
Cyclic Implicit Complexity
Gianluca Curzi

University of Birmingham
Birmingham, UK

g.curzi@bham.ac.uk

Anupam Das
University of Birmingham

Birmingham, UK
A.Das@bham.ac.uk

ABSTRACT
Circular (or cyclic) proofs have received increasing attention in
recent years, and have been proposed as an alternative setting for
studying (co)inductive reasoning. In particular, now several type
systems based on circular reasoning have been proposed. However,
little is known about the complexity theoretic aspects of circular
proofs, which exhibit sophisticated loop structures atypical of more
common ‘recursion schemes’.

This paper attempts to bridge the gap between circular proofs
and implicit computational complexity (ICC). Namely we introduce
a circular proof system based on Bellantoni and Cook’s famous
safe-normal function algebra, and we identify proof theoretical
constraints, inspired by ICC, to characterise the polynomial-time
and elementary computable functions. Along the way we introduce
new recursion theoretic implicit characterisations of these classes
that may be of interest in their own right.

CCS CONCEPTS
• Theory of computation → Complexity theory and logic;
Proof theory.

KEYWORDS
Cyclic proofs, implicit complexity, function algebras, safe recursion,
higher-order complexity

ACM Reference Format:
Gianluca Curzi and Anupam Das. 2022. Cyclic Implicit Complexity. In 37th
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS) (LICS
’22), August 2–5, 2022, Haifa, Israel. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3531130.3533340

1 INTRODUCTION
Formal proofs are traditionally seen as finite objects modelling
logical or mathematical reasoning. Non-wellfounded proofs are a
generalisation of this notion to an infinitary (but finitely branching)
setting, in which consistency is maintained by a standard global
condition: the ‘progressing’ criterion. Special attention is devoted
to regular (or circular or cyclic) proofs, i.e. those non-wellfounded
proofs having only finitely many distinct sub-proofs, and which
may thus be represented by finite (possibly cyclic) directed graphs.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
LICS ’22, August 2–5, 2022, Haifa, Israel
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9351-5/22/08. . . $15.00
https://doi.org/10.1145/3531130.3533340

For such proofs the progressing criterion may be effectively decided
by reduction to the universality problem for Büchi automata.

Non-wellfounded proofs have been employed to reason about
the modal µ-calculus and fixed-point logics [16, 27], first-order
inductive definitions [8], Kleene algebra [13, 14], linear logic [2, 17],
arithmetic [7, 11, 30], system T [10, 12, 22], and continuous cut-
elimination [1, 18, 26]. In particular, [22] and [10, 12] investigate
the computational expressivity of circular proofs, with respect to
the proofs-as-programs paradigm, in the setting of higher-order
primitive recursion.

However little is known about the complexity-theoretic aspects
of circular proofs. Usual termination arguments for circularly typed
programs are nonconstructive, proceeding by contradiction and
using a non-recursive ‘totality’ oracle (cf. [10, 12, 22]). As a re-
sult, these arguments are not appropriate for delivering feasible
complexity bounds (cf. [11]).

The present paper aims to bridge this gap by proposing a circular
foundation for Implicit Computational Complexity (ICC), a branch
of computational complexity studying machine-free characterisa-
tions of complexity classes. Our starting point is Bellantoni and
Cook’s famous function algebra B characterising the polynomial
time computable functions (FPTIME) using safe recursion [5]. The
prevailing idea behind safe recursion (and its predecessor, ‘rami-
fied’ recursion [23]) is to organise data into strata in a way that
prevents recursive calls being substituted into recursive parameters
of previously defined functions. This approach has been success-
fully employed to give resource-bound-free characterisations of
polynomial-time [5], levels of the polynomial-time hierarchy [4],
and levels of the Grzegorczyk hierarchy [31], and has been extended
to higher-order settings too [19, 24].

Circular systems for implicit complexity
ConstruingB as a type system, we consider non-wellfounded proofs,
or coderivations, generated by its recursion-free subsystem B−. The
circular proof system CNB is then obtained by considering the
regular and progressing coderivations of B− which satisfy a fur-
ther criterion, safety, motivated by the eponymous notion from
Bellantoni and Cook’s work (cf. also ‘ramification’ in Leivant’s
work [23]). On the one hand, regularity and progressiveness ensure
that coderivations of CNB define total computable functions; on
the other hand, the latter criterion ensures that the corresponding
equational programs are ‘safe’: the recursive call of a function is
never substituted into the recursive parameter of a step function.

Despite CNB having only ground types, it is able to define equa-
tional programs that nest recursive calls, a property that typically
arises only in higher-order recursion (cf., e.g., [19, 24]). In fact, we
show that this system defines precisely the elementary computable
functions (FELEMENTARY). Let us point out that the capacity of
circular proofs to simulate some higher-order behaviour reflects an

https://doi.org/10.1145/3531130.3533340
https://doi.org/10.1145/3531130.3533340
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3531130.3533340&domain=pdf&date_stamp=2022-08-04

LICS ’22, August 2–5, 2022, Haifa, Israel Curzi and Das

emerging pattern in the literature. For instance in [10, 12] is shown
that the number-theoretic functions definable by type level n proofs
of a circular version of system T are exactly those definable by type
level n + 1 proofs of T.

In the setting of ICC, Hofmann [19] and Leivant [24] already
observed that higher-order safe recursion mechanisms can be used
to characterise FELEMENTARY. In particular, in [19], Hofmann
presents the type system SLR (Safe Linear Recursion) as a higher-
order version of B imposing a ‘linearity’ restriction on the higher-
order safe recursion operator. He shows that this system defines
just the polynomial-time computable functions on natural numbers
(FPTIME).

Inspired by [19], we too introduce a linearity requirement for
CNB that is able to control the interplay between cycles and the cut
rule, called the left-leaning criterion. The resulting circular proof
system is called CB, which we show defines precisely FPTIME.

Function algebras for safe nested recursion and
safe recursion along well-founded relations
As well as introducing the circular systems CB and CNB just men-
tioned, we also develop novel function algebras for FPTIME and
FELEMENTARY that allow us to prove the aforementioned com-
plexity characterisations via a ‘sandwich’ technique, cf. Figure 1.
This constitutes a novel (and more direct) approach to reducing
circularity to recursion, that crucially takes advantage of safety.

We give a relativised formulation of B, i.e. with oracles, that
allows us to define a form of safe nested recursion. The resulting
function algebra is called NB and is comparable to the type 2 frag-
ment of Leivant’s extension of ramified recursion to finite types [24].
The algebras B and NB will serve as lower bounds for CB and CNB
respectively.

The relativised formulation of function algebras also admits a
robust notion of (safe) recursion along a well-founded relation.
We identify a particular well-founded preorder ⊂ (‘permutation
of prefixes’) whose corresponding safe recursor induces algebras
B⊂ and NB⊂ that will serve as upper bounds for CB and CNB
respectively.

Outline
This paper is structured as follows. Section 2 presents B as a proof
system. In Section 3 we define non-wellfounded proofs and their
semantics and present the circular proof systems CNB and CB.
In Section 4 we present the function algebras NB, B⊂ and NB⊂ .
Section 5 shows that B⊂ captures FPTIME (Corollary 40) and that
both NB and NB⊂ capture FELEMENTARY (Corollary 42). These
results require a delicate Bounding Lemma (Lemma 38) and an
encoding of the elementary functions into NB (Theorem 41). In
Section 6 we show that any function definable in B is also definable
in CB (Theorem 43), and that any function definable in NB is also
definable in CNB (Theorem 46). Finally, in Section 6.2, we present
a translation of CNB into NB⊂ that maps CB coderivations into
B⊂ functions (Lemma 47), by reducing circularity to a form of
simultaneous recursion on ⊂.

The main results of this paper are summarised in Figure 1. Full
proofs of our results, as well as further discussion and examples,
can be found in an extended version of this paper available [9].

FELEMENTARY

NB CNB NB⊂

B CB B⊂

FPTIME

Theorem 39

Theorem 46

Theorem 41

Lemma 47

Theorem 43

[5]

Lemma 47

Theorem 39

Figure 1: Summary of the main results of the paper, where
→ indicates an inclusion (⊆) of function classes.

2 PRELIMINARIES
Bellantoni and Cook introduced in [5] an algebra of functions based
on a simple two-sorted structure. This idea was itself inspired by
Leivant’s characterisations, one of the founding works in Implicit
Computational Complexity (ICC) [23]. The resulting ‘tiering’ of the
underlying sorts has been a recurring theme in the ICC literature
since, and so it is this structure that shall form the basis of the
systems we consider in this work.

We consider functions on the natural numbers with in-
puts distinguished into two sorts: ‘safe’ and ‘normal’. We shall
write functions explicitly indicating inputs, namely writing
f (x1, . . . ,xm ;y1, . . . ,yn) when f takesm normal inputs ®x and n
safe inputs ®y. Both sorts vary over the natural numbers, but their
roles will be distinguished by the closure operations of the algebras
and rules of the systems we consider.

Throughout this work, we write |x | for the length of x (in bi-
nary notation), and if ®x = x1, . . . ,xm we write | ®x | for the list
|x1 |, . . . , |xm |.

2.1 Bellantoni-Cook characterisation of
FPTIME

We first recall Bellantoni-Cook in its original guise.

Definition 1 (Bellantoni-Cook algebra). B is defined as the small-
est class of (two-sorted) functions containing,

• 0(;) := 0 ∈ N.
• πm;n

j ; (x1, . . . ,xm ;y1, . . . ,yn) := x j , for 1 ≤ j ≤ m.
• πm;n

;j (x1, . . . ,xm ;y1, . . . ,yn) := yj , for 1 ≤ j ≤ n.
• si (;x) := 2x + i , for i ∈ {0, 1}.
• p(;x) := ⌊x/2⌋.

• cond(;w,x ,y, z) :=

x w = 0
y w = 0 mod 2,w , 0
z w = 1 mod 2

and closed under the following:
• (Safe composition)
– If f (®x ,x ; ®y) , д(®x ;) ∈ B then f (®x ,д(®x ;); ®y) ∈ B.
– If f (®x ; ®y,y) , д(®x ; ®y) ∈ B then f (®x ; ®y,д(®x ; ®y)) ∈ B.

• (Safe recursion on notation) If д(®x ; ®y) , hi (x , ®x ; ®y,y) ∈ B for
i = 0, 1 then so is f (x , ®x ; ®y) given by:

f (0, ®x ; ®y) := д(®x ; ®y)
f (s0x , ®x ; ®y) := h0(x , ®x ; ®y, f (x , ®x ; ®y)) if x , 0
f (s1x , ®x ; ®y) := h1(x , ®x ; ®y, f (x , ®x ; ®y))

Cyclic Implicit Complexity LICS ’22, August 2–5, 2022, Haifa, Israel

Intuitively, in a function f (®x ; ®y) ∈ B only the normal arguments
®x can be used as recursive parameters. The idea behind safe recur-
sion is that recursive calls can only appear in safe position, and
hence they can never be used as recursive parameters of other previ-
ously defined functions. Safe composition preserves the distinction
between normal and safe arguments by requiring that, when com-
posing along a normal parameter, the pre-composing function has
no safe parameter at all. As a result, we can effectively substitute a
normal parameter into a safe position but not vice-versa.

Writing FPTIME for the class of functions computable in
polynomial-time, the main result of Bellantoni and Cook is:

Theorem 2 ([5]). f (®x ;) ∈ B if and only if f (®x) ∈ FPTIME.

2.2 Proof theoretic presentation of
Bellantoni-Cook

We shall work with a formulation of Bellantoni and Cook’s alge-
bra as a type system with modalities to distinguish the two sorts
(similarly to [19]). In order to facilitate the definition of the circu-
lar system that we present later, we here work with sequent-style
typing derivations.

We only consider types (or formulas) N (‘safe’) and □N (‘normal’)
which intuitively vary over the natural numbers. We writeA,B, etc.
to vary over types.

A sequent is an expression Γ ⇒ A, where Γ is a list of types (called
the context or antecedent) and A is a type (called the succedent). For
a list of types Γ = N , k. . .,N , we write □Γ for □N , k. . .,□N .

In what follows, we shall essentially identify B with the S4-style
type system in Figure 2. The colouring of type occurrences may
be ignored for now, they will become relevant in the next section.
Derivations in this system are simply called B-derivations, and will
be denoted D, E, We write D : Γ ⇒ A if the derivation D has
end-sequent Γ ⇒ A. We may write D = r(D1, . . . ,Dn) (for n ≤ 3)
if r is the last inference step of D whose immediate subderiva-
tions are, respectively, D1, . . . ,Dn . Unless otherwise indicated, we
assume that the r-instance is as typeset in Figure 2.

Convention 3 (Left normal, right safe). In what follows, we as-
sume that sequents have shape □N , . . .,□N ,N , . . .,N ⇒ A, i.e. in
the LHS all □N occurrences are placed before all N occurrences.
Note that this invariant is maintained by the typing rules of Fig-
ure 2, as long as we insist that A = B in the exchange rule e. This
effectively means that exchange steps have one of the following
two forms:

Γ,N ,N , ®N ′ ⇒ A
eN

Γ,N ,N , ®N ′ ⇒ A

� ®N ,�N ,�N , Γ′ ⇒ A
e�
� ®N ,�N ,�N , Γ′ ⇒ A

Let us point out that this convention does not change the class of
definable functions with only normal inputs, under the semantics
we are about to give.

We construe the system of B-derivations as a class of safe-normal
functions by identifying each rule instance as an operation on safe-
normal functions. Formally:

Definition 4 (Semantics). Given a B-derivation D with conclu-
sion □N , m. . .,□N ,N , n. . .,N ⇒ A we define a two-sorted function
fD (x1, . . . ,xm ;y1, . . . ,yn) by induction on the structure of D as
follows (all rules as typeset in Figure 2):

• If D = id then fD (;y) := y.
• If D = wN (D0) then fD (®x ; ®y,y) := fD0 (®x ; ®y).
• If D = w□(D0) then fD (x , ®x ; ®y) := fD0 (®x ; ®y).
• If D = eN (D0) then fD (®x ; ®y,y,y′, ®y′) := fD0 (®x ; ®y,y′,y, ®y′).
• If D = e□(D0) then fD (®x ,x ,x ′, ®x ′; ®y) := fD0 (®x ,x ′,x , ®x ′; ®y).
• If D = □l (D0) then fD (x , ®x ; ®y) := fD0 (®x ; ®y,x).
• If D = □r (D0) then fD (®x ;) := fD0 (®x ;).
• If D = 0 then fD (;) := 0.
• If D = s0(D0) then fD (®x ; ®y) := s0(; fD0 (®x ; ®y)).
• If D = s1(D0) then fD (®x ; ®y) := s1(; fD0 (®x ; ®y)).
• If D = cutN (D0,D1) then fD (®x ; ®y) := fD1 (®x ; ®y, fD0 (®x ; ®y)).
• If D = cut□(D0,D1) then fD (®x ; ®y) := fD1 (fD0 (®x ; ®y), ®x ; ®y).
• If D = condN (D0,D1,D2) then:

fD (®x ; ®y, 0) := fD0 (®x ; ®y)
fD (®x ; ®y, s0y) := fD1 (®x ; ®y,y) if y , 0
fD (®x ; ®y, s1y) := fD2 (®x ; ®y,y)

• If D = cond□(D0,D1,D2) then:
fD (0, ®x ; ®y) := fD0 (®x ; ®y)

fD (s0x , ®x ; ®y) := fD1 (x , ®x ; ®y) if x , 0
fD (s1x , ®x ; ®y) := fD2 (x , ®x ; ®y)

• If D = srec(D0,D1,D2) then:
fD (0, ®x ; ®y) := fD0 (®x ; ®y)

fD (s0x , ®x ; ®y) := fD1 (x , ®x ; ®y, fD (x , ®x ; ®y)) if x , 0
fD (s1x , ®x ; ®y) := fD2 (x , ®x ; ®y, fD (x , ®x ; ®y))

This formal semantics exposes how B-derivations and B func-
tions relate. The rule srec in Figure 2 corresponds to safe recursion,
and safe composition along safe parameters is expressed by means
of the rules cutN . Note, however, that the function fD is not quite
defined according to function algebra B, due to the interpretation
of the cut□ rule apparently not satisfying the required constraint
on safe composition along a normal parameter. However, this ad-
mission turns out to be harmless, as exposited in the following
proposition:

Proposition 5. Given a B-derivation D : □Γ, ®N ⇒ □N , there is
a smaller B-derivation D∗ : □Γ ⇒ □N such that:

fD (®x ; ®y) = fD∗ (®x ;).
Our overloading of the notation B, for both a function algebra

and for a type system, is now justified by:

Proposition 6. f (®x ; ®y) ∈ B iff there is a B-derivationD for which
fD (®x ; ®y) = f (®x ; ®y).

Proof sketch. The left-right implication follows by a routine
induction on the definition of f (®x ; ®y). For the right-left implication
we proceed by induction on the structure ofD. The only non-trivial
case is when the last rule is cut□, for which we appeal to Propo-
sition 5 to recover a correct instance of safe composition along a
normal parameter. □

Convention 7. Given Proposition 6 above, we shall henceforth
freely write f (®x ; ®y) ∈ B if there is a derivation D : □Γ, ®N ⇒ N
with fD (®x ; ®y) = f (®x ; ®y).

LICS ’22, August 2–5, 2022, Haifa, Israel Curzi and Das

id
N ⇒ N

Γ ⇒ N Γ,N ⇒ B
cutN

Γ ⇒ B

Γ ⇒ �N �N , Γ ⇒ B
cut�

Γ ⇒ B

Γ ⇒ B
wN

Γ,N ⇒ B

Γ ⇒ B
w�
�N , Γ ⇒ B

Γ,A,B, Γ′ ⇒ C
e
Γ,B,A, Γ′ ⇒ C

Γ,N ⇒ A
�l
�N , Γ ⇒ A

�Γ ⇒ N
�r
�Γ ⇒ �N 0⇒ N

Γ ⇒ A
s0
Γ ⇒ A

Γ ⇒ A
s1
Γ ⇒ A

Γ ⇒ N �N , Γ,N ⇒ N �N , Γ,N ⇒ N
srec

�N , Γ ⇒ N

Γ ⇒ N Γ,N ⇒ N Γ,N ⇒ N
condN

Γ,N ⇒ N

Γ ⇒ N �N , Γ ⇒ N �N , Γ ⇒ N
cond�

�N , Γ ⇒ N

Figure 2: System B, as a sequent-style type system.

3 TWO-SORTED CIRCULAR SYSTEMS ON
NOTATION

In this section we introduce a ‘coinductive’ version of B, and we
study global criteria that tame its computational strength. This
proof-theoretic investigation will lead us to two relevant circular
systems: CNB, which morally permits ‘nested’ versions of safe
recursion, and CB, which will turn out to be closer to usual safe
recursion.

Throughout this section we shall work with the set of typing
rules B− := B − {srec}.

3.1 Non-wellfounded typing derivations
To begin with, we define the notion of ‘coderivation’, which is the
fundamental formal object of this section.

Definition 8 (Coderivations). A (B−-)coderivation D is a possibly
infinite rooted tree (of height ≤ ω) generated by the rules of B−.
Formally, we identify D with a prefix-closed subset of {0, 1, 2}∗
(i.e. a ternary tree) where each node is labelled by an inference
step from B− such that, whenever ν ∈ D is labelled by a step
S1 · · · Sn

S
, for n ≤ 3, ν has n children in D labelled by steps

with conclusions S1, . . . , Sn respectively. Sub-coderivations of a
coderivation D rooted at position ν ∈ {0, 1, 2}∗ are typically de-
notedDν , so thatDϵ = D. We write ν ⊑ µ (or ν ⊏ µ) if ν is a prefix
(respectively, a strict prefix) of µ, and in this case we say that µ is
above (respectively, strictly above) ν or that ν is below (respectively,
strictly below) µ. We extend this order from nodes to sequents in
the obvious way.

We say that a coderivation is regular (or circular) if it has only
finitely many distinct sub-coderivations.

Note that, while usual derivations may be naturally written as
finite trees or dags, regular coderivations may be naturally written
as finite directed (possibly cyclic) graphs. Some examples of regular
coderivations can be found in Figure 3, employing the following
writing conventions:

Convention 9 (Representing coderivations). Henceforth, we may
mark steps by • (or similar) in a regular coderivation to indicate
roots of identical sub-coderivations. Moreover, to avoid ambiguities
and to ease parsing of (co)derivations, we shall often underline
principal formulas of a rule instance in a given coderivation and
omit instances of w□ and wN as well as certain structural steps, e.g.
during a cut step.

Finally, when the sub-coderivationsD0 andD1 above the second
and the third premise of the conditional rule (from left) are similar
(or identical), we may compress them into a single parametrised
sub-coderivation Di (for i = 0, 1).

As discussed in [10, 12, 22], coderivations can be identified with
Kleene-Herbrand-Gödel style equational programs, in general com-
puting partial recursive functionals (see, e.g., [20, §63] for further
details). We shall specialise this idea to our two-sorted setting.

Definition 10 (Semantics of coderivations). To each B−-
coderivation D we associate a two-sorted Kleene-Herbrand-Gödel
partial function fD obtained by construing the semantics of Def-
inition 4 as a (possibly infinite) equational program. Given a
two-sorted function f (®x ; ®y), we say that f is defined by a B−-
coderivation D if fD (®x ; ®y) = f (®x ; ®y).

Remark 11. Note, in particular, that from a regular coderivation D
we obtain a finite equational program determining fD . Of course,
our overloading of the notation fD is suggestive since it is consis-
tent with that of Definition 4.

Example 12 (Regular coderivations, revisited). Let us consider the
semantics of coderivations I, R and C from Figure 3.

• The partial functions fIν are given by the following equa-
tional program:

fIϵ (x ;) = fI1 (fI0 (x ;);)
fI0 (x ;) = fI00 (x ;)
fI00 (x ;) = fI000 (;x)
fI000 (;x) = s1(;x)
fI1 (x ;) = fIϵ (x ;)

By purely equational reasoning, we can simplify this pro-
gram to obtain fIϵ (x ;) = fIϵ (s1x ;) Since the above equa-
tional program keeps increasing the input, the function
fI = fIϵ is always undefined.

• Let fG(®x ; ®y) and fHi (x , ®x , z; ®y) (i = 0, 1) be the functions
defined by the regular B−-coderivations G andHi , respec-
tively. Then the equational program for R can be rewritten
as follows:

fR (0, ®x ;) = fG(®x ;)
fR (six , ®x ;) = fHi (x , ®x , fR (x , ®x ;);)

(1)

which is an instance of a non-safe recursion scheme (on
notation).

Cyclic Implicit Complexity LICS ’22, August 2–5, 2022, Haifa, Israel

id
N ⇒ N

s1 N ⇒ N
�l �N ⇒ N
�r
�N ⇒ �N

.

.

.
cut� •

�N ⇒ N
cut� •

�N ⇒ N

G
� ®N ⇒ N

.

.

.
cond� •

�N , � ®N ⇒ N
�r
�N , � ®N ⇒ �N

Hi
�N , � ®N , �N ⇒ N

cut� i=0,1
�N , � ®N ⇒ N

cond� •
�N , � ®N ⇒ N

id
N ⇒ N

.

.

.
cond� ◦

�N , N ⇒ N
si i=0,1
�N , N ⇒ N

cond� ◦
�N , N ⇒ N

.

.

.
cond� •

�N , �N , N ⇒ N
si i=0,1
�N , �N , N ⇒ N

cond� •
�N , �N , N ⇒ N

Figure 3: Examples of regular coderivations I, R and C, from left (assuming G, H0 andH1 regular).

• The equational program of C can be written as:

fCϵ (0, 0; z) = z
fCϵ (0, siy; z) = si fCϵ (x ,y; z) , 0
fCϵ (six ,y; z) = si fCϵ (x ,y; z) , 0

which computes concatenation of the binary representation
of three natural numbers.

The above examples illustrate two undesirable features of regular
B−-coderivations, from the point of view of implicit complexity:
I. on the one hand, despite being finitely presentable, they can
define partial functions;

II. on the other hand, despite the presence of modalities imple-
menting the normal/safe distinction of function arguments,
they can define non-safe recursion schemes.

3.2 The progressing criterion
To address Problem I we shall adapt to our setting a well-known ‘ter-
mination criterion’ from non-wellfounded proof theory. First, let us
recall some standard proof theoretic concepts about (co)derivations,
similar to those in [10, 12, 22].

Definition 13 (Ancestry). Fix a coderivation D. We say that a
type occurrence A is an immediate ancestor of a type occurrence B
in D if they are types in a premiss and conclusion (respectively) of
an inference step and, as typeset in Figure 2, have the same colour.
If A and B are in some Γ or Γ′, then furthermore they must be in
the same position in the list.

Being a binary relation, immediate ancestry forms a directed
graph upon which our correctness criterion is built.

Definition 14 (Progressing coderivations). A thread is a maximal
path in the graph of immediate ancestry. We say that a (infinite)
thread is progressing if it is eventually constant □N and infinitely
often principal for a cond□N rule.

A coderivation is progressing if each of its infinite branches has
a progressing thread.

Example 15 (Regular coderivations, re-revisited). In Figure 3, I
has precisely one infinite branch (that loops on •) which contains
no instances of cond□ at all. Therefore, I is not progressing. On
the other hand, C has two simple loops, one on • and the other one
on ◦. For any infinite branch B we have two cases:

• if B crosses the bottommost conditional infinitely many
times, it contains a progressing blue thread;

• otherwise, B crosses the topmost conditional infinitely many
times, so that it contains a progressing red thread.

Therefore, C is progressing. By the same reasoning, we can conclude
that R is progressing whenever G andHi are.

Like in [10, 12, 22], the progressing criterion is sufficient to
guarantee that the partial function computed is, in fact, a well-
defined total function:

Proposition 16. If D is progressing then fD is total.

Proof sketch. We proceed by contradiction. If fD is non-total
then, since each rule preserves totality top-down, we must have
that fD′ is non-total for one of D’s immediate sub-coderivations
D ′. Continuing this reasoning we can build an infinite leftmost
‘non-total’ branch B = (Di)i<ω . Let (□N i)i≥k be a progressing
thread along B, and assign to each □N i the least natural number
ni ∈ N such that fDi is non-total when ni is assigned to the type
occurrence □N i .

Now, notice that:
• (ni)i≥k is monotone non-increasing, by inspection of the
rules and their interpretations from Definition 4.

• (ni)i≥k does not converge, since (□N i)i≥k is progressing
and so is infinitely often principal for cond□, where the value
of ni must strictly decrease (cf., again, Definition 4).

This contradicts the well-ordering property of the natural numbers.
□

One of the most appealing features of the progressing criterion
is that, while being rather expressive and admitting many natural
programs, e.g. as we will see in the next subsections, it remains ef-
fective (for regular coderivations) thanks to well known arguments
in automaton theory:

Fact 17 (Folklore). It is decidable whether a regular coderivation
is progressing.

This well-known result (see, e.g., [15] for an exposition for a
similar circular system) follows from the fact that the progressing
criterion is equivalent to the universality of a Büchi automaton of
size determined by the (finite) representation of the input coderiva-
tion. This problem is decidable in polynomial space, though the
correctness of this algorithm requires nontrivial infinitary combi-
natorics, as formally demonstrated in [21].

Let us finally observe that the progressing condition turns out
to be sufficient to restate Proposition 5 in the setting of non-
wellfounded coderivations:

Proposition 18. Given a progressing B−-coderivation D :
□Γ, ®N ⇒ □N , there is a progressingB−-coderivationD∗ : □Γ ⇒ □N
such that:

fD (®x ; ®y) = fD∗ (®x ;).
Proof sketch. By progressiveness, any infinite branch contains

a cond□-step, which has non-modal succedent. Thus there is a set
of cond□-occurrences that forms a bar across D. By König Lemma,
the set of all nodes of D below this bar, say XD , is finite. The proof

LICS ’22, August 2–5, 2022, Haifa, Israel Curzi and Das

now follows by induction on the cardinality ofXD and is analogous
to Proposition 5. □

Note that the above proof uniquely depends on progressiveness,
and so it holds for non-regular progressing B−-coderivations as
well.

3.3 Computational expressivity of
coderivations

Problem II indicates that the modal/non-modal distinction for (pro-
gressing) B−-coderivations, by itself, does not suffice to control
complexity. Indeed it is not hard to see that, as it stands, this dis-
tinction is somewhat redundant for definable functions with only
normal inputs. By inspection of Figure 2, wemay safely replace each
N by □N in any such coderivation, preserving progressiveness:

Proposition 19. Let D : □N , n. . .,□N ,N , m. . .,N ⇒ N be
a B−-coderivation. Then, there exists a B−-coderivation D□ :
□N , n+m. . . ,□N ⇒ N s.t.:

• fD (®x ; ®y) = fD□ (®x , ®y;);
• D□ does not contain instances of wN , eN , cutN , condN .

Moreover, D□ is regular (resp. progressing) if D is.

Proof sketch. We construct D□ coinductively. The only inter-
esting cases are whenD is id or it is obtained fromD0 : Γ ⇒ N and
D1 : Γ,N ⇒ A by applying a cutN -step. Then, D□ is constructed,
respectively, as follows:

id
N ⇒ N

�l
�N ⇒ N

D�0
�Γ ⇒ N

�r
�Γ ⇒ �N

D�1
�Γ, N ⇒ N

�l
�Γ, �N ⇒ N

cut�N
�Γ ⇒ N

□

Consequently, we may view (regular, progressing) B−-
coderivations as the type 0 (regular, progressing) fragment of the
system CT from [10, 12, 22]. As a result we inherit the following
characterisations:

Proposition 20. We have the following:

(1) Any function f (®x ;) is defined by a progressing B−-
coderivation.

(2) The class of regular B−-coderivations is Turing-complete, i.e.
they define every partial recursive function.

(3) f (®x ;) is defined by a regular progressing B−-coderivation if
and only if f (®x) is type-1-primitive-recursive, i.e. it is in the
level 1 fragment T1 of Gödel’s T.

Given the computationally equivalent system CT0 with contrac-
tion from [12], we can view the above result as a sort of ‘contrac-
tion admissibility’ for regular progressing B−-coderivations. Call
B− + {cN , c□N } the extension of B− with the rules cN and c□N
below:

Γ,N ,N ⇒ B
cN

Γ,N ⇒ B

Γ,�N ,�N ⇒ B
c�

Γ,�N ⇒ B
(2)

where the semantics for the new system extends the one for B− in
the obvious way, and the notion of (progressing) thread is induced
by the given colouring.1 We have:

Corollary 21. f (®x ;) is definable by a regular progressing B− +
{cN , c□N }-coderivation if and only if it is definable by a regular
progressing B−-coderivation.

3.4 Proof-level conditions motivated by
implicit complexity

B-derivations locally introduce safe recursion by means of the
rule srec, and Proposition 5 ensures that the composition schemes
defined by the cut rules are safe. As suggested by Problem II, a
different situation arises when we move to B−-coderivations, where
the lack of further constraints means that we can define ‘non-safe’
equational programs. We may recover safety by a natural proof-
level condition:

Definition 22 (Safety). A B−-coderivation is safe if each infinite
branch crosses only finitely many cut□-steps.

The corresponding equational programs of safe coderivations
indeed only have safe inputs in hereditarily safe positions, as we
shall soon see. Let us illustrate this by means of examples.

Example 23. The coderivation I in Figure 3 is not safe, as there
is an instance of cut□ in the loop on •, which means that there is
an infinite branch crossing infinitely many cut□-steps. By contrast,
using the same reasoning, we can infer that the coderivation C is
safe. Finally, by inspecting the coderivation R of Figure 3, we notice
that the infinite branch that loops on • contains infinitely many
cut□ steps, so it too is not safe.

Perhaps surprisingly, however, the safety condition is not enough
to restrict the set of B−-definable functions to FPTIME, as the
following example shows.

Example 24 (Safe exponentiation). Consider the following
coderivation E,

id
N ⇒ N

s0
N ⇒ N

...
cond� •

�N ,N ⇒ N

...
cond� •

�N ,N ⇒ N
cutN i=0,1

�N ,N ⇒ N
cond� •

�N ,N ⇒ N

where we identify the sub-coderivations above the second and
the third premises of the conditional. The coderivation is clearly
progressing. Moreover it is safe, as E has no instances of cut□. Its
associated equational program can be written as follows:

fE (0;y) = s0(;y)
fE (s0x ;y) = fE (x ; fE (x ;y)) x , 0
fE (s1x ;y) = fE (x ; fE (x ;y))

(3)

The above equational program has already appeared in [19, 24]. It
is not hard to show, by induction on x , that fE (x ;y) = 22|x | ·y. Thus
fE has exponential growth rate (as long as y , 0), despite being
defined by a ‘safe’ recursion scheme.

1Note that the totality argument of Proposition 16 still applies in the presence of these
rules, cf. also [12].

Cyclic Implicit Complexity LICS ’22, August 2–5, 2022, Haifa, Israel

The above coderivation exemplifies a safe recursion scheme that
is able to nest one recursive call inside another in order to obtain
exponential growth rate. This is in fact a peculiar feature of circular
proofs, and it is worth discussing.

Remark 25 (On nesting and higher-order recursion). As we
have already seen, namely in Proposition 20.3, (progressing) B−-
coderivations are able to simulate some sort of higher-order recur-
sion, namely at type 1 (cf. also [12]). In this way it is arguably not
so surprising that the sort of ‘nested recursion’ in Equation (3) is
definable since type 1 recursion, in particular, allows such nesting
of the recursive calls. To make this point more apparent, consider
the following higher-order ‘safe’ recursion operator:

recA : □N → (□N → A → A) → A → A

with A = N → N , and f (x) = recA(x ,h,д) is defined as f (0) = д
and f (six) = h(x , f (x)) for x > 0. By setting д := λy : N .s0y and
h := λx : □N .λu : N → N .(λy : N .u(u y)) we can easily check that
fE (x ;y) = recA(x ,h,д)(y), where E is as in Example 24. Hence, the
function fE (x ;y) can be defined by means of a higher-order version
of safe recursion.

As noticed by Hofmann [19], and formally proved by
Leivant [24], higher-order safe recursion can be used to charac-
terise FELEMENTARY, thanks to this capacity to nest recursive
calls. Moreover, Hofmann showed in [19] that by introducing a
‘linearity’ restriction on the operator recA, which prevents dupli-
cation of recursive calls, it is possible to recover the class FPTIME.
The resulting type system, called SLR (‘Safe Linear Recursion’), can
thus be regarded as a higher-order formulation of B.

Following [19], we shall impose a linearity criterion to rule out
those coderivations that nest recursive calls. This is achieved by
observing that the duplication of the recursive calls of fE in Ex-
ample 24 is due to the presence in E of loops on • crossing both
premises of a cutN step. Hence, our circular-proof-theoretic coun-
terpart of Hofmann’s linearity restriction can be obtained by de-
manding that at most one premise of each cutN step is crossed
by such loops. Again, we rather give a more natural proof-level
criterion which does not depend on our intuitive notion of loop.

Definition 26 (Left-leaning). A B−-coderivation is said to be left-
leaning if each infinite branch goes right at a cutN -step only finitely
often.

Example 27. In Figure 3, I is trivially left-leaning, as it contains
no instances of cutN at all. The coderivations C and R are also
left-leaning, since no infinite branch can go right at the cutN steps.
By contrast, the coderivation E in Example 24 is not left-leaning,
as there is an infinite branch looping at • and crossing infinitely
many times the rightmost premise of the cutN -step.

We are now ready to present our circular systems:

Definition 28 (Circular Implicit Systems). CNB is the class of safe
regular progressing B−-coderivations. CB is the restriction of CNB
to only left-leaning coderivations. A two-sorted function f (®x ; ®y) is
CNB-definable (orCB-definable) if there is a coderivationD ∈ CNB
(resp., D ∈ CB) such that fD (®x ; ®y) = f (®x ; ®y).

Let us point out that Proposition 18 can be strengthened to
preserve safety and left-leaningness:

Proposition 29. LetD : □Γ, ®N ⇒ □N be a coderivation in CNB
(or CB). There exists a CNB-coderivation (resp., CB-coderivation)
D∗ : □Γ ⇒ □N such that fD (®x ; ®y) = fD∗ (®x ;).

3.5 On the complexity of proof-checking
Note that both the safety and the left-leaning conditions above
are defined at the level of arbitrary coderivations, not just regular
and/or progressing ones. Moreover, since these conditions are de-
fined at the proof-level rather than the thread-level, they are easy
to check on regular coderivations:

Proposition 30. The safety and the left-leaning condition are
NL-decidable for regular coderivations.

The idea here is that, for regular coderivations, checking that
no branch has infinitely many occurrences of a particular rule can
be reduced to checking acyclicity of a certain subgraph, which is
well-known to be in coNL = NL.

Recall that progressiveness of regular coderivations is decidable
by reduction to universality of Büchi automata, a PSPACE-complete
problem. Indeed progressiveness itself is PSPACE-complete inmany
settings, cf. [28]. It is perhaps surprising, therefore, that the safety
of a regular coderivation also allows us to decide progressiveness
efficiently too, thanks to the following reduction:

Proposition 31. A safe B−-coderivation is progressing iff every
infinite branch has infinitely many cond□-steps.

Proof. The left-right implication is trivial. For the right-left
implication, let us consider an infinite branch B of a safe B−-
coderivation D. By safety, there exists a node ν of B such that
any sequent above ν in B is not the conclusion of a cut□-step. Now,
by inspecting the rules of B− − {cut□} we observe that:

• every modal formula occurrence in B has a unique thread
along B;

• infinite threads along B cannot start strictly above ν .
Hence, setting k to be the number of □N occurrences in the an-
tecedent of ν , B has (at most) k infinite threads. Moreover, since B
contains infinitely many cond□-steps, by the Infinite Pigeonhole
Principle we conclude that one of these threads is infinitely often
principal for the cond□ rule. □

Thus, using similar reasoning to that of Proposition 30 we may
conclude from Proposition 31 the following:

Corollary 32. Given a regular B−-coderivation D, the problem
of deciding if D is in CNB (resp. CB) is in NL.

Let us point out that the reduction above is similar to (and indeed
generalises) an analogous one for cut-free extensions of Kleene
algebra, cf. [14, Proposition 8].

4 SOME VARIANTS OF SAFE RECURSION
In this section we shall introduce various extensions of B to ul-
timately classify the expressivity of the circular systems CB and
CNB. First, starting from the analysis of Example 24 and the subse-
quent system CNB, we shall define a version of B with safe nested
recursion, called NB. Second, motivated by the more liberal way
of defining functions in both CB and CNB, we shall endow the

LICS ’22, August 2–5, 2022, Haifa, Israel Curzi and Das

safe recursion on notation on ⊂
unnested B B⊂

unnested, with compositions SB SB⊂

nested NB NB⊂

Figure 4: The function algebras considered in Section 4. Any
algebra is included in one below it and to the right of it.

function algebras B and NB with forms of safe recursion over a
well-founded relation ⊂ on lists of normal parameters. Figure 4
summarises the function algebras considered and their relations.

4.1 Relativised algebras and nested recursion
One of the key features of the Bellantoni-Cook algebra B is that
‘nesting’ of recursive calls is not permitted. For instance, let us
recall the equational program from Example 24:

ex(0;y) = s0y
ex(six ;y) = ex(x ; ex(x ;y)) (4)

Recall that ex(x ;y) = fE (x ;y) = 22|x | · y. The ‘recursion step’ on
the second line is compatible with safe composition, in that safe
inputs only occur in hereditarily safe positions, but one of the
recursive calls takes another recursive call among its safe inputs.
In Example 24 we showed how the above function ex(x ;y) can
be CNB-defined. We thus seek a suitable extension of B able to
formalise such nested recursion to serve as a function algebraic
counterpart to CNB.

It will be convenient for us to work with generalisations of B
including oracles. Formally speaking, these can be seen as variables
ranging over two-sorted functions, though we shall often treat them
as explicit functions too.

Definition 33. For all sets of oracles ®a = a1, . . . ,ak , we define the
algebra of B− functions over ®a to include all the initial functions of
B− and,

• (oracles). ai (®x ; ®y) is a function over ®a, for 1 ≤ i ≤ k , (where
®x ,®y have appropriate length for ai).

and closed under:
• (Safe Composition).
(1) from д(®x ; ®y),h(®x ; ®y,y) over ®a define f (®x ; ®y) over ®a by

f (®x ; ®y) = h(®x ; ®y,д(®x ; ®y)).
(2) from д(®x ;) over � and h(®x ,x ; ®y) over � define f (®x ; ®y) over

®a by f (®x ; ®y) = h(®x ,д(®x ;); ®y).
We write B−(®a) for the class of functions over ®a generated in this
way.

Note that Safe Composition along normal parameters (Item 2
above) comes with the condition that д(®x ;) is oracle-free. This re-
striction prevents oracles (and hence the recursive calls) appearing
in normal position. The same condition on h(®x ,x ; ®y) being oracle-
free is not strictly necessary for the complexity bounds we are after,
as we shall see in the next section when we define more expressive
algebras, but is convenient in order to facilitate the ‘grand tour’
strategy of this paper (cf. Figure 1).

We shall write, say, λ ®v . f (®x ; ®v) for the function taking only safe
arguments ®v with (λ ®v . f (®x ; ®v))(; ®y) = f (®x ; ®y) (here ®x may be seen

as parameters). Nested recursion can be formalised in the setting
of algebras-with-oracles as follows:

Definition 34 (Safe Nested Recursion). We write snrec for the
scheme:

• from д(®x ; ®y) over � and hi (a)(x , ®x ; ®y) over a, ®a, define
f (x , ®x ; ®y) over ®a by:

f (0, ®x ; ®y) = д(®x ; ®y)
f (s0x , ®x ; ®y) = h0(λ ®v . f (x , ®x ; ®v))(x , ®x ; ®y) x , 0
f (s1x , ®x ; ®y) = h1(λ ®v . f (x , ®x ; ®v))(x , ®x ; ®y)

We write NB(®a) for the class of functions over ®a generated from B−
under snrec and Safe Composition (from Definition 33), and write
simply NB for NB(�).

Note that Safe Nested Recursion also admits definitions that are
not morally ‘nested’ but rather use a form of ‘composition during
recursion’:

• fromд(®x ; ®y), (®дj (x , ®x ; ®y))1≤j≤k andhi
(
x , ®x ; ®y, (zj)1≤j≤k

)
de-

fine:

f (0, ®x ; ®y) = д(®x ; ®y)
f (six , ®x ; ®y) = hi

(
x , ®x ; ®y, (f (x , ®x ; ®дj (x , ®x ; ®y)))1≤j≤k) (5)

In this case, note that we have allowed the safe inputs of f to take
arbitrary values given by previously defined functions, but at the
same time f never calls itself in a safe position, as in (4). This safe
recursion scheme does not require the use of oracles in its statement,
but is equivalent to the following one using a notion of ‘nesting’
for Safe Composition:

Definition 35 (Safe Recursion with Composition During Recur-
sion). An instance of Safe Composition along Safe Parameters
(Item 1 from Definition 33) is called unnested if (at least) one of
д(®x ; ®y) and h(®x ; ®y,y) is over� (i.e. is oracle-free). We define SB(®a) to
be the restriction of NB(®a) using only unnested Safe Composition
along Safe Parameters, and write simply SB for SB(�).

It is not hard to see that, indeed, SB defines the same class of
functions of the extension of B− by the scheme given in Equation (5).
The ‘S’ in SB thus indicates that the recursion scheme is ‘shallow’,
as opposed to nested. It should be said that we will not actually
use SB in this work, but rather an extension of it defined in the
next subsection, but we have included it for completeness of the
exposition.

4.2 Safe recursion on well-founded relations
Relativised function algebras may be readily extended by recursion
on arbitrary well-founded relations. For instance, given a well-
founded preorder ⊴, and writing ◁ for its strict variant,2 ‘safe
recursion on ◁’ is given by the scheme:

• from h(a)(x , ®x ; ®y) over a, ®a, define f (x , ®x ; ®y) over ®a by:

f (x , ®x ; ®y) = h(λv ◁ x . f (v, ®x ; ®y))(x , ®x ; ®y)

2To be precise, for a preorder ⊴ we write x ◁ y if x ⊴ y and y ̸⊴ x . As abuse of
terminology, we say that ⊴ is well-founded just when ◁ is.

Cyclic Implicit Complexity LICS ’22, August 2–5, 2022, Haifa, Israel

Note here that we employ the notation λv ◁ x for a ‘guarded
abstraction’. Formally:

(λv ◁ x . f (v, ®x ; ®y))(z) :=
{
f (z, ®x ; ®y) z ◁ x

0 otherwise

It is now not hard to see that total functions (with oracles) are
closed under the recursion scheme above, by reduction to induction
on the well-founded relation ◁.

Note that such schemes can be naturally extended to preorders
on tuples of numbers too, by abstracting several inputs. We shall
specialise this idea to a particular well-founded preorder that will
be helpful later to bound the complexity of definable functions in
our systems CB and CNB.

Recall that we say that x is a prefix of y if y has the form xz in
binary notation, i.e. y can be written x2n + z for some n ≥ 0 and
some z < 2n . We say that x is a strict prefix of y if x is a prefix of y
but x , y.

Definition 36 (Permutations of prefixes). Let [n] denote
{0, . . . ,n−1}. We write (x0, . . . ,xn−1) ⊆ (y0, . . . ,yn−1) if, for some
permutation π : [n] → [n], we have that xi is a prefix of yπ i , for all
i < n. We write ®x ⊂ ®y if ®x ⊆ ®y but ®y ̸⊆ ®x , i.e. there is a permutation
π : [n] → [n] with xi a prefix of yi for each i < n and, for some
i < n, xi is a strict prefix of yi .

It is not hard to see that ⊆ is a well-founded preorder, by reduc-
tion to the fact that the prefix relation is a well-founded partial
order. As a result, we may duly devise a version of safe (nested)
recursion on ⊂:
Definition 37 (Safe (nested) recursion on permutations of prefixes).
We write NB⊂(®a) for the class of functions over ®a generated from
B− under Safe Composition, the scheme snrec⊂ ,

• from h(a)(®x ; ®y) over a, ®a define f (®x ; ®y) over ®a by:

f (®x ; ®y) = h(λ®u ⊂ ®x , λ ®v . f (®u; ®v))(®x ; ®y)
and the following generalisation of Safe Composition along a Nor-
mal Parameter:
(2)′ from д(®x ;) over � and h(®x ,x ; ®y) over ®a define f (®x ; ®y) over ®a

by f (®x ; ®y) = h(®x ,д(®x ;); ®y).
Recalling Definition 35, we write SB⊂(®a) to be the restriction of
NB⊂(®a) using only unnested Safe Composition along Safe Parame-
ters. Finally we define B⊂(®a) to be the restriction of SB⊂(®a) where
every instance of snrec⊂ has the form:

• from h(a)(®x ; ®y) over a, ®a, define f (®x ; ®y) over ®a:
f (®x ; ®y) = h(λ®u ⊂ ®x , λ ®v ⊆ ®y. f (®u; ®v))(®x ; ®y)

We call this latter recursion scheme srec⊂ , e.g. if we need to distin-
guish it from snrec⊂ .

Note that the version of safe composition along a normal param-
eter above differs from the previous one, Item 2 from Definition 33,
since the function h is allowed to use oracles. Again, this difference
is inessential in terms of computational complexity, as we shall see.
However, as we have mentioned, the greater expressivity of B⊂
and NB⊂ will facilitate our overall strategy for characterising CB
and CNB, cf. Figure 1.

Let us take a moment to point out that NB⊂(®a) ⊇ SB⊂(®a) ⊇
B⊂(®a) indeed contain only well-defined total functions over the
oracles ®a, by reduction to induction on ⊂.

5 CHARACTERISATIONS FOR FUNCTION
ALGEBRAS

In this section we characterise the complexities of the function
algebras we introduced in the previous section. Namely, despite
apparently extending B, B⊂ still contains just the polynomial-time
functions, whereas both NB and NB⊂ are shown to contain just the
elementary functions. All such results rely on a ‘bounding lemma’
inspired by [5].

5.1 A relativised Bounding Lemma
Bellantoni and Cook showed in [5] that any function f (®x ; ®y) ∈ B
satisfies the ‘poly-max bounding lemma’: there is a polynomial
pf (®n) such that:3

| f (®x ; ®y)| ≤ pf (| ®x |) +max | ®y | (6)

This provided a suitable invariant for eventually proving that all
B-functions were polynomial-time computable.

In this work, inspired by that result, we generalise the bound-
ing lemma to a form suitable to the relativised algebras from the
previous section. To this end we establish in the next result a sort
of ‘elementary-max’ bounding lemma that accounts for the usual
poly-max bounding as a special case, by appealing to the notion of
(un)nested safe composition. Both the statement and the proof are
quite delicate due to our algebras’ formulation using oracles; we
must assume an appropriate bound for the oracles themselves, and
the various (mutual) dependencies in the statement are subtle.

To state and prove the Bounding Lemma, let us employ the
notation || ®x || := ∑ | ®x |.

Lemma 38 (Bounding Lemma). Let f (®a)(®x ; ®y) ∈ NB⊂(®a), with
®a = a1, . . . ,ak . There is a functionm®c

f (®x , ®y) with,

m®c
f (®x , ®y) = ef (|| ®x ||) + df

∑
®c +max | ®y |

for an elementary function ef (n) and a constant df ≥ 1, such that
whenever there are constants ®c = c1, . . . , ck such that,

|ai (®xi ; ®yi)| ≤ ci + df
∑
j,i

c j +max | ®yi | (7)

for 1 ≤ i ≤ k , we have:4

| f (®a)(®x ; ®y)| ≤ m®c
f (®x , ®y) (8)

f (®a)(®x ; ®y) = f
(
λ®xi .λ | ®yi | ≤ m®c

f (®x , ®y).ai (®xi ; ®yi)
)
i
(®x ; ®y) (9)

Moreover, if in fact f (®x ; ®y) ∈ SB⊂(®a), then df = 1 and ef (n) is a
polynomial.

Proof idea. Both Equations (8) and (9) are proved simultane-
ously by induction on the definition of f (®x ; ®y), always assuming
that we have ®c satisfying Equation (7). □

3Recall that, for ®x = x1, . . . , xn , we write | ®x | for |x1 |, . . . , |xn |.
4To be clear, here we write | ®yi | ≤ m ®c

f (®x, ®y) here as an abbreviation for { |yi j | ≤
m ®c
f (®x, ®y)}j .

LICS ’22, August 2–5, 2022, Haifa, Israel Curzi and Das

Unwinding the statement above, note that ef and df depend
only on the function f itself, not on the constants ®c given for the
(mutual) oracle bounds in Equation (7). This is crucial for the proof,
namely in the case when f is defined by recursion, substituting
different values for ®c during an inductive argument.

While the role of the elementary bounding function ef is a nat-
ural counterpart of pf in Bellantoni and Cook’s bounding lemma,
cf. Equation (6), the role of df is perhaps slightly less clear. Morally,
df represents the amount of ‘nesting’ in the definition of f , in-
creasing whenever oracle calls are substituted into arguments for
other oracles, cf. Definition 35. Hence, if f uses only unnested Safe
Composition, then df = 1 as required. In fact, it is only important
to distinguish whether df = 1 or not, since df forms the base of an
exponent for defining ef when f is defined by safe recursion.

Finally let us note that Equations (8) and (9) are somewhat dual:
while the former bounds the output of a function (serving as a mod-
ulus of growth), the latter bounds the inputs (serving as a modulus
of continuity).

5.2 Soundness results
In this subsection we show that the function algebras B⊂ and
NB⊂ (as well as NB) capture precisely the classes FPTIME and
FELEMENTARY, respectively. We start with B⊂ :

Theorem 39. Suppose ®a satisfies Equation (7) for some constants
®c . We have the following:

(1) If f (®x ; ®y) ∈ B⊂(®a) then f (®x , ®y) ∈ FPTIME(®a).
(2) If f (®x ; ®y) ∈ NB⊂(®a) then f (®x , ®y) ∈ FELEMENTARY(®a).
Note in particular that, for f (®x ; ®y) in B⊂ or NB⊂ , i.e. not using

any oracles, we immediately obtain membership in FPTIME or
FELEMENTARY, respectively. However, the reliance on intermedi-
ate oracles during a function definition causes some difficulties that
we must take into account. At a high level, the idea is to use the
Bounding Lemma (namely Equation (9)) to replace certain oracle
calls with explicit appropriately bounded functions computing their
graphs. From here we compute f (®x ; ®y) by a sort of ‘course-of-values’
recursion on ⊂, storing previous values in a lookup table. In the case
of B⊂ , it is important that this table has polynomial-size, since there
are onlym!

∏ | ®x | permutations of prefixes of a list ®x = x1, . . . ,xm
(which is a polynomial of degreem).

5.3 Completeness and characterisations
We are now ready to give our main function algebraic characterisa-
tion results for polynomial-time:

Corollary 40. The following are equivalent:
(1) f (®x ;) ∈ B.
(2) f (®x ;) ∈ B⊂ .
(3) f (®x) ∈ FPTIME.

Proof. (1) =⇒ (2) is trivial, and (2) =⇒ (3) is given by
Theorem 39.(1). Finally, (3) =⇒ (1) is from [5], stated in Theorem 2
earlier. □

The remainder of this subsection is devoted to establishing a
similar characterisation for NB, NB⊂ and FELEMENTARY. To this
end, we naturally require the following result:

Theorem 41. If f (®x) ∈ FELEMENTARY then f (®x ;) ∈ NB.

Proof sketch. Using a formulation of FELEMENTARY in bi-
nary notation, and we prove by induction on the definition of
f (®x) ∈ FELEMENTARY that there exists f ∗(x ; ®x) ∈ NB and a
monotone function tf ∈ FELEMENTARY such that for all integers
®x and allw ≥ tf (®x)we have f ∗(w ; ®x) = f (®x). Then, we use the func-
tion ex(x ;y) ∈ NB in (4) to achieve arbitrary elementary growth
rate, which implies f (®x) ∈ NB. The proof technique based on the
construction of the pair (f ∗(x ; ®x), tf) is well-known since [5], and
has been adapted to the case of the elementary functions in [31]. □

Now, by the same argument as for Corollary 40, only using
Theorem 41 above instead of appealing to [5], we can give our main
characterisation result for algebras for elementary computation:

Corollary 42. The following are equivalent:
(1) f (®x ;) ∈ NB.
(2) f (®x ;) ∈ NB⊂ .
(3) f (®x) ∈ FELEMENTARY.

6 CHARACTERISATIONS FOR CIRCULAR
SYSTEMS

We now return our attention to the circular systems CB and CNB
that we introduced in Section 3. We will address the complexity of
their definable functions by ‘sandwiching’ them between function
algebras of Section 4, given their characterisations that we have
just established.

6.1 Completeness
To show that CB contains all polynomial-time functions, we may
simply simulate Bellantoni and Cook’s algebra:

Theorem 43. If f (®x ; ®y) ∈ B then f (®x ; ®y) ∈ CB.

Proof sketch. The proof is by induction on the definition of
f . The only interesting case is when f (x , ®x ; ®y) is defined by safe
recursion on notation from the functions д(®x ; ®y) and hi (x , ®x ; ®y,y).
Given Dд and Dhi defining д and hi by induction hypothesis, we
may define f (x , ®x ; ®y) by the coderivation,

Dд

Γ ⇒ N

...
cond� •

�N , Γ ⇒ N

Dhi

�N , Γ,N ⇒ N
cutN i=0,1

�N , Γ ⇒ N
cond� •

�N , Γ ⇒ N

where Γ = □ ®N , ®N . The only infinite branch (outside Dд and Dhi)
loops on • and has a progressing thread in blue. □

We can also show that CNB is complete for elementary functions
by simulating our nested algebra NB. First, we need to introduce
the notion of oracle for coderivations.

Definition 44 (Oracles for coderivations). Let ®a = a1, . . . ,an
be a set of safe-normal functions. A B−(®a)-coderivations is just
a usual B−-coderivation that may use initial sequents of the form
ai
�Nni ,Nmi ⇒ N , when ai takes ni normal andmi safe inputs.

We write:

Cyclic Implicit Complexity LICS ’22, August 2–5, 2022, Haifa, Israel

ai i
�Nni , Nmi ⇒ N

D(®a)

Γ ⇒ A

for a coderivation D whose initial sequents are among the initial
sequents

ai
�Nni ,Nmi ⇒ N , with i = 1, . . . ,n. We write CNB(®a)

for the set of CNB-coderivations with initial functions ®a. We may
sometimes omit indicating some oracles ®a if it is clear from context.

The semantics of such coderivations and the notion of CNB(®a)-
definability are as expected, with coderivations representing func-
tions over the oracles ®a, and fD(®a) ∈ CNB(®a) denoting the induced
interpretation of D(®a).

Before giving our main completeness result for CNB, we need
the following lemma allowing us to ‘pass’ parameters to oracle
calls. It is similar to the notion D ®ρ from [12, Lemma 42], only we
must give a more refined argument due to the unavailability of
contraction in our system.

Lemma 45. LetD(a) be a regular coderivation over initial sequents
®a,a of form:

a
∆ ⇒ N

ai i
∆i ⇒ N

D(a)

�N , k. . ., �N , Γ ⇒ N

where Γ and ∆ are lists of non-modal formulas, and the path from
the conclusion to each initial sequent a does not contain cut□-steps,
□l -steps and the leftmost premise of a cond□-step. Then, there exists
an a∗ and a regular coderivation D∗(a∗) with shape:

a∗
�N , k. . ., �N , ∆ ⇒ N

ai i
∆i ⇒ N

D∗(a∗)

�N , k. . ., �N , Γ ⇒ N

such that:

• fD∗(a∗)(®x ; ®y) = fD(a(®x))(®x ; ®y);
• there exists a □N -thread from the jth □N in the LHS of the
end-sequent to the jth □N in the context of any occurrence of
the initial sequent a∗ in D∗(a∗), for 1 ≤ j ≤ k .

Moreover, if D(a) is progressing, safe or left-leaning, then D∗(a∗) is
also progressing, safe or left-leaning, respectively.

Theorem 46. If f (®x ; ®y) ∈ NB then f (®x ; ®y) ∈ CNB.

6.2 The Translation Lemma
We now state a translation of CNB-coderivations into functions of
NB⊂ which, in particular, maps CB-derivations into functions of
B⊂ , thus concluding our characterisation of CB and CNB in terms
of computational complexity.

Lemma 47 (Translation Lemma). Let D be a CNB-coderivation.
Then, there exists a set of n functions (fi)1≤i≤n such that f1 = fD
and, for all i :

fi (®x ; ®y) = hi
(
λ®u ⊂ ®x , λ ®v . fj (®u; ®v)

)
1≤j≤n (®x ; ®y) (10)

where hi ∈ NB⊂(ai)1≤i≤n . Moreover, ifD is a CB-coderivation then,
for all i :

fi (®x ; ®y) = hi
(
λ®u ⊂ ®x , λ ®v ⊆ ®y. fj (®u; ®v)

)
1≤j≤n (®x ; ®y) (11)

and hi ∈ B⊂(ai)1≤i≤n .
Let us give the idea of how this lemma is proved. By Definition 10

there exists a system of equations SD containing, for each node
v of D, an equation that defines the function fDv in terms of the
functions fDu with u immediately above v . Moreover, since D is
regular, by Remark 11 we may assume SD is a finite system of equa-
tions defining fD (i.e. fDϵ). It is then suggestive to represent D as
a ‘definition tree’, by replacing each node v with the corresponding
function fDv as in Figure 5a, where each function in the tree is
defined by one of the equations of SD . This representation of D
has the advantage of highlighting the inter-dependencies of the
functions defined in SD .

We now discuss how the proof-theoretical properties of D im-
pose conditions on the equations of SD :

(1) By safety of D, the tree in Figure 5acannot contain the in-
stance of cut□ in Figure 5b. Hence, whenever SD has func-
tions fDu and fDv that are inter-dependent, no equation of
SD can define one of these functions by means of a composi-
tion along its normal parameters. By inspecting Definition 10
this implies that, whenever an equation in SD defines a func-
tion fDu by affecting its normal parameters, u must be the
conclusion of an instance of cond□, i.e. this equation must
be of the form fDu (six , ®z; ®y) = fDv (x , ®z; ®y), for some v .

(2) By progressiveness of D, there always exists an occurrence
of cond□ in-between two ‘backpointers’ •i of Figure 5a.

(3) If D is left-leaning, then the tree in Figure 5acannot con-
tain the instance of cutN in Figure 5c.Hence, whenever the
system of equations for D contains two functions fDu and
fDv that are inter-dependent, no equation can define one
of these functions by means of a composition along its safe
parameters. By inspecting Definition 10 this implies that,
whenever an equation in SD defines a function fDu by af-
fecting its safe parameters, u must be the conclusion of an
instance of condN , i.e. the equation must be of the form
fDu (®x ; ®y, siz) = fDv (®z; ®y, z), for some v .

We can now simplify the equations in SD to obtain a ‘minimal’
system of equations S∗D , where each equation defines a function
in (f1)1≤i≤n , with f1 = fD and fi = fDvi

(see Figure 5a). More
precisely, for all 1 ≤ i ≤ n there exists hi ∈ NB⊂(ai)1≤i≤n , for
some oracles (ai)1≤i≤n , such that the following equation is in S∗D :

fi (®x ; ®y) = hi
(
λ®u .λ ®v . fj (®u; ®v)

)
1≤j≤n (®x ; ®y)

By point 1, each such equation can be rewritten as:
fi (®x ; ®y) = hi

(
λ®u ⊆ ®x .λ ®v . fj (®u; ®v)

)
1≤j≤n (®x ; ®y) (12)

Moreover, by point 2 the relation ⊆ is strict (i.e. ®u ⊂ ®x) when j = i .
In particular, by point 3, if D is left-leaning then hi ∈ B⊂(ai)1≤i≤n
and (12) above can be rewritten as:

fi (®x ; ®y) = hi
(
λ®u ⊆ ®x .λ ®v ⊆ ®y. fj (®u; ®v)

)
1≤j≤n (®x ; ®y)

It remains to show that the relation ⊆ is strict (i.e. ®u ⊂ ®x) when
j , i in the above equations. This can be established by repeatedly

LICS ’22, August 2–5, 2022, Haifa, Israel Curzi and Das

•1
fDv1 . . .

•n
fDvn

fD (= fDϵ)

(a) D as a de�nition tree.

•
fDv
.
.
.

fDu′cut�
fDu
.
.
. •

fDv

(b) A cut� violating safety.

fDu′

•
fDv
.
.
.

fDu′′cutN
fDu
.
.
. •

fDv

(c) A cutN violating left-leaning.

Figure 5: Structure of the definition tree of D.

applying the following operation for each equation in S∗D with
shape (12): for all j, if ⊆ is not strict in λ®u ⊆ ®x .λ ®v ⊆ ®y. fj (®u; ®v)
(i.e. ®u ⊂ ®x), replace fj with its definition given by the corresponding
equation of S∗D . Such a procedure keeps ‘unfolding’ equations, and
terminates as a consequence of point 2.

Finally, we can establish the main result of this paper:

Corollary 48. We have the following:

• f (®x ;) ∈ CB if and only if f (®x) ∈ FPTIME;
• f (®x ;) ∈ CNB if and only if f (®x) ∈ FELEMENTARY.

Proof sketch. Soundness (⇒) follows from Lemma 47, by
showing that B⊂ and NB⊂ are closed under simultaneous versions
of their recursion schemes. Completeness (⇐) follows from Theo-
rem 43 and Theorem 46. □

7 CONCLUSIONS AND FURTHER REMARKS
In this work we presented two-tiered circular type systems CB and
CNB and showed that they capture polynomial-time and elemen-
tary computation, respectively. This is the first time that methods of
circular proof theory have been applied in implicit computational
complexity (ICC). Along the way we gave novel relativised algebras
for these classes based on safe (nested) recursion on well-founded
relations.

7.1 Unary notation and linear space
It is well-known that FLINSPACE, i.e. the class of functions com-
putable in linear space, can be captured by reformulating B in unary
notation (see [3]). A similar result can be obtained for CB by just
defining a unary version of the conditional in B⊂ (similarly to the
ones in [12, 22]) and by adapting the proofs of Lemma 38, Theo-
rem 43 and Lemma 47. On the other hand, CNB is (unsurprisingly)
not sensitive to such choice of notation.

7.2 On unnested recursion with compositions
Notice that Lemma 38 implies a polynomial bound on the growth
rate of functions in SB⊂ , and hence for functions in SB. We con-
jecture that both function algebras capture precisely the class
FPSPACE (but proving this formally is beyond the scope of this
work). Indeed, as already observed, the unnested version of the
recursion scheme snrec can be replaced by the scheme in (5), which
allows both multiple recursive calls and composition during recur-
sion. Several function algebras for FPSPACE have been proposed in
the literature, and all of them involve variants of (5) (see [25, 29]).

These recursion schemes reflect the parallel nature of polyno-
mial space functions, which in fact can be defined in terms of al-
ternating polynomial time computation. We suspect that a circular
proof theoretic characterisation of this class can thus be achieved
by extending CB with a ‘parallel’ version of the cut rule and by
adapting the left-leaning criterion appropriately. Parallel cuts might
also play a fundamental role for potential circular proof theoretic
characterisations of circuit complexity classes, like ALOGTIME or
NC.

7.3 Towards higher-order cyclic implicit
complexity

It would be pertinent to pursue higher-order versions of both CNB
and CB, in light of precursory works in circular proof theory [12,
22] as well as ICC [6, 19, 24]. In the case of polynomial-time, for
instance, a soundness result for some higher-order version of CB
might follow by translation to (a sequent-style formulation of)
Hofmann’s SLR [19]. Analogous translations might be defined for a
higher-order version of CNB once the linearity restrictions on the
recursion operator of SLR are dropped. Finally, as SLR is essentially
a subsystem of Gödel’s system T, such translations could refine the
results on the abstraction complexity (i.e. type level) of the circular
version of system T in [10, 12].

ACKNOWLEDGMENTS
The authors would like to thank Patrick Baillot, Alexis Saurin, Denis
Kuperberg, and the anonymous reviewers for useful comments and
discussions. This work was supported by a UKRI Future Leaders
Fellowship, ‘Structure vs Invariants in Proofs’, project reference
MR/S035540/1.

REFERENCES
[1] David Baelde, Amina Doumane, Denis Kuperberg, and Alexis Saurin. 2020.

Bouncing threads for infinitary and circular proofs. CoRR abs/2005.08257 (2020).
arXiv:2005.08257 https://arxiv.org/abs/2005.08257

[2] David Baelde, Amina Doumane, and Alexis Saurin. 2016. Infinitary Proof Theory:
the Multiplicative Additive Case. 62 (2016), 42:1–42:17.

[3] Stephen Bellantoni. 1992. Predicative recursion and computational complexity.
PhD thesis.

[4] Stephen Bellantoni. 1995. Predicative Recursion and The Polytime Hierarchy.
In Feasible Mathematics II, Peter Clote and Jeffrey B. Remmel (Eds.). Birkhäuser
Boston, Boston, MA, 15–29.

[5] Stephen Bellantoni and Stephen Cook. 1992. A New Recursion-Theoretic Char-
acterization of the Polytime Functions (Extended Abstract). In Proceedings of
the Twenty-Fourth Annual ACM Symposium on Theory of Computing (Victoria,
British Columbia, Canada) (STOC ’92). Association for Computing Machinery,
New York, NY, USA, 283–293.

https://arxiv.org/abs/2005.08257
https://arxiv.org/abs/2005.08257

Cyclic Implicit Complexity LICS ’22, August 2–5, 2022, Haifa, Israel

[6] Stephen J. Bellantoni, Karl-Heinz Niggl, and Helmut Schwichtenberg. 2000.
Higher type recursion, ramification and polynomial time. Ann. Pure Appl. Log.
104, 1-3 (2000), 17–30.

[7] Stefano Berardi and Makoto Tatsuta. 2017. Equivalence of inductive definitions
and cyclic proofs under arithmetic. In 32nd Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June 20-23, 2017. IEEE
Computer Society, 1–12.

[8] James Brotherston and Alex Simpson. 2011. Sequent calculi for induction and
infinite descent. Journal of Logic and Computation 21, 6 (2011), 1177–1216.

[9] Gianluca Curzi and Anupam Das. 2021. Cyclic Implicit Complexity. CoRR
abs/2110.01114 (2021). arXiv:2110.01114 https://arxiv.org/abs/2110.01114

[10] Anupam Das. 2020. A circular version of Gödel’s T and its abstraction complexity.
CoRR abs/2012.14421 (2020). arXiv:2012.14421 https://arxiv.org/abs/2012.14421

[11] Anupam Das. 2020. On the logical complexity of cyclic arithmetic. Log. Methods
Comput. Sci. 16, 1 (2020).

[12] Anupam Das. 2021. On the Logical Strength of Confluence and Normalisation for
Cyclic Proofs. In 6th International Conference on Formal Structures for Computation
and Deduction, FSCD 2021, July 17-24, 2021, Buenos Aires, Argentina (Virtual
Conference) (LIPIcs, Vol. 195), Naoki Kobayashi (Ed.). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 29:1–29:23.

[13] Anupam Das and Damien Pous. 2017. A cut-free cyclic proof system for Kleene al-
gebra. In International Conference on Automated Reasoning with Analytic Tableaux
and Related Methods. Springer, 261–277.

[14] Anupam Das and Damien Pous. 2018. Non-Wellfounded Proof Theory For
(Kleene+Action)(Algebras+Lattices). In 27th EACSL Annual Conference on Com-
puter Science Logic (CSL 2018) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 119), Dan Ghica and Achim Jung (Eds.). Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 19:1–19:18.

[15] Christian Dax, Martin Hofmann, and Martin Lange. 2006. A Proof System for
the Linear Time µ-Calculus. In FSTTCS 2006: Foundations of Software Technology
and Theoretical Computer Science, 26th International Conference, Kolkata, India,
December 13-15, 2006, Proceedings (Lecture Notes in Computer Science, Vol. 4337),
S. Arun-Kumar and Naveen Garg (Eds.). Springer, 273–284.

[16] Christian Dax, Martin Hofmann, and Martin Lange. 2006. A proof system for
the linear time µ-calculus. In International Conference on Foundations of Software
Technology and Theoretical Computer Science. Springer, 273–284.

[17] Abhishek De and Alexis Saurin. 2019. Infinets: The Parallel Syntax for Non-
wellfounded Proof-Theory. In Automated Reasoning with Analytic Tableaux and
Related Methods - 28th International Conference, TABLEAUX 2019, London, UK,
September 3-5, 2019, Proceedings (Lecture Notes in Computer Science, Vol. 11714),
Serenella Cerrito and Andrei Popescu (Eds.). Springer, 297–316.

[18] Jérôme Fortier and Luigi Santocanale. 2013. Cuts for circular proofs: semantics
and cut-elimination. In Computer Science Logic 2013 (CSL 2013). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

[19] Martin Hofmann. 1997. A Mixed Modal/Linear Lambda Calculus with Applica-
tions to Bellantoni-Cook Safe Recursion. In Computer Science Logic, 11th Inter-
national Workshop, CSL ’97, Annual Conference of the EACSL, Aarhus, Denmark,
August 23-29, 1997, Selected Papers (Lecture Notes in Computer Science, Vol. 1414),
Mogens Nielsen and Wolfgang Thomas (Eds.). Springer, 275–294.

[20] Stephen Cole Kleene. 1971. Introduction to Metamathematics (7 ed.). Wolters-
Noordhoff Publishing.

[21] Leszek Aleksander Kolodziejczyk, HenrykMichalewski, Pierre Pradic, andMichal
Skrzypczak. 2019. The logical strength of Büchi’s decidability theorem. Log.
Methods Comput. Sci. 15, 2 (2019).

[22] Denis Kuperberg, Laureline Pinault, and Damien Pous. 2021. Cyclic proofs,
system t, and the power of contraction. Proc. ACM Program. Lang. 5, POPL (2021),
1–28.

[23] Daniel Leivant. 1991. A Foundational Delineation of Computational Feasiblity.
In Proceedings of the Sixth Annual Symposium on Logic in Computer Science (LICS
’91), Amsterdam, The Netherlands, July 15-18, 1991. IEEE Computer Society, 2–11.

[24] Daniel Leivant. 1999. Ramified Recurrence and Computational Complexity III:
Higher Type Recurrence and Elementary Complexity. Ann. Pure Appl. Log. 96,
1-3 (1999), 209–229.

[25] Daniel Leivant and Jean-Yves Marion. 1994. Ramified Recurrence and Compu-
tational Complexity II: Substitution and Poly-Space. In Computer Science Logic,
8th International Workshop, CSL ’94, Kazimierz, Poland, September 25-30, 1994,
Selected Papers (Lecture Notes in Computer Science, Vol. 933), Leszek Pacholski and
Jerzy Tiuryn (Eds.). Springer, 486–500.

[26] Grigori E Mints. 1978. Finite investigations of transfinite derivations. Journal of
Soviet Mathematics 10, 4 (1978), 548–596.

[27] Damian Niwiński and Igor Walukiewicz. 1996. Games for the µ-calculus. Theo-
retical Computer Science 163, 1-2 (1996), 99–116.

[28] Rémi Nollet, Alexis Saurin, and Christine Tasson. 2019. PSPACE-Completeness
of a Thread Criterion for Circular Proofs in Linear Logic with Least and Greatest
Fixed Points. In Automated Reasoning with Analytic Tableaux and Related Methods
- 28th International Conference, TABLEAUX 2019, London, UK, September 3-5, 2019,
Proceedings (Lecture Notes in Computer Science, Vol. 11714), Serenella Cerrito and
Andrei Popescu (Eds.). Springer, 317–334.

[29] Isabel Oitavem. 2008. Characterizing PSPACE with pointers. Math. Log. Q. 54, 3
(2008), 323–329.

[30] Alex Simpson. 2017. Cyclic Arithmetic Is Equivalent to Peano Arithmetic. In
Foundations of Software Science and Computation Structures - 20th International
Conference, FOSSACS 2017, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings (Lecture Notes in Computer Science, Vol. 10203), Javier Esparza and
Andrzej S. Murawski (Eds.). 283–300.

[31] Marc Wirz. 1999. Characterizing the Grzegorczyk hierarchy by safe recursion.

https://arxiv.org/abs/2110.01114
https://arxiv.org/abs/2110.01114
https://arxiv.org/abs/2012.14421
https://arxiv.org/abs/2012.14421

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Bellantoni-Cook characterisation of FPTIME
	2.2 Proof theoretic presentation of Bellantoni-Cook

	3 Two-sorted circular systems on notation
	3.1 Non-wellfounded typing derivations
	3.2 The progressing criterion
	3.3 Computational expressivity of coderivations
	3.4 Proof-level conditions motivated by implicit complexity
	3.5 On the complexity of proof-checking

	4 Some variants of safe recursion
	4.1 Relativised algebras and nested recursion
	4.2 Safe recursion on well-founded relations

	5 Characterisations for function algebras
	5.1 A relativised Bounding Lemma
	5.2 Soundness results
	5.3 Completeness and characterisations

	6 Characterisations for circular systems
	6.1 Completeness
	6.2 The Translation Lemma

	7 Conclusions and further remarks
	7.1 Unary notation and linear space
	7.2 On unnested recursion with compositions
	7.3 Towards higher-order cyclic implicit complexity

	Acknowledgments
	References

