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Abstract: Melanoma is a relatively rare disease worldwide; nevertheless, it has a great relevance
in some countries, such as in Europe. In order to shed some light upon the transcriptional profile
of skin melanoma, we compared the gene expression of six independent tumours (all progressed
towards metastatic disease and with wild type BRAF) to the expression profile of non-dysplastic
melanocytes (considered as a healthy control) in a pilot study. Paraffin-embedded samples were
manually micro-dissected to obtain enriched samples, and then, RNA was extracted and analysed
through a microarray-based approach. An exhaustive bioinformatics analysis was performed to
identify differentially expressed transcripts between the two groups, as well as enriched functional
terms. Overall, 50 up- and 19 downregulated transcripts were found to be significantly changed in
the tumour compared to the control tissue. Among the upregulated transcripts, the majority belonged
to the immune response group and to the proteasome, while most of the downregulated genes were
related to cytosolic ribosomes. A Gene Set Enrichment Analysis (GSEA), along with the RNA-Seq
data retrieved from the TCGA/GTEx databases, confirmed the general trend of downregulation
affecting cytoribosome proteins. In contrast, transcripts coding for mitoribosome proteins showed
the opposite trend.

Keywords: metastatic melanoma; wild type BRAF; transcriptomics; microdissection; ribosomes

1. Introduction

According to the definition reported by the Dictionary of Cancer Terms (https://
www.cancer.gov/publications/dictionaries/cancer-terms, accessed on 22 February 2022),
melanoma is “A form of cancer that begins in melanocytes (cells that make the pigment
melanin). It may begin in a mole (skin melanoma), but can also begin in other pigmented
tissues, such as in the eye or in the intestines”.

Overall, analysing the global incidence and mortality worldwide, melanoma is a rel-
atively rare disease that affected 325,000 people in 2020, and 57,000 died because of the
disease (source: Globocan 2020, https://gco.iarc.fr/today/online-analysis-table, accessed
on 18 December 2021). Nevertheless, skin melanoma has a great relevance in certain
countries, such as Australia and Europe, where the incidence rate is higher. In Europe,
skin melanoma represents the seventh-most frequent malignancy and accounts for roughly
46% of the incident cases in the whole world (https://gco.iarc.fr/today/data/factsheets/
cancers/16-Melanoma-of-skin-fact-sheet, accessed on 18 December 2021). Moreover, it has
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been shown that some complex diseases, such as diabetes mellitus, might represent a risk
factor for melanoma occurrence [1], and Endothelial Progenitor Cells (EPCs) are known
to be selectively recruited within the tumour [2] and might represent a potential tool for
therapy in this group of patients, especially the younger ones in which the EPC levels are
higher [3].

Melanocytes can give rise to benign lesions called melanocytic naevi that can progress
towards malignant lesions termed melanomas. Melanomas are classified according to the
TNM staging system (AJCC staging manual 8th edition, issued in 2016 and updated in
2018) [4], and a global melanoma database has been released [5]. The data obtained from
the clinical and pathological evaluations of melanoma are combined to divide patients into
staging groups with different outcomes [6]. In addition, specific classification systems for
melanoma were defined by Clark [7] and Breslow [8] long ago. The expression profiles
and somatic mutations of advanced lesions and metastases have been defined and are
reported in the Cancer Genome Atlas Network [9], while less is known about the initial
phases of melanoma progression [10]. The most frequent genetic alteration described in
melanoma is BRAF mutation, present in roughly 50% of the patients, according to the
COSMIC database (Catalogue Of Somatic Mutations In Cancer) [11]. The vast majority
of BRAF mutations are represented by a missense mutation named V600E, leading to
the substitution of glutamic acid with a valine in codon 600 [9,12]. The final phenotype
is characterised by the constitutive activation of the mitogen-activated protein kinase
(MAPK) pathway, sustaining cell proliferation and preventing apoptosis. BRAF inhibitors
(such as Vemurafenib and Dabrafenib) have been approved for the treatment of metastatic
melanoma [13], since they significantly improve progression-free and overall survival,
although resistance is rapidly acquired [14]. Currently, for patients not carrying BRAF
mutations, no target therapy is available; therefore, a significant effort is needed to better
define their molecular profile in order to identify potential molecular markers and targets
for therapy. Therapy for this group of patients mainly relies on immunotherapy and
checkpoint inhibitors [15–17], and searching for potential predictive biomarkers in response
to biological agents is warranted in melanoma, as well as in other metastatic tumours [18].

The aim of this pilot study was to analyse the transcriptomic profile of patients
suffering from metastatic melanoma without BRAF mutations in order to evaluate the
possible differences in the expression profiles between advanced melanoma cells and
non-dysplastic melanocytes serving as the healthy control.

2. Results
2.1. RNA Extraction and Array Hybridisation

In order to obtain a comparative transcriptomic profile of melanoma cells relative to
the healthy tissue (i.e., non-dysplastic naevi composed of healthy melanocytes representing
the normal counterpart of melanoma cells), a pilot study was designed, and we performed
a manual microdissection of paraffin-embedded surgical samples [19] of both normal tissue
and BRAF wild type melanoma from patients whose clinicopathological characteristics
are in Table 1. The samples then enriched in the melanocytic population (Figure 1) were
processed for RNA extraction and then hybridised on Agilent arrays after RNA validation
(see the details in Section 4, Supplementary Figure S1).

Table 1. Demographic and clinical features of the patients enrolled in the study.

Feature Number (Percentage)

Age (mean, range) 60.3 (range 46–70)

Gender
Male 4 (66.7)

Female 2 (33.3)
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Table 1. Cont.

Feature Number (Percentage)

TNM stage at diagnosis

I 1 (16.7)

II 2 (33.3)

III 2 (33.3)

IV 1 (16.7)

Metastatic site
Skin 3 (50.0)

Lung 3 (50.0)

Histology

Nodular 2 (33.3)

Superficial spreading 1 (16.7)

Desmoplastic 2 (33.3)

Naevoid 1 (16.7)

Clark’s level

1 0 (0.0)

2 0 (0.0)

3 0 (0.0)

4 5 (83.3)

5 0 (0.0)

undefined 1 (16.7)

Breslow’s depth

I 0 (0.0)

II 0 (0.0)

III 5 (83.3)

IV 1 (16.7)

Ulceration
No 5 (83.3)

Yes 1 (16.7)

Regression

No 3 (50.0)

Yes 1 (16.7)

Undefined 2 (33.3)

Vascular involvement

No 2 (33.3)

Yes 3 (50.0)

Undefined 1 (16.7)

Perineural involvement

No 3 (50.0)

Yes 1 (16.7)

Undefined 2 (33.3)

NRAS status

Wild type 1 (16.7)

Mutated 2 (33.3)

Undefined 3 (50.0)

Best response

CR 0 (0.0)

PR 3 (50.0)

SD 1 (16.7)

PD 1 (16.7)

Undefined 1 (16.7)
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Figure 1. Histopathological microphotograph of a representative melanoma sample. Haematoxylin–
eosin staining of a representative melanoma sample showing areas rich in brown-coloured melanin-
producing tumour cells (Mel, dashed blue shapes and blue arrows). (A) The brown-coloured areas rich
in melanocytes are clearly identified by the presence of melanin that is absent in the central portion
of the slide (composed of stromal tissue). Scale bar: 200 µm. (B) The higher magnification of this
microphotograph allows the observation of melanin-rich cells (indicated by the arrows) and gives
information about the cell pleomorphism within the tumour. Scale bar: 50 µm.

2.2. Differential Expression Analysis

The gene expression data from the microarray experiments were pre-processed
according to a standard pipeline, as described in Section 4. The so-obtained normalised
log2 expression data were then filtered and subjected to a differential expression anal-
ysis (DEA) using the rank product statistics (see Section 4 for details). In particular,
n = 6 independent samples of BRAF wild type metastatic melanoma were compared to
a reference array representing a pool of healthy tissues enriched with non-dysplastic
melanocytes (biological average of n = 4 independent samples). Transcripts featuring
a BH-FDR q-value < 0.05 and a |log2FC| > 0.5 were deemed as differentially expressed
genes (DEGs). Overall, the DEA returned a list of 84 statistically significant probes,
but only 69 of them could be annotated. Specifically, 50 up- and 19 downregulated
transcripts were found to be significantly changed in the tumour compared to the control
tissue, as reported in Table 2 and Table 3, respectively.

Table 2. Upregulated genes, as resulted from the statistical comparison of melanoma vs. healthy
samples (One Class Rank Product). Positive log2FC values indicate overexpression in the tumour
compared to healthy tissue.

Probe ID Gene Symbol Description log2FC q-Value
BH-FDR p-Value

A_32_P137939 ACTB actin beta 1.295 9.18 × 10−8 5.46 × 10−11

A_33_P3223592 APOE apolipoprotein E 1.903 2.36 × 10−9 3.51 × 10−13

A_33_P3378531 AS3MT arsenite methyltransferase 1.071 9.02 × 10−6 1.07 × 10−8

A_33_P3296198 C5orf63 chromosome 5 open reading
frame 63 1.375 3.40 × 10−6 2.53 × 10−9

A_33_P3292854 CALR calreticulin 0.642 4.77 × 10−4 1.74 × 10−6

A_33_P3280066 CAVIN1 caveolae associated protein 1 0.918 2.92 × 10−5 5.63 × 10−8

A_33_P3284508 CD14 CD14 molecule 1.829 4.27 × 10−9 1.27 × 10−12
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Table 2. Cont.

Probe ID Gene Symbol Description log2FC q-Value
BH-FDR p-Value

A_33_P3229196 CD151 CD151 molecule (Raph
blood group) 0.633 5.93 × 10−4 2.38 × 10−6

A_33_P3252612 CYP2W1 cytochrome P450 family 2
subfamily W member 1 0.546 1.77 × 10−3 9.09 × 10−6

A_24_P100673 EMC4 ER membrane protein complex
subunit 4 0.676 4.38 × 10−3 2.83 × 10−5

A_33_P3333455 EMILIN1 elastin microfibril interfacer 1 0.535 3.99 × 10−4 1.31 × 10−6

A_33_P3379436 FAM74A4 family with sequence similarity
74 member A4 0.847 3.36 × 10−5 6.99 × 10−8

A_32_P342064 FTH1 ferritin heavy chain 1 0.505 5.50 × 10−3 3.80 × 10−5

A_23_P13899 GAPDH glyceraldehyde-3-phosphate
dehydrogenase 0.613 3.96 × 10−4 1.33 × 10−6

A_33_P3585268 GNAI2 G protein subunit alpha i2 1.332 1.01 × 10−7 5.25 × 10−11

A_24_P108451 GPI glucose-6-phosphate isomerase 0.834 5.52 × 10−6 4.51 × 10−9

A_33_P3354322 GPX1 glutathione peroxidase 1 0.841 4.53 × 10−5 1.04 × 10−7

A_33_P3287218 GSTK1 glutathione S-transferase kappa 1 0.588 2.01 × 10−4 5.36 × 10−7

A_33_P3379962 HLA-A major histocompatibility complex,
class I, A 0.863 1.30 × 10−3 6.17 × 10−6

A_33_P3424803 HLA-C major histocompatibility complex,
class I, C 0.764 1.06 × 10−3 4.73 × 10−6

A_23_P162874 HSP90AA1 heat shock protein 90 alpha
family class A member 1 0.616 3.78 × 10−4 1.21 × 10−6

A_23_P72737 IFITM1 interferon induced
transmembrane protein 1 0.807 5.98 × 10−6 5.77 × 10−9

A_24_P605563 IGLC1 immunoglobulin lambda
constant 1 0.517 5.77 × 10−4 2.23 × 10−6

A_23_P167168 JCHAIN joining chain of multimeric IgA
and IgM 0.529 2.26 × 10−3 1.22 × 10−5

A_32_P452655 LGALS9C galectin 9C 0.605 1.38 × 10−4 3.58 × 10−7

A_23_P91619 MIF macrophage migration
inhibitory factor 0.957 9.65 × 10−6 1.22 × 10−8

A_23_P1904 MS4A2 membrane spanning
4-domains A2 0.630 2.62 × 10−5 4.47 × 10−8

A_23_P106844 MT2A metallothionein 2A 0.552 4.39 × 10−4 1.53 × 10−6

A_33_P3239879 NAA38 N-alpha-acetyltransferase 38,
NatC auxiliary subunit 0.782 4.66 × 10−5 1.04 × 10−7

A_23_P33022 POLR2L RNA polymerase II, I and III
subunit L 0.837 1.24 × 10−5 1.75 × 10−8

A_33_P3377199 PRDX1 peroxiredoxin 1 0.723 3.41 × 10−4 1.07 × 10−6

A_33_P3234899 PSMB3 proteasome 20S subunit beta 3 0.794 9.37 × 10−5 2.30 × 10−7

A_23_P65427 PSME2 proteasome activator subunit 2 0.701 1.03 × 10−5 1.38 × 10−8

A_23_P434301 PTMA prothymosin alpha 0.582 4.56 × 10−4 1.63 × 10−6

A_33_P3382595 RN7SK RNA component of 7SK nuclear
ribonucleoprotein 0.680 2.80 × 10−5 4.37 × 10−8
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Table 2. Cont.

Probe ID Gene Symbol Description log2FC q-Value
BH-FDR p-Value

A_23_P69431 RPL4 ribosomal protein L4 0.509 9.25 × 10−4 4.06 × 10−6

A_23_P106708 RPS2 ribosomal protein S2 0.664 4.08 × 10−3 2.46 × 10−5

A_23_P372874 S100A13 S100 calcium binding protein A13 1.043 2.04 × 10−5 3.04 × 10−8

A_24_P261169 SEMA4D semaphorin 4D 0.574 3.85 × 10−5 8.30 × 10−8

A_33_P3413989 SERPING1 serpin family G member 1 1.286 6.05 × 10−7 4.05 × 10−10

A_23_P95213 SFTPC surfactant protein C 0.854 5.55 × 10−3 3.87 × 10−5

A_33_P3481987 SLC16A12 solute carrier family 16
member 12 0.850 3.45 × 10−05 6.93 × 10−8

A_33_P3388491 SLC66A1 solute carrier family 66 member 1 1.440 6.62 × 10−6 7.38 × 10−9

A_33_P3587376 SNAR-A3 small NF90 (ILF3) associated
RNA A3 1.423 8.95 × 10−5 2.13 × 10−7

A_33_P3370461 SUZ12P1 SUZ12 pseudogene 1 0.916 3.03 × 10−5 5.63 × 10−8

A_33_P3332690 SUZ12P1 SUZ12 pseudogene 1 0.597 2.65 × 10−4 7.69 × 10−7

A_33_P3274199 TP53I13 tumor protein p53 inducible
protein 13 0.579 4.75 × 10−4 1.76 × 10−6

A_23_P325654 TRIM42 tripartite motif containing 42 0.925 4.70 × 10−2 9.40 × 10−4

A_33_P3409062 TYROBP transmembrane immune
signaling adaptor TYROBP 1.452 6.77 × 10−8 2.52 × 10−11

A_24_P101391 YBX1 Y-box binding protein 1 0.714 2.99 × 10−4 9.10 × 10−7

Table 3. Downregulated genes, as resulted from the statistical comparison of melanoma vs. healthy
samples (One Class Rank Product). Negative log2FC values indicate downregulation in the tumour
compared to healthy tissue.

Probe ID Gene Symbol Description log2FC q-Value
BH-FDR p-Value

A_23_P114445 MAGEE1 MAGE family member E1 −0.508 5.47 × 10−5 1.30 × 10−7

A_23_P112774 PTP4A3 protein tyrosine phosphatase 4A3 −0.513 2.71 × 10−5 4.23 × 10−8

A_33_P3332348 RN7SL1 RNA component of signal
recognition particle 7SL1 −0.803 2.86 × 10−6 4.25 × 10−10

A_33_P3244165 RNA28SN5 RNA, 28S ribosomal N5 −1.378 6.92 × 10−6 2.06 × 10−9

A_33_P3346552 RNA28SN5 RNA, 28S ribosomal N5 −1.012 2.05 × 10−5 2.89 × 10−8

A_33_P3279708 RNU2−2P RNA, U2 small nuclear 2,
pseudogene −0.954 7.28 × 10−7 5.41 × 10−11

A_23_P217068 RPL12 ribosomal protein L12 −0.753 5.96 × 10−4 3.32 × 10−6

A_24_P142228 RPL13 ribosomal protein L13 −0.578 2.01 × 10−6 4.48 × 10−10

A_32_P184518 RPL21 ribosomal protein L21 −0.807 6.08 × 10−6 3.62 × 10−9

A_32_P118258 RPL21 ribosomal protein L21 −0.861 2.75 × 10−5 4.09 × 10−8

A_24_P213783 RPL31 ribosomal protein L31 −0.944 6.65 × 10−6 4.45 × 10−9

A_23_P18142 RPL32 ribosomal protein L32 −0.568 1.53 × 10−3 1.20 × 10−5

A_33_P3329916 RPL6 ribosomal protein L6 −0.803 7.19 × 10−6 3.21 × 10−9
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Table 3. Cont.

Probe ID Gene Symbol Description log2FC q-Value
BH-FDR p-Value

A_32_P857658 RPLP1 ribosomal protein lateral stalk
subunit P1 −0.735 3.44 × 10−4 1.48 × 10−6

A_23_P147888 RPLP2 ribosomal protein lateral stalk
subunit P2 −0.512 9.10 × 10−4 6.02 × 10−6

A_24_P418418 RPS17 ribosomal protein S17 −0.931 1.74 × 10−5 2.07 × 10−8

A_23_P116694 RPS26 ribosomal protein S26 −0.539 1.76 × 10−5 1.96 × 10−8

A_33_P3221680 RPS28 ribosomal protein S28 −0.750 1.48 × 10−5 1.43 × 10−8

A_23_P46182 RPS8 ribosomal protein S8 −0.757 9.37 × 10−5 2.86 × 10−7

In order to further strengthen the transcriptomic analysis results, the differential
expression of six DEGs (APOE, GAPDH, ACTB, RNA28S1N5, RPL31, and RPS17), se-
lected on the basis of the most relevant fold changes and p-values emerging from the
microarray experiments, was further assessed by RT-qPCR in a small subset of melanoma
samples from the microarray analysis cohort (as described in the relative Section 4). Con-
sidering a p-value ≤ 0.05 to assess the significance, four of the six selected DEGs (ACTB,
RPS17, RPL31, and RN28S1N5) showed statistically significant differences between the
melanoma samples and healthy melanocytes, with fold change directions (expressed as
relative expression fold changes performed by the ∆∆CT method) consistent with the
microarray screening results (Supplementary Figure S2). GAPDH and APOE differential
expression failed to reach statistical significance when analysed by RT-qPCR in the same
sample subset but still maintained the fold change consistency with the microarray results
(Supplementary Figure S2).

2.3. Genes Related to Antigen Processing and Presentation Are Upregulated in Tumour vs. Control

DEGs that were found to be upregulated in metastatic melanoma samples compared
to non-dysplastic controls were tested for functional enrichment using the ToppFun web
tool (https://toppgene.cchmc.org/, accessed on 22 February 2022). The full table of the
statistically significant terms retrieved from such a query can be found as Table S1 in the
Supplementary Materials section. Inspecting the results, it is noticeable how the top-most
ranked functional terms and pathways were almost all related to the positive regulation
of some features of the immune response, involving 32 out of the 50 upregulated DEGs
resulting from the DEA. For example, the most relevant GO terms referring to biological
processes (BPs) were innate immune response, defense response to other organism, regulation of
immune system process, cell activation, response to external biotic stimulus, leukocyte mediated
immunity, and antigen processing and presentation of exogenous peptide antigen via MHC class I
(BH-FDR < 1.7 × 10−4). Accordingly, the most significant KEGG pathway [20,21] was
antigen processing and presentation (BH-FDR = 6.4 × 10−4), accounting for five DEGs having
a central role in the MHC class I pathway: HLA-A, HLA-C, CALR, PSME2, and HSP90AA1
(Figure 2, genes in magenta).

https://toppgene.cchmc.org/
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Figure 2. Illustration of the antigen processing and presentation KEGG pathway. Upregulated
DEGs detected by rank product statistics are filled with magenta (HLA-A and HLA-C are here
collectively referred to as MHCI; HPS90 is a short for HSP90AA1; and PA28 is an alias for PSME1-2-3).
In cyan are the elements of the pathway additionally detected by the GSEA leading edge analysis.
The GSEA also revealed a significant involvement of the proteasome complex (in green). Using the
same colour code, the Venn diagram in the upper inset shows the complete lists of the official gene
symbols found to be upregulated within the two KEGG pathways. The KEGG pathway map is
hsa04612-antigen processing and presentation—Homo sapiens (human), modified and published
with permission from Kanehisa Laboratories as the copyright holder.

Such a finding was confirmed by the GSEA (see Section 4), according to which, the gene
set corresponding to this pathway was positively enriched (NES = 2.03, FDR q-value = 0.064,
Figure 3A). More in detail, the leading edge analysis identified 13 main genes involved in
the upregulation of both the MHC class I and class II pathways, thus extending the previous
set of five DEGs detected on the basis of gene-wise hypothesis testing (Figure 2, genes in
magenta plus genes in cyan). In addition, the GSEA pointed at a significant positive
regulation of the proteasome complex (NES = 2.07, FDR q-value = 0.069, Figure 3B), another
KEGG pathway term deeply connected to the previous one, with a leading edge featuring
nine genes coding for different proteasome subunits, including pivotal proteasome activator
subunit 2 (PSME2) as a linker between the two gene sets (Figure 2, green ellipse and
Venn diagram).
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Figure 3. GSEA enrichment plots. Profile of the running ES score (upper boxes), and positions of the
gene set members on the rank-ordered list from the microarray experiments (lower boxes) for (A) the
antigen processing and presentation and (B) proteasome KEGG pathways, respectively. The leading
edge comprises that portion of the gene set between the (absolute) ES maximum and the nearest edge
of the ranked list.

2.4. Cytosolic Ribosome Proteins Are Downregulated in Tumour vs. Control

Strikingly, the vast majority of the transcripts found to be downregulated in metastatic
melanoma compared to the control reference (i.e., non-dysplastic melanocytes) were related
to cytosolic ribosomes (see Table 3). More in detail, 13 out of the 19 downregulated DEGs
corresponded to ribosomal proteins (rProteins) of either the large (60S) or the small (40S)
cytosolic ribosome subunit. In addition, two different probes targeting the product of the
RNA28SN5 gene—the ribosomal RNA, giving rise to the 28S subunit—were among the
19 DEGs featured by the list of downregulated genes.

In order to confirm and extend these results, we ran a GSEA, testing the whole
spectrum of rProteins of both cytosolic and mitochondrial origin. To do this, we took
advantage of the already available Ribosomal Protein Gene Set (RPGS), which is the
complete list of all human gene symbols related to ribosomes we assembled for a recent
work in order to answer a similar scientific question [19]. Such an analysis confirmed
a significant downregulation of the structural constituents of both the large (60S) and
the small (40S) cytosolic ribosome subunits (Figure 4A–C). On the contrary, and most
interestingly, mitochondrial rProteins did not show any significant downregulation but,
rather, an opposite trend (Figure 4D–F).

2.5. External Validation through TCGA vs. GTEx Cohorts

In order to rule out any technical artefact related to microarray hybridisation or the
sample origin, we decided to externally validate these findings using the UCSC Xena
Browser (University of California, Santa Cruz, CA, USA, http://xena.ucsc.edu/, accessed
on 24 February 2022) that provides a convenient way to access gene expression data
stored in TCGA database for the comparative analysis of tumour samples with the nor-
mal analogies available from GTEx database (https://gtexportal.org/home/, accessed
on 24 February 2022) [22,23]. TCGA samples were thus filtered based on cancer type
(Skin Cutaneous Melanoma, SKCM), stage (metastatic), and genomic subtype (BRAF wild
type). The so-obtained cohort featured 179 SKCM samples that were compared with the
corresponding healthy GTEx cohort of normal skin tissue made out of 557 samples for
a total sample size of n = 736.

http://xena.ucsc.edu/
https://gtexportal.org/home/
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Figure 4. Gene set enrichment analysis of the ribosomal protein gene set. ((A)–(C)) Downregulated
cytosolic rProtein transcripts were significantly enriched (q-values: 1.5 · 10−4, 0.002, and 0.013 for the
80S, 60S, and 40S subunit gene sets, respectively). ((D)–(F)) In contrast, the mitochondrial rProtein
genes showed a consistent upregulation (q-values: 0.205, 0.151, and 0.231 for the 55S, 39S, and 28S
subunit gene sets, respectively).

A thorough validation was carried out for the following sets of genes resulting from
the corresponding GSEA leading edge analysis shown in Figures 3 and 4: MHC pathway
(14 genes), proteasome (9 genes), cytosolic rProteins (14 genes), and mitochondrial rProteins
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(14 genes). Notably, almost all differential expressions we tested could be confirmed by
TCGA/GTEx RNA-Seq data in terms of both the change direction (log2FC sign) and
statistical significance (Figure 5). The detailed validation scores are given in Table 4.

Figure 5. Gene expression for ribosomal proteins from TCGA/GTEx databases for metastatic
melanoma samples. The Xena browser was used to filter TCGA samples and keep only the data
from Skin Cutaneous Melanoma studies of the metastatic type and with no mutations in the BRAF
gene. The final cohort featured 179 tumour samples from TCGA and 557 healthy samples from GTEx,
for a total sample size of n = 736. The RNA-Seq expression data are given in units of log2 RSEM
normalised counts, gene-wise mean-centred, and shown as boxplots for the 14 cytosolic (magenta
and teal) and the 14 mitochondrial (red and green) rProteins that emerged from the leading edge
analysis of microarray data. Overall, 24 out of 28 differential expressions were confirmed by TCGA
data, supporting the evidence of a generalised downregulation of the cytosolic rProteins and an
overexpression of the mitochondrial ones. The four unconfirmed comparisons are marked with the
symbol Ø (see Table 2 for more details).
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Table 4. Number of genes subjected to validation by the TCGA/GTEx databases and their outcomes.

Pathway Name GSEA
Leading Edge

Xena
Opposite FC

Xena
Not Significant

Xena
Concordant Validation Score

MHC pathway 14 1 0 13 92.9%
proteasome 9 0 0 9 100%
cytosolic rProteins 14 1 2 11 78.6%
mitochondrial rProteins 14 0 1 13 92.9%

To control for the possible effects from the age and sex of the patients, these two
covariates were also considered after downloading the specific metadata from the con-
sortium portals (see Section 4). The results of such an analysis are presented as dot plots
in Figure 6 and numerically in Supplementary Table S2 for the four gene sets of interest
separately. Even if the overall dysregulation patterns could be substantially confirmed
in all sub-cohorts, age appeared to be an important exacerbating factor (compare the Old
Patients with Young Patients rows in the four panels of Figure 6). On the contrary, sex did
not seem to be a discriminating factor, except, perhaps, in the downregulation of cytosolic
rProteins, which were almost unaltered in the sub-cohort of Young Females (upper-left
panel in Figure 6).

Figure 6. Differential gene expression between healthy GTEx samples and cancer TCGA samples.
The four gene sets under investigation are shown in different panels. The overall cohort was divided
into nine sub-cohorts: all samples, only males or females, only old (>50 years of age) or young,
and combinations of sex and age. The size of each dot is proportional to the −log10(FDR) score for
each statistical test. The colour and colour intensity of each point are proportional to the fold change
of that comparison: red dots for upregulated genes (in tumour compared to healthy tissues), and blue
dots for downregulated genes. Both colour and point size scales are independent for each gene panel.
The lower legend is indicative of the overall trend of the data.
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3. Discussion

In the pilot study reported in the present paper, the RNA extracted from paraffin-
embedded samples was hybridised on Agilent microarrays to assess the transcriptomic
profile of BRAF wild type metastatic melanoma compared to the transcriptional reference
of non-dysplastic melanocytes serving as the healthy control. Beyond the canonical DEA,
followed by the functional enrichment analysis of the resulting DEGs, the GSEA was
extensively used both to deepen the involvement of some relevant pathways of interest
(i.e., MHC and proteasome) and to quantify the overall dysregulation of the whole rProtein
spectrum. In addition, because of the limited sample size of this pilot study, and due to the
particular nature of the RNA starting material, all our findings were validated querying
the TCGA/GTEx gene expression databases to consider larger cohorts of patients, and at
the same time, the hallmark gene sets from MSigDB were tested through a dedicated GSEA
to check the consistency and the reliability of the expression levels, as measured by our
microarray experiment (see below and Supplementary Table S3).

The GSEA and ToppFun functional enrichment analysis of the upregulated DEGs
showed a consistent involvement of the immune system, with 70% of the overexpressed
genes coherently annotated to some immune response-related process. This is in line with
the well-known immunogenic nature of melanoma and the recent literature pointing at
MHC-I/II protein expression as a powerful prognostic marker to predict the effectiveness
of anti-CTLA-4 and anti-PD-1 immunotherapy in metastatic melanoma and other cancer
types [24–28]. Even though most of these papers agree on the fact that a transcriptional
downregulation of the MHC-I and MHC-II genes is a common feature of advanced un-
treated melanomas, in our study, the opposite seems to be true. Notably, this cannot be
ascribed to some spurious effects induced by drugs—such as antibodies targeting the
immune checkpoints—since all the samples we used for RNA extraction were excised
from the patients before any therapeutic schedule. Moreover, microarray technical val-
idation performed via RT-qPCR in a sample subset (Supplementary Figure S2) further
corroborated the reliability of the microarray data presented here. In addition, even the
RNA-Seq data from the TCGA/GTEx databases confirmed such a significant overexpres-
sion of all the MHC class I genes (HLA-A, HLA-B, and HLA-C), as well as the MHC class
II (HLA-DMA, HLA-DOA, HLA-DPA1, HLA-DQA1, and HLA-DRA), in BRAF-wild type
metastatic melanoma compared to healthy skin tissue (Supplementary Figure S3). Rather,
fold-change signs could be dependent on the particular stage at which melanoma samples
were collected. Indeed, the MHC gene expression profile has already been reported to be
heavily dependent on tumour progression, and its gradual loss is likely to facilitate the
evasion of cancer cells from immune surveillance [29].

The other gene set we found to be upregulated in our cohort of metastatic melanoma
patients compared to healthy controls was related to proteasomal function. Beyond its
increased expression, the proteasome complex in melanoma cells may also be overactive
because of the overexpressed PSME2 gene and the proteasome activator complex subunit 2
(aka PA28B), thus contributing, in turn, to the increased antigen presentation by the MHC
class I pathway discussed above (see Figure 2). These data agree with the notion that
melanoma cells heavily rely on proteasomal function to survive, so that selective protea-
some inhibitors have already been used as new attractive therapeutics for this type of
cancer [30–32].

On the other hand, the DEGs downregulated in the melanoma samples compared
to the healthy controls were mostly related to cytosolic ribosomal proteins (rProteins).
This was not completely unexpected given the accumulating evidence that relates cancer
onset and progression with alterations of cell translational machinery [33]. Specifically,
both enhanced and reduced ribosome biogenesis and protein synthesis have been reported
to be associated with cancer in mammals, depending on the particular type of tissue and
stage taken into account [34–38]. For this reason, rProteins configuration in metastatic
melanoma was evaluated more in depth by running a GSEA of all the structural constituents
of both cytosolic and mitochondrial ribosomes. Interestingly, the two ribosome types
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showed opposite patterns of deregulation: while cytosolic rProteins tended to be under-
expressed in metastatic melanoma, the mitochondrial ones were sharply upregulated.

Such a finding is of great interest considering, in particular, the data we recently pub-
lished in another paper addressing transcriptional alterations in colorectal carcinoma [19].
As in the present case, even in that study, we were able to find a consistent change in
the rProtein expression but with a different FC sign, in that the upregulation of rProteins
concerned cytosolic ribosomes and not the mitochondrial ones. Importantly, in both stud-
ies, all the ribosomal transcriptional alterations we reported found confirmation in the
TCGA/GTEx large cohorts of patients.

As a final note on the DEG lists emerged from our analysis, it is worth noting that
the set of significantly dysregulated genes was obtained through the hard thresholding
(cut-off 0.05) of the whole transcriptome genes sorted by increasing q-values, with an
additional cut-off on the fold change (|log2FC| > 0.5), as reported in Section 4. While this
conservative approach is effective in reducing the number of false-positive hits (i.e., con-
trolling for type I error), the statistical power may be affected, resulting in an increased
number of false negatives, especially in the case of small sample sizes and RNA partial
degradation (as in the case of paraffin-embedded samples). For this reason, it is not sur-
prising that the DEG lists lack some genes whose dysregulation is expected in metastatic
melanoma. Nevertheless, when the GSEA was performed testing the “Hallmark gene
sets” (the H-collection of the MSigDB) and the weighted contribution from all the log2FC-
ranked genes of the array was taken into account, many significant hallmark gene sets
emerged related to: proliferation processes (MYC_TARGETS_V1 and P53_PATHWAY);
cancer (mTORC1_SIGNALING, EPITHELIAL_MESENCHIMAL_TRANSITION, and UN-
FOLDED_PROTEIN_RESPONSE); the immune system response (COMPLEMENT, ALLO-
GRAFT_REJECTION, and INTERFERON_GAMMA_RESPONSE); and alteration of the
metabolism (GLYCOLYSIS and OXIDATIVE_PHOSPHORYLATION). This is in excellent
agreement with the results of other GSEAs performed on several different melanoma
datasets (see, e.g., [39]), ultimately confirming the reliability of the gene expression profile
returned by our microarray experiments (see Supplementary Table S3 for a complete list of
the significant Hallmark Gene Sets, as returned by the GSEA).

As for the energy metabolic pathways involved in the early phases of melanoma
pathogenesis, the key process is represented by glycolysis, and after the occurrence of
BRAF mutations, the stimulation of transcription factors acting as key regulators of such
process makes it even more effective [40,41]. Moreover, in BRAF-mutated cells, the Ox-
idative Phosphorylation (OXPHOS) is inhibited [42]. It is well-known that, between these
two metabolic phenotypes, a dynamic switch occurs, and plasticity plays a key role in
melanoma [43–45], leading to metabolic reprogramming of the cells. To make the picture
more complex, it has been shown that some melanomas are able to exploit diverse nutrients
and energy sources to adapt to different extracellular conditions, thus showing a “hybrid”
glycolysis/OXPHOS metabolic phenotype [46–48]. Finally, the so-called “Reverse Warburg”
effect has been described in melanoma cells [45,47,49]. This effect relies on the stimula-
tion of cancer-associated fibroblasts (CAFs) that increase their glucose upload and lactate
secretion through Monocarboxylate Transporter (MCT) family proteins [50]. Moreover,
lactate can be internalised by cancer cells via MCT and conveyed into the Krebs cycle,
thus fuelling OXPHOS. In this view, immune cells can deregulate metabolic pathways,
representing a link between the deregulated pathways that emerged in this paper. As
a further confirmation, the transcript of SLC66A1, encoding an MCT, was upregulated in
our cohort (see Table 2).

All the proteins encoded by mitochondrial DNA are involved in the assembly and
functioning of the respiratory complexes, along with the proteins encoded by nuclear
DNA. For this reason, the OXPHOS biogenesis is subjected to a synchronised regulation
of the mitochondrial and cytoplasmic ribosomes. Considering that—in contrast to the
mitochondrial rRNA—mitochondrial rProteins are synthesised in the cytosol after the
translation of mRNA of nuclear origin, the interplay between the nuclear and mitochon-
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drial components for ribosome production and the consequent synthesis of the various
proteins involved in glycolysis, and OXPHOS is extremely complex. Since our data derive
from a transcriptomic approach, they cannot give insights on the expression and function
of the glycolytic and OXPHOS enzymes; therefore, no robust hypothesis on functional
significance can be proposed. Nevertheless, these data could pave the road for further
evaluations in which biochemical and physiological assays, together with proteomic and
metabolomic approaches, can be used to define the activity and expression levels of the key
glycolytic/OXPHOS enzymes.

The results reported in this paper might be relevant for two main reasons: (i) the central
role of protein synthesis and energy metabolism in cancer and (ii) the fact that, despite
the many recent reports about cytosolic ribosome aberrant function in cancer, there are
still few data about the 55S mitochondrial counterparts and their functional interplay with
80S ribosomes. For example, the evidence of possible mitoribosome onco-patterns could
provide a new rationale for the design (or repurposing) of novel antibiotics specific for
cancer treatment, a still-debated clinical practice [51].

Taken together, our data point at a complete and deep remodelling of protein synthe-
sis and degradation in metastatic melanoma that suggests, alongside biopsy genotyping,
a more integrated evaluation of specific gene expression patterns—in particular, those re-
lated to MHC, proteasomes, and rProteins—as a practice that could help in choosing the
most effective treatment in a context of personalised medicine.

4. Materials and Methods
4.1. Patients

Six patients (2 females, 4 males with mean age at diagnosis of 60.3 years, range 46–70)
suffering from metastatic melanoma not harbouring BRAF mutations were enrolled for
the study between April 2016 and October 2018 within the OMITERC study coordinated
by Medical Oncology Unit, Azienda Ospedaliero-Universitaria Careggi (Florence). All the
patients provided informed written consent, and the study was approved by the local
Ethical Committee of Azienda Ospedaliero-Universitaria Careggi (BIO.16.028, released
on 5 October 2016). Paraffin-embedded samples of the primary tumours were retrieved
from the archives of the Department of Medical Biotechnologies, University of Siena, Italy.
The clinical and pathological features of the patients were defined by experienced medical
oncologists and pathologists according to the relevant guidelines (Table 1). Moreover,
4 non-dysplastic naevi were also collected from the same institution as above.

4.2. Sample Preparation

In order to obtain tumour-enriched samples, paraffin-embedded specimens were
manually micro-dissected, applying the same protocol as in [15]. Briefly, 20-µm-thick
sections were cut, put on no positively charged slides, and counterstained with Meyer’s
Haematoxylin following the standard protocol. In order to achieve the enrichment of the
tumour component of the metastatic melanoma samples, tumour areas were identified by
an experienced operator (EL), collected through a sterile needle, and transferred to a fresh
Eppendorf tube for further processing.

4.3. RNA Extraction and Quality Control

The total RNA was extracted from the enriched samples with the AllPrepDNA/RNA
FFPE kit (Qiagen, Hilden, Germany), according to the manufacturer’s protocols. The ex-
tracted RNA was then checked for its quality and integrity by the Agilent 2100 Bioanalyzer
with the RNA 6000 Nano kit (Agilent Technologies, Santa Clara, CA, USA). The RNA
concentration was also measured by a Nanodrop ND-1000 (Thermo Scientific, Waltham,
MA, USA).
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4.4. Microarray Hybridisation

A one-color microarray-based gene expression analysis was applied to analyse the
RNA samples on the Agilent-026652 Whole Human Genome Microarray 4 × 44 K v2
platform (Agilent Technologies, Santa Clara, CA, USA), according to the manufacturer’s
protocols. To scan the microarrays, an Agilent G49000 DA SureScan Microarray scanner
(Agilent Technologies, Santa Clara, CA, USA) was used, and subsequently, the data were
extracted by Agilent Feature Extraction (Agilent Technologies, Santa Clara, CA, USA).

4.5. Differential Expression Analysis

Raw data obtained from microarray scanning were processed using Bioconductor
software packages in the R environment. Briefly, fluorescence intensities were background-
subtracted, log2-transformed, and quantile–quantile normalised to get the gene expression.
Based on the results of hierarchical clustering and a PCA on the samples, one array (ID
Melanoma_5) was excluded from the subsequent steps of the analysis. Low-intensity
probes (featuring a log2 expression below 6.3 in more than one melanoma sample) were
filtered out of the expression matrix as probes targeting unexpressed genes. Overall,
13,455 probes out of 34,127 (~40%) were retained at the end of the filtering procedure,
and their log2 expression values were tested for differential expression using rank product
statistics. In particular, n = 5 melanoma biological replicates were compared against the
single reference represented by the healthy biological mRNA pool of n = 4 non-dysplastic
naevi (RankProd v3.18.0 Bioconductor package, one-sample design) [52–56]. p-values were
adjusted for multiple comparisons, and all genes with a q-value (Benjamini–Hochberg False
Discovery Rate, BH-FDR) < 0.05 were deemed as differentially expressed genes (DEGs) [57].
Finally, an additional cut-off on the fold changes (FCs) was applied to expunge from the
DEG lists genes with a |log2FC| < 0.5.

4.6. Enrichment Analysis

The ToppFun web tool (by ToppGene Suite, https://toppgene.cchmc.org/, accessed
on 22 February 2022) was used to analyse the DEG lists for functional enrichment through
a hypergeometric hypothesis test [58]. All terms with a BH-FDR q-value < 0.05 were
considered statistically significant. A Gene Set Enrichment Analysis was performed using
GSEA v4.2.2 with the MSigDB database v7.5.1 (updated January 2022) [58,59]. Expression
data from the microarray experiments were provided in the form of a pre-ranked list of
genes (log2FC metric). Probes were collapsed into unique gene symbols before the analysis,
and a standard (weighted) enrichment statistic was chosen. The Normalized Enriched
Score (NES) and BH-FDR q-values are reported in the main text or Supplementary Materials
for each gene set of interest. Within the context of the GSEA, the threshold of the q-value
for a gene set to be considered statistically significant was set at 0.25. To evaluate the
global transcriptional alterations affecting ribosomal proteins (rProteins), a custom gene set
including all rProtein and rRNA genes was used. Details about such a custom Ribosomal
Protein Gene Set (RPGS) have already been provided elsewhere [19].

4.7. TCGA/GTEx Validation

To provide an external validation of our main findings regarding the MHC pathway,
proteasome, and rProteins, we used the UCSC Xena Browser (University of California,
Santa Cruz, http://xena.ucsc.edu/, accessed on 24 February 2022) [22], which allows the
direct comparison of tumour expression data stored in the database of The Cancer Genome
Atlas (TCGA) consortium with healthy samples from the Genotype-Tissue Expression
(GTEx) project database (https://gtexportal.org/home/, accessed on 24 February 2022) [23].
Specifically, we filtered TCGA data in order to keep samples only from the Skin Cutaneous
Melanoma (SKCM) study of the metastatic type (TM, excised from patients not harbouring
any BRAF mutation. As for the control group, all the normal skin samples retrieved from
GTEx could be used. This led to a final comparison between n = 179 tumour samples and
n = 557 normal tissues. This final cohort of n = 736 patients was then further characterised

https://toppgene.cchmc.org/
http://xena.ucsc.edu/
https://gtexportal.org/home/
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to take into account the contribution of age and sex as covariates. Namely, metadata for the
TCGA consortium was downloaded with an ad hoc pipeline (https://github.com/MrHed
mad/Edmund, accessed on 21 May 2022), while GTEx data was retrieved directly from the
project’s data portal. Using these metadata, the samples were divided into nine categories:
all samples (regardless of metadata), biological male patients, biological female patients,
old patients (defined as greater than 50 years of age at the cancer diagnosis or sample
acquisition for the TCGA and GTEx samples, respectively), young patients (defined as not
old), young male patients, young female patients, old male patients, and old female patients.
For each sub-cohort, the expression of the genes of interest (see Table 4 and Figure 6) was
compared between the cancer (TCGA) and healthy (GTEx) samples. A comparison was
performed with the Student’s t-test, double-sided, and the groupwise family error rate was
corrected with the Benjamini–Hochberg procedure.

4.8. Real-Time PCR Validation

In order to further validate the transcriptomic data, 6 DEGs were selected according
to the log2FC and p-values (see Tables 2 and 3) for further validation by RT-qPCR. The se-
lected gene expressions were assessed by using commercially available KiCqStart SYBR
Green Primer pairs (Merck Millipore, Burlington, MA, USA), following the manufacturer’s
protocols. Relative expression quantification was performed by the ∆∆CT method [60]
using the gene expression normalisation approach identified in [61] for the melanoma
samples. Gene expression was assessed in a small melanoma sample subset (n = 3) from
the microarray cohort compared with the healthy control primary epidermal melanocytes.
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3390/ijms23136898/s1.
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