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Key Points

• Polymorphic alleles of
either ABCB1 or VEGF
genes predicted better
outcome in patients
with MCL receiving
LEN after ASCT.

• ABCB1, NCF4,
GSTP1, and CRBN
polymorphisms were
associated with toxicity
during induction and
with LEN dose
reductions.
In the Fondazione Italiana Linfomi MCL0208 phase 3 trial, lenalidomide maintenance (LEN)

after autologous stem cell transplantation (ASCT) in mantle cell lymphoma (MCL) improved

progression-free survival (PFS) vs observation (OBS). The host pharmacogenetic

background was analyzed to decipher whether single-nucleotide polymorphisms (SNPs) of

genes encoding transmembrane transporters, metabolic enzymes, or cell-surface receptors

might predict drug efficacy. Genotypes were obtained via real-time polymerase chain

reaction of the peripheral blood germ line DNA. Polymorphisms of ABCB1 and VEGF were

found in 69% and 79% of 278 patients, respectively, and predicted favorable PFS vs

homozygous wild-type (WT) in the LEN arm was 3-year PFS of 85% vs 70% (P < .05) and 85%

vs 60% (P < .01), respectively. Patients carrying both ABCB1 and VEGFWT had the poorest 3-

year PFS (46%) and overall survival (76%); in fact, in these patients, LEN did not improve

PFS vs OBS (3-year PFS, 44% vs 60%; P = .62). Moreover, the CRBN polymorphism (n = 28)

was associated with lenalidomide dose reduction or discontinuation. Finally, ABCB1, NCF4,

and GSTP1 polymorphisms predicted lower hematological toxicity during induction,

whereas ABCB1 and CRBN polymorphisms predicted lower risk of grade ≥3 infections. This

study demonstrates that specific SNPs represent candidate predictive biomarkers of

immunochemotherapy toxicity and LEN efficacy after ASCT in MCL.
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Introduction

Mantle cell lymphoma (MCL) is an aggressive, mature B-cell non-
Hodgkin lymphoma historically known for its poor long-term
outcome.1 In recent years, the introduction of novel treatment plat-
forms has led to substantial improvement in patients’ prognosis,
almost uniformly including a maintenance phase, which is now
considered a critical stem of successful treatment.2-5 Among main-
tenance regimens, lenalidomide, an oral immunomodulatory drug,
has been demonstrated to have significant activity and a manage-
able safety profile, both alone and in combination with rituximab.3-7

However, treatment response appears nonuniform across patients,
and predicting the clinical drug profile remains an unmet need.

Many factors may affect interindividual responsiveness to drugs,
and the role of the host genetic background has also been inves-
tigated in lymphoma.8-11 In particular, gene polymorphisms consist
of variations in the gene DNA sequence occurring in a population
with a frequency ≥1% and resulting in changes in the expression,
structure, and activity of the proteins encoded by these genes.
Interestingly, previous reports have suggested that single-
nucleotide polymorphisms (SNPs) involving drug metabolic path-
ways are predictive of both response and toxicity in different
histotypes of non-Hodgkin lymphoma.8-15 This has been proven for
several agents, including anthracyclines,12 monoclonal anti-
bodies,13,14 and immunomodulatory drugs, including lenalidomide,
which is affected by SNPs in ABCB1, ERCC5, XPA, and GSTP1,
as demonstrated in multiple myeloma (MM).14,15

The Fondazione Italiana Linfomi (FIL) MCL0208, a prospective
multicenter, randomized phase 3 trial, showed a significant
progression-free survival (PFS) benefit of lenalidomide mainte-
nance (LEN) vs observation (OBS) in young (<66 years old),
previously untreated patients with MCL.3 The study enrolled 300
patients, and a large number of biological samples were stored
centrally at fixed time points to document the minimal residual
disease (MRD).16 Moreover, several biological substudies,17,18

including a pharmacogenetic analysis, were planned. In particular,
we investigated specific germ line polymorphisms of trans-
membrane transporters, metabolic enzymes, and cell-surface
receptors (ABCB1, ABCG2, VEGFA, FCGR2A, NCF4, GSTP1,
and CRBN) that might predict the efficacy and safety of immu-
nochemotherapy and LEN.
Methods

Patients and treatment

This study was performed on biological samples collected from the
phase 3 MCL0208 study (NCT02354313) sponsored by FIL. The
trial enrolled 300 previously untreated patients with MCL, aged
from 18 to 65 years, without clinically significant comorbidities. The
planned treatment is shown in supplemental Figure 1. Briefly,
patients received 3 Rituximab-Cyclophosphamide, Doxorubicin,
Vincristine and Prednisone (R-CHOP21), followed by R-high-dose
cyclophosphamide (4 g/m2), 2 cycles of R-high-dose Ara-C (2 g/
m2 q12h x 3d), and autologous stem cell transplantation (ASCT)
conditioned by using the BEAM or FEAM regimen.3 After ASCT,
responding patients (either complete or partial response) were
randomly assigned to OBS or LEN; 15 mg on days 1-21 every
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28 days) for 24 months. Clinical results of the trial have already
been published.3 All patients provided written informed consent for
the use of their biological samples for research purposes, in
accordance with the institutional review board’s requirements and
the Helsinki Declaration. The clinical trial as well as the substudy
was approved by the ethics committees of all the enrolling centers.
All the samples were centralized for scientific analysis in the
hematological laboratory of Torino University.

Biological samples

Bone marrow (BM) and peripheral blood (PB) samples were
collected at diagnosis and during follow-up, based on the preplanned
time points of MRD analysis16 (supplemental Figure 1). Biological
samples were identified with a subject study number that can be
traced or linked back to the subject only by the site investigator.

MRD and mutational analysis

MRD monitoring was assessed for BM and PB samples by using an
allele-specific oligonucleotide real-time quantitative polymerase
chain reaction (ASO RQ-PCR) approach (either on immunoglobulin
heavy chain (IGH) gene or B-cell lymphoma-1 (BCL-1)/IGH rear-
rangements) at the indicated time points and evaluated in accor-
dance with the criteria of the EuroMRD standardization group.16

TP53 disruptions as well as KMT2D mutations were identified via
next-generation targeted resequencing and copy-number alteration
analysis on CD-19–selected tumoral cells from BM baseline sam-
ples or as previously described.17

Pharmacogenetic analyses

For the purposes of the pharmacogenetic study, germinal DNA
was extracted by using commercially available kits (QIAamp DNA
Blood Mini Kit, Qiagen; Maxwell RSC Blood, Promega; and
DNAzol, Invitrogen). gDNA was extracted from different specimens,
preferably selecting samples devoid of lymphoma infiltration. A total
of 193 patients were studied using a follow-up PB sample, mainly
those who were tested to be MRD-negative or had very low levels
of MRD (supplemental Table 5). When FU samples were not
available, baseline PB was used (n = 60), characterized by a
median tumor infiltration of 3% via flow cytometry (range, 0.03%-
88%; supplemental Table 5)

Specific germ line polymorphisms of transmembrane transporters,
metabolic enzymes, and cell-surface receptors were evaluated. The
selected polymorphisms of the ABCB1 gene were rs1128503,
rs2032582, and rs1045642. Additional SNPs belonging to other
genes were chosen based on the mechanistic role of their enco-
ded proteins in the pharmacokinetics and pharmacodynamics of
lenalidomide. They included ABCB2 rs2231142, VEGF-A
rs699947, FCGR2A rs1801274, NCF4 rs1883112, GSTP1
rs1695, and CRBN rs1714327 and rs1705814 (Figure 1). The full
list of investigated SNPs with their respective putative functions is
shown in supplemental Table 2. For all the SNPs, a minor allele
frequency of ≥0.3 in the European population was considered as a
general criterion for selection.

Patients’ genotypes with respect to the investigated SNPs were
obtained by using specific TaqMan SNP Genotyping Assays (ABI,
Applied Biosystems, Foster City, CA) on an ABI Prism HT7900
Sequence Detection System instrument, per the manufacturer’s
instructions. Approximately 10% of samples were analyzed in
PHARMACOGENOMICS OF LENALIDOMIDE IN MCL 3765
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Figure 1. Depiction of the biological functions of the proteins encoded by the investigated genes and the impact of relative polymorphisms. ROS, reactive oxygen

species; GSTP1, glutathione-S-transferase Pi1; ATP, adenosine triphosphate; FCGR, Fc gamma receptor; VEGF-A, vascular endothelial growth factor A, ABCB1, ATP-binding

cassette subfamily B member 1; Ub, ubiquitin; eNOS, endothelial nitric oxide synthase.
duplicates, and the results showed a concordance rate of >99%.
The SDS Software (Applied Biosystems) was used to impute
patients’ genotypes, and allele frequencies and genotypes were
calculated. The Hardy-Weinberg equilibrium was checked using
the Pearson χ2 test (threshold value, P = 3.841) for each locus,
whereas haplotypes and their frequencies were imputed with
Arlequin software.19 Finally, differences in genotype (or haplotype)
distributions between groups of the study (ie, the LEN vs OBS arm)
were evaluated using the Pearson χ2 test.

Toxicity evaluations and lenalidomide dose intensity

Toxic events were recorded per the Common Terminology Criteria
for Adverse Events version 4.0. Only hematological toxicities were
available in detail and were then correlated with pharmacogenetic
data. In particular, granulocytes, platelets, and hemoglobin reduc-
tions were considered together across different treatment phases
(induction, consolidation, and LEN/OBS). Infective toxicity was
evaluated as a cumulative event per the Common Terminology
Criteria for Adverse Events, version 4.0. Lenalidomide dose inten-
sity was calculated as the ratio between the effective received
dose and the planned dose.
3766 FERRERO et al
Statistical analysis

Because of the high number of collected biological and clinical
variables, the entire data set underwent systematic post hoc quality
control through data warehousing.20

Statistical analysis was carried out using R version 4.0.0. For
continuous variables, the Kruskal-Wallis test was used to compare
medians between groups; for categorical variables, depending on
the number, the χ2 test or Fisher exact test was used.

For survival analysis, PFS and overall survival (OS) were used as
clinical end points. PFS was calculated from the date of enrollment
in the clinical study to the date of disease progression (event),
death from any cause (event), or last follow-up (censoring). OS was
measured from the date of enrollment in the clinical study to the
date of death from any cause (event) or last follow-up
(censoring).21 Survival was estimated with the Kaplan-Meier
method, and the log-rank test was applied to compare the sur-
vival distributions of the patients. The Cox proportional hazards
model was implemented for the univariate and multivariate survival
analysis. For all statistical analyses, the level of significance was set
25 JULY 2023 • VOLUME 7, NUMBER 14



at P ≤ .05. The outcome data for the present analysis were
updated as of December 2017, as planned in the clinical trial.

Results

Feasibility of the study

Overall, 300 patients were enrolled in the FIL-MCL0208 clinical
trial, and 93% of these patients (278 of 300) were included in the
pharmacogenetic study because of the availability of adequate
biological samples. In particular, 96% (197 of 205) of the randomly
assigned population, 97% (101 of 104) of patients randomly
assigned to LEN, and 95% (96 of 101) of those randomly assigned
to OBS were genotyped (supplemental Figure 2). The main clinical
features of these patients are described in supplemental Table 1.

Pharmacogenetic analyses

Allele and genotype frequencies of all the investigated SNPs are
detailed in Table 1. The minor allele frequency values did agree with
those already calculated in European populations, without signifi-
cant differences between the LEN and OBS arms. Of note, all
SNPs were in Hardy-Weinberg equilibrium, except for the CRBN
locus, rs1705814.

The expected linkage between the 3 ABCB1 SNPs was confirmed
(supplemental Table 3), with percentage values in the LEN and
OBS arms of 18.8% and 16.7%; 51.5% and 50.0%; and 29.7%
and 33.3% for wild-type (WT) homozygous (ie, CGC/CGC), het-
erozygous polymorphic (POL) (ie, CGC/TTT), and POL homozy-
gous (ie, TTT/CTT) patients, respectively. No significant differences
in haplotype distribution were observed between the enrolled and
randomly assigned populations as well as between the 2 arms
(χ2 = 0.264; P = .876).

Impact of SNPs on treatment efficacy

Among the investigated polymorphisms, only 2, namely ABCB1
rs2032582 and VEGF rs699947, were associated with lenalido-
mide efficacy in terms of both PFS and OS. In the randomly
assigned population, 60 (31%), 107 (54%), and 30 (15%) patients
were WT homozygotes (HoWT), heterozygotes (HePOL), and POL
homozygotes (HoPOL), respectively, for the ABCB1 locus. For the
Table 1. Allele and genotype frequencies of SNPs evaluated in the who

Whole population L

MAF HWE MAF

ABCB1 c.1236 0.444 0.881 0.436

ABCB1 c.2677 0.428 1.464 0.426

ABCB1 c.3435 0.491 0.236 0.485

VEGF c.2055 0.563 0.499 0.559

ABCG2 c.421 0.939 0.002 0.926

FCGR2A c.497 0.404 0.459 0.411

NCF4 −368 0.359 0.108 0.401

GSTP1 313 0.327 0.237 0.317

CRBN rs1714327 0.285 1.046 0.292

CRBN rs1705814 0.428 29.977 0.426

HWE, Hardy-Weinberg equilibrium; MAF, minor allele frequency.
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VEGF rs699947 locus, 42 (21%), 96 (49%), and 59 (30%)
patients were HoWT, HePOL, and HoPOL, respectively
(supplemental Table 4).

Firstly, survival analysis was performed by separately comparing
these 3 groups (supplemental Figure 4), but HoPOL and HePOL
patients were then grouped together because these patients
showed superimposable outcomes. In the randomly assigned
population, 137 patients (70%) carried at least 1 POL allele for the
ABCB1 rs2032582 locus. Interestingly, HoPOL (WW) and
HePOL (GW) had better outcomes when compared with HoWT
(GG) in the LEN arm (3-year PFS, 85% vs 70% [P = .047] and 3-
year OS, 98% vs 90% [P = .026]) but not in the OBS arm
(Figure 2A-D).

Similarly, 155 patients (79%) carried at least 1 variant allele of the
VEGF-A locus, such that HoPOL (CC) and HePOL (AC) had
better outcomes than HoWT in the LEN arm (3-year PFS, 85% vs
60% [P = .0021] and 3-year OS, 90% vs 86.5% [P = .094]) but
not in the OBS arm (Figure 2E-H).

Accordingly, when compared with HoWTs, patients carrying
variant genotypes of either gene (ABCB1 or VEGF-A) showed a
trend toward deeper MRD clearance via RQ-PCR in the BM after
6 months of LEN (supplemental Figure 3). In this population, as well
as in the overall series, HoWT did not differ from HoPOL and
HePOL based on baseline clinical features, classical prognostica-
tors (including TP53 aberrations), ABCB1, and VEGF-A poly-
morphisms (supplemental Table 3).

Moreover, by analyzing the combinatorial effect of each poly-
morphism in the same patients, only the small group of double WT
cases (ie, ABCB1 HoWT and VEGF-A HoWT) receiving lenali-
domide were actually associated with poor survival, in terms of both
PFS and OS (Figure 3). Therefore, we reconsidered the efficacy of
lenalidomide maintenance by stratifying the randomly assigned
population based on its pharmacogenomic background. Survival
analysis showed that patients carrying at least 1 variant allele of
ABCB1/VEGFA POL loci experienced the highest benefit from
LEN (PFS hazard ratio = 0.41 [95% confidence interval [CI], 0.22-
0.75]; P = .004, vs PFS hazard ratio = 0.51 [95% CI, 0.30-0.87];
P = .012) of the entire population.22 In contrast, based on the
le series

EN arm OBS arm

P chi2HWE MAF HWE

0.113 0.448 1.811 .484 1.454

0.283 0.422 2.923 .680 0.771

0.008 0.521 0.181 .732 0.625

0.421 0.526 0.994 .439 1.645

0.56 0.964 0.137 .157 2.000

0.641 0.389 1.082 .400 1.834

0.532 0.316 0.525 .266 2.652

1.730 0.300 0.048 .660 0.831

1.316 0.268 1.268 .817 0.404

13.563 0.379 5.456 .390 1.885
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Figure 2. Association between ABCB1 or VEGF-A–grouped genotypes and survival in a randomly assigned population. PFS stratified based on ABCB1 genotypes
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limited number of patients who were double WT (n = 17), this
genotype seemed to confer no benefit at all in the LEN vs the OBS
arm (P = .632), as shown in Figure 4.

Impact of SNPs on treatment toxicity

Lenalidomide dose reduction. Dose reduction of lenalidomide
was significantly associated only with the CRBN rs1705814
genotype. In the studied population, 113 patients (41%) were
HoWT (TT), 91 (33%) were HePOL (TC), and 73 (26%) were
HoPOL (CC) (supplemental Table 4). It is worth noting that 28
patients randomly assigned to LEN (28%) were HoPOL for the
CRBN rs1705814 locus and had a higher risk of major lenalido-
mide dose reduction (more than 66%) or discontinuation during
the maintenance phase with respect to HoWT/HePOL (odds ratio
25 JULY 2023 • VOLUME 7, NUMBER 14
[OR], 3.24; CI, 1.69-6.21; P = .013). Nonetheless, in the LEN
randomization arm, no statistically significant impact of the CRBN
rs1705814 SNP was observed on either hematological toxicities or
infections (Table 2).

Hematological toxicity. Three polymorphisms were associated
with hematological toxicity in the whole population of patients:
ABCB1 rs2032582, NCF4 rs1883112, and GSTP1 rs1695 (see
supplemental Table 3 for the distribution of genotypes). Indeed, 46
patients (17%) carrying ABCB1 TT/AT/AA genotypes had a lower
risk of hematological toxicity after the first R-CHOP cycle than did
patients carrying HePOL/HoWT (OR for G ≥3 toxicity, 0.39; CI,
0.15-0.88; P = .033). Moreover, 162 patients (58%) carried NCF4
AG/GG genotypes and were exposed to an overall lower risk of
PHARMACOGENOMICS OF LENALIDOMIDE IN MCL 3769
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Figure 4. PFS by randomization arm stratified on the pharmacogenomic background. PFS stratified by ABCB1 and VEGF-A genotypes in the LEN and OBS arms:

ABCB1/VEGF-A HoWT (A) and ABCB1/VEGF-A POL (B). HR, hazard ratio.
hematological toxicities during induction (within the R-high-dose
cyclophosphamide cycle), when compared with HoWT (OR, 0.56;
CI, 0.34-–0.92; P = .024; Table 2). Similarly, 28 patients (10%)
carried the GSTP1 GG HoPOL genotype and were exposed to a
lower risk of toxicities than HePOL/HoWT (OR, 0.35; CI, 0.15-
0.79; P = .014; Table 2). Interestingly, by combining the postulated
protective effect of both SNPs, we were able to identify a subgroup
of patients (NCF4 and GSTP1 HoWT, n = 48) who were at a
higher risk of hematological toxicity during induction (OR, 2.26; CI,
1.09-4.83; P = .031). No impact of these SNPs was observed
during later treatment phases (R-high dose Ara-C)or on hemato-
logical recovery after ASCT.

Infective toxicity. Two polymorphisms, ABCB1 rs1045642 and
CRBN rs1705814, were associated with infections in the whole
series of patients during chemoimmunotherapy. In the studied
population, the following allele frequencies were found: for ABCB1
c.3435.C>T, 70 patients (25%) were HoWT (CC), 143 (51%)
were HePOL (CT), and 65 (23%) were HoPOL (TT). For CRBN
rs1705814 T>C, 113 patients (41%) were HoWT (TT), 91 (33%)
were HePOL (TC), and 73 (26%) were HoPOL (CC)
(supplemental Table 3). The 65 out of 278 patients carrying the
ABCB1 TT genotype (supplemental Table 4) were exposed to a
lower risk of infections than were CT/CC individuals (OR, 0.53; CI,
0.30-0.95; P = .030). Similarly, 73 patients HoPOL for the CRBN
rs1705814 locus had a lower risk of severe infections than those
who were HoWT/HePOL (OR for G≥3 toxicity, 0.39; CI, 0.22-
0.68; P = .001). On In contrast, none of the SNPs predicted the
onset of infections during LEN.

Discussion

The pharmacogenetic study of the FIL MCL0208 phase 3 ran-
domized trial showed that SNPs of genes encoding specific
cellular proteins may be associated with clinical outcome in
younger patients with MCL receiving LEN after ASCT. Most
importantly, we observed that

• ABCB1 c.2677 SNP (transmembrane transporter) was signifi-
cantly associated with better PFS and OS;
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• VEGF-A c.2055 SNP (angiogenic factor) was significantly
associated with better PFS;

• by combining ABCB1 and VEGF-A genotypes, a small sub-
group of patients with MCL who did not benefit from LEN can
be identified;

• and CRBN rs1705814 SNP (a lenalidomide molecular target)
was associated with a higher risk of lenalidomide dose reduc-
tion or discontinuation.

Notably, no significant differences in genotype distribution were
observed between the 2 randomization arms, resetting any
possible bias due to the unbalanced stratification of patients and
reducing the weight of confounding factors in the LEN phase. In
addition, some SNPs (namely, ABCB1 c.3435C>T, NCF4
c.368G>A, CRBN rs1705814 T>C, and GSTP1 c.313.A>G)
were associated with hematological and infective toxicity during the
immunochemotherapy phase preceding the randomization.

In recent years, several studies have underlined the potential role of
interindividual genetic differences in shaping treatment response
and toxicity in lymphoma.23,24 Nonetheless, to date, little pharma-
cogenetic knowledge is available in the MCL literature,25-28 and no
data relative to lenalidomide treatment in MCL have been pub-
lished. In contrast, several pharmacogenetic studies have been
published, mainly in MM, assessing the relation of lenalidomide
activity with polymorphisms of CRBN, one of lenalidomide’s most
investigated molecular targets.22,29-31 Thus, to our knowledge, this
study provides the first pharmacogenetic data related to lenalido-
mide treatment in MCL by investigating the effects of candidate
genes and polymorphisms on both efficacy and toxicity. Because
some of the genes may play a role in immunochemotherapy out-
comes and tolerability, the investigated panel of loci was also
assessed for these effects in the whole population of patients.

Our main findings suggested a key role of ABCB1 and VEGF-A
polymorphisms in enhancing the clinical activity of LEN after ASCT
in MCL. Biologically, we might hypothesize that variant alleles of
ABCB1, a transmembrane drug transporter, leading either to
decreased gene expression in gut cells and renal tubules or to
reduced ejection activity of the transporter,32-34 resulted in greater
25 JULY 2023 • VOLUME 7, NUMBER 14



Table 2. Association of investigated SNPs with toxic events

Polymorphism ABCB1 c.2677 G>T/A NCF4 c.368G>A GSTP1 c.313.A>G CRBN rs1705814 T>C

Hematological toxicity during the
induction phase

HoPOL:OR, 0.39

(CI, 0.15-0.88); P = .033

HoPOL/HePOL: OR, 0.56

(CI, 0.34-0.92); P = .024

HoPOL:OR, 0.35

(CI, 0.15-0.79); P = .014

Combined effect HoWT: OR, 2.26 (CI, 1.09-4.83); P = .031

Infective toxicity HoPOL: OR, 0.53

(CI, 0.30-0.95) P = .030

HoPOL: OR, 0.39

(CI, 0.22-0.68); P = .001

Lenalidomide dose reduction HoPOL: OR, 3.24

(CI, 1.69-6.21); P = .013
lenalidomide bioavailability, leading to an increased pharmacolog-
ical effect due to higher plasma and tissue drug concentrations.
This hypothesis is in line with published literature on lenalidomide
pharmacokinetics in MM,35,36 but in this study, no gut or renal
tissue was available to investigate the hypothesis.

Similarly, the POL genotype of VEGF-A might lead to decreased
gene expression (as suggested in other scenarios37-39), resulting in
decreased stimulation by this key cytokine in the PI3K-Akt
pathway.40 Unfortunately, adequate lymphoma tissue for gene
expression analysis was available only for a minority of the patients
in this trial, so no statistically relevant conclusions might be drawn
from these data.41 Anyway, given the direct inhibitory effect of
lenalidomide on VEGF-A–mediated Akt phosphorylation, the
presence of the VEGF-A C POL allele might additively enhance
lenalidomide’s pharmacological effect. Therefore, we hypothesized
that the absence of both POL genotypes might lead to lower
lenalidomide and higher VEGF-A concentrations and, thus, act as a
predictive biomarker of poor response to lenalidomide in MCL.
Accordingly, patients carrying neither ABCB1 nor VEGF-A poly-
morphisms (actually, 9% of the series) did not benefit from LEN
when compared with OBS only (Figure 4B). Thus, these results
suggest a possible means of selecting patient candidates for
lenalidomide to improve its efficacy and concomitantly reduce the
risk of toxicity. More cumbersome is the association found between
the CRBN rs1705814 POL genotype and lenalidomide dose
reduction. We might hypothesize that this genotype could reduce
the intracellular expression of cereblon, the molecular target of
lenalidomide, and the minimum lenalidomide dose required to
obtain the therapeutic effect. However, our analysis was not able to
show any statistically significant association between this SNP and
a higher risk of hematological or infectious toxicities, possibly
explaining the observed lenalidomide dose reduction. Further
analyses are required to explain this finding, including the roles of
different toxic events not reported in the trial electronic case report
form (eCRFs) as well as a wider validation on an external, well-
annotated patient population, such as the recently completed
EuMCLNet R2 Elderly trial.42 Finally, we cannot exclude the pos-
sibility that other polymorphisms might serve as possible bio-
markers of lenalidomide efficacy, but none of the analyzed genes
other than ABCB1 and VEGF-A showed promising survival trends
that deserved to be further investigated (data not shown).

Considering the standard chemotherapeutic regimens adminis-
tered to patients before ASCT, it was hypothesized that some of
the SNPs identified and evaluated in the present work could also
act as predictive markers of tolerability because proteins encoded
by the corresponding genes are involved in the transmembrane
transport (ABCB1) or detoxification (GSTP1 and NCF) of cyclo-
phosphamide, vincristine, and doxorubicin. Indeed, we found that at
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least 3 loci in different genes were significantly associated with
hematological toxicities during the induction phase, with an
increased risk for patients carrying WT genotypes. That risk was
coupled with an increased incidence of severe infections, at least
when considering ABCB1.

Our study has some strengths. Firstly, the robustness and repro-
ducibility of RQ-PCR analysis ensure its theoretical large-scale
applicability in clinical practice across different labs because the
present analyses can be carried out on several instrumental plat-
forms, including the most recent ones. Easy standardization, a
patient-friendly PB source, and overall limited costs also favor this
approach. Furthermore, it is intriguing to derive predictive bio-
markers by investigating the genetic background of every single
patient, in addition to the intrinsic alterations of tumor cells, and,
hence, allow wider approaches to obtain somatic DNA (ie, buccal
swab). Nevertheless, although promising, our strategy identified
only a limited number of cases with an adverse genotype, and we
totally lack functional studies; therefore, an external validation on an
independent series of patients receiving lenalidomide is needed for
validation of these candidate biomarkers. Moreover, we acknowl-
edge that we have investigated, in this cohort, only a finite number
of gene polymorphisms, selected based on data already available in
the literature, and they probably do not represent all the pharma-
cogenomics targets potentially involved in lenalidomide’s mecha-
nism of action. In this regard, current genome-wide sequencing
tools may be applied in the future as more convenient technical
approaches to study, in one-run, larger panels of different gene
polymorphisms. Finally, the number of patients with MCL enrolled in
this study is the largest so far. However, the sample size of this
study might have limited the comprehensive detection of associa-
tions with less common alleles. Additional studies on larger MCL
populations will help confirm the current findings and may reveal
additional variants that influence drug-associated efficacy and
toxicity. Overall, pharmacogenomics might play a role in MCL
therapy, enabling clinicians to provide tailored treatment based on
individual patients’ genetic profiles, possibly complementing clas-
sical mutational and expression analysis carried out on tumor
cells.17,43 This paradigm might also be scalable to several novel
drugs currently used in MCL treatment (such as Bruton tyrosine
kinase inhibitors or bispecific antibodies)44,45 as well as in other
lymphomas46 or MM, for which lenalidomide is widely used.47,48 In
fact, the comprehensive identification of patients who benefit the
most from lenalidomide or other therapeutic approaches would not
only bring clinical benefits and improved quality of life to our
patients but would also be valuable from a pharmacoeconomic
perspective.

In conclusion, this study demonstrates that pharmacogenetic anal-
ysis of PB samples could easily yield predictive biomarkers of poor
PHARMACOGENOMICS OF LENALIDOMIDE IN MCL 3771



response to LEN after ASCT in patients with MCL. Despite some
methodological limitations, this approach is shown to be promising
and theoretically scalable to different clinical contexts. Thus, it is a
perfect example of how precision medicine might present an
exceptional opportunity for our patients in the near future.
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