and B. Ludäscher, «YesWorkflow:
A User-Oriented, Language-Independent Tool for Recovering Workflow Information from
Scripts», CoRR, vol. abs/1502.02403, 2015. arXiv: 1502.02403.

116

https://doi.org/10.1145/2934664
http://sites.computer.org/debull/A15dec/p28.pdf
http://sites.computer.org/debull/A15dec/p28.pdf
https://doi.org/10.1109/ICDE.2015.7113279
https://doi.org/10.1145/3183767.3183768
https://dask.org
https://doi.org/10.1145/3307681.3325400
https://doi.org/10.1145/800228.806932
https://doi.org/10.1142/S0129626417400035
https://arxiv.org/abs/1502.02403

REFERENCES

[68] B. Lerner and E. R. Boose, «RDataTracker: Collecting Provenance in an Interactive Scripting
Environment», in 6th Workshop on the Theory and Practice of Provenance, TaPP’14,
Cologne, Germany, June 12-13, 2014, A. Chapman, B. Ludäscher, and A. Schreiber, Eds.,
USENIX Association, 2014. [Online]. Available: https://www.usenix.org/conference/
tapp2014/agenda/presentation/lerner.

[69] L. A. M. C. Carvalho, K. Belhajjame, and C. B. Medeiros, «Converting scripts into
reproducible workflow research objects», in 12th IEEE International Conference on e-
Science, e-Science 2016, Baltimore, MD, USA, October 23-27, 2016, 2016, pp. 71–80. doi:
10.1109/eScience.2016.7870887.

[70] J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire, «noWorkflow: a Tool for Collecting,
Analyzing, and Managing Provenance from Python Scripts», Proc. VLDB Endow., vol. 10,
no. 12, pp. 1841–1844, 2017. doi: 10.14778/3137765.3137789.

[71] M. Baranowski, A. Belloum, M. Bubak, and M. Malawski, «Constructing workflows from
script applications», Sci. Program., vol. 20, no. 4, pp. 359–377, 2012. doi: 10.3233/SPR-
120358.

[72] M. Malawski, T. Gubala, M. Kasztelnik, T. Bartynski, M. Bubak, F. Baude, and L. Henrio,
«High-Level Scripting Approach for Building Component-Based Applications on the Grid»,
in Making Grids Work: Proceedings of the CoreGRID Workshop on Programming Models
Grid and P2P System Architecture Grid Systems, Tools and Environments, 12-13 June 2007,
Heraklion, Crete, Greece, 2007, pp. 309–321. doi: 10.1007/978-0-387-78448-9_25.

[73] A. R. Runnalls and C. A. Silles, «Provenance Tracking in R», in Provenance and Annotation
of Data and Processes - 4th International Provenance and Annotation Workshop, IPAW
2012, Santa Barbara, CA, USA, June 19-21, 2012, Revised Selected Papers, ser. Lecture
Notes in Computer Science, vol. 7525, Springer, 2012, pp. 237–239. doi: 10.1007/978-3-
642-34222-6_25.

[74] D. Tariq, M. Ali, and A. Gehani, «Towards Automated Collection of Application-Level Data
Provenance», in 4th Workshop on the Theory and Practice of Provenance, TaPP’12, Boston,
MA, USA, June 14-15, 2012, U. A. Acar and T. J. Green, Eds., USENIX Association,
2012. [Online]. Available: https://www.usenix.org/conference/tapp12/workshop-
program/presentation/tariq.

[75] A. S. Tanenbaum and M. van Steen, Distributed systems - principles and paradigms, 2nd
Edition. Pearson Education, 2007, isbn: 978-0-13-239227-3.

[76] M. P. Forum, «MPI: A Message-Passing Interface Standard», University of Tennessee, USA,
Tech. Rep., 1994.

[77] K. Goodhope, J. Koshy, J. Kreps, N. Narkhede, R. Park, J. Rao, and V. Y. Ye, «Building
LinkedIn’s Real-time Activity Data Pipeline», IEEE Data Eng. Bull., vol. 35, no. 2, pp. 33–
45, 2012. [Online]. Available: http://sites.computer.org/debull/A12june/pipeline.
pdf.

[78] S. Gilbert and N. A. Lynch, «Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services», SIGACT News, vol. 33, no. 2, pp. 51–59, 2002. doi:
10.1145/564585.564601.

[79] I. Foster, C. Kesselman, and S. Tuecke, «The Anatomy of the Grid: Enabling Scalable
Virtual Organization», The Intl. Journal of High Performance Computing Applications,
vol. 15, no. 3, pp. 200–222, Fall 2001, issn: 1094-3420.

[80] I. Foster, «What is the Grid? A Three Point Checklist», Jul. 2002.

117

https://www.usenix.org/conference/tapp2014/agenda/presentation/lerner
https://www.usenix.org/conference/tapp2014/agenda/presentation/lerner
https://doi.org/10.1109/eScience.2016.7870887
https://doi.org/10.14778/3137765.3137789
https://doi.org/10.3233/SPR-120358
https://doi.org/10.3233/SPR-120358
https://doi.org/10.1007/978-0-387-78448-9_25
https://doi.org/10.1007/978-3-642-34222-6_25
https://doi.org/10.1007/978-3-642-34222-6_25
https://www.usenix.org/conference/tapp12/workshop-program/presentation/tariq
https://www.usenix.org/conference/tapp12/workshop-program/presentation/tariq
http://sites.computer.org/debull/A12june/pipeline.pdf
http://sites.computer.org/debull/A12june/pipeline.pdf
https://doi.org/10.1145/564585.564601

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

[81] I. T. Foster and C. Kesselman, «Globus: a Metacomputing Infrastructure Toolkit», Int.
J. High Perform. Comput. Appl., vol. 11, no. 2, pp. 115–128, 1997. doi: 10 . 1177 /
109434209701100205.

[82] K. Czajkowski, I. T. Foster, N. T. Karonis, C. Kesselman, S. Martin, W. Smith, and
S. Tuecke, «A Resource Management Architecture for Metacomputing Systems», in Job
Scheduling Strategies for Parallel Processing, IPPS/SPDP’98 Workshop, Orlando, Florida,
USA, March 30, 1998, Proceedings, D. G. Feitelson and L. Rudolph, Eds., ser. Lecture Notes
in Computer Science, vol. 1459, Springer, 1998, pp. 62–82. doi: 10.1007/BFb0053981.

[83] S. Fitzgerald, I. T. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke,
«A Directory Service for Configuring High-Performance Distributed Computations», in
Proceedings of the 6th International Symposium on High Performance Distributed Computing,
HPDC ’97, Portland, OR, USA, August 5-8, 1997, IEEE Computer Society, 1997, pp. 365–
376. doi: 10.1109/HPDC.1997.626445.

[84] I. T. Foster, C. Kesselman, G. Tsudik, and S. Tuecke, «A Security Architecture for Compu-
tational Grids», in CCS ’98, Proceedings of the 5th ACM Conference on Computer and
Communications Security, San Francisco, CA, USA, November 3-5, 1998, L. Gong and
M. K. Reiter, Eds., ACM, 1998, pp. 83–92. doi: 10.1145/288090.288111.

[85] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, C. Kesselman, S. Meder, V. Nefedova,
D. Quesnel, S. Tuecke, and I. T. Foster, «Secure, Efficient Data Transport and Replica
Management for High-Performance Data-Intensive Computing», in 18th IEEE Symposium
on Mass Storage Systems, MSS 2001: Large Scale Storage in the Web, San Diego, CA, USA,
April 17-20, 2001, IEEE Computer Society, 2001, pp. 13–28. doi: 10.1109/MSS.2001.
10001.

[86] I. Foster, Y. Zhao, I. Raicu, and S. Lu, «Cloud Computing and Grid Computing 360-Degree
Compared», in 2008 Grid Computing Environments Workshop, IEEE Computer Society,
2008, pp. 1–10. doi: 10.1109/GCE.2008.4738445.

[87] K. Keahey, I. T. Foster, T. Freeman, and X. Zhang, «Virtual workspaces: Achieving quality
of service and quality of life in the Grid», Sci. Program., vol. 13, no. 4, pp. 265–275, 2005.
doi: 10.1155/2005/351408.

[88] J. Shiers, «The Worldwide LHC Computing Grid (worldwide LCG)», Comput. Phys.
Commun., vol. 177, no. 1-2, pp. 219–223, 2007. doi: 10.1016/j.cpc.2007.02.021.

[89] J. J. Dongarra, «Trends in High-Performance Computing», in Handbook of Nature-Inspired
and Innovative Computing - Integrating Classical Models with Emerging Technologies,
Springer, 2006, pp. 511–520. doi: 10.1007/0-387-27705-6_15.

[90] J. J. Dongarra, P. Luszczek, and A. Petitet, «The LINPACK Benchmark: past, present and
future», Concurr. Comput. Pract. Exp., vol. 15, no. 9, pp. 803–820, 2003. doi: 10.1002/
cpe.728.

[91] J. Shalf, S. S. Dosanjh, and J. Morrison, «Exascale Computing Technology Challenges», in
High Performance Computing for Computational Science - VECPAR 2010 - 9th Interna-
tional conference, Berkeley, CA, USA, June 22-25, 2010, Revised Selected Papers, ser. Lec-
ture Notes in Computer Science, vol. 6449, Springer, 2010, pp. 1–25. doi: 10.1007/978-3-
642-19328-6_1.

[92] S. Borkar and A. A. Chien, «The future of microprocessors», Commun. ACM, vol. 54, no. 5,
pp. 67–77, 2011. doi: 10.1145/1941487.1941507.

118

https://doi.org/10.1177/109434209701100205
https://doi.org/10.1177/109434209701100205
https://doi.org/10.1007/BFb0053981
https://doi.org/10.1109/HPDC.1997.626445
https://doi.org/10.1145/288090.288111
https://doi.org/10.1109/MSS.2001.10001
https://doi.org/10.1109/MSS.2001.10001
https://doi.org/10.1109/GCE.2008.4738445
https://doi.org/10.1155/2005/351408
https://doi.org/10.1016/j.cpc.2007.02.021
https://doi.org/10.1007/0-387-27705-6_15
https://doi.org/10.1002/cpe.728
https://doi.org/10.1002/cpe.728
https://doi.org/10.1007/978-3-642-19328-6_1
https://doi.org/10.1007/978-3-642-19328-6_1
https://doi.org/10.1145/1941487.1941507

REFERENCES

[93] J. J. Dongarra, P. H. Beckman, T. Moore, P. Aerts, G. Aloisio, J.-C. Andre, D. Barkai,
J.-Y. Berthou, T. Boku, B. Braunschweig, F. Cappello, B. M. Chapman, X. Chi, A. N.
Choudhary, S. S. Dosanjh, T. H. Dunning, S. Fiore, A. Geist, B. Gropp, R. J. Harrison,
M. Hereld, M. A. Heroux, A. Hoisie, K. Hotta, Z. Jin, Y. Ishikawa, F. Johnson, S. Kale,
R. Kenway, D. E. Keyes, B. Kramer, J. Labarta, A. Lichnewsky, T. Lippert, B. Lucas,
B. Maccabe, S. Matsuoka, P. Messina, P. Michielse, B. Mohr, M. S. Müller, W. E. Nagel, H.
Nakashima, M. E. Papka, D. A. Reed, M. Sato, E. Seidel, J. Shalf, D. Skinner, M. Snir, T. L.
Sterling, R. Stevens, F. Streitz, B. Sugar, S. Sumimoto, W. M. Tang, J. Taylor, R. Thakur,
A. E. Trefethen, M. Valero, A. J. van der Steen, J. S. Vetter, P. Williams, R. W. Wisniewski,
and K. A. Yelick, «The International Exascale Software Project roadmap», Int. J. High
Perform. Comput. Appl., vol. 25, no. 1, pp. 3–60, 2011. doi: 10.1177/1094342010391989.

[94] J. J. Dongarra, J. D. Croz, S. Hammarling, and R. J. Hanson, «An extended set of
FORTRAN basic linear algebra subprograms», ACM Trans. Math. Softw., vol. 14, no. 1,
pp. 1–17, 1988. doi: 10.1145/42288.42291.

[95] E. Anderson, Z. Bai, C. H. Bischof, L. S. Blackford, J. Demmel, J. J. Dongarra, J. D. Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. C. Sorensen, LAPACK Users’ Guide,
Third Edition, ser. Software, Environments and Tools. SIAM, 1999, isbn: 978-0-89871-447-0.
doi: 10.1137/1.9780898719604.

[96] P. Viviani, M. Aldinucci, M. Torquati, and R. d’lppolito, «Multiple back-end support
for the armadillo linear algebra interface», in Proceedings of the Symposium on Applied
Computing, SAC 2017, Marrakech, Morocco, April 3-7, 2017, ACM, 2017, pp. 1566–1573.
doi: 10.1145/3019612.3019743.

[97] M. J. Flynn, «Some Computer Organizations and Their Effectiveness», IEEE Transactions
on Computers, vol. C-21, no. 9, pp. 948–960, Sep. 1972. doi: 10.1109/TC.1972.5009071.

[98] R. Rabenseifner, G. Hager, and G. Jost, «Hybrid MPI/OpenMP Parallel Programming on
Clusters of Multi-Core SMP Nodes», in Proceedings of the 17th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing, PDP 2009, Weimar,
Germany, 18-20 Febuary 2009, IEEE Computer Society, 2009, pp. 427–436. doi: 10.1109/
PDP.2009.43.

[99] S. J. Pennycook, S. D. Hammond, S. A. Jarvis, and G. R. Mudalige, «Performance analysis of
a hybrid MPI/CUDA implementation of the NASLU benchmark», SIGMETRICS Perform.
Evaluation Rev., vol. 38, no. 4, pp. 23–29, 2011. doi: 10.1145/1964218.1964223.

[100] A. Sergeev and M. D. Balso, «Horovod: fast and easy distributed deep learning in Tensor-
Flow», CoRR, vol. abs/1802.05799, 2018. arXiv: 1802.05799.

[101] T. Gamblin, M. P. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R. de Supinski,
and S. Futral, «The Spack package manager: bringing order to HPC software chaos», in
Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2015, Austin, TX, USA, November 15-20, 2015, ACM, 2015,
40:1–40:12. doi: 10.1145/2807591.2807623.

[102] G. M. Kurtzer, V. Sochat, and M. W. Bauer, «Singularity: Scientific containers for mobility
of compute», PLOS ONE, vol. 12, no. 5, pp. 1–20, May 2017. doi: 10.1371/journal.pone.
0177459.

[103] P. Braam, «The Lustre Storage Architecture», CoRR, vol. abs/1903.01955, 2019. arXiv:
1903.01955.

[104] A. B. Yoo, M. A. Jette, and M. Grondona, «SLURM: Simple Linux Utility for Resource
Management», in Job Scheduling Strategies for Parallel Processing, 9th International
Workshop, JSSPP 2003, Seattle, WA, USA, June 24, 2003, Revised Papers, ser. Lecture Notes
in Computer Science, vol. 2862, Springer, 2003, pp. 44–60. doi: 10.1007/10968987_3.

119

https://doi.org/10.1177/1094342010391989
https://doi.org/10.1145/42288.42291
https://doi.org/10.1137/1.9780898719604
https://doi.org/10.1145/3019612.3019743
https://doi.org/10.1109/TC.1972.5009071
https://doi.org/10.1109/PDP.2009.43
https://doi.org/10.1109/PDP.2009.43
https://doi.org/10.1145/1964218.1964223
https://arxiv.org/abs/1802.05799
https://doi.org/10.1145/2807591.2807623
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459
https://arxiv.org/abs/1903.01955
https://doi.org/10.1007/10968987_3

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

[105] P. Mell and T. Grance, The NIST Definition of Cloud Computing, en, Sep. 2011. doi:
10.6028/NIST.SP.800-145.

[106] C. Miyachi, «What is "Cloud"? It is time to update the NIST definition?», IEEE Cloud
Comput., vol. 5, no. 3, pp. 6–11, 2018. doi: 10.1109/MCC.2018.032591611.

[107] M. Ribeiro, K. Grolinger, and M. A. M. Capretz, «MLaaS: Machine Learning as a Service»,
in 14th IEEE International Conference on Machine Learning and Applications, ICMLA
2015, Miami, FL, USA, December 9-11, 2015, IEEE, 2015, pp. 896–902. doi: 10.1109/
ICMLA.2015.152.

[108] C. A. Ardagna, P. Ceravolo, and E. Damiani, «Big data analytics as-a-service: Issues
and challenges», in 2016 IEEE International Conference on Big Data, BigData 2016,
Washington DC, USA, December 5-8, 2016, IEEE Computer Society, 2016, pp. 3638–3644.
doi: 10.1109/BigData.2016.7841029.

[109] T. C. Chieu, A. A. Karve, A. Mohindra, and A. Segal, «Simplifying solution deployment
on a Cloud through composite appliances», in 24th IEEE International Symposium on
Parallel and Distributed Processing, IPDPS 2010, Atlanta, Georgia, USA, 19-23 April 2010
- Workshop Proceedings, 2010, pp. 1–5. doi: 10.1109/IPDPSW.2010.5470721.

[110] A. Lenk, C. Dänschel, M. Klems, D. Bermbach, and T. Kurze, «Requirements for an IaaS
deployment language in federated Clouds», in 2011 IEEE International Conference on
Service-Oriented Computing and Applications, SOCA 2011, Irvine, CA, USA, December
12-14, 2011, 2011, pp. 1–4. doi: 10.1109/SOCA.2011.6166249.

[111] M. Caballer, J. D. S. Quilis, G. Moltó, and I. Blanquer, «A platform to deploy customized
scientific virtual infrastructures on the cloud», Concurr. Comput. Pract. Exp., vol. 27,
no. 16, pp. 4318–4329, 2015. doi: 10.1002/cpe.3518.

[112] A. V. Konstantinou, T. Eilam, M. H. Kalantar, A. Totok, W. C. Arnold, and E. C.
Snible, «An architecture for virtual solution composition and deployment in infrastructure
clouds», in Proceedings of the 3rd International Workshop on Virtualization Technologies
in Distributed Computing, VTDC@ICAC 2009, Barcelona, Spain, June 15, 2009, 2009,
pp. 9–18. doi: 10.1145/1555336.1555339.

[113] P. Anderson, «Towards a High-Level Machine Configuration System», in Proceedings of
the 8th Conference on Systems Administration (LISA 1994), San Diego, California, USA,
September 19-23, 1994, USENIX, 1994. [Online]. Available: http://www.usenix.org/
publications/library/proceedings/lisa94/anderson.html.

[114] M. Burgess, «A Site Configuration Engine», Comput. Syst., vol. 8, no. 2, pp. 309–337, 1995.
[Online]. Available: http://www.usenix.org/publications/compsystems/1995/sum%
5C_burgess.pdf.

[115] J. Fischer, R. Majumdar, and S. Esmaeilsabzali, «Engage: a deployment management
system», in ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’12, Beijing, China - June 11 - 16, 2012, ACM, 2012, pp. 263–274. doi:
10.1145/2254064.2254096.

[116] D.-H. Le, H. L. Truong, G. Copil, S. Nastic, and S. Dustdar, «SALSA: A Framework for
Dynamic Configuration of Cloud Services», in IEEE 6th International Conference on Cloud
Computing Technology and Science, CloudCom 2014, Singapore, December 15-18, 2014,
2014, pp. 146–153. doi: 10.1109/CloudCom.2014.99.

[117] L. M. Pham, A. Tchana, D. Donsez, N. D. Palma, V. Zurczak, and P.-Y. Gibello, «Roboconf:
A Hybrid Cloud Orchestrator to Deploy Complex Applications», in 8th IEEE International
Conference on Cloud Computing, CLOUD 2015, New York City, NY, USA, June 27 - July
2, 2015, 2015, pp. 365–372. doi: 10.1109/CLOUD.2015.56.

120

https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/10.1109/MCC.2018.032591611
https://doi.org/10.1109/ICMLA.2015.152
https://doi.org/10.1109/ICMLA.2015.152
https://doi.org/10.1109/BigData.2016.7841029
https://doi.org/10.1109/IPDPSW.2010.5470721
https://doi.org/10.1109/SOCA.2011.6166249
https://doi.org/10.1002/cpe.3518
https://doi.org/10.1145/1555336.1555339
http://www.usenix.org/publications/library/proceedings/lisa94/anderson.html
http://www.usenix.org/publications/library/proceedings/lisa94/anderson.html
http://www.usenix.org/publications/compsystems/1995/sum%5C_burgess.pdf
http://www.usenix.org/publications/compsystems/1995/sum%5C_burgess.pdf
https://doi.org/10.1145/2254064.2254096
https://doi.org/10.1109/CloudCom.2014.99
https://doi.org/10.1109/CLOUD.2015.56

REFERENCES

[118] R. Mietzner and F. Leymann, «Towards Provisioning the Cloud: On the Usage of Multi-
Granularity Flows and Services to Realize a Unified Provisioning Infrastructure for SaaS
Applications», in 2008 IEEE Congress on Services, Part I, SERVICES I 2008, Honolulu,
Hawaii, USA, July 6-11, 2008, IEEE Computer Society, 2008, pp. 3–10. doi: 10.1109/
SERVICES-1.2008.36.

[119] Web Services Business Process Execution Language Version 2.0, http://docs.oasis-
open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, Apr. 2007.

[120] A. Brogi, A. Canciani, J. Soldani, and P. Wang, «A Petri Net-Based Approach to Model
and Analyze the Management of Cloud Applications», Trans. Petri Nets Other Model.
Concurr., vol. 11, pp. 28–48, 2016. doi: 10.1007/978-3-662-53401-4_2.

[121] Topology and orchestration specification for cloud applications version 1.0, http://docs.
oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html, Nov. 2013.

[122] J. Zhang, X. Lu, and D. K. Panda, «Is Singularity-based Container Technology Ready for
Running MPI Applications on HPC Clouds?», in Proceedings of the 10th International
Conference on Utility and Cloud Computing, UCC 2017, Austin, TX, USA, December 5-8,
2017, ACM, 2017, pp. 151–160. doi: 10.1145/3147213.3147231.

[123] G. R. Alles, A. Carissimi, and L. M. Schnorr, «Assessing the Computation and Commu-
nication Overhead of Linux Containers for HPC Applications», in Symposium on High
Performance Computing Systems, WSCAD 2018, São Paulo, Brazil, October 1-3, 2018,
IEEE, 2018, pp. 116–123. doi: 10.1109/WSCAD.2018.00027.

[124] J. A. T. Gomes, E. Bagnaschi, I. C. Plasencia, M. David, L. Alves, J. Martins, J. M. Pina,
Á. L. García, and P. O. Fernández, «Enabling rootless Linux Containers in multi-user
environments: The udocker tool», Comput. Phys. Commun., vol. 232, pp. 84–97, 2018. doi:
10.1016/j.cpc.2018.05.021.

[125] A. Azab, «Enabling Docker Containers for High-Performance and Many-Task Computing»,
in 2017 IEEE International Conference on Cloud Engineering, IC2E 2017, Vancouver, BC,
Canada, April 4-7, 2017, IEEE Computer Society, 2017, pp. 279–285. doi: 10.1109/IC2E.
2017.52.

[126] M. Aldinucci, S. Bagnasco, S. Lusso, P. Pasteris, and S. Rabellino, «OCCAM: a flexible,
multi-purpose and extendable HPC cluster», in Journal of Physics: Conf. Series (CHEP
2016), vol. 898, San Francisco, USA, 2017, p. 082 039. doi: 10.1088/1742-6596/898/8/
082039.

[127] D. M. Jacobsen and R. S. Canon, «Contain This, Unleashing Docker for HPC», in Cray
User Group (CUG 2015), Chicago, IL, Apr. 2015.

[128] R. Priedhorsky and T. Randles, «Charliecloud: unprivileged containers for user-defined soft-
ware stacks in HPC», in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2017, Denver, CO, USA, November 12 -
17, 2017, ACM, 2017, 36:1–36:10. doi: 10.1145/3126908.3126925.

[129] N. Kulkarni, L. Alessandrì, R. Panero, M. Arigoni, M. Olivero, G. Ferrero, F. Cordero,
M. Beccuti, and R. A. Calogero, «Reproducible bioinformatics project: a community for
reproducible bioinformatics analysis pipelines», BMC Bioinformatics, vol. 19, no. 10, p. 349,
2018, issn: 1471-2105. doi: 10.1186/s12859-018-2296-x.

[130] D. E. Knuth, «Literate Programming», Comput. J., vol. 27, no. 2, pp. 97–111, 1984. doi:
10.1093/comjnl/27.2.97.

121

https://doi.org/10.1109/SERVICES-1.2008.36
https://doi.org/10.1109/SERVICES-1.2008.36
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
https://doi.org/10.1007/978-3-662-53401-4_2
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
https://doi.org/10.1145/3147213.3147231
https://doi.org/10.1109/WSCAD.2018.00027
https://doi.org/10.1016/j.cpc.2018.05.021
https://doi.org/10.1109/IC2E.2017.52
https://doi.org/10.1109/IC2E.2017.52
https://doi.org/10.1088/1742-6596/898/8/082039
https://doi.org/10.1088/1742-6596/898/8/082039
https://doi.org/10.1145/3126908.3126925
https://doi.org/10.1186/s12859-018-2296-x
https://doi.org/10.1093/comjnl/27.2.97

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

[131] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier, J. Frederic, K. Kelley,
J. B. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, C. Willing, and et
al., «Jupyter Notebooks - a publishing format for reproducible computational workflows»,
in Positioning and Power in Academic Publishing: Players, Agents and Agendas, 20th
International Conference on Electronic Publishing, Göttingen, Germany, June 7-9, 2016,
2016, pp. 87–90. doi: 10.3233/978-1-61499-649-1-87.

[132] F. Pérez and B. E. Granger, «IPython: A System for Interactive Scientific Computing»,
Comput. Sci. Eng., vol. 9, no. 3, pp. 21–29, 2007. doi: 10.1109/MCSE.2007.53.

[133] J. M. Perkel, «Why Jupyter is data scientists’ computational notebook of choice», Nature,
vol. 563, no. 7729, pp. 145–146, Nov. 2018. doi: 10.1038/d41586-018-07196-1.

[134] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N.
Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, «PyTorch: An Imperative
Style, High-Performance Deep Learning Library», in Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems
2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, H. M. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. B. Fox, and R. Garnett, Eds., 2019,
pp. 8024–8035. [Online]. Available: https://proceedings.neurips.cc/paper/2019/
hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

[135] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G.
Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. A. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng, «TensorFlow:
A System for Large-Scale Machine Learning», in 12th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, November 2-4,
2016, K. Keeton and T. Roscoe, Eds., USENIX Association, 2016, pp. 265–283.

[136] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z. Zhang,
«MXNet: A Flexible and Efficient Machine Learning Library for Heterogeneous Distributed
Systems», CoRR, vol. abs/1512.01274, 2015. arXiv: 1512.01274.

[137] R. W. Cottingham, «The DOE systems biology knowledgebase (KBase): progress towards
a system for collaborative and reproducible inference and modeling of biological function»,
in Proceedings of the 6th ACM Conference on Bioinformatics, Computational Biology and
Health Informatics, BCB 2015, Atlanta, GA, USA, September 9-12, 2015, ACM, 2015,
p. 510. doi: 10.1145/2808719.2811433.

[138] A. P. e. a. Arkin, «KBase: The United States Department of Energy Systems Biology
Knowledgebase», Nature Biotechnology, vol. 36, no. 7, pp. 566–569, 2018. doi: 10.1038/
nbt.4163.

[139] M. Reich, T. Liefeld, J. Gould, J. Lerner, P. Tamayo, and J. P. Mesirov, «GenePattern
2.0», Nature Genetics, vol. 38, no. 5, pp. 500–501, 2006. doi: 10.1038/ng0506-500.

[140] G. Wang and B. Peng, «Script of Scripts: A pragmatic workflow system for daily computa-
tional research», PLoS Comput. Biol., vol. 15, no. 2, 2019. doi: 10.1371/journal.pcbi.
1006843.

[141] L. A. M. C. Carvalho, R. Wang, Y. Gil, and D. Garijo, «NiW: Converting Notebooks
into Workflows to Capture Dataflow and Provenance», in Proceedings of Workshops and
Tutorials of the 9th International Conference on Knowledge Capture (K-CAP2017), Austin,
Texas, USA, December 4th, I. Tiddi, G. Rizzo, and Ó. Corcho, Eds., ser. CEUR Workshop
Proceedings, vol. 2065, CEUR-WS.org, 2017, pp. 12–16. [Online]. Available: http://ceur-
ws.org/Vol-2065/paper04.pdf.

122

https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1038/d41586-018-07196-1
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://arxiv.org/abs/1512.01274
https://doi.org/10.1145/2808719.2811433
https://doi.org/10.1038/nbt.4163
https://doi.org/10.1038/nbt.4163
https://doi.org/10.1038/ng0506-500
https://doi.org/10.1371/journal.pcbi.1006843
https://doi.org/10.1371/journal.pcbi.1006843
http://ceur-ws.org/Vol-2065/paper04.pdf
http://ceur-ws.org/Vol-2065/paper04.pdf

REFERENCES

[142] Y. Gil, V. Ratnakar, J. Kim, P. A. González-Calero, P. Groth, J. Moody, and E. Deelman,
«Wings: Intelligent Workflow-Based Design of Computational Experiments», IEEE Intell.
Syst., vol. 26, no. 1, pp. 62–72, 2011. doi: 10.1109/MIS.2010.9.

[143] D. Koop and J. Patel, «Dataflow Notebooks: Encoding and Tracking Dependencies of
Cells», in 9th USENIX Workshop on the Theory and Practice of Provenance, TaPP 2017,
Seattle, WA, USA, June 23, 2017, 2017.

[144] S. Macke, A. G. Parameswaran, H. Gong, D. J. L. Lee, D. Xin, and A. Head, «Fine-Grained
Lineage for Safer Notebook Interactions», Proc. VLDB Endow., vol. 14, no. 6, pp. 1093–1101,
2021.

[145] M. Brachmann, W. Spoth, O. Kennedy, B. Glavic, H. Mueller, S. Castelo, C. Bautista,
and J. Freire, «Your notebook is not crumby enough, REPLace it», in 10th Conference on
Innovative Data Systems Research, CIDR 2020, Amsterdam, The Netherlands, January
12-15, 2020, Online Proceedings, www.cidrdb.org, 2020.

[146] J. F. Pimentel, L. Murta, V. Braganholo, and J. Freire, «A large-scale study about
quality and reproducibility of jupyter notebooks», in Proceedings of the 16th Interna-
tional Conference on Mining Software Repositories, MSR 2019, 26-27 May 2019, Montreal,
Canada, M.-A. D. Storey, B. Adams, and S. Haiduc, Eds., IEEE, 2019, pp. 507–517. doi:
10.1109/MSR.2019.00077.

[147] D. Yin, Y. Liu, A. Padmanabhan, J. Terstriep, J. Rush, and S. Wang, «A CyberGIS-Jupyter
Framework for Geospatial Analytics at Scale», in Proceedings of the Practice and Experience
in Advanced Research Computing 2017: Sustainability, Success and Impact, PEARC 2017,
New Orleans, LA, USA, July 9-13, 2017, D. L. Hart and M. Dahan, Eds., ACM, 2017,
18:1–18:8. doi: 10.1145/3093338.3093378.

[148] A. Prout, W. Arcand, D. Bestor, B. Bergeron, C. Byun, V. Gadepally, M. Hubbell, M.
Houle, M. Jones, P. Michaleas, L. Milechin, J. Mullen, A. Rosa, S. Samsi, A. Reuther, and J.
Kepner, «MIT SuperCloud portal workspace: Enabling HPC web application deployment»,
in 2017 IEEE High Performance Extreme Computing Conference, HPEC 2017, Waltham,
MA, USA, September 12-14, 2017, IEEE, 2017, pp. 1–6. doi: 10.1109/HPEC.2017.8091097.

[149] M. Milligan, «Interactive HPC Gateways with Jupyter and Jupyterhub», in Proceedings of
the Practice and Experience in Advanced Research Computing 2017: Sustainability, Success
and Impact, PEARC 2017, New Orleans, LA, USA, July 9-13, 2017, D. L. Hart and M.
Dahan, Eds., ACM, 2017, 63:1–63:4. doi: 10.1145/3093338.3104159.

[150] B. Glick and J. Mache, «Jupyter Notebooks and User-Friendly HPC Access», in 2018
IEEE/ACM Workshop on Education for High-Performance Computing, EduHPC@SC,
Dallas, TX, USA, November 12, 2018, IEEE, 2018, pp. 11–20. doi: 10.1109/EduHPC.2018.
00005.

[151] R. C. Thomas, S. Cholia, K. Mohror, and J. M. Shalf, «Interactive Supercomputing With
Jupyter», Comput. Sci. Eng., vol. 23, no. 2, pp. 93–98, 2021. doi: 10.1109/MCSE.2021.
3059037.

[152] T. E. Odaka, A. Banihirwe, G. Eynard-Bontemps, A. Ponte, G. Maze, K. Paul, J. Baker, and
R. Abernathey, «The Pangeo Ecosystem: Interactive Computing Tools for the Geosciences:
Benchmarking on HPC», in Tools and Techniques for High Performance Computing -
Selected Workshops, HUST, SE-HER and WIHPC, Held in Conjunction with SC 2019,
Denver, CO, USA, November 17-18, 2019, Revised Selected Papers, G. Juckeland and
S. Chandrasekaran, Eds., ser. Communications in Computer and Information Science,
vol. 1190, Springer, 2019, pp. 190–204. doi: 10.1007/978-3-030-44728-1_12.

123

https://doi.org/10.1109/MIS.2010.9
https://doi.org/10.1109/MSR.2019.00077
https://doi.org/10.1145/3093338.3093378
https://doi.org/10.1109/HPEC.2017.8091097
https://doi.org/10.1145/3093338.3104159
https://doi.org/10.1109/EduHPC.2018.00005
https://doi.org/10.1109/EduHPC.2018.00005
https://doi.org/10.1109/MCSE.2021.3059037
https://doi.org/10.1109/MCSE.2021.3059037
https://doi.org/10.1007/978-3-030-44728-1_12

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

[153] G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn, «Observing Localities», Theor.
Comput. Sci., vol. 114, no. 1, pp. 31–61, 1993. doi: 10.1016/0304-3975(93)90152-J.

[154] P. Krishnan, «Distributed CCS», in CONCUR ’91, 2nd International Conference on Con-
currency Theory, Amsterdam, The Netherlands, August 26-29, 1991, Proceedings, J. C. M.
Baeten and J. F. Groote, Eds., ser. Lecture Notes in Computer Science, vol. 527, Springer,
1991, pp. 393–407. doi: 10.1007/3-540-54430-5_102.

[155] M. Gasser and E. McDermott, «An Architecture for Practical Delegation in a Distributed
System», in Proceedings of the 1990 IEEE Symposium on Security and Privacy, Oakland,
California, USA, May 7-9, 1990, IEEE Computer Society, 1990, pp. 20–30. doi: 10.1109/
RISP.1990.63835.

[156] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, «ZooKeeper: Wait-free Coordination
for Internet-scale Systems», in 2010 USENIX Annual Technical Conference, Boston, MA,
USA, June 23-25, 2010, P. Barham and T. Roscoe, Eds., USENIX Association, 2010.

[157] H.-L. Bouziane, C. Pérez, and T. Priol, «A Software Component Model with Spatial and
Temporal Compositions for Grid Infrastructures», in Euro-Par 2008 - Parallel Processing,
14th International Euro-Par Conference, Las Palmas de Gran Canaria, Spain, August 26-29,
2008, Proceedings, 2008, pp. 698–708. doi: 10.1007/978-3-540-85451-7_75.

[158] M. Aldinucci, M. Danelutto, H. L. Bouziane, and C. Pérez, «Towards Software Component
Assembly Language Enhanced with Workflows and Skeletons», in Proc. of the ACM
SIGPLAN Component-Based High Performance Computing (CBHPC), Karlsruhe, Germany:
ACM, Oct. 2008, pp. 1–11, isbn: 978-1-60558-311-2. doi: 10.1145/1456190.1456194.

[159] M. Aldinucci, H.-L. Bouziane, M. Danelutto, and C. Pérez, «Stkm on Sca: A Unified
Framework with Components, Workflows and Algorithmic Skeletons», in Euro-Par 2009
Parallel Processing, 15th International Euro-Par Conference, Delft, The Netherlands, August
25-28, 2009. Proceedings, 2009, pp. 678–690. doi: 10.1007/978-3-642-03869-3_64.

[160] B. Kiepusewski, «Expressiveness and suitability of languages for control flow modelling in
workflows», Ph.D. dissertation, Queensland University of Technology, Brisbane, Feb. 2003.

[161] W. M. P. van der Aalst and A. H. M. ter Hofstede, «YAWL: Yet Another Workflow
Language», Inf. Syst., vol. 30, no. 4, pp. 245–275, Jun. 2005, issn: 0306-4379. doi: 10.
1016/j.is.2004.02.002.

[162] W. M. P. van der Aalst, «Verification of Workflow Nets», in Application and Theory of Petri
Nets 1997, 18th International Conference, ICATPN ’97, Toulouse, France, June 23-27,
1997, Proceedings, P. Azéma and G. Balbo, Eds., ser. Lecture Notes in Computer Science,
vol. 1248, Springer, 1997, pp. 407–426. doi: 10.1007/3-540-63139-9_48.

[163] W. M. P. van der Aalst, K. M. van Hee, A. H. M. ter Hofstede, N. Sidorova, H. M. W.
Verbeek, M. Voorhoeve, and M. T. Wynn, «Soundness of workflow nets: classification,
decidability, and analysis», Formal Aspects Comput., vol. 23, no. 3, pp. 333–363, 2011. doi:
10.1007/s00165-010-0161-4.

[164] S. Lerner, T. D. Millstein, E. Rice, and C. Chambers, «Automated soundness proofs for
dataflow analyses and transformations via local rules», in Proceedings of the 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2005,
Long Beach, California, USA, January 12-14, 2005, J. Palsberg and M. Abadi, Eds., ACM,
2005, pp. 364–377. doi: 10.1145/1040305.1040335.

[165] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros, «Workflow Patterns»,
Distributed and Parallel Databases, vol. 14, no. 1, pp. 5–51, Jul. 2003, issn: 1573-7578. doi:
10.1023/A:1022883727209.

124

https://doi.org/10.1016/0304-3975(93)90152-J
https://doi.org/10.1007/3-540-54430-5_102
https://doi.org/10.1109/RISP.1990.63835
https://doi.org/10.1109/RISP.1990.63835
https://doi.org/10.1007/978-3-540-85451-7_75
https://doi.org/10.1145/1456190.1456194
https://doi.org/10.1007/978-3-642-03869-3_64
https://doi.org/10.1016/j.is.2004.02.002
https://doi.org/10.1016/j.is.2004.02.002
https://doi.org/10.1007/3-540-63139-9_48
https://doi.org/10.1007/s00165-010-0161-4
https://doi.org/10.1145/1040305.1040335
https://doi.org/10.1023/A:1022883727209

REFERENCES

[166] M. Aldinucci, M. Danelutto, L. Anardu, M. Torquati, and P. Kilpatrick, «Parallel patterns
+ Macro Data Flow for multi-core programming», in Proc. of Intl. Euromicro PDP 2012:
Parallel Distributed and network-based Processing, Garching, Germany: IEEE, Feb. 2012,
pp. 27–36. doi: 10.1109/PDP.2012.44.

[167] M. Cole, Algorithmic Skeletons: Structured Management of Parallel Computations, ser. Re-
search Monographs in Par. and Distrib. Computing. Pitman, 1989.

[168] M. Danelutto, R. D. Meglio, S. Orlando, S. Pelagatti, and M. Vanneschi, «A methodology
for the development and the support of massively parallel programs», Future Generation
Compututer Systems, vol. 8, no. 1-3, pp. 205–220, 1992, issn: 0167-739X. doi: 10.1016/0167-
739X(92)90040-I.

[169] H. González-Vélez and M. Leyton, «A survey of algorithmic skeleton frameworks: high-level
structured parallel programming enablers», Softw., Pract. Exper., vol. 40, no. 12, pp. 1135–
1160, 2010. doi: 10.1002/spe.1026.

[170] V. Amaral, B. Norberto, M. Goulão, M. Aldinucci, S. Benkner, A. Bracciali, P. Carreira,
E. Celms, L. Correia, C. Grelck, H. Karatza, C. Kessler, P. Kilpatrick, H. Martiniano, I.
Mavridis, S. Pllana, A. Respício, J. Simão, L. Veiga, and A. Visa, «Programming languages
for data-Intensive HPC applications: A systematic mapping study», Parallel Computing,
p. 102 584, 2020, issn: 0167-8191. doi: 10.1016/j.parco.2019.102584.

[171] G. X. Y. Zheng, J. M. Terry, P. Belgrader, P. Ryvkin, Z. W. Bent, R. Wilson, S. B. Ziraldo,
T. D. Wheeler, G. P. McDermott, J. Zhu, M. T. Gregory, J. Shuga, L. Montesclaros, J. G.
Underwood, D. A. Masquelier, S. Y. Nishimura, M. Schnall-Levin, P. W. Wyatt, C. M.
Hindson, R. Bharadwaj, A. Wong, K. D. Ness, L. W. Beppu, H. J. Deeg, C. McFarland,
K. R. Loeb, W. J. Valente, N. G. Ericson, E. A. Stevens, J. P. Radich, T. S. Mikkelsen,
B. J. Hindson, and J. H. Bielas, «Massively parallel digital transcriptional profiling of single
cells», Nature communications, vol. 8, pp. 14 049–14 049, Jan. 2017, issn: 2041-1723. doi:
10.1038/ncomms14049.

[172] A. Butler, P. Hoffman, P. Smibert, E. Papalexi, and R. Satija, «Integrating single-cell tran-
scriptomic data across different conditions, technologies, and species», Nature Biotechnology,
vol. 36, no. 5, pp. 411–420, 2018, issn: 1546-1696. doi: 10.1038/nbt.4096.

[173] T. Stuart, A. Butler, P. Hoffman, C. Hafemeister, E. Papalexi, W. M. I. Mauck, Y. Hao,
M. Stoeckius, P. Smibert, and R. Satija, «Comprehensive Integration of Single-Cell Data»,
Cell, vol. 177, no. 7, 1888–1902.e21, Jun. 2019, issn: 0092-8674. doi: 10.1016/j.cell.
2019.05.031.

[174] D. Aran, A. P. Looney, L. Liu, E. Wu, V. Fong, A. Hsu, S. Chak, R. P. Naikawadi, P. J.
Wolters, A. R. Abate, A. J. Butte, and M. Bhattacharya, «Reference-based analysis of lung
single-cell sequencing reveals a transitional profibrotic macrophage», Nature Immunology,
vol. 20, no. 2, pp. 163–172, 2019, issn: 1529-2916. doi: 10.1038/s41590-018-0276-y.

[175] G. Schiroli, A. Conti, S. Ferrari, L. della Volpe, A. Jacob, L. Albano, S. Beretta, A. Cal-
abria, V. Vavassori, P. Gasparini, E. Salataj, D. Ndiaye-Lobry, C. Brombin, J. Chaumeil,
E. Montini, I. Merelli, P. Genovese, L. Naldini, and R. Di Micco, «Precise Gene Editing
Preserves Hematopoietic Stem Cell Function following Transient p53-Mediated DNA Dam-
age Response», Cell Stem Cell, vol. 24, no. 4, 551–565.e8, Apr. 2019, issn: 1934-5909. doi:
10.1016/j.stem.2019.02.019.

125

https://doi.org/10.1109/PDP.2012.44
https://doi.org/10.1016/0167-739X(92)90040-I
https://doi.org/10.1016/0167-739X(92)90040-I
https://doi.org/10.1002/spe.1026
https://doi.org/10.1016/j.parco.2019.102584
https://doi.org/10.1038/ncomms14049
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1016/j.cell.2019.05.031
https://doi.org/10.1038/s41590-018-0276-y
https://doi.org/10.1016/j.stem.2019.02.019

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

[176] I. Colonnelli, B. Cantalupo, R. Esposito, M. Pennisi, C. Spampinato, and M. Aldinucci,
«HPC Application Cloudification: The StreamFlow Toolkit», in 12th Workshop on Parallel
Programming and Run-Time Management Techniques for Many-core Architectures and 10th
Workshop on Design Tools and Architectures for Multicore Embedded Computing Platforms,
PARMA-DITAM 2021, January 19, Budapest, Hungary, ser. OASIcs, vol. 88, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 5:1–5:13. doi: 10.4230/OASIcs.PARMA-
DITAM.2021.5.

[177] I. Colonnelli, B. Cantalupo, C. Spampinato, M. Pennisi, and M. Aldinucci, «Bringing
AI pipelines onto cloud-HPC: setting a baseline for accuracy of COVID-19 diagnosis»,
in ENEA CRESCO in the fight against COVID-19, F. Iannone, Ed., ENEA, 2021. doi:
10.5281/zenodo.5151511.

[178] M. Aldinucci, High-performance computing and AI team up for COVID-19 diagnostic
imaging, https://aihub.org/2021/01/12/high-performance-computing-and-ai-
team-up-for-covid-19-diagnostic-imaging/, Accessed: 2021-01-25, Jan. 2021.

[179] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, «Rethinking Atrous Convolution for
Semantic Image Segmentation», CoRR, vol. abs/1706.05587, 2017. arXiv: 1706.05587.

[180] O. Ronneberger, P. Fischer, and T. Brox, «U-Net: Convolutional Networks for Biomedical
Image Segmentation», in Medical Image Computing and Computer-Assisted Intervention
- MICCAI 2015 - 18th International Conference Munich, Germany, October 5 - 9, 2015,
Proceedings, Part III, ser. Lecture Notes in Computer Science, vol. 9351, Springer, 2015,
pp. 234–241. doi: 10.1007/978-3-319-24574-4_28.

[181] S. Jégou, M. Drozdzal, D. Vázquez, A. Romero, and Y. Bengio, «The One Hundred Layers
Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation», in 2017 IEEE
Conference on Computer Vision and Pattern Recognition Workshops, CVPR Workshops
2017, Honolulu, HI, USA, July 21-26, 2017, IEEE Computer Society, 2017, pp. 1175–1183.
doi: 10.1109/CVPRW.2017.156.

[182] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, «Going deeper with convolutions», in IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, IEEE
Computer Society, 2015, pp. 1–9. doi: 10.1109/CVPR.2015.7298594.

[183] A. Krizhevsky, I. Sutskever, and G. E. Hinton, «ImageNet classification with deep convolu-
tional neural networks», Commun. ACM, vol. 60, no. 6, pp. 84–90, 2017. doi: 10.1145/
3065386.

[184] K. He, X. Zhang, S. Ren, and J. Sun, «Deep Residual Learning for Image Recognition»,
in 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016, IEEE Computer Society, 2016, pp. 770–778. doi:
10.1109/CVPR.2016.90.

[185] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, «Densely Connected Convolu-
tional Networks», in 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, IEEE Computer Society, 2017, pp. 2261–
2269. doi: 10.1109/CVPR.2017.243.

[186] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, «Inception-v4, Inception-ResNet and
the Impact of Residual Connections on Learning», in Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA,
AAAI Press, 2017, pp. 4278–4284. [Online]. Available: http://aaai.org/ocs/index.php/
AAAI/AAAI17/paper/view/14806.

126

https://doi.org/10.4230/OASIcs.PARMA-DITAM.2021.5
https://doi.org/10.4230/OASIcs.PARMA-DITAM.2021.5
https://doi.org/10.5281/zenodo.5151511
https://aihub.org/2021/01/12/high-performance-computing-and-ai-team-up-for-covid-19-diagnostic-imaging/
https://aihub.org/2021/01/12/high-performance-computing-and-ai-team-up-for-covid-19-diagnostic-imaging/
https://arxiv.org/abs/1706.05587
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/CVPRW.2017.156
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1145/3065386
https://doi.org/10.1145/3065386
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.243
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14806
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14806

REFERENCES

[187] M. de la Iglesia-Vayá, J. M. Saborit, J. A. Montell, A. Pertusa, A. Bustos, M. Cazorla,
J. Galant, X. Barber, D. Orozco-Beltrán, F. García-García, M. Caparrós, G. González, and
J. M. Salinas, «BIMCV COVID-19+: a large annotated dataset of RX and CT images from
COVID-19 patients», CoRR, vol. abs/2006.01174, 2020. arXiv: 2006.01174.

[188] M. Pennisi, I. Kavasidis, C. Spampinato, V. Schinina, S. Palazzo, F. P. Salanitri, G. Bellitto,
F. Rundo, M. Aldinucci, M. Cristofaro, et al., «An Explainable AI System for Automated
COVID-19 Assessment and Lesion Categorization from CT-scans», Artificial Intelligence
in Medicine, p. 102 114, 2021. doi: 10.1016/j.artmed.2021.102114.

[189] A. J. Bernstein, «Program Analysis for Parallel Processing», IEEE Trans. on Electronic
Computers, vol. EC-15, no. 5, pp. 757–762, 1966.

[190] J. Darlington, Y. Guo, H. W. To, and J. Yang, «Functional Skeletons for Parallel Coor-
dination», in Euro-Par ’95 Parallel Processing, First International Euro-Par Conference,
Stockholm, Sweden, August 29-31, 1995, Proceedings, ser. Lecture Notes in Computer
Science, vol. 966, Springer, 1995, pp. 55–66. doi: 10.1007/BFb0020455.

[191] M. M. McKerns, L. Strand, T. Sullivan, A. Fang, and M. A. G. Aivazis, «Building a
Framework for Predictive Science», CoRR, vol. abs/1202.1056, 2012.

[192] M. Aldinucci, S. Campa, M. Danelutto, P. Kilpatrick, and M. Torquati, «Targeting Dis-
tributed Systems in FastFlow», in Euro-Par 2012 Workshops, Proc. of the CoreGrid
Workshop on Grids, Clouds and P2P Computing, ser. LNCS, vol. 7640, Springer, 2013,
pp. 47–56. doi: 10.1007/978-3-642-36949-0_7.

[193] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L.
Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R.
Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari,
F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G.
Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, «QUANTUM
ESPRESSO: a modular and open-source software project for quantum simulations of
materials», Journal of Physics: Condensed Matter, vol. 21, no. 39, p. 395 502, Sep. 2009.
doi: 10.1088/0953-8984/21/39/395502.

[194] Auton et al., «A global reference for human genetic variation», Nature, vol. 526, no. 7571,
pp. 68–74, Oct. 2015, issn: 1476-4687. doi: 10.1038/nature15393.

[195] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. S. Bernstein, A. C. Berg, and L. Fei-Fei, «ImageNet Large Scale Visual
Recognition Challenge», Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015. doi:
10.1007/s11263-015-0816-y.

[196] D. P. Kingma and J. Ba, «Adam: A Method for Stochastic Optimization», in 3rd Interna-
tional Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, 2015. [Online]. Available: http://arxiv.org/
abs/1412.6980.

[197] H. Xiao, K. Rasul, and R. Vollgraf, «Fashion-MNIST: a Novel Image Dataset for Bench-
marking Machine Learning Algorithms», CoRR, vol. abs/1708.07747, 2017.

[198] P. Giannozzi, O. Baseggio, P. Bonfà, D. Brunato, R. Car, I. Carnimeo, C. Cavazzoni, S. de
Gironcoli, P. Delugas, F. Ferrari Ruffino, A. Ferretti, N. Marzari, I. Timrov, A. Urru, and
S. Baroni, «Quantum ESPRESSO toward the exascale», The Journal of Chemical Physics,
vol. 152, no. 15, p. 154 105, 2020. doi: 10.1063/5.0005082.

127

https://arxiv.org/abs/2006.01174
https://doi.org/10.1016/j.artmed.2021.102114
https://doi.org/10.1007/BFb0020455
https://doi.org/10.1007/978-3-642-36949-0_7
https://doi.org/10.1088/0953-8984/21/39/395502
https://doi.org/10.1038/nature15393
https://doi.org/10.1007/s11263-015-0816-y
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1063/5.0005082

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

[199] R. F. da Silva, R. Filgueira, E. Deelman, E. Pairo-Castineira, I. M. Overton, and M. P.
Atkinson, «Using simple PID-inspired controllers for online resilient resource management of
distributed scientific workflows», Future Generation Computer Systems, vol. 95, pp. 615–628,
2019. doi: 10.1016/j.future.2019.01.015.

128

https://doi.org/10.1016/j.future.2019.01.015

Acronyms

AI Artificial Intelligence

API Application Programmable Interface

AST Abstract Syntax Tree

BDAaaS Big Data Analytics as a Service

CFD Computational Fluid Dynamics

CI Continuous Integration

CLI Command Line Interface

CNN Convolutional Neural Network

CT Computed Tomography

CWL Common Workflow Language

DAG Directed Acyclic Graph

DFS Distributed File-System

DL Deep Learning

DNN Deep Neural Network

DSL Domain-Specific Language

FIFO First In First Out

GPU Graphics Processing Unit

GUI Graphical User Interface

HPC High-Performance Computing

HTC High Throughput Computing
129

Iacopo Colonnelli: Workflow systems for HPC-AI convergence

IaaS Infrastructure as a Service

IaC Infrastructure as Code

IDE Integrated Development Environment

ML Machine Learning

MLaaS Machine Learning as a Service

MPI Message Passing Interface

MTMC Multiple-Tasks Multiple-Containers

MTSC Multiple-Tasks Single-Container

NVMe Non-Volatile Memory Express

PaaS Platform as a Service

PGAS Partitioned Global Address Space

RDMA Remote Direct Memory Access

SaaS Software as a Service

scRNA-seq single-cell RNA sequencing

SDN Software-Defined Network

SPMD Single Program Multiple Data

SSH Secure SHell

STMC Single-Task Multiple-Containers

STSC Single-Task Single-Container

UML Unified Modeling Language

VM Virtual Machine

VO Virtual Organisation

WDL Workflow Description Language

WMS Workflow Management System

XaaS Anything as a Service

130

	Introduction
	Results and contributions
	Hybrid workflows and the StreamFlow framework
	Literate workflows and the Jupyter-workflow stack

	List of publications
	Publications organised by venue
	Publications organised by topic

	Research projects and activities
	European projects
	National projects
	Other research activities

	Funding

	Background
	Workflows
	Workflow management systems
	Distributed systems
	Grid computing
	High-performance computing
	Cloud computing

	Container-based virtualisation
	Containers on HPC
	Container-based workflows

	Literate computing
	Jupyter Notebooks
	Workflows with Jupyter
	Jupyter Notebooks on HPC

	Hybrid workflows
	Hybrid acyclic workflows
	Topologies of deployment locations
	Mapping relations

	Operational semantics
	Execution plan
	Soundness

	Advanced topics
	Advanced topologies of deployment locations
	Dynamic and cyclic workflows

	StreamFlow
	Implementation
	The StreamFlow file
	Task-container mapping patterns
	The WMS integration layer
	Model life-cycle management
	Workflow scheduling
	Data transfers

	Evaluation
	Single-cell RNA sequencing
	The CLAIRE COVID-19 universal pipeline

	Distributed literate workflows
	Literate computing semantics
	Literate workflows semantics
	Hybrid literate workflows

	Jupyter-workflow
	Implementation
	Coordination metadata format
	The DependencyResolver component
	Jupyter stack extension
	Serialisation
	Examples

	Evaluation
	DNN hyperparameter search
	Training and serving DNNs
	Interactive simulations at scale
	The 1000-genome literate workflow

	Conclusion
	Conclusion and remarks
	Future work

