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ABSTRACT

Circular (or cyclic) proofs have received increasing attention in
recent years, and have been proposed as an alternative setting for
studying (co)inductive reasoning. In particular, now several type
systems based on circular reasoning have been proposed. However,
little is known about the complexity theoretic aspects of circular
proofs, which exhibit sophisticated loop structures atypical of more
common Tecursion schemes’.

This paper attempts to bridge the gap between circular proofs
and implicit computational complexity (ICC). Namely we introduce
a circular proof system based on Bellantoni and Cook’s famous
safe-normal function algebra, and we identify proof theoretical
constraints, inspired by ICC, to characterise the polynomial-time
and elementary computable functions. Along the way we introduce
new recursion theoretic implicit characterisations of these classes
that may be of interest in their own right.
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1 INTRODUCTION

Formal proofs are traditionally seen as finite objects modelling
logical or mathematical reasoning. Non-wellfounded proofs are a
generalisation of this notion to an infinitary (but finitely branching)
setting, in which consistency is maintained by a standard global
condition: the ‘progressing’ criterion. Special attention is devoted
to regular (or circular or cyclic) proofs, i.e. those non-wellfounded
proofs having only finitely many distinct sub-proofs, and which
may thus be represented by finite (possibly cyclic) directed graphs.
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For such proofs the progressing criterion may be effectively decided
by reduction to the universality problem for Biichi automata.

Non-wellfounded proofs have been employed to reason about
the modal p-calculus and fixed-point logics [16, 27], first-order
inductive definitions [8], Kleene algebra [13, 14], linear logic [2, 17],
arithmetic [7, 11, 30], system T [10, 12, 22], and continuous cut-
elimination [1, 18, 26]. In particular, [22] and [10, 12] investigate
the computational expressivity of circular proofs, with respect to
the proofs-as-programs paradigm, in the setting of higher-order
primitive recursion.

However little is known about the complexity-theoretic aspects
of circular proofs. Usual termination arguments for circularly typed
programs are nonconstructive, proceeding by contradiction and
using a non-recursive ‘totality’ oracle (cf. [10, 12, 22]). As a re-
sult, these arguments are not appropriate for delivering feasible
complexity bounds (cf. [11]).

The present paper aims to bridge this gap by proposing a circular
foundation for Implicit Computational Complexity (ICC), a branch
of computational complexity studying machine-free characterisa-
tions of complexity classes. Our starting point is Bellantoni and
Cook’s famous function algebra B characterising the polynomial
time computable functions (FPTIME) using safe recursion [5]. The
prevailing idea behind safe recursion (and its predecessor, ‘rami-
fied’ recursion [23]) is to organise data into strata in a way that
prevents recursive calls being substituted into recursive parameters
of previously defined functions. This approach has been success-
fully employed to give resource-bound-free characterisations of
polynomial-time [5], levels of the polynomial-time hierarchy [4],
and levels of the Grzegorczyk hierarchy [31], and has been extended
to higher-order settings too [19, 24].

Circular systems for implicit complexity

Construing B as a type system, we consider non-wellfounded proofs,
or coderivations, generated by its recursion-free subsystem B™. The
circular proof system CNB is then obtained by considering the
regular and progressing coderivations of B~ which satisfy a fur-
ther criterion, safety, motivated by the eponymous notion from
Bellantoni and Cook’s work (cf. also ‘ramification’ in Leivant’s
work [23]). On the one hand, regularity and progressiveness ensure
that coderivations of CNB define total computable functions; on
the other hand, the latter criterion ensures that the corresponding
equational programs are ‘safe’: the recursive call of a function is
never substituted into the recursive parameter of a step function.
Despite CNB having only ground types, it is able to define equa-
tional programs that nest recursive calls, a property that typically
arises only in higher-order recursion (cf., e.g., [19, 24]). In fact, we
show that this system defines precisely the elementary computable
functions (FELEMENTARY). Let us point out that the capacity of
circular proofs to simulate some higher-order behaviour reflects an
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emerging pattern in the literature. For instance in [10, 12] is shown
that the number-theoretic functions definable by type level n proofs
of a circular version of system T are exactly those definable by type
level n + 1 proofs of T.

In the setting of ICC, Hofmann [19] and Leivant [24] already
observed that higher-order safe recursion mechanisms can be used
to characterise FELEMENTARY. In particular, in [19], Hofmann
presents the type system SLR (Safe Linear Recursion) as a higher-
order version of B imposing a ‘linearity’ restriction on the higher-
order safe recursion operator. He shows that this system defines
just the polynomial-time computable functions on natural numbers
(FPTIME).

Inspired by [19], we too introduce a linearity requirement for
CNB that is able to control the interplay between cycles and the cut
rule, called the left-leaning criterion. The resulting circular proof
system is called CB, which we show defines precisely FPTIME.

Function algebras for safe nested recursion and
safe recursion along well-founded relations

As well as introducing the circular systems CB and CNB just men-
tioned, we also develop novel function algebras for FPTIME and
FELEMENTARY that allow us to prove the aforementioned com-
plexity characterisations via a ‘sandwich’ technique, cf. Figure 1.
This constitutes a novel (and more direct) approach to reducing
circularity to recursion, that crucially takes advantage of safety.

We give a relativised formulation of B, i.e. with oracles, that
allows us to define a form of safe nested recursion. The resulting
function algebra is called NB and is comparable to the type 2 frag-
ment of Leivant’s extension of ramified recursion to finite types [24].
The algebras B and NB will serve as lower bounds for CB and CNB
respectively.

The relativised formulation of function algebras also admits a
robust notion of (safe) recursion along a well-founded relation.
We identify a particular well-founded preorder C (‘permutation
of prefixes’) whose corresponding safe recursor induces algebras
B< and NB© that will serve as upper bounds for CB and CNB
respectively.

Outline

This paper is structured as follows. Section 2 presents B as a proof
system. In Section 3 we define non-wellfounded proofs and their
semantics and present the circular proof systems CNB and CB.
In Section 4 we present the function algebras NB, B< and NB©<.
Section 5 shows that B< captures FPTIME (Corollary 40) and that
both NB and NB< capture FELEMENTARY (Corollary 42). These
results require a delicate Bounding Lemma (Lemma 38) and an
encoding of the elementary functions into NB (Theorem 41). In
Section 6 we show that any function definable in B is also definable
in CB (Theorem 43), and that any function definable in NB is also
definable in CNB (Theorem 46). Finally, in Section 6.2, we present
a translation of CNB into NB< that maps CB coderivations into
B functions (Lemma 47), by reducing circularity to a form of
simultaneous recursion on C.

The main results of this paper are summarised in Figure 1. Full
proofs of our results, as well as further discussion and examples,
can be found in an extended version of this paper available [9].
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Figure 1: Summary of the main results of the paper, where
— indicates an inclusion (C) of function classes.

2 PRELIMINARIES

Bellantoni and Cook introduced in [5] an algebra of functions based
on a simple two-sorted structure. This idea was itself inspired by
Leivant’s characterisations, one of the founding works in Implicit
Computational Complexity (ICC) [23]. The resulting ‘tiering’ of the
underlying sorts has been a recurring theme in the ICC literature
since, and so it is this structure that shall form the basis of the
systems we consider in this work.

We consider functions on the natural numbers with in-
puts distinguished into two sorts: ‘safe’ and ‘normal’. We shall
write functions explicitly indicating inputs, namely writing
f(x1,- s Xm; Y1, - .,Yn) when f takes m normal inputs ¥ and n
safe inputs y. Both sorts vary over the natural numbers, but their
roles will be distinguished by the closure operations of the algebras
and rules of the systems we consider.

Throughout this work, we write |x| for the length of x (in bi-
nary notation), and if X = xi,...,X;; we write |X| for the list

lx1l, ..o [xXml.

2.1 Bellantoni-Cook characterisation of
FPTIME

We first recall Bellantoni-Cook in its original guise.

Definition 1 (Bellantoni-Cook algebra). B is defined as the small-
est class of (two-sorted) functions containing,

e 0(;):=0€eN.

° ﬁ]?l:"(xl,...,xm;yl,...,yn) =xj,for1 <j<m
° n;'jfl§"(x1,,..,xm;y1,...,yn) =yj,for1<j<n.
e s;(;x):= 2x +1i,fori € {0,1}.

e p(x) = [x/2].

=
<
I

condGw,x,y,z) :=={y w=0 mod 2,w#0
z w=1 mod 2
and closed under the following:
e (Safe composition)
- If f(X,x;9), g(X;) € B then f(%,9(X;);§) € B.
- If f(%:7.y), g(%;7) € B then f(X;9,9(x;7))) € B.
e (Safe recursion on notation) If g(X; ), hi(x,%;4,y) € B for
i = 0,1 then sois f(x,X; 1) given by:

f(0,%:9) = g(%;7)
f(sox, X;4) := ho(x, X4, f(x,%;9)) ifx #0
fls1x,%:9) = hi(x, %7, f(x, % 7))
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Intuitively, in a function f(¥;7) € B only the normal arguments
X can be used as recursive parameters. The idea behind safe recur-
sion is that recursive calls can only appear in safe position, and
hence they can never be used as recursive parameters of other previ-
ously defined functions. Safe composition preserves the distinction
between normal and safe arguments by requiring that, when com-
posing along a normal parameter, the pre-composing function has
no safe parameter at all. As a result, we can effectively substitute a
normal parameter into a safe position but not vice-versa.

Writing FPTIME for the class of functions computable in
polynomial-time, the main result of Bellantoni and Cook is:

TueoreM 2 ([5]). f(X;) € B if and only if f(X) € FPTIME.

2.2 Proof theoretic presentation of
Bellantoni-Cook

We shall work with a formulation of Bellantoni and Cook’s alge-
bra as a type system with modalities to distinguish the two sorts
(similarly to [19]). In order to facilitate the definition of the circu-
lar system that we present later, we here work with sequent-style
typing derivations.

We only consider types (or formulas) N (‘safe’) and ON (‘normal’)
which intuitively vary over the natural numbers. We write A, B, etc.
to vary over types.

A sequent is an expressionI' = A, where I' is a list of types (called
the context or antecedent) and A is a type (called the succedent). For
alist of typesT = N, .k N, we write ar for ON, .k.,oN.

In what follows, we shall essentially identify B with the S4-style
type system in Figure 2. The colouring of type occurrences may
be ignored for now, they will become relevant in the next section.
Derivations in this system are simply called B-derivations, and will
be denoted D, &, . ... We write D : T = A if the derivation D has
end-sequent I' = A. We may write D = (D, ..., Dy) (for n < 3)
if r is the last inference step of D whose immediate subderiva-
tions are, respectively, Dy, . .., Dy. Unless otherwise indicated, we
assume that the r-instance is as typeset in Figure 2.

Convention 3 (Left normal, right safe). In what follows, we as-
sume that sequents have shape ON,...,ON,N,...,N = A ie.in
the LHS all ON occurrences are placed before all N occurrences.
Note that this invariant is maintained by the typing rules of Fig-
ure 2, as long as we insist that A = B in the exchange rule e. This
effectively means that exchange steps have one of the following
two forms:

,N,N,N' = A

,N,N,N' = A

,ON,ON, " = A
,ON,ON, [ = A

eN €o

Let us point out that this convention does not change the class of
definable functions with only normal inputs, under the semantics
we are about to give.

We construe the system of B-derivations as a class of safe-normal
functions by identifying each rule instance as an operation on safe-
normal functions. Formally:

Definition 4 (Semantics). Given a B-derivation 9 with conclu-
sion ON, .”*, ON, N, ."., N = A we define a two-sorted function
fo(xi,....Xm;Y1,...,Yn) by induction on the structure of D as
follows (all rules as typeset in Figure 2):
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If D =id then fp(y) = y.

If D = wn(Do) then f(X; 4, y) == fp,(X; ).

If D = wg(Dy) then fp(x,%:9) = fp,(*: ).

If D = en(Do) then fp(X;4,y.y". ') = fo,(* 4.y, y. §").
If D = en(Dyp) then fp(X,x,x",%"; 1) := fp,(¥,x", x,X’; ).
If D = 0;(Dy) then fip(x,X; ) := fop,(X; 7, x).

If D = 0,(Dy) then fp(X;) := fz)o()-f; ).

If D = 0then fp(;):=0.

If D = so(Dy) then f(X;7) := 50(;fDO(f;§)).

If D = 51(Do) then fp(X; 7)) := s1( fp, (*; 1))

If D = cutn (Do, D1) then fp(X;4) = fop, (X4, fp, (% 1))
If D = cutn(Do, D1) then fp(¥;7) := fo, (f@o(f; 9), % 4).

If O = condn(Dyg, D1, Do) then:

fo(%:4,0) = fp, (%)
fo(%:4,s0y) = fp,(X;4,y) if y #0
fo(y,s1y) = fp,(%:4.y)
e If D = condn(Dy, D1, D7) then:
fo(0.%9) = fp,(%1)
fo(sox,%:9) = fop,(x,%;7) ifx #0
fo(s1x,%4) = fp,(x, % 1)
o If D = srec(Dy, D1, D7) then:
fp(0,%:9) = fp,(X:7)

folsox,%;9) = fp,(x, %7, fp(x.%:7)) if x #0
fo(s1x,%9) = fop,(x, %7, folx, X 9))

This formal semantics exposes how B-derivations and B func-
tions relate. The rule srec in Figure 2 corresponds to safe recursion,
and safe composition along safe parameters is expressed by means
of the rules cut. Note, however, that the function fy is not quite
defined according to function algebra B, due to the interpretation
of the cutg rule apparently not satisfying the required constraint
on safe composition along a normal parameter. However, this ad-
mission turns out to be harmless, as exposited in the following
proposition:

PROPOSITION 5. Given a B-derivation D : DF,KI = ON, there is
a smaller B-derivation D* : oI' = ON such that:

fo(X; 1) = fp(%;).

Our overloading of the notation B, for both a function algebra
and for a type system, is now justified by:

PROPOSITION 6. f(¥X;4) € B iff there is a B-derivation D for which

fo@4) = f(% 7).

Proor skeTCH. The left-right implication follows by a routine
induction on the definition of f(¥; ). For the right-left implication
we proceed by induction on the structure of D. The only non-trivial
case is when the last rule is cutg, for which we appeal to Propo-
sition 5 to recover a correct instance of safe composition along a
normal parameter. O

Convention 7. Given Proposition 6 above, we shall henceforth
freely write f(¥X;7j) € B if there is a derivation O : oI,N = N
with fp(%;9) = f(X;9).
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=N [,N=B = 0oON ON, =B = B = B ,A BT = C
id cuty cutg wo
N=N = B = B ,N=B ON,I = B ,B,AT' = C
JN=A =N = A = A = N ON,[,N=N OoON,I,N=N

Oy 0 So
ON, = A = ON =N = A

= N ,N=N
,N=>N

,N=N

condpn

condg

srec

= A ON,I' = N

= N ON,I = N ON,l =N
ON,I = N

Figure 2: System B, as a sequent-style type system.

3 TWO-SORTED CIRCULAR SYSTEMS ON
NOTATION

In this section we introduce a ‘coinductive’ version of B, and we
study global criteria that tame its computational strength. This
proof-theoretic investigation will lead us to two relevant circular
systems: CNB, which morally permits ‘nested’ versions of safe
recursion, and CB, which will turn out to be closer to usual safe
recursion.

Throughout this section we shall work with the set of typing
rules B~ := B — {srec}.

3.1 Non-wellfounded typing derivations

To begin with, we define the notion of ‘coderivation’, which is the
fundamental formal object of this section.

Definition 8 (Coderivations). A (B™-)coderivation D is a possibly
infinite rooted tree (of height < ) generated by the rules of B™.
Formally, we identify D with a prefix-closed subset of {0, 1, 2}*
(i.e. a ternary tree) where each node is labelled by an inference
step from B~ such that, whenever v € D is labelled by a step

S S
! S n, for n < 3, v has n children in D labelled by steps

with conclusions Sy, ..., Sy respectively. Sub-coderivations of a
coderivation D rooted at position v € {0, 1,2}* are typically de-
noted D, so that D = D. We write v C p (or v C p) if v is a prefix
(respectively, a strict prefix) of y, and in this case we say that p is
above (respectively, strictly above) v or that v is below (respectively,
strictly below) . We extend this order from nodes to sequents in
the obvious way.

We say that a coderivation is regular (or circular) if it has only
finitely many distinct sub-coderivations.

Note that, while usual derivations may be naturally written as
finite trees or dags, regular coderivations may be naturally written
as finite directed (possibly cyclic) graphs. Some examples of regular
coderivations can be found in Figure 3, employing the following
writing conventions:

Convention 9 (Representing coderivations). Henceforth, we may
mark steps by e (or similar) in a regular coderivation to indicate
roots of identical sub-coderivations. Moreover, to avoid ambiguities
and to ease parsing of (co)derivations, we shall often underline
principal formulas of a rule instance in a given coderivation and
omit instances of wg and wy as well as certain structural steps, e.g.
during a cut step.

Finally, when the sub-coderivations 9y and 9 above the second
and the third premise of the conditional rule (from left) are similar
(or identical), we may compress them into a single parametrised
sub-coderivation D; (for i = 0, 1).

As discussed in [10, 12, 22], coderivations can be identified with
Kleene-Herbrand-Goédel style equational programs, in general com-
puting partial recursive functionals (see, e.g., [20, §63] for further
details). We shall specialise this idea to our two-sorted setting.

Definition 10 (Semantics of coderivations). To each B™-
coderivation D we associate a two-sorted Kleene-Herbrand-Godel
partial function fy) obtained by construing the semantics of Def-
inition 4 as a (possibly infinite) equational program. Given a
two-sorted function f(X;y), we say that f is defined by a B™-
coderivation D if fo(¥; ) = f(%; 7).

Remark 11. Note, in particular, that from a regular coderivation O
we obtain a finite equational program determining fp. Of course,
our overloading of the notation fy) is suggestive since it is consis-
tent with that of Definition 4.

Example 12 (Regular coderivations, revisited). Let us consider the
semantics of coderivations 7, R and C from Figure 3.

o The partial functions f7, are given by the following equa-
tional program:

fr.(x;) = fr,(f,(x:);)
fr,(6) = fr,(x5)
Fr06) = frG%)
Ffr00GX) = 51Gx)
fr() = fr.(x)

By purely equational reasoning, we can simplify this pro-
gram to obtain f7 (x;) = f7_(s1x;) Since the above equa-
tional program keeps increasing the input, the function
fr = fr1. is always undefined.

e Let fg(X:9) and fg(,(x,X,2;%) (i = 0,1) be the functions
defined by the regular B™-coderivations G and H;, respec-
tively. Then the equational program for R can be rewritten
as follows:

fr(0.%) = fg(x;)
frsix, ;) = foq,(x, %, fr(x,%;);)

which is an instance of a non-safe recursion scheme (on
notation).

(1)
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N=N
S1
N=N
oy
ON = N .
cutg ———— e

condp

—_—
ON,ON = N

Or —————
W ON,oN = oN
cutpg

N

ON,oN,oN = N N=N
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condg L —
ON, N = N .

id i=0,1 condp

ION.N= N ON.ON,N=> N *

o, =Y
"oN=oN ON=> N oN = N

autgp —————————————————— o condg
oON =N ON,oN = N

ON,oON = N
.

i=0,1 condg o s} ————— i=0,1
ON,N= N ON,ON, N = N
.

ON,ON, N = N

condp

Figure 3: Examples of regular coderivations 7, R and C, from left (assuming G, H, and H; regular).

o The equational program of C can be written as:

fc.(0,0;2) = z
fe(0siysz) = sife (x,y;2) #0
fe six.y:2) = sife (x.y:2) #0
which computes concatenation of the binary representation
of three natural numbers.

The above examples illustrate two undesirable features of regular
B~ -coderivations, from the point of view of implicit complexity:

I. on the one hand, despite being finitely presentable, they can
define partial functions;

II. on the other hand, despite the presence of modalities imple-
menting the normal/safe distinction of function arguments,
they can define non-safe recursion schemes.

3.2 The progressing criterion

To address Problem I we shall adapt to our setting a well-known ‘ter-
mination criterion’ from non-wellfounded proof theory. First, let us
recall some standard proof theoretic concepts about (co)derivations,
similar to those in [10, 12, 22].

Definition 13 (Ancestry). Fix a coderivation . We say that a
type occurrence A is an immediate ancestor of a type occurrence B
in D if they are types in a premiss and conclusion (respectively) of
an inference step and, as typeset in Figure 2, have the same colour.
If A and B are in some [ or [/, then furthermore they must be in
the same position in the list.

Being a binary relation, immediate ancestry forms a directed
graph upon which our correctness criterion is built.

Definition 14 (Progressing coderivations). A thread is a maximal
path in the graph of immediate ancestry. We say that a (infinite)
thread is progressing if it is eventually constant ON and infinitely
often principal for a condyn rule.

A coderivation is progressing if each of its infinite branches has
a progressing thread.

Example 15 (Regular coderivations, re-revisited). In Figure 3, I
has precisely one infinite branch (that loops on e) which contains
no instances of condp at all. Therefore, I is not progressing. On
the other hand, C has two simple loops, one on e and the other one
on o. For any infinite branch B we have two cases:

e if B crosses the bottommost conditional infinitely many
times, it contains a progressing blue thread;

o otherwise, B crosses the topmost conditional infinitely many
times, so that it contains a progressing red thread.

Therefore, C is progressing. By the same reasoning, we can conclude
that R is progressing whenever G and H; are.

Like in [10, 12, 22], the progressing criterion is sufficient to
guarantee that the partial function computed is, in fact, a well-
defined total function:

ProPosITION 16. If D is progressing then fq is total.

ProoF skETCH. We proceed by contradiction. If fy is non-total
then, since each rule preserves totality top-down, we must have
that fp is non-total for one of D’s immediate sub-coderivations
D’. Continuing this reasoning we can build an infinite leftmost
‘non-total’ branch B = (D%);<,. Let (ON?);s be a progressing
thread along B, and assign to each ON’ the least natural number
n; € N such that fg,: is non-total when n; is assigned to the type
occurrence ON*.

Now, notice that:

e (n;);>k is monotone non-increasing, by inspection of the
rules and their interpretations from Definition 4.

e (n;);>k does not converge, since (ON?);s is progressing
and so is infinitely often principal for condp, where the value
of n; must strictly decrease (cf., again, Definition 4).

This contradicts the well-ordering property of the natural numbers.
m]

One of the most appealing features of the progressing criterion
is that, while being rather expressive and admitting many natural
programs, e.g. as we will see in the next subsections, it remains ef-
fective (for regular coderivations) thanks to well known arguments
in automaton theory:

FacT 17 (FOLKLORE). It is decidable whether a regular coderivation
is progressing.

This well-known result (see, e.g., [15] for an exposition for a
similar circular system) follows from the fact that the progressing
criterion is equivalent to the universality of a Biichi automaton of
size determined by the (finite) representation of the input coderiva-
tion. This problem is decidable in polynomial space, though the
correctness of this algorithm requires nontrivial infinitary combi-
natorics, as formally demonstrated in [21].

Let us finally observe that the progressing condition turns out
to be sufficient to restate Proposition 5 in the setting of non-
wellfounded coderivations:

ProrosITION 18. Given a progressing B~ -coderivation D
al, N = ON, there is a progressing B~ -coderivation D* : oI' = ON
such that:

foX: 1) = fp(%;).

PROOF SKETCH. By progressiveness, any infinite branch contains
a condp-step, which has non-modal succedent. Thus there is a set
of condg-occurrences that forms a bar across D. By Konig Lemma,
the set of all nodes of D below this bar, say X, is finite. The proof
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now follows by induction on the cardinality of X ¢y and is analogous
to Proposition 5. O

Note that the above proof uniquely depends on progressiveness,
and so it holds for non-regular progressing B™-coderivations as
well.

3.3 Computational expressivity of
coderivations

Problem II indicates that the modal/non-modal distinction for (pro-
gressing) B™-coderivations, by itself, does not suffice to control
complexity. Indeed it is not hard to see that, as it stands, this dis-
tinction is somewhat redundant for definable functions with only
normal inputs. By inspection of Figure 2, we may safely replace each
N by ON in any such coderivation, preserving progressiveness:

ProrosiTION 19. Let D oN,.”.,ON,N, "™ N = N be
a B~ -coderivation. Then, there exists a B~ -coderivation DT
ON,tm oN = N s.t.:

e fp(%;9) = fpe(X.4;);
o D does not contain instances of Wy, en, cutn, cond .

Moreover, DV is regular (resp. progressing) if D is.

PROOF SKETCH. We construct DY coinductively. The only inter-
esting cases are when D is id or it is obtained from Dy : I' = N and
D : T,N = Aby applying a cut n-step. Then, D" is constructed,
respectively, as follows:

id W W

N=N o' = N o, N = N
- O, o
I]l|:|N:,N ol = oN ll:ll“,l:lN:N
cutgn
ol = N

O

Consequently, we may view (regular, progressing) B~-
coderivations as the type 0 (regular, progressing) fragment of the
system CT from [10, 12, 22]. As a result we inherit the following
characterisations:

PROPOSITION 20. We have the following:

(1) Any function f(X;) is defined by a progressing B™-
coderivation.

(2) The class of regular B~ -coderivations is Turing-complete, i.e.
they define every partial recursive function.

(3) f(%;) is defined by a regular progressing B™-coderivation if
and only if f(X) is type-1-primitive-recursive, i.e. it is in the
level 1 fragment T1 of Godel’s T.

Given the computationally equivalent system CTy with contrac-
tion from [12], we can view the above result as a sort of ‘contrac-
tion admissibility’ for regular progressing B™-coderivations. Call
B~ + {cn,con} the extension of B~ with the rules ¢y and con
below:

,N,N=B ,ON,ON = B
CN Co (2)
,N=B ,ON = B
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where the semantics for the new system extends the one for B~ in
the obvious way, and the notion of (progressing) thread is induced
by the given colouring.! We have:

COROLLARY 21. f(X;) is definable by a regular progressing B~ +
{cN, can }-coderivation if and only if it is definable by a regular
progressing B™ -coderivation.

3.4 Proof-level conditions motivated by
implicit complexity

B-derivations locally introduce safe recursion by means of the
rule srec, and Proposition 5 ensures that the composition schemes
defined by the cut rules are safe. As suggested by Problem II, a
different situation arises when we move to B~ -coderivations, where
the lack of further constraints means that we can define ‘non-safe’
equational programs. We may recover safety by a natural proof-
level condition:

Definition 22 (Safety). A B™-coderivation is safe if each infinite
branch crosses only finitely many cutg-steps.

The corresponding equational programs of safe coderivations
indeed only have safe inputs in hereditarily safe positions, as we
shall soon see. Let us illustrate this by means of examples.

Example 23. The coderivation J in Figure 3 is not safe, as there
is an instance of cutp in the loop on e, which means that there is
an infinite branch crossing infinitely many cutg-steps. By contrast,
using the same reasoning, we can infer that the coderivation C is
safe. Finally, by inspecting the coderivation R of Figure 3, we notice
that the infinite branch that loops on e contains infinitely many
cutg steps, so it too is not safe.

Perhaps surprisingly, however, the safety condition is not enough
to restrict the set of B™-definable functions to FPTIME, as the
following example shows.

Example 24 (Safe exponentiation). Consider the following
coderivation &,

id condg e condg— e
=N ON,N = N ON,N = N
So cutyn i=0,1
= ON,N = N
condg °
ON,N = N

where we identify the sub-coderivations above the second and
the third premises of the conditional. The coderivation is clearly
progressing. Moreover it is safe, as & has no instances of cutg. Its
associated equational program can be written as follows:

fe(0;y) = so(y)
felsoxsy) = fe(x; fe(x;y) x #0 ®3)
fe(sixy) = felx; fe(xy)

The above equational program has already appeared in [19, 24]. It

is not hard to show, by induction on x, that fg(x;y) = 22 y. Thus
fe has exponential growth rate (as long as y # 0), despite being
defined by a ‘safe’ recursion scheme.

!Note that the totality argument of Proposition 16 still applies in the presence of these
rules, cf. also [12].
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The above coderivation exemplifies a safe recursion scheme that
is able to nest one recursive call inside another in order to obtain
exponential growth rate. This is in fact a peculiar feature of circular
proofs, and it is worth discussing.

Remark 25 (On nesting and higher-order recursion). As we
have already seen, namely in Proposition 20.3, (progressing) B™-
coderivations are able to simulate some sort of higher-order recur-
sion, namely at type 1 (cf. also [12]). In this way it is arguably not
so surprising that the sort of ‘nested recursion’ in Equation (3) is
definable since type 1 recursion, in particular, allows such nesting
of the recursive calls. To make this point more apparent, consider
the following higher-order ‘safe’ recursion operator:

rec4:0ON > (ON>A—>A) > A—> A

with A = N — N, and f(x) = reca(x, h, g) is defined as f(0) = g
and f(sjx) = h(x, f(x)) for x > 0. By setting g := Ay : N.spy and
h:=Ax:0ON.Au: N — N.(Ady : N.u(uy)) we can easily check that
fe(x;y) = reca(x, h, g)(y), where & is as in Example 24. Hence, the
function fg(x;y) can be defined by means of a higher-order version
of safe recursion.

As noticed by Hofmann [19], and formally proved by
Leivant [24], higher-order safe recursion can be used to charac-
terise FELEMENTARY, thanks to this capacity to nest recursive
calls. Moreover, Hofmann showed in [19] that by introducing a
‘linearity’ restriction on the operator rec4, which prevents dupli-
cation of recursive calls, it is possible to recover the class FPTIME.
The resulting type system, called SLR (‘Safe Linear Recursion’), can
thus be regarded as a higher-order formulation of B.

Following [19], we shall impose a linearity criterion to rule out
those coderivations that nest recursive calls. This is achieved by
observing that the duplication of the recursive calls of fg in Ex-
ample 24 is due to the presence in & of loops on e crossing both
premises of a cutp step. Hence, our circular-proof-theoretic coun-
terpart of Hofmann’s linearity restriction can be obtained by de-
manding that at most one premise of each cuty step is crossed
by such loops. Again, we rather give a more natural proof-level
criterion which does not depend on our intuitive notion of loop.

Definition 26 (Left-leaning). A B™-coderivation is said to be left-
leaning if each infinite branch goes right at a cut 5-step only finitely
often.

Example 27. In Figure 3, 7 is trivially left-leaning, as it contains
no instances of cutp at all. The coderivations C and R are also
left-leaning, since no infinite branch can go right at the cuty steps.
By contrast, the coderivation & in Example 24 is not left-leaning,
as there is an infinite branch looping at e and crossing infinitely
many times the rightmost premise of the cutx-step.

We are now ready to present our circular systems:

Definition 28 (Circular Implicit Systems). CNB is the class of safe
regular progressing B™-coderivations. CB is the restriction of CNB
to only left-leaning coderivations. A two-sorted function f(X;3) is
CNB-definable (or CB-definable) if there is a coderivation D € CNB
(resp., D € CB) such that fp(X; ) = f(¥X; 7).

Let us point out that Proposition 18 can be strengthened to
preserve safety and left-leaningness:
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PROPOSITION 29. Let D : Df,ﬁ = ON be a coderivation in CNB
(or CB). There exists a CNB-coderivation (resp., CB-coderivation)
D* : ol = ON such that fp(¥;9) = fp+(X;).

3.5 On the complexity of proof-checking

Note that both the safety and the left-leaning conditions above
are defined at the level of arbitrary coderivations, not just regular
and/or progressing ones. Moreover, since these conditions are de-
fined at the proof-level rather than the thread-level, they are easy
to check on regular coderivations:

ProrosITION 30. The safety and the left-leaning condition are
NL-decidable for regular coderivations.

The idea here is that, for regular coderivations, checking that
no branch has infinitely many occurrences of a particular rule can
be reduced to checking acyclicity of a certain subgraph, which is
well-known to be in coNL = NL.

Recall that progressiveness of regular coderivations is decidable
by reduction to universality of Biichi automata, a PSPACE-complete
problem. Indeed progressiveness itself is PSPACE-complete in many
settings, cf. [28]. It is perhaps surprising, therefore, that the safety
of a regular coderivation also allows us to decide progressiveness
efficiently too, thanks to the following reduction:

PROPOSITION 31. A safe B™-coderivation is progressing iff every
infinite branch has infinitely many condg-steps.

Proor. The left-right implication is trivial. For the right-left
implication, let us consider an infinite branch B of a safe B™-
coderivation D. By safety, there exists a node v of B such that
any sequent above v in B is not the conclusion of a cutg-step. Now,
by inspecting the rules of B~ — {cutg} we observe that:

e every modal formula occurrence in B has a unique thread
along B;

e infinite threads along B cannot start strictly above v.
Hence, setting k to be the number of ON occurrences in the an-
tecedent of v, B has (at most) k infinite threads. Moreover, since B
contains infinitely many condg-steps, by the Infinite Pigeonhole
Principle we conclude that one of these threads is infinitely often
principal for the condg rule. O

Thus, using similar reasoning to that of Proposition 30 we may
conclude from Proposition 31 the following:

COROLLARY 32. Given a regular B~ -coderivation D, the problem
of deciding if D is in CNB (resp. CB) is in NL.

Let us point out that the reduction above is similar to (and indeed
generalises) an analogous one for cut-free extensions of Kleene
algebra, cf. [14, Proposition 8].

4 SOME VARIANTS OF SAFE RECURSION

In this section we shall introduce various extensions of B to ul-
timately classify the expressivity of the circular systems CB and
CNB. First, starting from the analysis of Example 24 and the subse-
quent system CNB, we shall define a version of B with safe nested
recursion, called NB. Second, motivated by the more liberal way
of defining functions in both CB and CNB, we shall endow the
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‘ safe recursion on notation on C
unnested B B“

unnested, with compositions SB SBS
nested NB NB<

Figure 4: The function algebras considered in Section 4. Any
algebra is included in one below it and to the right of it.

function algebras B and NB with forms of safe recursion over a
well-founded relation C on lists of normal parameters. Figure 4
summarises the function algebras considered and their relations.

4.1 Relativised algebras and nested recursion

One of the key features of the Bellantoni-Cook algebra B is that
‘nesting’ of recursive calls is not permitted. For instance, let us
recall the equational program from Example 24:

ex(0;y) = soy
ex(six;y) = ex(x;ex(x;y)) @

Recall that ex(x;y) = fe(x;y) = 22 y. The ‘recursion step’ on
the second line is compatible with safe composition, in that safe
inputs only occur in hereditarily safe positions, but one of the
recursive calls takes another recursive call among its safe inputs.
In Example 24 we showed how the above function ex(x;y) can
be CNB-defined. We thus seek a suitable extension of B able to
formalise such nested recursion to serve as a function algebraic
counterpart to CNB.

It will be convenient for us to work with generalisations of B
including oracles. Formally speaking, these can be seen as variables
ranging over two-sorted functions, though we shall often treat them
as explicit functions too.

Definition 33. For all sets of oracles a@ = ay, .. ., aj, we define the
algebra of B~ functions over a to include all the initial functions of
B~ and,
e (oracles). a;(¥;7) is a function over @, for 1 < i < k, (where
%,y have appropriate length for a;).
and closed under:
o (Safe Composition).
(1) from g(%;4), h(X;7,y) over a define f(X;y) over a by
@ §) = h(Z;§. 9% 9))-
(2) from g(x;) over @ and h(X, x; ) over @ define f(¥X;y) over
aby f(%:7) = h(x,g(%;); 9).
We write B~(a) for the class of functions over d generated in this
way.

Note that Safe Composition along normal parameters (Item 2
above) comes with the condition that g(X; ) is oracle-free. This re-
striction prevents oracles (and hence the recursive calls) appearing
in normal position. The same condition on A(X, x; §) being oracle-
free is not strictly necessary for the complexity bounds we are after,
as we shall see in the next section when we define more expressive
algebras, but is convenient in order to facilitate the ‘grand tour’
strategy of this paper (cf. Figure 1).

We shall write, say, A0. f(X; 0) for the function taking only safe
arguments 0 with (A0. f(¥;9))(;y) = f(X; 1) (here X may be seen
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as parameters). Nested recursion can be formalised in the setting
of algebras-with-oracles as follows:

Definition 34 (Safe Nested Recursion). We write snrec for the
scheme:

e from g(X;y) over @ and hj(a)(x,X;y) over a,d, define
f(x,%; ) over d by:

f0,%79) = 9(%:9)
f(s0x,%;4) = ho(AD.f(x,%;0))(x, %;5) x#0
f(s1x,%;4) = hi(AD. f(x, X;0))(x, X; §)

We write NB(a) for the class of functions over @ generated from B~
under snrec and Safe Composition (from Definition 33), and write
simply NB for NB(@).

Note that Safe Nested Recursion also admits definitions that are
not morally ‘nested’ but rather use a form of ‘composition during
recursion’:

e from g(X;7), (ﬁj(x, X; g))lsjsk and h; (x, %9, (Zj)lsjsk) de-
fine:

f(0,%:79) = g(X;9)

f(six, %;9) = h; (x, %7, (fx, % gj(x, % g)))lgjgk) ©)

In this case, note that we have allowed the safe inputs of f to take
arbitrary values given by previously defined functions, but at the
same time f never calls itself in a safe position, as in (4). This safe
recursion scheme does not require the use of oracles in its statement,
but is equivalent to the following one using a notion of ‘nesting’
for Safe Composition:

Definition 35 (Safe Recursion with Composition During Recur-
sion). An instance of Safe Composition along Safe Parameters
(Item 1 from Definition 33) is called unnested if (at least) one of
g(X; ) and h(X; 4, y) is over @ (i.e. is oracle-free). We define SB(@) to
be the restriction of NB(d) using only unnested Safe Composition
along Safe Parameters, and write simply SB for SB(@).

It is not hard to see that, indeed, SB defines the same class of
functions of the extension of B~ by the scheme given in Equation (5).
The ‘S’ in SB thus indicates that the recursion scheme is ‘shallow’,
as opposed to nested. It should be said that we will not actually
use SB in this work, but rather an extension of it defined in the
next subsection, but we have included it for completeness of the
exposition.

4.2 Safe recursion on well-founded relations

Relativised function algebras may be readily extended by recursion
on arbitrary well-founded relations. For instance, given a well-
founded preorder <, and writing < for its strict variant,? ‘safe
recursion on <’ is given by the scheme:

e from h(a)(x, X;y) over a, a, define f(x, X; 1) over d by:

fx, %) = h(Av @ x.f (v, X; §))(x, %; §)

2To be precise, for a preorder < we write x < y if x < y and y # x. As abuse of
terminology, we say that < is well-founded just when < is.
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Note here that we employ the notation Av < x for a ‘guarded
abstraction’. Formally:

fz,%y) z<x
0 otherwise

A < x.f(v,%9))(z) := {

It is now not hard to see that total functions (with oracles) are
closed under the recursion scheme above, by reduction to induction
on the well-founded relation <.

Note that such schemes can be naturally extended to preorders
on tuples of numbers too, by abstracting several inputs. We shall
specialise this idea to a particular well-founded preorder that will
be helpful later to bound the complexity of definable functions in
our systems CB and CNB.

Recall that we say that x is a prefix of y if y has the form xz in
binary notation, i.e. y can be written x2” + z for some n > 0 and
some z < 2". We say that x is a strict prefix of y if x is a prefix of y
but x # y.

Definition 36 (Permutations of prefixes). Let [n] denote
{0,...,n—1}. We write (xo, . ..,xn-1) € (Yo, . . . , yn—1) if, for some
permutation 7 : [n] — [n], we have that x; is a prefix of y,;, for all
i <n. Wewrite X C §if X C jbuty ¢ ¥, i.e. there is a permutation
7 : [n] — [n] with x; a prefix of y; for each i < n and, for some
i < n,x; is a strict prefix of y;.

It is not hard to see that C is a well-founded preorder, by reduc-
tion to the fact that the prefix relation is a well-founded partial
order. As a result, we may duly devise a version of safe (nested)
recursion on C:

Definition 37 (Safe (nested) recursion on permutations of prefixes).
We write NB<(d) for the class of functions over @ generated from
B~ under Safe Composition, the scheme snrecc,

e from h(a)(X;y) over a, d define f(¥;j) over d by:
fG:7) = b € 7, 25.£ @ DG D)

and the following generalisation of Safe Composition along a Nor-
mal Parameter:

(2)’ from g(X;) over @ and h(¥, x; ) over a define f(¥X;y) over d
by f(%;9) = h(X, g(%;); 1)-
Recalling Definition 35, we write SB<(d) to be the restriction of
NB<(d) using only unnested Safe Composition along Safe Parame-
ters. Finally we define B<(d) to be the restriction of SB (&) where
every instance of snrecc has the form:

e from h(a)(X;y) over a, 4, define f(¥;y) over a:
F(E ) = h(Ai € 7,28 € 5.3 3): )

We call this latter recursion scheme srecc, e.g. if we need to distin-
guish it from snrecc.

Note that the version of safe composition along a normal param-
eter above differs from the previous one, Item 2 from Definition 33,
since the function h is allowed to use oracles. Again, this difference
is inessential in terms of computational complexity, as we shall see.
However, as we have mentioned, the greater expressivity of B<
and NB© will facilitate our overall strategy for characterising CB
and CNB, cf. Figure 1.
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Let us take a moment to point out that NB<(d) 2 SB<(d) 2
B<(d) indeed contain only well-defined total functions over the
oracles @, by reduction to induction on C.

5 CHARACTERISATIONS FOR FUNCTION
ALGEBRAS

In this section we characterise the complexities of the function
algebras we introduced in the previous section. Namely, despite
apparently extending B, B still contains just the polynomial-time
functions, whereas both NB and NB< are shown to contain just the
elementary functions. All such results rely on a ‘bounding lemma’
inspired by [5].

5.1 Arelativised Bounding Lemma

Bellantoni and Cook showed in [5] that any function f(X;4) € B
satisfies the ‘poly-max bounding lemma’: there is a polynomial
pr(ii) such that:3

[fG5 )l < pp(I%]) + max 4] (6)

This provided a suitable invariant for eventually proving that all
B-functions were polynomial-time computable.

In this work, inspired by that result, we generalise the bound-
ing lemma to a form suitable to the relativised algebras from the
previous section. To this end we establish in the next result a sort
of ‘elementary-max’ bounding lemma that accounts for the usual
poly-max bounding as a special case, by appealing to the notion of
(un)nested safe composition. Both the statement and the proof are
quite delicate due to our algebras’ formulation using oracles; we
must assume an appropriate bound for the oracles themselves, and
the various (mutual) dependencies in the statement are subtle.

To state and prove the Bounding Lemma, let us employ the
notation [|X| := Y |X].

LEMMA 38 (BOUNDING LEMMA). Let f(d)(¥;§) € NB<(d), with
d=ay,...,a. There is a function m]i(fé, 1) with,

mE(E,§) = ep(1F]) +df Y &+ max ]
for an elementary function eg(n) and a constant dg > 1, such that
whenever there are constants ¢ = ¢y, . . ., cx such that,

lai(¥i; )| < ci +df g ¢j + max ;| (7)
J#i
for1 < i<k, we have?

F@E:§)| < mi(E§) ®)

f@GG) = f(AFedlfil < mEG§).aGd) G ©)
Moreover, if in fact f(X;4) € SB<(d), then df = 1andeg(n) isa
polynomial.

Proor 1DEA. Both Equations (8) and (9) are proved simultane-
ously by induction on the definition of f(X;7j), always assuming
that we have ¢ satisfying Equation (7). O

3Recall that, for ¥ = x1, . . ., X, we write |¥| for |x1|, . . ., |xn].
“To be clear, here we write |fj;| < m;.(f, 1) here as an abbreviation for {|y;;| <

m;(y?, 9}
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Unwinding the statement above, note that er and df depend
only on the function f itself, not on the constants ¢ given for the
(mutual) oracle bounds in Equation (7). This is crucial for the proof,
namely in the case when f is defined by recursion, substituting
different values for ¢ during an inductive argument.

While the role of the elementary bounding function ey is a nat-
ural counterpart of ps in Bellantoni and Cook’s bounding lemma,
cf. Equation (6), the role of df is perhaps slightly less clear. Morally,
df represents the amount of ‘nesting’ in the definition of f, in-
creasing whenever oracle calls are substituted into arguments for
other oracles, cf. Definition 35. Hence, if f uses only unnested Safe
Composition, then dy = 1 as required. In fact, it is only important
to distinguish whether df = 1 or not, since df forms the base of an
exponent for defining ey when f is defined by safe recursion.

Finally let us note that Equations (8) and (9) are somewhat dual:
while the former bounds the output of a function (serving as a mod-
ulus of growth), the latter bounds the inputs (serving as a modulus
of continuity).

5.2 Soundness results

In this subsection we show that the function algebras B< and
NB©< (as well as NB) capture precisely the classes FPTIME and
FELEMENTARY, respectively. We start with B<:

THEOREM 39. Suppose d satisfies Equation (7) for some constants
¢. We have the following:

(1) If f(X; ) € B<(d) then f(X, 1) € FPTIME(Q).

(2) If f(X;4) € NB(d) then f(¥, 1) € FELEMENTARY(d).

Note in particular that, for f(¥;7) in B< or NB, i.e. not using
any oracles, we immediately obtain membership in FPTIME or
FELEMENTARY, respectively. However, the reliance on intermedi-
ate oracles during a function definition causes some difficulties that
we must take into account. At a high level, the idea is to use the
Bounding Lemma (namely Equation (9)) to replace certain oracle
calls with explicit appropriately bounded functions computing their
graphs. From here we compute f(X; ) by a sort of ‘course-of-values’
recursion on C, storing previous values in a lookup table. In the case
of B, it is important that this table has polynomial-size, since there
are only m! [] |X| permutations of prefixes of a list X = x1, ..., Xm
(which is a polynomial of degree m).

5.3 Completeness and characterisations

We are now ready to give our main function algebraic characterisa-
tion results for polynomial-time:

COROLLARY 40. The following are equivalent:

(1) f(x;) € B.
() f(z) € BE.
(3) f(X) € FPTIME.

ProoF. (1) = (2) is trivial, and (2) = (3) is given by
Theorem 39.(1). Finally, (3) = (1) is from [5], stated in Theorem 2
earlier. 0

The remainder of this subsection is devoted to establishing a
similar characterisation for NB, NB< and FELEMENTARY. To this
end, we naturally require the following result:
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THEOREM 41. If f(X) € FELEMENTARY then f(X;) € NB.

Proor skeTcH. Using a formulation of FELEMENTARY in bi-
nary notation, and we prove by induction on the definition of
f(X¥) € FELEMENTARY that there exists f*(x;X) € NB and a
monotone function ¢y € FELEMENTARY such that for all integers
¥andall w > t¢(X) we have f*(w; X) = f(¥). Then, we use the func-
tion ex(x;y) € NB in (4) to achieve arbitrary elementary growth
rate, which implies f(X) € NB. The proof technique based on the
construction of the pair (f*(x; X), t¢) is well-known since [5], and
has been adapted to the case of the elementary functionsin [31]. O

Now, by the same argument as for Corollary 40, only using
Theorem 41 above instead of appealing to [5], we can give our main
characterisation result for algebras for elementary computation:

COROLLARY 42. The following are equivalent:
(1) f(¥;) € NB.

(2) f(%:) € NBE.

(3) f(X) € FELEMENTARY.

6 CHARACTERISATIONS FOR CIRCULAR
SYSTEMS

We now return our attention to the circular systems CB and CNB
that we introduced in Section 3. We will address the complexity of
their definable functions by ‘sandwiching’ them between function
algebras of Section 4, given their characterisations that we have
just established.

6.1 Completeness

To show that CB contains all polynomial-time functions, we may
simply simulate Bellantoni and Cook’s algebra:

THEOREM 43. If f(X;7) € B then f(¥X;1) € CB.

Proor skeTCH. The proof is by induction on the definition of
f. The only interesting case is when f(x, X; %) is defined by safe
recursion on notation from the functions g(¥; %) and h;(x, X; , y).
Given D, and Dy, defining g and h; by induction hypothesis, we

may define f(x, X;y) by the coderivation,

condg .
ON.T= N  ON.I.N=N
cutn i=0,1

IT'=N ON, I = N
condg °

ON.T = N

where T = ON, N. The only infinite branch (outside D, and Dy,,)
loops on e and has a progressing thread in blue. O

We can also show that CNB is complete for elementary functions
by simulating our nested algebra NB. First, we need to introduce
the notion of oracle for coderivations.

Definition 44 (Oracles for coderivations). Let @ = a1,...,an
be a set of safe-normal functions. A B™(@)-coderivations is just
a usual B™-coderivation that may use initial sequents of the form

i n; m; .
ON™,N™ = N when a; takes n; normal and m; safe inputs.
We write:
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aj ———————— 1|
YONm™i N™i = N

I'= A
for a coderivation 9 whose initial sequents are among the initial

[ e —

sequents ON",N™ = N withi=1,...,n We write CNB(d)
for the set of CNB-coderivations with initial functions d. We may
sometimes omit indicating some oracles 4 if it is clear from context.

The semantics of such coderivations and the notion of CNB(a)-
definability are as expected, with coderivations representing func-
tions over the oracles d, and fy);) € CNB(4) denoting the induced
interpretation of D(a).

Before giving our main completeness result for CNB, we need
the following lemma allowing us to ‘pass’ parameters to oracle
calls. It is similar to the notion D” from [12, Lemma 42], only we
must give a more refined argument due to the unavailability of
contraction in our system.

LEMMA 45. Let D(a) be a regular coderivation over initial sequents
d, a of form:

aj———1i
A= N Ai =N

oN, .*., oN,T = N

where T and A are lists of non-modal formulas, and the path from
the conclusion to each initial sequent a does not contain cutg-steps,
O -steps and the leftmost premise of a condg-step. Then, there exists
an a* and a regular coderivation D*(a*) with shape:

@t i
oN, .k oN,A= N

dl/\i
i=>N

oN, .k, oN,T= N
such that:
* fpia) &Y = foam) 1)
o there exists a ON-thread from the j*™ ON in the LHS of the
end-sequent to the j'™ ON in the context of any occurrence of
the initial sequent a* in D*(a*), for1 < j < k.
Moreover, if D(a) is progressing, safe or left-leaning, then D*(a*) is

also progressing, safe or left-leaning, respectively.

THEOREM 46. If f(¥;1) € NB then f(X;y) € CNB.

6.2 The Translation Lemma

We now state a translation of CNB-coderivations into functions of
NB< which, in particular, maps CB-derivations into functions of
B<, thus concluding our characterisation of CB and CNB in terms
of computational complexity.

LEMMA 47 (TRANSLATION LEMMA). Let D be a CNB-coderivation.
Then, there exists a set of n functions (fi)1<i<n such that fi = fp
and, for all i:

fi% ) = hi (A € X, A8, f;(5; 5))139 (%; 7)) (10)
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where h; € NB<(a;)1<i<n. Moreover, if D is a CB-coderivation then,
for all i:

fiGs§) = hi (A € X,28 C §.£5(i:9)) ., (357 (11)
and h; € B<(a;j)1<i<n-

Let us give the idea of how this lemma is proved. By Definition 10
there exists a system of equations Sgy containing, for each node
v of D, an equation that defines the function fp_ in terms of the
functions fp, with u immediately above v. Moreover, since D is
regular, by Remark 11 we may assume Sy is a finite system of equa-
tions defining fyp (i.e. fp_). It is then suggestive to represent D as
a ‘definition tree’, by replacing each node v with the corresponding
function fp  as in Figure 5a, where each function in the tree is
defined by one of the equations of Sqy. This representation of D
has the advantage of highlighting the inter-dependencies of the
functions defined in S¢y.

We now discuss how the proof-theoretical properties of O im-
pose conditions on the equations of S¢y:

(1) By safety of D, the tree in Figure 5acannot contain the in-
stance of cutg in Figure 5b. Hence, whenever S¢ has func-
tions fp, and fp  that are inter-dependent, no equation of
Sp can define one of these functions by means of a composi-
tion along its normal parameters. By inspecting Definition 10
this implies that, whenever an equation in S¢y defines a func-
tion fp, by affecting its normal parameters, u must be the
conclusion of an instance of condp, i.e. this equation must
be of the form fp (six,Z; 1) = fp, (x,7; 1), for some v.

(2) By progressiveness of D, there always exists an occurrence

of condp in-between two ‘backpointers’ e; of Figure 5a.

If D is left-leaning, then the tree in Figure 5acannot con-

tain the instance of cuty in Figure 5c.Hence, whenever the

system of equations for D contains two functions fp  and
fp, that are inter-dependent, no equation can define one
of these functions by means of a composition along its safe
parameters. By inspecting Definition 10 this implies that,
whenever an equation in S¢ defines a function fp by af-
fecting its safe parameters, u must be the conclusion of an
instance of condy, i.e. the equation must be of the form

fp,&;1,siz) = fp, (Z; 1, z), for some v.

We can now simplify the equations in S¢) to obtain a ‘minimal’
system of equations S, where each equation defines a function
in (fi)i<i<n, with fi = fp and fi = fp,, (see Figure 5a). More
precisely, for all 1 < i < n there exists h; € NB(a;)1<i<n, for
some oracles (a;)1<i<n, such that the following equation is in S”Z‘):

fil&§) = hi (MADfj(9)), ¢, (K 9)
By point 1, each such equation can be rewritten as:
fi& ) = hi (A € £20.j(@9); << (%59) (12)

Moreover, by point 2 the relation C is strict (i.e. # C X) when j = i.
In particular, by point 3, if D is left-leaning then h; € B<(a;)1<i<n
and (12) above can be rewritten as:

fiG 1) = h; (A € X.AD C §.f;(5; 5))1San (%:9)

It remains to show that the relation C is strict (i.e. # C X) when
J # i in the above equations. This can be established by repeatedly

—
SY)
=
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(a) D as a definition tree.
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(b) A cutg violating safety.
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(c) A cut violating left-leaning,.

Figure 5: Structure of the definition tree of D.

applying the following operation for each equation in S7, with
shape (12): for all j, if C is not strict in Ai C X.A0 C §.fj(#; D)
(i.e. i C X), replace f; with its definition given by the corresponding
equation of S7,. Such a procedure keeps ‘unfolding’ equations, and
terminates as a consequence of point 2.

Finally, we can establish the main result of this paper:

COROLLARY 48. We have the following:

e f(X;) € CB ifand only if f(X) € FPTIME;
e f(%:) € CNB ifand only if f(X) € FELEMENTARY.

PRrOOF SKETCH. Soundness (=) follows from Lemma 47, by
showing that B< and NB© are closed under simultaneous versions
of their recursion schemes. Completeness (<) follows from Theo-
rem 43 and Theorem 46. O

7 CONCLUSIONS AND FURTHER REMARKS

In this work we presented two-tiered circular type systems CB and
CNB and showed that they capture polynomial-time and elemen-
tary computation, respectively. This is the first time that methods of
circular proof theory have been applied in implicit computational
complexity (ICC). Along the way we gave novel relativised algebras
for these classes based on safe (nested) recursion on well-founded
relations.

7.1 Unary notation and linear space

It is well-known that FLINSPACE, i.e. the class of functions com-
putable in linear space, can be captured by reformulating B in unary
notation (see [3]). A similar result can be obtained for CB by just
defining a unary version of the conditional in B< (similarly to the
ones in [12, 22]) and by adapting the proofs of Lemma 38, Theo-
rem 43 and Lemma 47. On the other hand, CNB is (unsurprisingly)
not sensitive to such choice of notation.

7.2 On unnested recursion with compositions

Notice that Lemma 38 implies a polynomial bound on the growth
rate of functions in SB<, and hence for functions in SB. We con-
jecture that both function algebras capture precisely the class
FPSPACE (but proving this formally is beyond the scope of this
work). Indeed, as already observed, the unnested version of the
recursion scheme snrec can be replaced by the scheme in (5), which
allows both multiple recursive calls and composition during recur-
sion. Several function algebras for FPSPACE have been proposed in
the literature, and all of them involve variants of (5) (see [25, 29]).

These recursion schemes reflect the parallel nature of polyno-
mial space functions, which in fact can be defined in terms of al-
ternating polynomial time computation. We suspect that a circular
proof theoretic characterisation of this class can thus be achieved
by extending CB with a ‘parallel’ version of the cut rule and by
adapting the left-leaning criterion appropriately. Parallel cuts might
also play a fundamental role for potential circular proof theoretic
characterisations of circuit complexity classes, like ALOGTIME or
NC.

7.3 Towards higher-order cyclic implicit
complexity

It would be pertinent to pursue higher-order versions of both CNB
and CB, in light of precursory works in circular proof theory [12,
22] as well as ICC [6, 19, 24]. In the case of polynomial-time, for
instance, a soundness result for some higher-order version of CB
might follow by translation to (a sequent-style formulation of)
Hofmann’s SLR [19]. Analogous translations might be defined for a
higher-order version of CNB once the linearity restrictions on the
recursion operator of SLR are dropped. Finally, as SLR is essentially
a subsystem of Godel’s system T, such translations could refine the
results on the abstraction complexity (i.e. type level) of the circular
version of system T in [10, 12].
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