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1 Introduction

The production of photons in high-energy collisions has a rich phenomenology due to
prompt production in the partonic process as well as secondary emission after the
hadronization phase. In fact, the most significant fraction of photons produced at col-
liders such as the Large Hadron Collider (LHC) originate from hadron decays. The smaller
fraction of prompt (or primary) photons, however, is more interesting to us since those
photons allow for the application and testing of perturbative Quantum Chromodynamics
(QCD). Prompt photons can be produced through two mechanisms: hard emission and
fragmentation. Photons produced by the first mechanism are sensitive to the QCD dy-
namics of the interaction and are well separated from the other participating partons by
definition. In contrast, photons produced through fragmentation of the partonic final state
are found in proximity to hadrons, since they are generated by collinear emissions from
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partons. The separation is not unique, since it requires to define the exact meaning of
collinear emissions.

In order to separate the primary from the secondary photons, isolation criteria are
implemented experimentally, restricting the hadronic activity around a photon candidate
by requiring the (transverse) hadronic energy, E⊥, in a cone of size R to be below (a possibly
dynamical) threshold. A non-zero threshold, as practical realities require, implies a non-
vanishing fragmentation component and, therefore, requires a corresponding treatment of
these contributions in theory predictions. The fragmentation process can be treated in
collinear/mass factorization [1, 2]. It has been implemented in public codes up to NLO,
for example in JetPhox [3]. Recently, first predictions at NNLO QCD, including photon
fragmentation, have become available [4, 5]. Within the fragmentation formalism, collinear
divergencies are absorbed into a fragmentation function that contains perturbative and
non-perturbative contributions. The latter must either be modelled or measured [6–11].
Alternatively, the so-called smooth-cone isolation, or Fixione isolation, criterion [12] can be
implemented to entirely remove the fragmentation component from the theory predictions
by vetoing radiation collinear to the photon. This type of isolation has been used in
many QCD studies [3, 5, 13–15]. Frixione isolation is handy from the theory point of view
but cannot be implemented in experiment due to the limited resolution of detectors. A
compromise is achieved by the usage of hybrid isolation [5, 16], which combines a smooth-
cone and a hard-cone prescription. While this is closer to the experimental setup, the
removed fragmentation component can still lead to corrections at the percent level [5]. It
should be mentioned that isolation criteria lead to logarithmically enhanced contributions
for small isolation regions. This may induce sizeable resummation effects [17–19].

The production of isolated photons has been studied experimentally since early days of
collider [20–24] and fixed-target experiments [25, 26]. At the Tevatron, for example, cross
sections for photons and photons accompanied by jets have been extensively measured as
demonstrated by refs. [27–30]. More recently, isolated photon production has become one
of the standard-candle measurements at the LHC [31–37]. Inclusive production of a photon
and the production of a photon with a single resolved jet are particularly sensitive to the
gluon content of the proton since for a non-vanishing transverse momentum of the photon
the dominant partonic-process is qg → γq. Furthermore, these processes can also be used
for the tuning of Monte Carlo generators as well as for jet-energy calibration [10].

A photon associated with a pair of jets has some unique features, making it particularly
interesting for precision QCD phenomenology [38]. Due to the 2 → 3 kinematics, it can
be used to study angular correlations between the photon and jets similarly to multi-jet
production processes. However, in contrast to the three-jet case, the photon is identified,
and the phase space can be subdivided into three regions:

• E⊥(γ) > pT (j1): dominated by diagrams of pp→ γq-type with an additional radiated
gluon. This region has enhanced contributions from photons originating from the
hard interaction.

• pT (j1) > E⊥(γ) > pT (j2): dominated by “Bremsstrahlung” di-jet production pp→ jj

where one final state quark radiates a high energy photon. This region is sensitive to
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the high z region of the photon fragmentation process, with z the collinear-momentum
fraction of the photon.

• pT (j2) > E⊥(γ): the “Bremsstrahlung” configuration with further soft-photon en-
hancement. This region is sensitive to the lower z region of the photon fragmentation.

Besides providing a test of perturbative QCD and the fragmentation formalism, the process
we wish to study allows us to assess and tune Monte-Carlo event generators. In this respect
it is similar to processes with a lower number of jets. It is, however, more challenging as far
as modelling of jet activity is concerned. As a last application, we also mention that photon
+ di-jet production allows for the calibration of data-driven background estimates [39].

Higher-order corrections to the production cross-section of an isolated photon with two
jets have been computed through NLO QCD and matched to parton-shower simulations [40,
41]. NNLO QCD cross sections for 2 → 3 processes [42–50] are the current state-of-the-
art in perturbative QCD. The main bottleneck is the computation of five-point two-loop
amplitudes. In the case of massless final states, all relevant partonic processes for three-
jet [51, 52], three-photon [42, 53, 54], and di-photon + jet [55, 56] production have been
computed in leading-colour approximation. These computations represent the appearing
Feynman integrals in terms of pentagon functions [57, 58], which allow for a compact
analytical form and a stable numerical evaluation. The function space for the case of a single
external mass has also been worked out, and the first leading-colour amplitudes involving an
external massive vector boson [59–62] have been computed. The pentagon functions are also
available for the non-planar integrals appearing beyond the leading-colour approximation.
Still, only the di-photon + jet amplitude has been computed at full colour [63, 64]. In this
article, we evaluate all partonic amplitudes needed for the photon + di-jet cross sections
at full colour. Equipped with the amplitudes, we perform a first phenomenological study
of the process matching the configuration of recent measurements by ATLAS [37].

The article is organised as follows. In section 2, we describe the methods used for
the evaluation of the two-loop contributions. After introducing the kinematic variables,
we provide the helicity- and colour-space decomposition of the amplitudes. The compu-
tation of the latter by means of integration-by-parts (IBP) identities improved by syzygy
equations is described, as well as the transformations of the occurring special functions
necessary to obtain the amplitudes for all configurations. The section is closed with com-
ments on the numerical evaluation including methods to improve numerical stability. In
section 3, we provide differential cross-section distributions for a number of observables
for a setup used in a recent measurement by the ATLAS collaboration. We comment on
the convergence of the perturbative series and discuss the possible effects of omitted elec-
troweak and fragmentation effects. We close the main text with conclusions and outlook
on future work. In appendix A, we provide numerical values of the amplitudes for a bench-
mark phase-space point which allows for an easy verification of our results by independent
parties. In appendix B, we reproduce explicit formulae for the scale dependence of the
amplitudes, which is necessary since our results are derived for one particular value of
the renormalisation scale. Finally, in appendix C, we describe the parity transformation
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and external-momentum permutations necessary to derive the complete amplitudes from
partial results for specific helicity configurations.

2 Two-loop amplitudes

The computation of pp → γjj production at NNLO QCD accuracy requires one- and
two-loop QCD corrections to the following partonic processes:

• 2-quark-2-gluon channel (0→ q̄qggγ),

• 4-quark channel (0→ qq̄QQ̄γ with either Q = q or Q 6= q).

In addition to these, the 0→ ggggγ partonic channel also enters starting at NNLO QCD,
since it is a loop-induced process where the leading order contribution is made of one-loop
amplitudes. In this work, we compute analytically the one- and two-loop QCD corrections
to 0 → q̄qggγ and 0 → qq̄QQ̄γ.1 The one-loop amplitude for 0 → ggggγ, as well the
amplitudes contributing to the real-virtual corrections to the NNLO QCD cross section
(i.e. the one-loop amplitudes for pp→ γjjj) are obtained from OpenLoops [65].

2.1 Kinematics

We take the external momenta pi in the five-particle processes 0→ q̄qggγ and 0→ qq̄QQ̄γ

to be outgoing. They satisfy momentum conservation,

5∑
i=1

pi = 0 , (2.1)

as well as the on-shell conditions p2
i = 0 for i = 1, . . . , 5. The five-particle phase space is

described by five independent scalar invariants,

~s = {s12, s23, s34, s45, s15} , (2.2)

with sij = (pi + pj)2, and a pseudo-scalar quantity,

tr5 = 4iεµνρσpµ1pν2p
ρ
3p
σ
4 = [12]〈23〉[34]〈41〉 − 〈12〉[23]〈34〉[41] . (2.3)

The square of the latter is a scalar quantity, and can thus be expressed in terms of ~s. We
have tr2

5 = ∆5, where ∆5 is the Gram determinant of the external momenta,

∆5 = det (sij)i,j=1,...,4 , (2.4)

which is a degree-4 polynomial in the ~s. The parameterisation of the five-particle kinematics
therefore contains a square root:

√
∆5. This is important in view of the computation with

finite field arithmetic discussed in section 2.4, which requires a rational parameterisation
of the kinematics.

1We compute the one-loop amplitudes including the higher-order terms in the dimensional regulator
parameter ε.
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We work in dimensional regularisation, with d = 4 − 2ε spacetime dimensions, and
keep the external momenta four-dimensional. This allows us to use the spinor-helicity
formalism, as shown in eq. (2.3). We set the renormalisation scale µR to 1 throughout the
computation of the amplitudes. We restore the dependence on µR in our analytic results
as discussed in appendix B.

2.2 Structure of the 0→ q̄qggγ amplitude

We label the scattering process as

0→ q̄(p1, h1) + q(p2, h2) + g(p3, h3) + g(p4, h4) + γ(p5, h5) , (2.5)

where hi is the helicity of the particle with momentum pi. The L-loop amplitude M(L)

has the following colour decomposition:

M(L)(1q̄,2q,3g,4g,5γ) =
√

2eg2
s n

L
{

(ta3ta4) ī1i2 A
(L)
34 (1q̄,2q,3g,4g,5γ) (2.6)

+(ta4ta3) ī1i2 A
(L)
43 (1q̄,2q,3g,4g,5γ)+δ ī1i2 δ

a3a4A(L)
δ (1q̄,2q,4g,3g,5γ)

}
,

where gs and e are the QCD and QED coupling constants, respectively, n = mεαs/(4π),
αs = g2

s/(4π), mε = i(4π)εe−εγE , and ta are the generators of SU(Nc) in the fundamental
representation, normalised according to tr(tatb) = δab/2. We note that

A(L)
43 (1q̄, 2q, 3g, 4g, 5γ) = A(L)

34 (1q̄, 2q, 4g, 3g, 5γ) , A(0)
δ (1q̄, 2q, 4g, 3g, 5γ) = 0 . (2.7)

The partial amplitudes can be further decomposed into gauge invariant sub-amplitudes
according to the closed fermion loop contribution, to the power of Nc, and to whether the
photon is attached to an internal or external quark. At one loop we have

A(1)
34 = QqNcA

(1),Nc

34;q +Qq
1
Nc
A

(1),1/Nc

34;q +QqnfA
(1),nf

34;q +
(∑

l

Ql
)
A

(1),1
34;l , (2.8a)

A(1)
δ = QqA(1),1

δ;q +
(∑

l

Ql
) 1
Nc
A

(1),1/Nc

δ;l , (2.8b)

while at two loops we have

A(2)
34 =QqN2

cA
(2),N2

c
34;q +QqA(2),1

34;q +Qq
1
N2
c

A
(1),1/N2

c
34;q +QqNcnfA

(2),Ncnf

34;q +Qq
nf
Nc
A

(2),nf/Nc

34;q

+Qqn2
fA

(2),n2
f

34;q +
(∑

l

Ql
)
NcA

(2),Nc

34;l +
(∑

l

Ql
) 1
Nc
A

(2),1/Nc

34;l +
(∑

l

Ql
)
nfA

(2),nf

34;l ,

(2.9a)

A(2)
δ =QqNcA

(2),Nc

δ;q +Qq
1
Nc
A

(1),1/Nc

δ;q +QqnfA
(2),nf

δ;q +Qq
nf
N2
c

A
(2),nf/N

2
c

δ;q

+
(∑

l

Ql
)
A

(2),1
δ;l +

(∑
l

Ql
) 1
N2
c

A
(2),1/N2

c
δ;l +

(∑
l

Ql
)
nf
Nc
A

(2),nf/Nc

δ;l . (2.9b)
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1q̄

5γ

2q
3g

4g 4g

3g

1q̄

2q

5γ

4g

3g

1q̄

2q

5γ

A
(2),N2

c
34;q , A

(2),Nc
δ;q A

(2),1
34;q , A

(2),Nc
δ;q , A

(2),1/Nc
δ;q A

(2),Nc
34;l , A

(2),1/Nc
34;l , A

(2),1/N2
c

δ;l

Figure 1. Representative two-loop Feynman diagrams for the 0→ q̄qggγ partonic process, together
with the partial amplitudes they contribute to.

We denote by nf the number of light quark flavours, and by Qq (Ql) the charge of a flavour-
q (l) quark in units of e. We show representative Feynman diagrams contributing to the
0 → q̄qggγ process at two loops in figure 1. The right-hand sides of eqs. (2.8) and (2.9)
involve the following classes of partial amplitudes:

• A
(L),j
i;q : partial amplitude where the photon is attached to the external quark line of

flavour q (the first and second diagram in figure 1). This type of amplitude always
comes with a factor of Qq.

• A
(L),j
i;l : partial amplitude where the photon is attached to quarks running in the loop

(the last diagram in figure 1). This type of amplitude always comes with a factor of∑
lQl, where we sum over the internal quarks of flavour l.

We derive the analytic expressions of the A(L),j
34;i and A(L),j

δ;i partial amplitudes for the
following independent helicity configurations:

−+ + + +, −+ + +−, −+ +−+, −+−+ +. (2.10)

The remaining helicity configurations and partial amplitudes can be obtained by performing
parity transformation and/or by permuting the external momenta.

It is convenient to factor out a combination of spinor products such that the helicity
amplitude is free from the spinor phase. This is particularly important when we work with
the rational parameterisation of the external kinematics in terms of momentum twistor
variables discussed in section 2.4: conjugation and permutation of external momenta must
in fact be performed on phase-free quantities only. For the 0→ q̄qggγ partonic process we
choose the following spinor phase factors:

Φ−++++
q̄qggγ = 〈12〉〈31〉[23]

〈23〉〈34〉〈45〉〈51〉 , (2.11a)

Φ−+++−
q̄qggγ = 〈15〉3〈25〉

〈12〉〈23〉〈34〉〈45〉〈51〉 , (2.11b)

Φ−++−+
q̄qggγ = 〈14〉3〈24〉

〈12〉〈23〉〈34〉〈45〉〈51〉 , (2.11c)

Φ−+−++
q̄qggγ = 〈13〉3

〈12〉〈34〉〈45〉〈51〉 . (2.11d)
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To obtain the squared matrix element we construct the colour-summed L1-loop am-
plitude interfered with the L2-loop amplitude as follows

∑
colour

M(L1)∗M(L2) = 2e2g4
s n

L1nL2(N2
c − 1)

{(N2
c − 1)
4Nc

[
A(L1)∗

34 A(L2)
34 +A(L1)∗

43 A(L2)
43

]
− 1

4Nc

[
A(L1)∗

34 A(L2)
43 +A(L1)∗

43 A(L2)
34

]
+Nc A(L1)∗

δ A(L2)
δ (2.12)

+ 1
2
[
A(L1)∗

34 A(L2)
δ +A(L1)∗

43 A(L2)
δ +A(L1)∗

δ A(L2)
34 +A(L1)∗

δ A(L2)
43

]}
.

The bare L-loop amplitude M(L) contains both ultraviolet (UV) and infrared (IR)
singularities. The UV singularities are removed by means of renormalisation in the MS
scheme, while the IR ones can be predicted from the universal IR behaviour of QCD
amplitudes [66–69]. We define the finite remainder of an amplitude, R(L), by subtracting
the IR and UV singular parts from the bare amplitude as

|R(1)〉 =
[
|M(1)〉 − β0

ε
|M(0)〉

]
− Z(1)|M(0)〉 , (2.13a)

|R(2)〉 =
[
|M(2)〉 − 2 β0

ε
|M(1)〉 −

(
β1
2ε −

β2
0
ε2

)
|M(0)〉

]
− Z(2)|M(0)〉 − Z(1)|R(1)〉 , (2.13b)

where |M(L)〉 is a vector in colour space built out of the partial amplitudes given in eq. (2.6).
The square brackets on the right-hand sides of eqs. (2.13a) and (2.13b) separate the sub-
traction of the UV poles from that of the IR ones. The IR pole operator Z,

Z = I + αs
4π Z(1) +

(
αs
4π

)2
Z(2) +O

(
α3
s

)
, (2.14)

where I is the identity, is a process-dependent matrix in colour space that encodes the
IR singularities of the amplitude. We adopt the IR subtraction scheme of refs. [67, 68];
the Z(L)’s can be read off from eq. (12) of ref. [67]. We give explicit expressions of Z(1)

and Z(2) in the ancillary files [70]. The colour decomposition of the colour-dressed finite
remainder R(L) in terms of partial finite remainders F (L) for the 0 → q̄qggγ partonic
process is obtained from eq. (2.6) by substituting

M(L) → R(L) and A(L)
i → F (L)

i . (2.15)

Similarly, the (Nc, nf )-decomposition of the 0→ q̄qggγ partial finite remainders is derived
from the bare amplitudes decomposition specified in eqs. (2.8) and (2.9) by replacing

A(L)
i → F (L)

i and A
(L),k
i;j → F

(L),k
i;j . (2.16)

2.3 Structure of the 0→ qq̄QQ̄γ amplitude

For the 4-quark channel, we label the scattering process as follows,

0→ q(p1, h1) + q̄(p2, h2) +Q(p3, h3) + Q̄(p4, h4) + γ(p5, h5) , (2.17)
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1q

5γ

2q̄
3Q

4Q̄ 4Q̄

3Q

1q

2q̄

5γ

4Q̄

3Q

1q

2q̄

5γ

A
(2),N2

c
1;q , A

(2),1
1;q , A

(2),N2
c

2;q A
(2),1
1;Q , A

(2),1/N2
c

1;Q , A
(2),N2

c
2;Q , A

(2),1
2;Q , A

(2),1/N2
c

1;Q A
(2),Nc
1;l , A

(2),1/Nc
1;l , A

(2),1/Nc
2;l

Figure 2. Representative two-loop Feynman diagrams for the 0 → qq̄QQ̄γ partonic process,
together with the partial amplitudes they contribute to.

where q andQ are massless quarks of distinct flavour. The identical-flavour case is discussed
below. Representative Feynman diagrams contributing to the 0 → qq̄QQ̄γ process at two
loops are shown in figure 2. The colour decomposition of the L-loop amplitudeM(L) is

M(L)(1q, 2q̄, 3Q, 4Q̄, 5γ) =
√

2 e g2
s n

L
{
δ ī4
i1
δ ī2
i3
A(L)

1 (1q, 2q̄, 3Q, 4Q̄, 5γ)

+ 1
Nc
δ ī2
i1
δ ī4
i3
A(L)

2 (1q, 2q̄, 3Q, 4Q̄, 5γ)
}
. (2.18)

We further decompose the partial amplitudes A(L)
i according the source of photon radiation,

A(L)
i (1q, 2q̄, 3Q, 4Q̄, 5γ) = QqA(L)

i;q (1q, 2q̄, 3Q, 4Q̄, 5γ) +QQA(L)
i;Q(1q, 2q̄, 3Q, 4Q̄, 5γ)

+
(∑

l

Ql
)
A(L)
i;l (1q, 2q̄, 3Q, 4Q̄, 5γ) , (2.19)

where we introduced the following sub-amplitudes:

• A(L)
i;q : the photon is attached to the external q quark line (the first diagram in figure 2);

• A(L)
i;Q : the photon is attached to the external Q quark line (the second diagram in

figure 2);

• A(L)
i,l : the photon is attached to an internal quark line (the third diagram in figure 2).

This class of sub-amplitudes vanishes both at tree level and one loop for the 0 →
qq̄QQ̄γ process.

Furthermore, the A(L)
i;Q sub-amplitude can be obtained from the A(L)

i;q sub-amplitude via

A(L)
i;Q(1q, 2q̄, 3Q, 4Q̄, 5γ) = A(L)

i;q (3Q, 4Q̄, 1q, 2q̄, 5γ), i = 1, 2 . (2.20)

In the case where the flavours of the scattering quark pairs are identical (Q = q),

0→ q(p1, h1) + q̄(p2, h2) + q(p3, h3) + q̄(p4, h4) + γ(p5, h5) ,

– 8 –
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the L-loop colour decomposition is

M(L)(1q, 2q̄, 3q, 4q̄, 5γ) =
√

2 e g2
s n

L
{
δ ī4
i1
δ ī2
i3
A(L)

1 (1q, 2q̄, 3Q, 4Q̄, 5γ)

+ 1
Nc
δ ī2
i1
δ ī4
i3
A(L)

2 (1q, 2q̄, 3Q, 4Q̄, 5γ)

+ δ ī2
i1
δ ī4
i3
A(L)

3 (1q, 2q̄, 3Q, 4Q̄, 5γ)

+ 1
Nc
δ ī4
i1
δ ī2
i3
A(L)

4 (1q, 2q̄, 3Q, 4Q̄, 5γ)
}
. (2.21)

The A(L)
3 and A(L)

4 partial amplitudes are derived from A(L)
1 and A(L)

2 via

A(L)
3 (1q, 2q̄, 3Q, 4Q̄, 5γ) = −A(L)

1 (1q, 4Q̄, 3Q, 2q̄, 5γ) , (2.22a)

A(L)
4 (1q, 2q̄, 3Q, 4Q̄, 5γ) = −A(L)

2 (1q, 4Q̄, 3Q, 2q̄, 5γ) . (2.22b)

We further decompose the partial sub-amplitudes A(L)
i;q and A(L)

i;l (i = 1, . . . , 4) accord-
ing to the closed fermion loop contribution and factor of Nc. The (Nc, nf ) decomposition
at one loop is

A(1)
i;q = NcA

(1),Nc

i;q + 1
Nc
A

(1),1/Nc

i;q + nfA
(1),nf

i;q , (2.23)

while at two loops we have

A(2)
i;q =N2

cA
(2),N2

c
i;q +A(2),1

i;q + 1
N2
c

A
(2),1/N2

c
i;q +NcnfA

(2),Ncnf

i;q +nf
Nc
A

(2),nf/Nc

i;q +n2
fA

(2),n2
f

i;q , (2.24a)

A(2)
i;l =NcA

(2),Nc

i;l + 1
Nc
A

(2),1/Nc

i;l . (2.24b)

We derive the analytic expressions of the partial sub-amplitudes A(L),i
1;q , A(L),i

2;q , A(L),i
1;l , and

A
(L),i
2;l for the following independent helicity configurations:

−+−+ + , −+ +−+ , +−+−+ , +−−+ + . (2.25)

We obtain the remaining helicity configurations and partial amplitudes by performing
conjugation and/or permuting the external momenta. We choose the following spinor
phase factors:

Φ−+−++
qq̄QQ̄γ

= 〈13〉3〈24〉
〈12〉〈23〉〈34〉〈45〉〈51〉 , (2.26a)

Φ−++−+
qq̄QQ̄γ

= 〈14〉3〈23〉
〈12〉〈23〉〈34〉〈45〉〈51〉 , (2.26b)

Φ+−+−+
qq̄QQ̄γ

= 〈24〉3〈13〉
〈12〉〈23〉〈34〉〈45〉〈51〉 , (2.26c)

Φ+−−++
qq̄QQ̄γ

= 〈23〉3〈14〉
〈12〉〈23〉〈34〉〈45〉〈51〉 . (2.26d)
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We define the colour-summed L1-loop amplitude interfered with the L2-loop amplitude
to build the squared matrix element for the 0→ qq̄qq̄γ process as
∑

colour
M(L1)∗M(L2) = 2e2 g4

sn
L1nL2

{
N2
c

(
A(L1)∗

1 + 1
Nc
A(L1)∗

4

)(
A(L2)

1 + 1
Nc
A(L2)

4

)
(2.27)

+N2
c

(
A(L1)∗

3 + 1
Nc
A(L1)∗

2

)(
A(L2)

3 + 1
Nc
A(L2)

2

)
+Nc

(
A(L1)∗

1 + 1
Nc
A(L1)∗

4

)(
A(L2)

3 + 1
Nc
A(L2)

2

)
+Nc

(
A(L1)∗

3 + 1
Nc
A(L1)∗

2

)(
A(L2)

1 + 1
Nc
A(L2)

4

)}
.

To obtain the squared matrix element for 0 → qq̄QQ̄γ we set A(L2)
3 = A(L2)

4 = 0 in
eq. (2.27).

We define the finite remainders for the 0 → qq̄QQ̄γ partonic process according to
eq. (2.13). For 0→ qq̄QQ̄γ, |M(L)〉 is a vector in colour space made of the partial ampli-
tudes specified in eq. (2.18). Similarly to the 0→ q̄qggγ process, the colour decomposition
of the finite remainder is obtained by applying to eq. (2.18) the replacements in eq. (2.15),
while the (Nc, nf )-expansion of 0→ qq̄QQ̄γ partial finite remainders is derived by applying
the substitutions specified in eq. (2.16) to the bare amplitude decomposition in eqs. (2.23)
and (2.24).

2.4 Helicity amplitude computation

We compute analytically the one- and two-loop helicity amplitudes contributing to pp →
γjj production using a workflow that employs Feynman diagrams in conjunction with
numerical sampling over finite fields and functional reconstruction techniques [71, 72] within
the FiniteFlow [73] framework. This approach has already been employed in the analytic
computation of several two-loop amplitudes [59, 61, 64, 74].

The computational tool-chain starts with the generation of Feynman diagrams using
Qgraf [75], followed by colour decomposition and filtering the partial amplitudes. We
extract only the minimal set of independent partial amplitudes to be further processed.
We then construct the numerators of the loop amplitudes for all the independent helicity
configurations. These loop numerators are linear combinations of monomials involving
loop-momentum dependent scalar products and spinor strings. The coefficients of these
monomials are functions of spinor products of external momenta. In order to perform the
computation within a finite field framework, we need to use a rational parametrisation of the
external kinematics. To this end, we use the following momentum-twistor variables [76, 77],

x1 = s12, x2 =−tr+(1234)
s12s34

, x3 =−tr+(1345)
s13s45

, x4 = s23
s12

, x5 = s45
s12

, (2.28)

where tr+(ijkl) = tr((1 + γ5)/pi/pj/pk/pl)/2. We denote them cumulatively by ~x =
{x1, . . . , x5}. The momentum-twistor parametrisation in eq. (2.28) may be used for the
other massless five-point processes as well (pp→ jjj, pp→ γγj and pp→ γγγ). The only
dimensionful variable in this parameterisation is x1. We can thus set x1 = 1, and recover
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its dependence at the end of the calculation. The diagram processing and filtering, as well
as the construction of helicity-dependent loop numerators, are done using Mathematica
and Form [78, 79] scripts, together with the library Spinney [80] to carry out the Dirac
algebra and spinor manipulations. We present our results in the ’t Hooft-Veltman scheme.

We introduce the top-level integral families, which are a set of Feynman integral fam-
ilies that have the maximum number of loop propagators (in the two-loop five-point case
there are at most 8 propagators, with 3 irreducible scalar products). The loop-momentum
dependent terms in the loop numerators can then be written in terms of propagators of
the top-level integral families, allowing us to express the loop scattering amplitude as a
linear combination of scalar Feynman integrals. The coefficients of these scalar Feynman
integrals depend only on external kinematics in the form of momentum twistor variables.

We then reduce the scalar Feynman integrals to a set of pure [81] master integrals [57,
82–85] by solving the integration-by-parts relations [86, 87]. We generate the IBP relations
among the integrals of the top-level families for a single ordering of the external legs, and
solve them numerically over finite fields. We obtain the reduction of the integrals with
other orderings of the external legs by evaluating the IBP solution at permuted points.

For all families, we generated identities among integrals without higher powers of
propagators [88–90] with respect to those appearing in the amplitude. We obtained them
by using the Baikov representation of Feynman integrals [91, 92], where IBP identities
generally contain both higher powers of propagators and dimensionally-shifted integrals.
The latter can be eliminated by solving polynomial equations called syzygy equations.
Equations without dimension-shifted integrals can be obtained as closed-form solutions,
as illustrated in ref. [93]. Following ref. [94], we put these solutions into a sparse matrix,
and eliminated the higher powers of denominators through Gaussian elimination. We then
reconstructed new template equations using FiniteFlow’s sparse solver [73]. From these,
we generated a significantly smaller system of equations, which we then solved similarly to
the more traditional Laporta algorithm [95].

Next, we Laurent expand around ε = 0 up to the required order. The Laurent ex-
pansion of the master integrals is expressed in terms of a basis of special functions called
pentagon functions and transcendental constants (e.g. π, ζ3. . . ) [58]. We denote the pen-
tagon functions cumulatively by f , and the associated transcendental constants by c. At
this stage, we write the partial amplitudes as

A
(L),k
i;j =

o(L)∑
s=−2L

∑
r

εs cr,s(~x) monr(f, c) , (2.29)

where o(1) = 2 and o(2) = 0, and monr(f, c) are monomials of pentagon functions f and
transcendental constants c.

In previous work [64], it was found that directly reconstructing the finite remainder
decreased the reconstruction time, as it had a simpler expression than the full amplitude.
For pp → γjj production, we find that the drop in polynomial degrees from amplitude
to finite remainder is insignificant with respect to the reconstruction time. Therefore, we
reconstruct the bare amplitude and subsequently compute the finite remainder.
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In order to optimise the rational reconstruction of the amplitudes, we follow the strat-
egy of ref. [64]. We refer to that work for a detailed discussion, and give here just an outline
of the steps.

original: Reconstruction of the coefficients cr,s(~x) in eq. (2.29) without any optimisations.

stage 1: We fit the Q-linear relations among the coefficients cr,s(~x), and solve them for
the linearly independent coefficients, which are chosen to have the lowest polynomial
degrees.

stage 2: We determine the denominators of the coefficients cr,s(~x) by reconstructing them
analytically on a univariate slice [96], and matching the result against an ansatz. The
latter is a product of letters of the pentagon alphabet [97], and spinor products (〈ij〉,
[ij]). We then multiply away the identified factors.

stage 3: We perform a univariate partial fraction decomposition of the coefficients cr,s(~x)
with respect to x4 on the fly, and reconstruct the coefficients of the decomposition.
The latter depend on (x2, x3, x5) only.

stage 4: We perform another factor-matching (stage 2), this time on the coefficients of the
partial fraction decompositions of the cr,s(~x)’s. We enlarge the ansatz used in stage
2 to include also the spurious factors introduced by the univariate partial fraction
decomposition (stage 3).

Information on the degrees at each stage of the reconstruction for the most complicated
reconstructions is shown in table 1 for 0 → q̄qggγ and in table 2 for 0 → qq̄QQ̄γ. We
provide the complete analytic expressions for the one- and two-loop finite remainders and
IR/UV poles in the ancillary files [70].

2.5 Permutation and conjugation of the pentagon functions

The analytic expressions of the partial amplitudes are written in terms of rational coeffi-
cients and pentagon functions. The latter can be evaluated numerically in the s12 channel
through the library PentagonFunctions++ [58]. To obtain all the helicity configura-
tions and the full set of partial amplitudes from the independent set, we need to permute
the external momenta entering the rational coefficients as well as the pentagon functions.
Such permutations may require crossings of initial-state momenta to the final state, pre-
venting the evaluation with PentagonFunctions++. To overcome this, we exploit the
fact that the complete set of pentagon functions is closed under permutations of the exter-
nal momenta. In other words, any permutation σ of the pentagon functions f(~s) can be
expressed in terms of pentagon functions in the original ordering of the momenta as

σ ◦ f(~s) := f (σ ◦ ~s) = M (σ) ·mon (f(~s), c) , (2.30)

whereM (σ) is a matrix of rational numbers, and mon (f(~s), c) is the vector of all monomials
in f(~s) and c up to transcendental weight 4. We computed the matrices M (σ) from the
expressions of all permutations of the master integrals in terms of pentagon functions
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amplitude helicity original stage 1 stage 2 stage 3 stage 4

A
(2),1
34;q −+ +−+ 94/91 74/71 74/0 22/18 22/0

A
(2),1
34;q −+−+ + 93/89 90/86 90/0 24/14 18/0

A
(2),1/N2

c
34;q −+ +−+ 90/88 73/71 73/0 23/18 22/0

A
(2),1/N2

c
34;q −+−+ + 90/86 86/82 86/0 24/14 19/0

A
(2),1/Nc

34;l −+−+ + 89/82 74/67 73/0 27/14 20/0

A
(2),1/Nc

34;l −+ +−+ 85/81 61/58 60/0 27/18 20/0

A
(2),N2

c
34;q −+−+ + 58/55 54/51 53/0 20/16 20/0

Table 1. Maximal numerator/denominator polynomial degrees of the rational coefficients of the
six most complicated 0→ q̄qggγ amplitudes ordered by the maximal numerator degree prior to any
optimisation. The most complicated leading-colour contribution is also included in the last row of
the table for comparison.

amplitude helicity original stage 1 stage 2 stage 3 stage 4

A
(2),1
2;q −+ +−+ 83/80 53/50 53/0 20/14 16/0

A
(2),1/N2

c
2;q −+ +−+ 83/80 55/52 55/0 22/14 16/0

A
(2),1/N2

c
2;q −+−+ + 83/80 62/59 62/0 22/13 17/0

A
(2),1
1;q −+−+ + 83/80 29/26 27/0 19/10 14/0

A
(2),1/N2

c
1;q −+ +−+ 83/80 39/35 39/0 26/16 20/0

A
(2),1/N2

c
1;q −+−+ + 83/80 42/37 42/0 26/14 20/0

A
(2),N2

c
1;q −+ +−+ 45/42 55/52 55/0 22/14 16/0

Table 2. Same as table 1, but for 0→ qq̄QQ̄γ.

provided in ref. [58]. Thanks to eq. (2.30), it suffices to evaluate the pentagon functions
in one phase-space point in the s12 channel to obtain the values of all their permutations
as well. This not only removes the problem of evaluating outside the s12 channel, but also
reduces to the minimum the number of calls to PentagonFunctions++. Since the latter
are the most expensive part of the numerical evaluation of the two-loop amplitudes, this
approach is also more efficient.

The pentagon functions (as well as the associated transcendental constants) have well-
defined behaviour under parity conjugation. They are either even or odd, i.e., they either
stay the same or change sign. Conjugating them thus amounts to flipping the sign of the
odd ones. In this regard, note that the pseudo-scalar invariant tr5 is purely imaginary in
any physical channel. The library PentagonFunctions++ takes tr5 to have a positive
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imaginary part. The values of the pentagon functions for the opposite choice can be
obtained by parity conjugation.

We provide the pentagon-function permutation rules required to obtain the full set of
helicity configurations and partial amplitudes for pp→ γjj production in the ancillary files
under the folder amplitudes/permrules [70].

2.6 Validation

We perform the following checks to validate our results for the amplitudes.

Ward-identity test. We verify the gauge invariance of the bare helicity amplitudes by
replacing the gluon or photon polarisation vector by its momentum, and checking
that the resulting amplitudes vanish.

UV and IR poles subtraction. The fact that the finite remainders in eq. (2.13) are
indeed finite at ε = 0 proves that the amplitudes have the expected UV and IR poles.

Comparison against OpenLoops. We compare our results numerically against Open-
Loops at the level of the squared matrix element for the tree-level amplitudes and
the one-loop finite remainders (at O(ε0)), for all scattering channels contributing to
pp→ γjj production.

Checks on the symmetry of the amplitude. We perform several checks to demon-
strate that the amplitudes have the expected symmetries. For example, the 0 →
q̄qggγ subprocess is symmetric under the exchanges 1→ 2 and 3→ 4. We apply the
exchange in two ways: (1) by permuting rational coefficients and pentagon functions,
and (2) by permuting the external momenta in the numerical input. We check that
the two approaches give the same results.

One-loop amplitude check through O(ε2). To ensure that the tr5 invariant is cor-
rectly evaluated when performing permutations and conjugation as well as in the
numerical evaluation, we derive the full set of partial amplitudes for all the con-
tributing helicity configurations in terms of scalar master integrals. Unlike some of
the pure master integrals, the latter are parity even, i.e., they do not depend on
the sign of tr5. We then evaluate the scalar master integrals numerically using the
package AMFlow [98] up to the necessary ε order such that the amplitude is evalu-
ated through O(ε2). The amplitude computed using this approach is then compared
against the amplitude obtained by permutation and/or conjugation.

2.7 Numerical evaluation

We implemented the amplitudes presented above in a C++ code that yields the hard func-
tions, defined in appendix A, by performing the colour and helicity sums for the IR- and
UV-finite squared remainders according to eqs. (2.12) and (2.27), as required for the evalu-
ation of double-virtual contributions to differential cross sections. The code utilises the nu-
merical implementation of the special functions provided in PentagonFunctions++ [58],

– 14 –



J
H
E
P
1
0
(
2
0
2
3
)
0
7
1

and has been checked against an independent implementation in Mathematica for a num-
ber of phase-space points. If needed, higher-precision floating-point arithmetic is available
through the qd library [99], which implements the double-double and quad-double data
types. This is indeed necessary, since cancellations between rational terms and/or special
functions for some phase-space points lead to a loss of precision resulting in values with-
out a sufficient number of correct digits. In order to capture these problematic cases, we
employ the following algorithm for each phase-space point p = {pi}5i=1:

1) The two-loop hard function H(2)(p, µR) is evaluated at p with renormalisation scale
µR in standard double precision;

2) Additionally, the two-loop hard function is evaluated at p′ = {a × pi}5i=1 and renor-
malisation scale µ′R = a× µR, with a a numerical constant. The quantity

rdiff = |H
(2)(p, µR)− a2H(2)(p′, µ′R)|

|H(2)(p, µR) + a2H(2)(p′, µ′R)|
, (2.31)

provides an estimate of the relative numerical precision of the squared matrix element.
Here, we have taken into account the mass dimension of H(2)(p, µR) for a 2 → 3
scattering process. The estimated “number of correct digits” ncor is given by

ncor = − log10(rdiff) . (2.32)

3) If ncor > 4 the phase-space point is accepted and the algorithm restarts from 1) for
the next phase-space point. If ncor ≤ 4 the floating point precision is increased by
switching to the next larger data type and the algorithm restarts from 1). Instead
of simply using the same data type for every operation during amplitude evaluation,
we implement the following precision levels:

L1: pentagon and rational functions are evaluated with double precision (≈ 16 dig-
its);

L2: pentagon functions are evaluated with double precision, while the rational func-
tions with double-double precision (≈ 32 digits);

L3: pentagon functions are evaluated with double-double precision, while the rational
functions with quad-double precision (≈ 64 digits).

In order to obtain the differential distributions presented in section 3, we have evaluated
the squared matrix elements at ≈ 2.2 million phase-space points. The distribution of the
estimated numerical precision for the three different precision levels is shown in figure 3.
About 1% of the phase-space points required at least level L2 to achieve four correct digits.
Among those points, 10% were identified as still unstable and had to be evaluated at L3.
About 0.1% of the whole set of phase-space points required an evaluation at L3 to achieve
the precision goal of four correct digits.

The total computing time for the double-virtual contributions was 10 kCPUh corre-
sponding roughly to 16 seconds on average for the evaluation at a single phase-space point.
This timing includes stability checks and potential re-evaluations with higher precision.
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Figure 3. Fraction of phase-space points with a given number of correct digits with respect to
the total number of points. The labels “L1: sd,sd”, “L2: sd,dd”, and “L3: dd,qd” denote the
implementation levels L1, L2 and L3. The labels “sd”, “dd”, and “qd” refer to single-double,
double-double, and quad-double precision. Further details are given in the text.

3 LHC phenomenology at 13TeV

3.1 Setup

The evaluation of perturbative second-order corrections to the differential cross sections
for photon + di-jet production requires the combination of double-virtual, real-virtual
and double-real contributions. To this end, we employ Stripper, an implementation of
the sector-improved residue subtraction scheme [100–102], which also provides the cross
sections up to next-to-leading order. This software has been used previously in various
cross-section calculations and has been validated in numerous comparisons to public results.
Tree-level matrix elements are implemented through the AvH library [103]. For the single-
virtual contributions, which require one-loop matrix elements with one photon and up to
three jets, we employ OpenLoops2 [65]. The evaluation of the squared matrix elements
needed for the double-virtual corrections has been described in the previous section.

We work in the five-flavour, nf = 5, scheme, i.e. we consider QCD with five massless
quarks and ignore the existence of top-quarks. All predictions presented in this section use
the NNPDF31 [104] PDF set as implemented in LHAPDF [105]. We compute the cross
section for two different nominal choices of the renormalization (µR) and factorization
scale (µF ):

µR = µF = HT = E⊥(γ) + pT (j1) + pT (j2) and (3.1a)
µR = µF = E⊥(γ) , (3.1b)
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where E⊥(γ) is the transverse energy of the photon and pT (ji) denotes the i-th leading
jet transverse momentum. We estimate the uncertainty from missing higher orders by
performing a conventional 7-point scale variation around the nominal µR,F values by
factors of 2 subject to the constraint 1

2 ≤
µR
µF
≤ 2.

In order to showcase the theoretical NNLO QCD predictions for differential cross sec-
tions, we will compare our results to measurement data obtained by the ATLAS collabo-
ration at 13TeV [37]. As already explained in the introduction, the final-state photon may
either be produced through hard emission, well separated from other partons, or through
collinear emission described within the fragmentation formalism. Since the main achieve-
ment of the current publication is the evaluation of the two-loop virtual corrections for the
two-to-three processes with four partons and one photon, our attention is devoted to the
phase space region which is well described by fixed-order perturbative methods without
collinear enhancements. Fortunately, the measurements presented in ref. [37] are divided
into two samples, one of which is more sensitive to the perturbative and one which is more
sensitive to the fragmentation component. Of course, there is always some contamination
in each region from effects characteristic of the other region. We shall estimate the size of
the unwanted effects below, and argue that they are well within the uncertainties of the
measurement data to which we compare.

Since we adopt the phase-space of ref. [37], our event-selection cuts are defined as
follows:

1. We require at least two jets defined with the anti-kT algorithm [106] for jet radius
R = 0.4 that have minimal transverse momentum of pT (j) > 100 GeV and maximal
rapidity |η(j)| < 2.5.

2. The identified jets must be separated from the photon by ∆R(γ, j) > 0.8.

3. One isolated photon must be present in the final state with E⊥(γ) ≥ 150 GeV,
|η(γ)| ≤ 2.37 excluding 1.37 ≤ |η(γ)| ≤ 1.56.

4. It is well-known that hard photon isolation criteria lead to infrared sensitivity be-
yond the Born approximation, which manifests at fixed perturbative order by un-
compensated singularities. These singularities may be absorbed into a fragmentation
function. However, there is a simpler approach that allows us to avoid the implemen-
tation of the fragmentation formalism. This approach is based on a smooth photon
isolation criterion proposed by Frixione in ref. [12]. Upon extension with an addi-
tional hard-cone isolation [5, 16], this method simulates the experimental setup very
closely. This hybrid isolation criterion has been adopted in section 4.3 of ref. [37]
for the generation of next-to-leading order QCD predictions with the Monte-Carlo
generator Sherpa [40, 41] used for comparisons to data in that publication. Accord-
ingly, we accept an event if the sum, E⊥(r), of the transverse energies of all partons
separated from the photon by the angular distance ∆R ≤ r satisfies the smooth-cone
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(Frixione) condition:

E⊥(r) ≤ E⊥max(r) = 0.1E⊥(γ)
(

1− cos(r)
1− cos(Rmax)

)2

for r ≤ Rmax = 0.1 , (3.2)

as well as the hard-cone condition:

E⊥(r) ≤ E⊥max = 0.0042E⊥(γ) + 10 GeV for r ≤ Rmax = 0.4 . (3.3)

These event-selection cuts define the inclusive sample used in the determination of the
differential cross sections. The aforementioned reduction of the fragmentation effects is
further strengthened by imposing the requirement [37]:

E⊥(γ) > pT (j1) , (3.4)

which defines the direct-enriched sample. The fragmentation-enriched sample has been
defined in ref. [37] by the requirement E⊥(γ) < pT (j2). Here, j1 and j2 are the hard-
est (leading) and next-to-hardest (sub-leading) jet ordered according to their transverse
momenta.

3.2 Selected observables

In this section, we discuss selected results for the inclusive and direct-enriched phase space
defined above. Results for the following distributions in all three phase spaces are provided
in numeric format together with this publication:

1. E⊥(γ): photon transverse energy,

2. pjetT : jet transverse momentum,

3. yjet: jet pseudorapidity,

4. |∆yγ−jet|: absolute value of the pseudorapidity difference between the photon and
the jet,

5. |∆φγ−jet|: azimuthal-angle difference between the photon and the jet,

6. |∆yj1−j2 |: absolute value of the pseudorapidity difference between the leading and
sub-leading jet,

7. |∆φj1−j2 |: azimuthal-angle difference between the leading and sub-leading jet,

8. m(j1j2): invariant mass of the leading and sub-leading jet,

9. m(γj1j2): invariant mass of the photon, leading and sub-leading jet.

In the case of pjetT , yjet, |∆yγ−jet| and |∆φγ−jet|, every event is counted twice by filling the
given histogram using the value of the respective observable for both the leading and the
sub-leading jet.
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Figure 4. Differential cross sections w.r.t. the transverse energy of the photon E⊥(γ) in the inclu-
sive (left plot) and direct-enriched (right plot) phase space at LO (green), NLO (blue) and NNLO
(red) QCD compared to data (black) and Sherpa (purple) prediction provided by ATLAS [37]. The
top panels show the absolute values for the HT scale choice. The middle (bottom) panel shows the
ratio to NLO QCD using the HT (E⊥(γ)) scale. The coloured bands show scale variation and the
vertical coloured bars indicate statistical uncertainties. Only scale variation is taken into account
in the Sherpa predictions.

Together with the LO, NLO and NNLO QCD predictions, we show not only the mea-
surement results from ref. [37] but also Sherpa predictions provided by ATLAS. The latter
are obtained from an NLO-matched QCD parton-shower merged with LO photon+four-jet
samples corresponding to the double-real radiation contributions in the presented NNLO
QCD predictions. The Sherpa predictions use E⊥(γ) for the renormalisation and factori-
sation scale. Furthermore, they have been obtained using the NNPDF30 PDF, which may
yield differences in cross section normalisation compared to NNPDF31 PDF. More details
on the Sherpa setup can be found in ref. [37].

Transverse photon energy E⊥(γ). The differential cross section is shown in figure 4 for
the inclusive (left plot) and for the direct-enriched phase space (right plot). For theHT scale
choice, the NLO QCD corrections are about 80% at small transverse energies and about
30% at high energies relative to LO for both samples. The NLO QCD predictions have
sizeable estimated uncertainties from missing higher orders of about 10−20%. Nevertheless,
they describe the ATLAS data within those uncertainties. The NNLO QCD corrections
are positive and much smaller than the NLO. They vary from ≈ 1% at low transverse
energy to maximally 10% for E⊥(γ) ≈ 400 − 600 GeV. The scale dependencies decrease
significantly to 1− 5% when including the second-order corrections. Moreover, the NNLO
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QCD predictions describe the data better than the NLO as far as the distribution’s shape
is concerned. On the other hand, the normalisation is slightly high albeit still compatible
within the systematic uncertainties. The picture changes when considering results obtained
with the E⊥(γ) scale. The LO predictions are significantly larger than for the HT scale,
while the NLO corrections are smaller. In this case, the NNLO QCD corrections are
negative and sizeable (up to −20%) for small transverse energies. The data is again well
described although with larger remaining scale dependence. The large corrections and
uncertainties indicate that the scale choice E⊥(γ) does not capture the relevant kinematic
scales entering this observable. This is different from the inclusive photon production case
pp→ γ +X. The reason lies most likely in the presence of new scales introduced through
the jet-selection requirements.

At higher energies, while still agreeing with data within the uncertainties, the predicted
spectrum is harder than the measurement. It has been shown in refs. [107, 108] that
electroweak (EW) corrections are significant in the TeV region, and can reach about ≈
−10% for E⊥(γ) > 1 TeV in pp → γj. Similar corrections can be expected for pp → γjj

and could alleviate the observed discrepancy at high energies. The E⊥(γ) distribution is
not the only one affected by potentially large EW corrections. In fact, for large invariant jet
pair mass m(j1j2) and large rapidity separation between the two jets, sizeable corrections
are also expected. The inclusion of these corrections is, however, left for future work.

A striking observation is that the description of the data by the purely perturbative
QCD (pQCD) calculation is noticeably better than by the Sherpa prediction which in-
cludes parton-shower effects and higher jet multiplicities through merging. It appears that
the Sherpa predictions systematically overshoot the measurement at high energies, while
pQCD predictions are closer to data both in size and in shape. The uncertainties of the
Sherpa predictions estimated using scale variation are twice as large as those of the fixed
order calculation. This is the reason why the Sherpa predictions still agree with data. A
possible explanation for the size of the uncertainties despite the fact that both approaches
have at least NLO accuracy could be the multi-jet merging with the photon+4-jet sample,
which is likely to come with a large scale dependence. The merging procedure imple-
mented in Sherpa additionally relies on a merging scale, which could also have increased
the uncertainty estimates.

Jet transverse momentum pjet
T . In this case, we make similar observations as for the

transverse energy of the photon. The differential cross section is presented in figure 5. For
the HT scale, we find small NNLO QCD corrections and small remaining scale dependence.
The description of the data is very clearly improved with respect to NLO QCD and Sherpa.
The observable demonstrates once more the sub-optimal properties of the E⊥(γ) scale.
Looking at the inclusive phase space, the NNLO QCD scale dependence is much larger
than in the case of HT , especially at high transverse momentum. This is not the case in the
direct-enriched phase space, where both scales behave similarly. This is consistent with the
fact that the two scale choices are closest (kinematics-wise per event) when E⊥(γ) > pT (j1)
since in that case, E⊥(γ) dominates the value of HT . This suggests that the region where
E⊥(γ) < pT (j1) is particularly poorly described with the E⊥(γ) scale because this scale is
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Figure 5. The same as figure 4 but for the pjet
T observable.
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Figure 6. The same as figure 4 but for the m(j1j2) observable.

relatively low (compared to the jet momenta), leading to comparatively large αS(µR) and
thus large corrections.
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Figure 7. The same as figure 4 but for the |∆φγ−jet| and |∆φj1−j2 | observables in the inclusive
phase space only.

Invariant mass of the jet pair m(j1j2). The differential cross section is presented in
figure 6. Unsurprisingly, the pattern of perturbative corrections is similar to the previous
two cases. The NNLO QCD corrections are small and lead to a significant reduction of the
scale dependence. The NNLO QCD predictions agree with the data across the spectrum.
Only for small invariant masses do we observe a clear deviation. This deviation might be
related to the different definition of the photon isolation between theory and experiment. It
seems that Sherpa describes the data in the first bin better than fixed-order QCD. For high
invariant mass, the Sherpa predictions apparently fail to describe the spectrum, which is
noteworthy because this observable is of special interest in searches for New Physics, e.g.
in the search for a heavy resonance decaying into jets and recoiling against the prompt
photon. The NNLO QCD predictions correctly describe the falling spectrum with only
small corrections w.r.t. NLO QCD. The scale-variation uncertainty is smaller than the
experimental uncertainties. The good description of the data, in particular in comparison to
the Sherpa spectrum, motivates the usage of the predicted spectrum instead of relying on
data-driven background estimates. Of course, this would require a substantial investment
of computing resources in order to improve the quality of the Monte-Carlo integration for
invariant masses in the TeV range. In this region, we observe large cancellations between
different contributions (subtracted real-radiation contributions of different multiplicities) to
the complete NNLO result, which impact the quality of the histograms. The cancellations
are enhanced for the E⊥(γ) scale. The results in the direct-enriched phase space suffer
further from reduced statistics due to the additional cuts.
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Figure 8. The same as figure 4 but for the |∆φγ−jet| and |∆φj1−j2 | observables in the direct-
enriched phase space only. Note that, in this case, we show the ratio plot with respect to data since
the perturbative corrections are large. See text for more details.

Azimuthal separation between the jets and photon |∆φγ−jet| and |∆φj1−j2|.
These are the last two observables that we discuss in detail. We first focus on the inclu-
sive phase space, for which the differential cross sections are shown in figure 7. For the
HT scale, the NLO QCD predictions agree with the data reasonably well but the NNLO
QCD corrections are essential in order to precisely describe the shape of the distributions.
The second-order corrections improve the data to theory comparison especially for large
azimuthal separations. Interestingly, Sherpa simulations can hardly describe the photon-
jet azimuthal distance for small separation, and the jet-jet azimuthal distance for large
separation. Both cases correspond to the situation where a photon and a nearby softer
jet are likely recoiling against a harder jet, which leads simultaneously to a small |∆φγ−j2 |
and large |∆φj1−j2 |. This is also the region of large m(j1j2).

In the case of the direct-enriched phase space, the considered observables have
some peculiar properties due to the geometric constraints arising from the requirement
E⊥(γ) > pT (j1). The distance between the photon and the jets corresponds then to
the same observable which is studied in the context of the azimuthal decorrelation in
three jet production [109]. The additional phase space constraint leads to the fact that
|∆φγ−jet| > 2π

3 when considering LO kinematics. The presence of a kinematical edge is
responsible for large perturbative corrections, as visible in figure 8. Indeed this is the only
case where the E⊥(γ) scale choice performs better than HT , since it enhances the radiation
of high-pT jets filling the phase space better.
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Figure 9. A comparison of different approximations to the double virtual corrections. See text for
details.

Estimate of omitted fragmentation contributions. The fragmentation contribu-
tions to the differential cross sections presented above may be evaluated by convolving
parton-to-photon fragmentation functions with a three-jet production cross section defined
with a corresponding resolved parton. The hard-cone isolation criterion, eq. (3.3), im-
plies that only hard photons with fragmentation-momentum fraction z ≥ E⊥(γ)/(E⊥(γ) +
E⊥,max) > 0.93 contribute. Fragmentation functions are strongly suppressed for large z,
which is responsible for the dominance of well-separated photon emissions. This effect is
further strengthened by the cut requiring the photon to be harder than the hardest jet.

While it is impossible to provide a back-of-the-envelope estimate of the omitted frag-
mentation contributions, which have been replaced by contributions defined by Frixione’s
isolation, we may nevertheless invoke the recent ref. [5]. There, the fragmentation contri-
butions have been included for the photon + jet process with a phase space very similar to
ours, since referring to similar measurements by ATLAS. In particular, figure 9 in section
5.1 of ref. [5] shows a comparison between the transverse energy/momentum spectra with
fragmentation contributions and with a hybrid photon-isolation criterion. The difference
never exceeds 5%. In view of these findings, we also estimate that the effects omitted in our
study should not exceed 5% in neither the inclusive nor the direct-enriched phase space.

The effect is by design larger in the fragmentation-enriched part of the phase space.
Hence, we do not show any comparison of our predictions to data for such configurations.
However, for reference, we provide the corresponding plots in the ancillary files attached
to the arXiv preprint.

3.3 Size of the sub-leading-colour terms of the double-virtual contributions

The differential cross sections presented in the previous section are the first NNLO QCD
results for a two-to-three process with exact double-virtual corrections. Previous calcula-
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tions for three-photon, di-photon + jet, and three-jet production processes relied on the
leading-colour approximation of the two-loop finite remainder, possibly augmented with
some sub-leading contributions given by additional planar diagrams. In the case of each of
these processes, it was argued that the approximation should not have a noticeable impact
on the results due to the expected size of the sub-leading-colour contributions in compar-
ison with the scale uncertainty of the NNLO calculation itself. The argument was based
on the small size of the finite remainder in comparison with the complete cross section, as
well as on the experience-based expectation that sub-leading-colour contributions should
amount to about 10% of the leading-colour contributions. Here, we have the opportunity
to assess the quality of the leading-colour approximation using the exact result. To this
end, we consider the double-virtual finite remainder cross section

σV V F =
∫

dΦH(2)(µ2
R) , (3.5)

where H(2)(µ2
R) is defined in appendix A. Terms depending on the logarithm of the renor-

malisation scale, ln(µ2
R/µ

2
R0), occurring in the finite remainder H(2)(µ2

R) can be derived
using the formulae presented in refs. [67, 68], see appendix B. They require the evaluation
of tree-level and one-loop amplitudes, which can be done at full colour for any process.
Hence, we decompose the finite remainder as follows

H(2)(µ2
R) = H(2)(s12) +

4∑
i=1

ci lni
(
µ2
R

s12

)

≈ H(2)
l.c.(s12) +

4∑
i=1

ci lni
(
µ2
R

s12

)
.

(3.6)

Note that the choice of the reference scale does influence the size of the sub-leading colour
effects in H(2)(µ2

R0). Here, just as in our previous calculations for the aforementioned
photon and jet processes, we take µ2

R0 = s12. This corresponds to the value used in the
implementation of the sector-improved residue subtraction scheme in the C++ library
Stripper. The choice should not lead to unwanted enhancements of H(2)(µ2

R0) as long as
the final states are well separated. We compare three different approximations:

1) H(2)
l.c.(s12): the large Nc limit assuming that nf and Ql scale with the same rate. This

is more than just the planar approximation since the Ql terms can have non-planar
contributions.

2) H(2)
l.c.;Ql=0(s12): same as 1) but with Ql = 0.

3) H(2)
0 (s12): here we just set H(2)(s12) = 0.

A comparison of the differential cross sections (all contributions, not only the double
virtual) assuming each of the three approximations is shown in figure 9. We plot the
ratio with respect to the full-colour result labelled “NNLO”. We observe that there is
no noticeable difference between the exact and the approximated results in the case of

– 25 –



J
H
E
P
1
0
(
2
0
2
3
)
0
7
1

H(2)
l.c.(s12). The H(2)

l.c.;Ql=0(s12) approximation has a small impact reaching at most 1% at
the cross section level.

Finally, we can use the H(2)
0 (s12) approximation to estimate the overall contribution

of the two-loop hard functions in the NNLO QCD result. This approximation is clearly
distinguishable from the full result and indicates that the double-virtual contribution is
about 10% across the phase space. In some cases, the double-virtual contribution may be
even larger, as demonstrated by the invariant-mass distribution for large m(j1j2) values.

As a side note, we point out that the loop-induced corrections from the gg → ggγ

one-loop squared matrix elements never exceed 1 permille relative to NLO QCD.

4 Conclusions

We have derived the exact two-loop amplitudes in the four-quark and two-quark-two-gluon
channels necessary for the complete description of single photon hadro-production in con-
junction with two final-state jets at NNLO in QCD. We employed finite-field arithmetic
throughout the computation, and reconstructed the analytic expression of the amplitudes
using an optimised algorithm informed by the expected singularity structure, and boosted
by a partial fraction decomposition. We optimised the IBP systems with the help of syzygy
equations. The results are explicit for a minimal set of helicity configurations and partial
amplitudes expressed in terms of pentagon functions suitable for efficient numerical evalu-
ation. The complete hard functions required for the squared matrix elements are obtained
by a combination of parity conjugation and permutation of the external momenta. Each
of these operations has been described in detail. We have also paid particular attention
to numerical stability, which is achieved with the help of higher-precision floating-point
arithmetic in our implementation in C++. The two-loop amplitudes obtained here are
made available in a public repository [70].

Equipped with the two-loop hard functions, we have performed a phenomenological
analysis of the photon + di-jet production process in the setup corresponding to recent
ATLAS measurements at the LHC. We have demonstrated that the NNLO results improve
the description of the data in the case of the photon transverse energy, the jet transverse
momentum, and the di-jet invariant mass. Nevertheless, there is a noticeable difference
between theory and experiment in the case of the photon transverse energy starting around
1 TeV. This difference increases with energy and can be attributed to electroweak effects
not accounted for in our study. This explanation is consistent with the negative sign of elec-
troweak Sudakov corrections typical of high-transverse-momentum processes. In the case
of the azimuthal angle between the photon and the leading jet, and the azimuthal angle be-
tween the two leading jets, the description is satisfactory in the inclusive case, while pertur-
bation theory fails as expected for exclusive cuts designed to remove fragmentation effects.
Finally, we notice that the theoretical predictions obtained from parton-shower-matched
and multi-jet-merged simulations generated with Sherpa have larger scale uncertainties
and provide a poorer data description than NLO let alone NNLO QCD predictions. One
possible explanation of this unsatisfactory situation could be the reliance on a multi-jet-
merged sample of leading-order accuracy. We do not exclude the possibility of improving
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the description by a better setup of the Sherpa simulation. Should this be achievable, it
would demonstrate the pitfalls of using the very complicated machinery of Monte-Carlo
event generators.

Since our phenomenological study is designed to showcase the two-loop two-to-three
virtual corrections, we have not evaluated the fragmentation contributions. These contri-
butions may be omitted thanks to the special set of cuts called here the direct-enriched
phase space. While we estimate the systematic uncertainty implied by the omission as
lower than 5% and decreasing with energy, we intend to include fragmentation in a future
study. Finally, we stress that infrared safety of the observables is guaranteed by the use
of the well-known Fixione isolation condition in conjunction with the hard-cone isolation
used in the experimental setup.

Our study not only completes the set of predictions for two-to-three processes with
photons and jets, but is also the first not to rely on the leading-colour approximation of
double-virtual contributions.
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A Numerical benchmark for the hard functions

In this appendix we provide numerical values of the hard functions for the 0 → q̄qggγ

and 0 → qq̄QQ̄γ partonic subprocesses at a benchmark phase-space point. We define the
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tree-level, one-loop, and two-loop hard functions as follows

H(0) =
∑

colour

∑
helicity

∣∣M(0)∣∣2 , (A.1a)

H(1) = 2 Re
∑

colour

∑
helicity

M(0)∗R(1) , (A.1b)

H(2) = 2 Re
∑

colour

∑
helicity

M(0)∗R(2) +
∑

colour

∑
helicity

R(1)∗R(1) . (A.1c)

The factors required for averaging over initial state helicities and colours, as well as the
relevant symmetry factors in the case of identical final state partons are included in the
normalisation. We define the following short-hand notation

f1f2 → f3f4γ =⇒ f1(−p1) + f2(−p2)→ f3(p3) + f4(p4) + γ(p5) , (A.2)

to represent a scattering process involving two incoming partons (f1, f2), and two outgoing
partons (f3, f4) in association with a photon.

In table 3, we show the values of the tree-level, one-loop, and two-loop hard functions
for a selection of partonic scattering channels that contribute to pp→ γjj at the following
phase-space point,

p1 = (−500, 0, 0,−500) ,
p2 = (−500, 0, 0, 500) ,
p3 = (458.57878788544, 169.45322030968, 379.65366207819,−193.50247465025) , (A.3)
p4 = (364.06662073682,−18.329869293192,−347.70430131937, 106.34960775871) ,
p5 = (177.35459137774,−151.12335101649,−31.949360758832, 87.152866891544) ,

and using the following parameters,

µR = 173.2 , αs = 0.118 , e = 0.30795376724 . (A.4)

The momenta and the renormalisation scale µR are given in units of GeV.
Numerical results for the hard functions for all the scattering channels contributing

to pp → γjj, as well as all partial helicity finite remainders for all contributing helicity
configurations can be accessed by running the scripts SquaredFiniteRemainder_2q2gA.wl
and SquaredFiniteRemainder_2q2QA.wl available in the public repository [70]. These two
files also provide all the necessary rules to perform parity transformation and permutations
to obtain the full set of helicity configurations, partial amplitudes and scattering channels.

B µR dependence of the finite remainder

In the computation of the finite remainders R(L) we set µR = 1. We recover the dependence
on µR a posteriori, by adding suitable µR-restoring terms δR(L) to the finite remainders,

R(L)(~s, µ2
R) = R(L)(~s, µ2

R = 1) + δR(L)(~s, µ2
R) . (B.1)
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0→ q̄qggγ H(0)
[
GeV−2

]
H(1)/H(0) H(2)/H(0)

uū→ ggγ 1.42202 · 10−5 -0.0868074 0.0219214

gg → uūγ 2.69842 · 10−6 -0.246582 0.0412084

ug → ugγ 4.53256 · 10−5 0.0299060 0.0169971

gu→ ugγ 2.70402 · 10−5 0.0155916 0.00457076

0→ qq̄QQ̄γ H(0)
[
GeV−2

]
H(1)/H(0) H(2)/H(0)

uū→ uūγ 4.29458 · 10−5 0.0756652 -0.0388519

uū→ dd̄γ 4.41265 · 10−6 -0.253477 0.0493917

uū→ cc̄γ 8.04351 · 10−6 -0.290635 0.0616392

uu→ uuγ 1.88278 · 10−5 0.171349 0.0140249

ud→ udγ 2.00840 · 10−5 0.233819 -0.0167785

uc→ ucγ 6.53549 · 10−6 0.228568 -0.0168878

Table 3. Numerical results for the hard functions defined in eq. (A.1) for a selection of partonic
reactions contributing to NNLO QCD computation of pp→ γjj production at the LHC. We employ
the phase-space point given in eq. (A.3) and parameters specified in eq. (A.4). The notation used
for the partonic scattering process is defined in eq. (A.2).

~s is the set of kinematic invariants defined in eq. (2.2). The µR-restoring terms depend only
on the β function, the IR operators Z(L), and the lower-loop finite remainders evaluated
at µ2

R = 1. Computing the finite remainders with µ2
R = 1 is thus sufficient to recover the

full dependence. Explicitly, the one- and two-loop µR-restoring terms are given by

|δR(1)(~s, µ2
R)〉 =

[1
2 log2(µ2

R)Z(1)
−2 + log(µ2

R)
(
β0 I + Z(1)

−1(~s)
)]
|M(0)(~s)〉 , (B.2)

|δR(2)(~s, µ2
R)〉 =

[1
2 log2(µ2

R)Z(1)
−2 + log(µ2

R)
(
2β0 I + Z(1)

−1(~s)
)]
|R(1)(~s, µ2

R = 1)〉

+
{

log4(µ2
R)
[
− 5

24
(
Z(1)
−2

)2
+ 2

3 Z
(2)
−4

]
+ 1

6 log3(µ2
R)
(
10β0 Z(1)

−2 − 5Z(1)
−2 · Z

(1)
−1(~s) + 8Z(2)

−3(~s)
)

+ log2(µ2
R)
[
β2

0 I + 5
2β0 Z(1)

−1(~s)− 1
2
(
Z(1)
−1(~s)

)2
+ 2Z(2)

−2(~s)
]

+

+ log(µ2
R)
(
β1 I + 2Z(2)

−1(~s)
)}
|M(0)(~s)〉 , (B.3)
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where I is the identity operator in colour space, and Z(L)
k is the order-εk term in the Laurent

expansion around ε = 0 of the IR operators at µ2
R = 1,

Z(L)(~s, µ2
R = 1) =

−1∑
w=−2L

Z(L)
w (~s) εw . (B.4)

Note that — in the scheme we adopted — the IR operators do not contain finite terms,
i.e. they have no terms of order ε0 or higher. We further recall that the IR operators Z(L)

are process-dependent, and that the leading poles — Z(L)
−2L — are constant. In eqs. (B.2)

and (B.3) we spelled out the dependence on the kinematic invariants ~s, and all logarithms
of µ2

R are explicit.
We verify that the finite remainders have the correct scale dependence by evaluating

them at two phase-space points related by a rescaling by some factor a > 0, and checking
that they satisfy the relation

R(L)(a~s, 1) + δR(L)(a~s, a)
R(L)(~s, 1)

= M
(0)(a~s)
M(0)(~s)

. (B.5)

This follows from the fact that amplitudes and finite remainders are homogeneous functions
of ~s and µ2

R.

C Parity transformation and external-momentum permutation for the
amplitudes

We derived analytic expressions for the independent helicity configurations and the minimal
set of partial amplitudes. In order to obtain the expressions for the complete set of helicity
configurations and partial amplitudes required to evaluate the squared matrix elements in
the various scattering channels, we apply a parity transformation and/or a permutation
of the external momenta to the minimal set of partial amplitudes. In this appendix we
spell out the algorithms required to perform these operations. We first define the following
short-hand notation for the partial amplitudes:

A~h(g) = A(L)
(
1h1 , 2h2 , 3h3 , 4h4 , 5h5

γ

)
, (C.1)

where g = (12345) is the default external-momentum ordering specified in eqs. (2.5)
and (2.17), and ~h = (h1, h2, h3, h4, h5). Our analytic expressions for the loop partial
amplitudes have the form

A~h(g) =
∑
k

c
~h
k(~x(g)) monk(f(g), c) . (C.2)

Here, we extend the notation for the momentum-twistor variables ~x and pentagon func-
tions f to show explicitly their dependence on the routing of the external momenta: ~x(g)
and f(g). ~x(g) indicates an evaluation of the right-hand-side of eq. (2.28) at a given phase-
space point with external-momentum ordering g. Since the spinor-phase information is
lost when using momentum-twistor variables, we restore it in our analytic expressions for
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the partial amplitudes through suitable helicity-dependent spinor-phase factors Φ~h (de-
fined in eqs. (2.11) and (2.26) for 0 → q̄qggγ and 0 → qq̄QQ̄γ, respectively). In other
words, we divide the coefficients c~hk in eq. (C.2) by the phase factor expressed in terms of
momentum-twistor variables Φ~h(~x), and multiply them by the same expressed in terms of
spinor products Φ~h(〈ij〉, [ij]). We thus have

A~h(g) = Φ~h(〈ij〉, [ij]; g)
∑
k

c
~h
k(~x(g))

Φ~h(~x(g))
monk(f(g), c) , (C.3)

where we spell out the dependence on the external-momentum ordering g. The benefit of
this approach is that the momentum-twistor dependent coefficients c~hk(~x(g))/Φ~h(~x(g)) are
phase-free quantities, and the phase of the partial amplitude is explicitly restored. This
allows us to perform the following two operations.

• Parity transformation
The action of parity P flips the helicities and the sign of all pseudo-scalar quantities.
In particular, it flips the sign of tr5 and thus exchanges tr+ with tr−. Thus, there is

A−~h(g) = PA~h(g)

= Φ~h(〈ij〉, [ij]; g)
∣∣
〈ij〉↔[ji]

∑
k

c
~h
k(~x(g))

Φ~h(~x(g))

∣∣∣∣
tr+↔tr−

monk (Pf(g),Pc) . (C.4)

We recall from section 2.5 that parity acts on the pentagon functions f and the
associated transcendental constants c by flipping the sign of all parity-odd func-
tions/constants.
Complex conjugation needed in order to construct the squared matrix elements
(eqs. (2.12) and (2.27)) requires that — on top of the parity transformation — we
also complex-conjugate the values of the pentagon functions and constants,

(
A~h(g)

)∗
= Φ~h(〈ij〉, [ij]; g)

∣∣
〈ij〉↔[ji]

∑
k

c
~h
k(~x(g))

Φ~h(~x(g))

∣∣∣∣
tr+↔tr−

monk (P(f(g))∗,P(c)∗) .

(C.5)

• Permutation of the external momenta
Let g′ be an ordering of the external momenta different from g = (12345). We denote
by σ the permutation of the external momenta which takes from g to g′, and by ~h′
the permuted helicities,

g′ = σ ◦ g , ~h′ = σ ◦ ~h . (C.6)

The partial amplitude for the ordering g′ is given by

A~h′(g′) = Φ~h(〈ij〉, [ij]; g′)
∑
k

c
~h
k(~x(g′))

Φ~h(~x(g′))
monk (σ ◦ f(g), σ ◦ c) . (C.7)

We emphasise that some of the constants c have odd parity, and change sign if the
permutation σ has odd signature. A more thorough discussion of the permutation of
pentagon functions and transcendental constants can be found in section 2.5.
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