
1.  Introduction
Zealandia, a mostly submerged continent covering 4.9 × 10 6 km 2 in the southwest Pacific (Mortimer et al., 2017), 
sits astride two tectonic plates separated by an active plate boundary: northern Zealandia lies on the Australian 
Plate, while southern Zealandia lies on the Pacific Plate (Figure 1). While the islands of New Zealand and New 

Abstract  The absolute position during the Cenozoic of northern Zealandia, a continent that lies more than 
90% submerged in the southwest Pacific Ocean, is inferred from global plate motion models, because local 
paleomagnetic constraints are virtually absent. We present new paleolatitude constraints using paleomagnetic 
data from International Ocean Discovery Program Site U1507 on northern Zealandia and Site U1511 drilled 
in the adjacent Tasman Sea Basin. After correcting for inclination shallowing, five paleolatitude estimates 
provide a trajectory of northern Zealandia past position from the middle Eocene to the early Miocene, spanning 
geomagnetic polarity chrons C21n to C5Er (∼48–18 Ma). The paleolatitude estimates support previous works 
on global absolute plate motion where northern Zealandia migrated 6° northward between the early Oligocene 
and early Miocene, but with lower absolute paleolatitudes, particularly in the Bartonian and Priabonian (C18n–
C13r). True polar wander (solid Earth rotation with respect to the spin axis), which only can be resolved using 
paleomagnetic data, may explain the discrepancy. This new paleomagnetic information anchors past latitudes 
of Zealandia to Earth's spin axis, with implications not only for global geodynamics, but also for addressing 
paleoceanographic and paleoclimate problems, which generally require precise paleolatitude placement of 
proxy data.

Plain Language Summary  The ancient latitude (paleolatitude) of a tectonic plate can be 
determined from magnetism recorded in rocks (paleomagnetism). Earth's geomagnetic field, averaged over 
geological time, is symmetrical around Earth's spin axis. Hence, the direction of the remanent magnetization 
in rocks can provide the paleolatitude and orientation of a tectonic plate with respect to the geographic poles. 
Using marine sediments recovered during International Ocean Discovery Program Expedition 371, we present 
five paleolatitude estimates for northern Zealandia, a mostly submerged continent in the southwest Pacific 
encompassing New Zealand and New Caledonia. The reconstructed paleolatitudes span the time interval from 
48 to 18 million years ago (middle Eocene to middle Miocene), and represent the first such estimates from 
northern Zealandia. Geodynamic models for Earth surface motion relative to the spin axis require several 
assumptions and do not accurately predict our results. Combined with data from other continents, a more 
precise reconstruction for Zealandia's past geography has implications for understanding various fossil records 
in this extensive region, including those important for past ocean circulation and climate models, and for the 
evolution of plants and animals.
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Caledonia emerge above present-day sea level, about 94% of Zealandia sits underwater with an average water 
depth of about 1,100 m, an atypical hypsometry that relates to a relatively thin average continental crust thickness 
of ∼18 km (Hackney et al., 2012; Klingelhoefer et al., 2007; Sutherland et al., 2010). The oceanic crust of the 
Tasman Sea Basin, where seafloor spreading occurred for about 30 Myr between the late Cretaceous and early 
Eocene (83–53 Ma; Gaina et al., 1998), separates the continents of Zealandia and Australia.

The tectonic history of northern Zealandia during the Cenozoic is largely modulated by changes in relative 
motion between the Australian and Pacific plates (Cluzel et al., 2012; Collot et al., 2020; Matthews et al., 2015; 
Sutherland et al., 2020). Currently, the Pacific Plate subducts westward beneath the Tonga-Kermadec (T-K) Arc 
(Figure 1). However, during the early to middle Eocene and after cessation of Tasman seafloor spreading, T-K 
subduction initiated proximal to Norfolk Ridge (Gurnis et al., 2004), the northernmost part of which emerges 
as New Caledonia (Cluzel et al., 2012; Collot et al., 2020; Sutherland et al., 2020). Marked variations in the 
lithology and accumulation rates of Paleogene sediments presently exposed in New Zealand and New Caledonia 
reveal that significant tectonic change occurred around 46–44 Ma (Bordenave et al., 2021; Dallanave, Agnini, 
et al., 2018; Dallanave et al., 2015, 2020; Maurizot, 2011; Maurizot & Cluzel, 2014), attributed to early T-K 
subduction and uplift of northern Zealandia (Dallanave et al., 2020).

International Ocean Discovery Program (IODP) Expedition (Exp.) 371 aimed to better constrain the timing and 
dynamics of northern Zealandia paleogeography during the Cenozoic (Sutherland et al., 2018, 2019b). A total 
of 2,506 m sediments and volcanic rocks were recovered from cores drilled at six sites (Figure 1) with the scien-
tific drillship JOIDES Resolution (JR). Five sites were drilled into sediments on the continental crust of north-
ern Zealandia (Sites U1506–U1510) and one was drilled into sediments overlying oceanic crust in the eastern 
Tasman Abyssal Plain (Site U1511). Sediments recovered during Exp. 371 reveal a complex tectonic history 
of vertical motion across northern Zealandia, starting in the early Eocene (∼50 Ma) and continuing throughout 
much of the Cenozoic; deformation generally progressed from north to south (Sutherland et al., 2020). Sedi-
mentary record from Exp. 371 gives important information about the tectonic and paleoenvironmental evolution 
for the Tasman area (Alegret et al., 2021; Stratford et al., 2022; Sutherland et al., 2022), and here we also use it 
to constrain the absolute paleoposition of northern Zealandia during the Cenozoic. Accurate paleogeography is 
essential for understanding past climate dynamics (e.g., Donnadieu et al., 2006), the paleogeographic distribu-
tion of fossils (e.g., Lam et al., 2018, 2021; Middlemiss, 1979), and the absolute positions of land and ocean to 
constrain paleoclimate models (Herold et al., 2008; Hollis et al., 2019; Lunt et al., 2017).

Paleolatitude estimates for northern Zealandia through the Cenozoic are uncertain because no autochtht-
onous paleomagnetic constraints exist, and the bordering Australian Plate has very limited data (Dallanave & 
Kirscher, 2020; Hansma & Tohver, 2019). At present, the paleogeographic position of Zealandia is determined 
via data from connected plates by means of absolute plate motion (APM) models. An APM model is built from 
a relative plate motion (RPM) model, which describes the rotation of all tectonic plates relative to each other 
through analysis of seafloor magnetic anomalies and fracture zones (Müller et al., 2016, 2019). The APM model 
develops by anchoring the RPM model to a reference frame that does not change over geological time (Seton 
et al., 2012; Tetley et al., 2019; Torsvik et al., 2008). The two common reference frames adopted are the Earth's 
mantle and the spin axis. While the first mainly arises from analyses of hotspot tracks, the spin axis reference 
frame derives from paleomagnetism (Torsvik et al., 2008, 2012). Paleomagnetic directions measured at a given 
locality result in a paleomagnetic pole, which virtually coincides with the paleoposition of the Earth's spin axis 
relative to the sampling site (Dallanave & Kirscher,  2020; Tauxe,  2010; Vaes et  al.,  2021). Compilations of 
consecutive poles then are combined to establish an apparent polar wander path (APWP, called apparent because 
it rather reflects the changing orientation and distance of the plate with respect the geographic pole; Besse & 
Courtillot, 2002; Creer et al., 1954; Torsvik et al., 2008; Van der Voo, 1993). However, the Cenozoic paleomag-
netic data set used to create the global APWP is strongly biased by data from the North American continent. 
Examination of middle Eocene to the early Miocene (48–18 Ma; Chrons C21n–C5En) paleomagnetic entries 
compiled by Torsvik et al.  (2012), which we integrate here with Australian entries presented by Hansma and 
Tohver (2019), reveals that 18 paleomagnetic poles out of 42 (∼43%) are from North America, and the other 
23 poles are distributed among the other continents (Table S1). Sites drilled during IODP Exp. 371 provide an 
excellent opportunity to test if currently referenced APM models predict an accurate paleogeography for northern 
Zealandia.

Here, we present a set of five paleolatitudes for northern Zealandia between the middle Eocene and early Miocene. 
Paleolatitudes are determined from paleomagnetic inclination of sediments recovered at Sites U1507 and U1511 
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(Figures  1 and  2), after correction for inclination shallowing (Collombat 
et al., 1993; Hodych et al., 1999). Although Site U1511 was drilled on the 
oceanic crust of Tasman Abyssal Plain, paleolatitudes determined here 
represent those of northern Zealandia, because this part of the Tasman Sea 
connects to the Lord Howe Rise via a passive margin (Figure 1).

2.  Sites, Lithostratigraphy, and Previous Work
2.1.  Hole U1507B

Hole U1507B (26.4886°S, 166.5286°E) was drilled on the eastern side of 
New Caledonia Trough at 3,568 m water depth (Figure 1). The hole extends 
from 376 to 864 m below the sediment-water interface (here and after, core 
depths are expressed on a core depth below sea floor meter scale—CSF-A—
as determined on ship; https://www.iodp.org/policies-and-guidelines). Sedi-
ments were retrieved using the rotary core barrel (RCB) technique, with a 
total core recovery of 76%. They consist of clayey calcareous chalk with 
volcanic material from the top of the hole down to Core 35R at 685 m, and 
calcareous chalk from this depth to Core 52R at 855.6 m. The age of the 
sediments cored at Hole U1507B spans from the middle Eocene to the early 
Miocene, as determined by biostratigraphy and magnetostratigraphy, and it 
correlates with Chrons C5–C18 (Figure 2a).

2.2.  Hole U1511B

Hole U1511B (37.5611°S, 160.3156°E) was drilled on Tasman Sea Abyssal 
Plain near the western margin of Lord Howe Rise at 4,847 m water depth 
(Figure 1). The hole extends from 19.8 to 566.2 m (Core 2R to Core 47R). 

The interval between 77.2 and 192.2 m was drilled without recovery (“washed”), in order to accelerate collection 
of deeper strata with primary significance to expedition objectives. Sediments were retrieved using the RCB 
technique, with a total of 65% recovery. Greenish gray to yellowish brown diatomite and claystone were recov-
ered from Core 10R to Core 30R (201.9–403.4 m), overlying red to greenish gray claystone (up to Core 43R at 
560.7 m) (Sutherland et al., 2019d). The age of the sediments drilled at Hole U1511B ranges from Pleistocene to 
lower Paleocene, as determined by biostratigraphy and magnetostratigraphy (Sutherland et al., 2019d). The part 
of the hole relevant to this work, between Core 12R and Core 30R (high quality paleomagnetic signal), correlates 
with Chrons C17n–C21n, from the uppermost early Eocene to the lowermost late Eocene (Figure 2b).

2.3.  Published Paleomagnetic Data

All sediment cores retrieved from boreholes during Exp. 371 were cut into sections (typically 1.5 m in length) and 
subsequently split longitudinally on board the JR into working and archive halves. Following standard shipboard 
procedures (Sutherland et al., 2019a), the natural remanent magnetization (NRM) of core archive halves was 
demagnetized with an alternating magnetic field (AF) up to 20 mT. NRM inclination after 20 mT demagneti-
zation is used as base for determining the series of paleomagnetic reversals through the records for correlation 
with the geomagnetic polarity time scale (GPTS) (Figure 2). The above shipboard data was supplemented with 
paleomagnetic information obtained from fully demagnetized discrete specimens collected initially onboard the 
JR and after, during the sampling party, at the IODP Gulf Coast Core Repository (College Station, TX, USA). 
These samples (∼8 cm 3 cubes) were trimmed directly from lithified sediments of the working halves, and addi-
tional data were generated as follows.

For Hole U1507B, 72 discrete samples were collected and measured on board the JR using seven AF demag-
netization steps up to a maximum of 70 mT (or up to 90 mT in some few cases). The remanence was measured 
with an AGICO JR-6 Spinner Magnetometer. To refine the magnetostratigraphic control, during the post-cruise 
sampling party we collected a total of 151 from the two intervals between cores 4–17R and 32–52R. A set of 
74 samples from these was processed by applying 15 AF demagnetization steps up to 100 mT. The remanence 

Figure 1.  Present-day map of northern (enveloped by the yellow dashed 
line) and southern (enveloped by the orange dashed line) Zealandia, with 
yellow stars indicating the location of International Ocean Discovery Program 
Sites U1507 (26.4886°S, 166.5286°E) and U1511 (37.5611°S, 160.3156°E). 
Solid and dashed white lines indicate active and inactive subduction zones, 
respectively, with arrows lying on the overriding plate. LHR = Lord Howe 
Rise, NCT = New Caledonia trough, NR = Norfolk Ridge, RB = Reinga 
basin.

https://www.iodp.org/policies-and-guidelines
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was measured automatically after each step with an in-line 2G Enterprises superconducting rock magnetometer 
at the paleomagnetic laboratory of the University of Bremen (Mullender et  al.,  2016). Within some specific 
stratigraphic intervals, the AF protocol resulted in a characteristic remanent magnetization (ChRM) direction 
failing to point toward the origin of the demagnetization axes. Therefore, for other 72 specimens, we applied 
stepwise thermal demagnetization up to 600°C to using a Schönstedt thermal demagnetizer, measuring the rema-
nence after each demagnetization step with a 2G Enterprises superconducting rock magnetometer (Dallanave & 
Chang, 2020).

For Hole U1511B, quasi-continuous shipboard NRM measurements on the archive half (after 20 mT AF clean-
ing) were integrated with data from 33 discrete specimens demagnetized with AF protocol up to 120 mT. To 
refine the magnetostratigraphic control, during the post-cruise sampling party we selected 105 cube specimens of 
8 cm 3 volume from cores 12R–30R. The shipboard AF procedure was not always sufficient to fully demagnetize 
the samples, so we selected 60 specimens (from the 105) to analyze with stepwise thermal demagnetization up 
to 650°C. Thermal demagnetization was performed with a Schönstedt paleomagnetic furnace, measuring the 

Figure 2.  Lithology, magnetic polarity stratigraphy and age of sediment cored at (a) Hole U1507B and (b) Hole U1511B. 
Blue dots are paleomagnetic inclinations determined by shipboard measurement of the archive half after 20 mT alternating 
field magnetic cleaning. Red dots are paleomagnetic directions derived from discrete specimens measured during either 
Exp. 371 or a post-cruise analysis phase. Data presented by Sutherland et al. (2019a, 2019c) and Dallanave and Chang (2020) 
are here correlated with the geomagnetic polarity time scale (GPTS) of Westerhold et al. (2020).
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remanence after each step with a 2G Enterprises cryogenic magnetometer (Dallanave & Chang,  2020). The 
remaining cube samples were used for rock-magnetic analyses or stored as archive.

3.  New Data and Paleomagnetic Analyses
3.1.  Paleomagnetic Directions

Integration of paleomagnetic data from shipboard (Sutherland et al., 2019c, 2019d) and shore-based analyses 
(Dallanave & Chang, 2020) provides well defined paleomagnetic directions for the sedimentary records of Holes 
U1507B and U1511B. When combined with biostratigraphic information (Sutherland et  al.,  2019c,  2019d), 
straightforward correlations to the GPTS can be made (Figure  2). Because paleolatitude estimation requires 
paleomagnetic directions representative of the geomagnetic field, for this work we used only data from fully 
demagnetized discrete specimens.

Although the sampling resolution of Hole U1507B allows for sufficient correlation to the GPTS, additional 
samples were needed for precise paleolatitude estimates. To increase the paleomagnetic data set for this work, 
we requested from the Kochi Core Center (Nankoku, Japan) further 67 oriented specimens from Hole U1507B, 
41 of which were from cores 18R–30R, and 26 were from cores 31R–50R. These were all subjected to AF 
demagnetization with 17 steps between 3 and 100 mT at the University of Bremen. Thus, in total, 306 discrete 
sediment samples were demagnetized for paleomagnetic direction analysis: 213 from Hole U1507B and 93 from 
Hole U1511B.

To improve the quality of the directional data set, all data from the 306 AF and thermally demagnetized specimens 
were inspected using stricter statistical criteria than previously used by Dallanave and Chang (2020). Specifically, 
we investigated the NRM behavior through visual inspection of vector end-point diagrams (Zijderveld, 1967) 
using the PuffinPlot open source software (Lurcock & Wilson, 2012). The ChRM of each specimen was isolated 
applying principal component analysis on the selected vector end-points as proposed by Kirschvink (1980). We 
applied two selection criteria: (a) minimum of five vector end-points and (b) maximum angular deviation (MAD, 
Kirschvink, 1980) lower than 10°. When using principal component analysis for estimating ChRM directions, 
it is a common practice to force the direction to pass through the origin of the demagnetization axes when it 
visually trends toward it. This procedure, referred to as “anchoring,” may result in artificially low MAD esti-
mation. To maximize the reliability of our directions, we adopted the Bayesian model techniques developed by 
Heslop and Roberts (2016) to assess whether anchoring each ChRM was statistically justifiable or not. Heslop 
and Roberts (2016) also propose a new computational strategy to fit vectors that are constrained to pass through 
the vector demagnetization diagram origin and provides more realistic ChRM vector directions and associated 
MAD. These directions are defined as “constrained” (please refer to Heslop & Roberts, 2016 for details).

The RCB technique results in cores with unknown azimuth. Hence, the paleomagnetic declination is undefined, 
and the average paleomagnetic direction of a set of samples cannot be calculated using standard spherical statis-
tics (Fisher, 1953). We estimated the average inclination of set of directions by adopting the maximum likelihood 
solution for inclination data, an approach presented by Arason and Levi  (2010). This method minimizes the 
shallow-biased error that can occur when calculating mean inclination in the absence of declination data. The 
obtained paleomagnetic inclination can be converted to paleolatitude and paleo-colatitdue by using the geocentric 
axial dipole tangent function (Tauxe, 2010):

tan 𝐼𝐼 = 2 tan 𝜆𝜆� (1)

where I is the paleomagnetic inclination and λ is the paleolatitude. Colatitude is defined the difference between 
90° and the latitude.

3.2.  Rock-Magnetism and Paleomagnetic Inclination Flattening

The behavior of specimens monitored during AF and thermal demagnetization already provides insight into the 
nature of NRM carriers. To better characterize the magnetic mineralogy, 20 representative specimens (10 from 
each hole) were subjected to stepwise isothermal remanent magnetization (IRM) acquisition up to 700 mT, and 
the IRM was measured automatically after each step (Mullender et al., 2016). For sediments recovered from Hole 
U1511B, this field was often insufficient to reach magnetic remanence saturation, so we completed the analysis 
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by stepwise magnetizing the specimens manually up to a field of 2.5 T, measuring their IRM after each step. The 
resulting IRM curves were “unmixed” for their coercivity components by means of skewed generalized Gauss 
distribution (Egli, 2003) using the RStudio-based MAX UnMix code (Maxbauer et al., 2016).

The paleomagnetic data set from holes U1507B and U1511B in this work is used for paleolatitude calculation. 
Hence, it is fundamental to detect and correct for paleomagnetic inclination shallowing, otherwise uncorrected 
data can misplace paleolatitudes by several degrees (Tauxe et  al.,  2008). In order to detect and estimate the 
degree of inclination shallowing there are two families of methods. The first is based on the shape of paleo-
magnetic direction distribution that is, for a given locality, compared with the one expected from the paleose-
cular variations model (Tauxe & Kent, 2004). This method has been successfully applied to a wide variety of 
sedimentary rocks (e.g., Dallanave, Agnini, et al., 2012; Dallanave, Muttoni, et al., 2012; Dallanave, Kirscher, 
et  al.,  2018; Dallanave et  al.,  2009; Kent & Tauxe,  2005; Kirscher et  al.,  2014; Krijgsman & Tauxe,  2006). 
However, it requires an adequate number of directions with well-defined inclination and declination, of which 
the latter is often absent (or not sufficiently accurate) in paleomagnetic data obtained from deep-sea cores. The 
second family of methods is based on the quantification of magnetic fabric, in the form of either anisotropy of 
magnetic susceptibility (AMS), anisotropy of anhysteretic remanent magnetization (AARM), or anisotropy of 
IRM (e.g., Bilardello, 2015; Bilardello & Kodama, 2010; Bilardello et al., 2011; Kodama & Sun, 1992; Tan & 
Kodama, 2003). In our work, we detected and corrected for paleomagnetic inclination shallowing by exploring 
the partial AARM (Site U1507) and its behavior during AF demagnetization, and the anisotropy of IRM (Site 
U1511) and its behavior during thermal demagnetization. The analytical procedure is extensively discussed in 
Sections 1 and 2 of the Supporting Information S1.

The degree of paleomagnetic direction flattening determined for the sediments was used to correct the measured 
ChRM inclination by applying the tangent function introduced by King (1955):

tan 𝐼𝐼𝑜𝑜 = 𝑓𝑓 ⋅ tan 𝐼𝐼𝑓𝑓� (2)

where Io and If are the observed NRM inclination and the original geomagnetic field inclination, respectively, and 
f is the flattening factor that ranges from 0 (completely flattened directions) to 1 (absence of flattening).

4.  Results
4.1.  Rock-Magnetism and Paleomagnetism of Hole U1507B

The magnetic minerals of specimens from Hole U1507B are dominated by a low coercivity phase interpreted as 
magnetite. During AF demagnetization, the decay in NRM intensity can be used to calculate a median destructive 
field (i.e., the field at which half of the NRM is lost). The average median destructive field is 28 mT and >90% of 
NRM is removed after a 100 mT AF (Figure 3a). This is in agreement with the averaged median destructive field 
of ARM (applied with an AF of 100 mT and a direct current field of 0.1 mT; Section 1 of Supporting Informa-
tion S1), which is 31 mT (inset in Figure 3a), and consistent with the presence of magnetite as the main magnetic 
carrier (e.g., Frank & Nowaczyk, 2008). IRM acquisition curves are dominated by a low coercivity component 
with a B1/2 (the field required to reach half of the saturation) of ∼60 mT (Figures 3b and 3c), similar to those 
reported for sediments with NRM carried by magnetite (e.g., Dallanave et al., 2015).

By inspection of all the demagnetization data of the specimens measured during IODP Exp. 371 and post-expe-
dition, we isolated a total of 165 high-quality ChRM directions (Figure 4a). They have been estimated by interpo-
lating on average 10 vector end-points, only 11 of them are anchored to the origin of the demagnetization axes, 31 
are constrained, and the remaining 123 are not-anchored. The average MAD of 3.4° is indicative of the quality of 
the data set (Table S2). The normal and reversed polarity directions (after correction for inclination shallowing) 
are statistically undistinguishable at a 95% confidence level, excluding the presence of a pervasive and unresolved 
paleomagnetic overprint (Table 1). Analogously, when calculating the average inclination of thermally and AF 
demagnetized specimens (plotted on a common down-pointing polarity), the mean values are statistically undis-
tinguishable at a 95% confidence level. This indicates that both techniques give comparable results. On average, 
the number of paleomagnetic directions falling within the reliability criteria is higher in clayey chalk than in 
calcareous chalk. This is shown by an average MAD of 3.0° for samples from the first lithology compared to an 
average MAD of 5.2° in samples from the latter lithology. This likely results from the significant difference in 
NRM intensity (Figure 4b).
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The estimated f values range from 0.74 to 0.99 (Figure 5, Table S2), with lower values in clayey chalk, as expected 
in sediments containing clay minerals. These flattening factors are generally similar to those found in the liter-
ature, measured with different methods on similar sedimentary rocks (see compilation of Muttoni et al., 2013). 
To correct the paleomagnetic inclination, we applied Equation 2 to each ChRM direction using f values as shown 
in Figure 5. Before correction, all directions were plotted as “down-pointing.” With the downhole transition to 
calcareous chalk, from Core 34 down to Core 51, the measured flattening factor does not show significant varia-
tion, so we applied a blanket average f of 0.95 to all 40 directions.

4.2.  Rock-Magnetism and Paleomagnetism of Hole U1511B

Rock-magnetic analyses indicate the presence of two magnetic coercivity phases within the Eocene diatomite 
of Hole U1511B. IRM acquisition curves (Figure 3d) show a low coercivity magnetic phase that reaches half 
of saturation at about 45 mT and a high coercivity magnetic phase that reaches half saturation at about 500 mT 
(Figure  3e). The proportion of these coexisting phases varies with depth. From Core 12R to Core 24R, the 
presence of dominant low coercivity magnetic phase and the maximum unblocking temperature of the ChRM 
direction below 600°C (Figure 4a) suggest magnetite as magnetization carrier (Dunlop & Özdemir, 1997). By 
contrast, high coercivity magnetic minerals dominate samples from cores 25R and 30R, the lowermost part of 
the studied interval (Figure 3f; Unit II of Sutherland et al., 2019a). Indeed, the IRM curves do not approach satu-
ration even with applied magnetic field of ∼2.5 T. This high coercivity, associated with a maximum unblocking 
temperature of the ChRM directions that reach 650°C (Figure 4a), suggest that between cores 25R and 30R the 
magnetization is carried by hematite (O'Reilly, 1984). Results of thermal demagnetization of IRM, used for esti-
mating the degree of paleomagnetic inclination flattening, support this interpretation (Section 2 of the Supporting 
Information S1).

Figure 3.  Rock-magnetic analyses. (a) Decay during alternating field demagnetization of the natural remanent magnetization (NRM) for 33 selected specimens and 
anhysteretic remanent magnetization (ARM; inset) of 52 specimens from Hole U1507B, with indication of the averaged median destructive field. (b) Isothermal 
remanent magnetization (IRM) acquisition of 10 samples from Hole U1507B. (c) IRM component “unmixing” (see main text) for sample U1507B-8R-2W-70/72, the 
dashed line shown in panel (b). (d) IRM acquisition of 10 samples from Hole U1511B. (e–f) IRM component “unmixing” of samples U1511B-15R-4W-89/91 and 
U1511B-29R-6W-20/22, the dashed lines shown in panel (d). For the “unmixing” curves, the gray dots are the first derivative of the corresponding IRM curve, and 
the colored lines are the different modeled components, with indication of the B1/2 (the field required to reach half of the saturation) of the dominant ones. The colored 
bands associated with the lines are the 95% confidence boundaries calculated from 100 bootstrapped data set (see Maxbauer et al., 2016 for details).
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From samples of Hole U1511B, we obtained a total of 69 ChRM directions, which were isolated by interpolating 
(on average) nine vector endpoints. Seven directions are anchored to the origin of the vector end-point demagnet-
ization axes, 38 are constrained, and 24 are not-anchored. They result in an average MAD of 2.2°. The average 
directions calculated from the up-pointing and down-pointing (acquired respectively during normal and reversed 
geomagnetic field) are statistically antipodal, excluding the presence of unresolved magnetic overprint. Accord-
ing to shipboard data, the diatomite has a porosity of 70%–80% down to depths of ∼400 m and a bulk density 
of 1.25–1.30 g/cm 3, determined by gamma ray attenuation (Sutherland et al., 2019d). These values indicate a 
particularly low degree of compaction. This is consistent with an absence of AMS fabric, as the anisotropy degree 

Figure 4.  (a) Representative vector-end point demagnetization diagrams from Hole U1507B (1–4) and Hole U1511B (5–6); solid (open) squares are projections onto 
the vertical (horizontal) plane; points selected for principal component analysis are highlighted in red, while the obtained paleomagnetic direction is shown as blue line; 
the demagnetization step unit (°C or mT) is given following the sample code; all examples are unanchored to the origin of the demagnetization axes except for vector 
end-point diagram 5, which is constrained. (b) Intensity of the natural remanent magnetization through the two records studied; numbered arrows indicate the position 
of the samples shown in panel (a).
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is particularly low, with an average value of 1.005 (Dallanave & Chang, 2020), also indicating the absence of 
drilling disturbance (Acton et al., 2002; Yang et al., 2019).

Under such conditions, the inclination shallowing of paleomagnetic directions (which is largely affected by 
compaction) should be minimal or even absent. However, Tauxe and Kent (1984) performed redeposition exper-
iments under controlled magnetic field, showing that sediments containing hematite can acquire a magnetic 
remanence with inclination significantly shallower than the one of the inducing field, a consequence of the 
hematite grains shape. The IRM acquisition curves of Figures 3d–3f indicate the presence of high coercivity 
NRM carriers minerals (especially in the lower part). Therefore, to detect and correct for inclination shallowing, 
we applied a protocol based on the method suggested by Bilardello (2015) for rocks containing detrital hema-
tite, that can be also extended to other magnetic minerals. Detailed description of the method and analysis are 
provided in Section 2 of the Supporting Information S1. We applied the (minimal) estimated f of 0.96 (Equa-
tion  2) to all ChRM directions retrieved (plotted toward a common down-pointing polarity) from the top of 
Hole U1511B downcore to 350 m (Figure 5b). The lower part of the Hole, where both the NRM and the IRM 
acquisition and demagnetization indicate hematite as a relevant magnetization carrier, we applied the flattening 
factor f of 0.88 (Figure 5b). It is worth noting that, for the anisotropy of IRM experiment used for determining 
the inclination shallowing, we explored magnetic phases with a maximum coercivity of 2.5 T. While this phase 
included goethite that does not contribute to the remanence, we cannot exclude that part of the hematite particles 
with higher coercivity are not investigated. However, the obtained corrected inclination data set from the whole 
Hole U1511B shows a high consistency, suggesting a reliable estimation of the inclination flattening through the 
record (Figure 5b).

4.3.  Inclination Results

Paleomagnetic inclination data from the two sites can be assigned to time intervals (Figure 5), here adopting the 
CENOGRID geomagnetic polarity timescale (Westerhold et al., 2020). Notably, given the detailed paleomagnetic 
information, age breaks can readily equate to polarity chron boundaries. The corrected ChRM inclination data 
set of Hole U1507B can be divided conveniently into four intervals of approximately 5 Myr duration, which 
encompass chrons C5Er–C6Cn, C6Cr–C9r, C10n–C13n, and C13r–C18n. These intervals roughly correspond 
to the early Miocene, late Oligocene, early Oligocene and late Eocene, respectively. For Hole U1511B, paleo-
magnetic inclination data shows no appreciable variations. Given age constraints, we consider the whole data set 
generated at this location as representative of the Lutetian to lowermost Priabonian interval (Chrons C17n–C21n; 
Figure 5c). We compiled the number of data points, the average inclination with confidence boundaries for each 
time interval in Table 1.

At Hole U1507B, paleomagnetic inclinations obtained from discrete specimens change slightly through time. For 
the upper Eocene calcareous chalk, the average inclination is 53.2° ± 4.2°. Within the clayey calcareous chalk, 
inclinations show a clear and progressive shallowing up the section and through time (34–18 Ma). This is from 
54.6° (±4.2°) in the early Oligocene to 50.7° (±4.5°) in the early Miocene. Even if 95% confidence boundaries 
overlap, we believe that this progressive shallowing reflects real paleolatitude variation. At Hole U1151B, and 

Hole Top Bottom Chron interval N Inc x α95 Plat Plat^ Plat_ Pcolat Pcolat_ Pcolat^

U1507B 396 450 C5Er–C6Cn 38 50.7 27.5 4.5 31.5 35.8 27.6 58.5 54.2 62.4

U1507B 450 530 C6Cr–C9r 42 53.7 26.7 4.35 34.2 38.7 30.2 55.8 51.3 59.8

U1507B 539 641 C10n–C13n 45 54.6 26.6 4.2 35.1 39.5 31.1 54.9 50.5 58.9

U1507B 645 833 C13r–C18n 40 53.2 29.4 4.2 33.8 38.1 29.9 56.2 51.9 60.1

U1511B 222 398 C17n–C21n 69 69.2 60.7 2.2 52.8 56.1 49.7 37.2 33.9 40.3

Note. Top and Bottom indicate the upper and lower depth within the indicated Hole expressed in meters CSF-A (the list of each specimen and the associated paleomagnetic 
direction is provided in the Supporting Information S1 available online); the chron intervals are based on the paleomagnetic correlation with the geomagnetic polarity 
time scale detailed in Dallanave and Chang (2020) and synthetized in Figure 2; N = number of averaged paleomagnetic directions; Inc = average inclination; x and 
α95 = precision parameter and 95% confidence angle of Arason and Levi (2010); Plat = paleolatitude; Plat_ and Plat^ = lower and higher 95% confidence boundaries 
of the paleolatitude; Pcolat, Pcolat_ and Pcolat^ = same as for paleolatitude, but expressed as colatitude.

Table 1 
Paleomagnetic Average Directions From Sites U1507 and U1511 and Derived Paleolatitudes
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Figure 5.  Paleomagnetic inclination results for samples from Holes U1507B and U1511B. (a) Data from Hole U1507B 
with respect to depth, age and core recovery; paleomagnetic inclination data (plotted in a common down-pointing mode) 
are obtained by thermal (red points) and AF (blue) demagnetization; light (dark) colored points are directions before (after) 
correcting for inclination flattening; the maximum angular deviation (MAD) associated to each direction is also indicated. 
(b) Data from Hole U1511B, as above, and noting that all specimens were thermally demagnetized. (c) Average corrected 
inclination data for five time intervals (as defined in main text) according to age; the geomagnetic polarity time scale is the 
CENOGRID of Westerhold et al. (2020).
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within the Eocene samples examined, the mean corrected inclination is 69.2° 
with a very narrow 95% confidence angle of ±2.2° (Figure 5c).

5.  Discussion
5.1.  Comparison With Reference Paleomagnetic Data

Paleomagnetic inclination results from Sites U1507 and U1511 can be 
compared with global paleomagnetic data generated elsewhere and previ-
ously used for synthetic global APWPs. To do this, we first converted the 
paleomagnetic inclination for each time interval described above to paleo-co-
latitude by using Equation 1 (Table 1). The colatitude represents the circle 
around the sampling site where the paleomagnetic pole falls. We then selected 
42 global reference paleomagnetic poles from the compilation of Torsvik 
et al. (2012) and Hansma and Tohver (2019) (Table S1). The age of the poles 
falls within the time window defined in Figure 5c. Because they are gener-
ated from different plates, we rotated them in Australian coordinates by using 
the relative fits provided by Torsvik et al. (2012). For any time after 53 Ma, 
the Australian coordinates are suitable for comparing global poles with data 
from northern Zealandia because the Tasman Sea, which separates the two 

continental blocks, ended its spreading activity during Chron C24 (∼53 Ma; Gaina et al., 1998). After rotation, 
we averaged the position of the selected poles by means of standard spherical statistics (Fisher, 1953; Table 2).

Overall, colatitudes from our work agree very well with averaged global reference poles for the Eocene to Miocene. 
All cases are statistically indistinguishable within a 95% confidence margin (Figures 6a–6e). Only the colatitude 
from Hole U1511B appears to be biased at some extent toward the site. In fact, the paleomagnetic reference pole 
falls out of the Hole U1511B 95% colatitude confidence (Figure 6a). This could indicate a minimal steep-bias 
of the paleomagnetic inclinations from the diatomite. Notably, the middle–upper Eocene (chrons C13r–C18n) 
calcareous chalk from Hole U1507B is characterized by an average paleomagnetic inclination somewhat shal-
lower with respect to the overlying clayey calcareous chalk (Figure 5c). However, the calculated paleocolatitude 
matches very well with the reference pole (Figure 6b). Paleomagnetic data from both Site U1507 and Site U1511 
thus provide reliable paleolatitudinal constraints for northern Zealandia.

5.2.  Comparison With the Absolute Plate Motion Model

Traditionally, most APM models are based on two reference frames. The first is paleomagnetic and assumes that 
magnetic north approximates true north and Earth's spin axis; the second is based on hotspot trails and assumes 
these are anchored in a slowly moving lower mantle. After converting our paleomagnetic inclination for the 
different time windows (Figure 5c) to paleolatitude using Equation 1, we compared our result with the most 
recent published APM model (Tetley et al., 2019). Tetley et al. (2019) developed a suite of APM models using a 
complex joint global inversion of hotspot locations and associated trails, paleomagnetic data, global trench migra-
tion behavior, and estimates of net lithospheric rotations. The preferred solution of Tetley et al. (2019) derives 
from a global RPM model developed by Müller et al. (2016), which uses the south African Plate as a reference 
because of its central location within Pangea, and because it has been surrounded by mid ocean ridges since 
the time of continental breakup, hampering significant longitudinal drift (Torsvik et al., 2008). Africa was then 
anchored to the spin axis interpolating a set of finite Euler rotations for 10 Myr intervals by using a total of 12 
autochthonous paleomagnetic poles selected from the compilation of Torsvik et al. (2012). Notably, the youngest 
of these reference paleomagnetic poles has a Cretaceous age of 90.5 Ma (Hargraves, 1989), due to the absence of 
autochthonous African data in younger rocks.

Paleolatitudes calculated using sediment samples from Sites U1511 and U1507 mostly agree with positions 
predicted by the model. For four of the five defined time intervals, the paleolatitudes predicted by the APM 
model fall within the paleomagnetic 95% confidence boundaries calculated by our new data (Table 1; Figures 7a, 
7c–7e), even though they are systematically higher (i.e., biased toward the South Pole). In the late Eocene time 
interval, centered at 37 Ma, the paleolatitude derived from the calcareous chalk of Site U1507 is lower by 5.9° 
than the one predicted by the APM model, and the difference is statistically significant (at a 95% confidence) 
(Figure 7b).

Chron interval
Age 
(Ma) N Lat Long A95

Plat_
U1507

Plat_
U1511

C5Er–C6Cn 20 6 −80.6 109.6 7.2 −31.3 −43.1

C6Cr–C9r 25 10 −78.8 114.2 3.4 −32.9 −44.8

C10n–C13n 30 10 −72.9 119.8 4.8 −37.4 −49.4

C13r–C18n 37 10 −74.2 114.3 5.1 −35.3 −47.4

C17n–C21n 42.5 16 −73.2 121.2 4.2 −37.5 −49.6

Note. Poles are calculated averaging poles listed in Table S1 combined with 
the colatitude data from this work (Cogné, 2003), by selecting ages belonging 
to the time window defined by the Chrons Interval (with the associated 
mean age). N  =  number of averaged poles (including colatitude from this 
work); Lat and Long = latitude and longitude; A95 = 95% confidence circle 
(Fisher, 1953); Plat_U1507 and U1511 = Paleolatitude of Sites U1507 and 
U1511 determined from the poles.

Table 2 
List of Average Paleomagnetic Poles
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Figure 6.  Comparison of the paleomagnetic inclination results from Site U1507 and U1511, expressed as colatitude (colored circles around the sites with associated 
95% confidence) with global reference paleomagnetic datasets (Table S1). The time frames shown in panels (a–e) are the same as shown in Figure 5C. In all panels, 
the black star and the white circle mark the averaged pole position of the reference paleomagnetic data set and the 95% confidence cone calculated by mean of standard 
spherical statistic (Fisher, 1953).
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Figure 7.  Reconstructed middle Eocene–early Miocene paleolatitudes for Sites U1511 and U1507, within the paleogeographic frame predicted by the absolute plate 
motion (APM) model of Tetley et al. (2019) and drawn by using the GPlates open source platform (Müller et al., 2018). The age windows are calculated by averaging 
the age of the encompassed geomagnetic polarity Chrons and approximated as stages and sub stages. The paleolatitude results from this work (indicated by the colored 
circle and bands, which represent mean and the 95% confidence interval) are compared with the position of the relative site as predicted by the APM model (white and 
black stars for Site U1507 and Site U1511, respectively). The insets show the reference paleomagnetic (South) poles rotated using the fits with respect to the Earth's 
mantle reference frame of the APM model.
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Errors associated with the APM are not included in our significance tests, but we suggest that the difference in 
paleolatitude predicted by the APM model and estimated by our data might be real. It probably does not originate 
from correcting paleomagnetic inclination flattening for two reasons: (a) paleomagnetic data from Sites U1507 
and U1511 agree very well with global data rotated to Australia; and (b) the estimated f values, determined 
from a large set of specimens, compare favorably with those estimated in similar carbonate rocks (e.g., Muttoni 
et al., 2013). The source of the error may come from Eocene true polar wander not included in the APM model 
because of the lack of African paleomagnetic data. True polar wander is the motion of Earth's spin axis relative to 
the mantle (and hence the hotspots) caused by changes in mass distribution and Earth's principal non-hydrostatic 
moments of inertia (Goldreich & Toomre, 1969). The existence of true polar wander during the Eocene has been 
discussed previously (Doubrovine et al., 2012). Within the ideal condition of a APM model perfectly fixed with 
the spin axis, a paleomagnetic pole determined from data on any continent for any age, rotated using the APM 
model itself, should coincide with the geographic pole. We tested this hypothesis using the parameters provided 
in Supporting Information S1 of Tetley et al. (2019) and GPlates software (Müller et al., 2018), and we observe a 
significant mismatch for the late Eocene (Figure 7b).

We suggest that the very sparse paleomagnetic data but abundant hotspot trails in the Pacific hemisphere bias the 
Tetley et al. (2019) model. The reference APM model is anchored to the spin axis by poles that are from studies 
that date even back to the 1960s, and none of them are from the Cenozoic or younger. A larger and higher-quality 
paleomagnetic data set is required, particularly for the Cenozoic, and one that has a better global geographic 
distribution. Our paleomagnetic data are geographically significant.

5.3.  Northern Zealandia Absolute Motion and Implications for Climate Modeling

5.3.1.  Absolute Plate Motion

The paleolatitudes calculated from sediments recovered during IODP Exp.  371 support a general northward 
acceleration of Australia in the late Eocene, one predicted by the APM models (Figure 8). An analysis of magnetic 
anomalies formed at the Southeast Indian Ridge shows that its spreading rate increased in Chron 20 (∼45 Ma) 
from very slow (<10 mm) to slow (∼30 mm/yr) half rate), and then accelerated after Chron 18 at ∼40 Ma (Cande 
& Stock, 2004). The northward migration velocity of the Australian Plate is estimated to have doubled between 
40 and 35  Ma to up to ∼70  mm/yr (Tetley et  al.,  2019). Data from Site U1507 provide absolute latitudinal 
constraints for this migration, with a northward motion of about 6° of latitude from 37 to 31°S occurred between 
the early Oligocene and the early Miocene (Figures 7c–7e and 8). Within the studied sediment interval of Hole 
U1511B, no significant variations in paleomagnetic inclination are observed, and latitudinal variations of north-
ern Zealandia cannot be resolved by means of inclination data from this site.

Figure 8.  Paleolatitude evolution since ∼48 Ma of Sites U1511 and U1507; paleolatitudes and confidence boundaries (95%) 
are calculated from the paleomagnetic inclination shown in Figure 5, with colors corresponding to lithologies shown in the 
same figure; data are shown with the paleolatitude predicted by the absolute plate motion of Tetley et al. (2019; red lines), 
the paleolatitude predicted by the synthetic global apparent polar wander path of Torsvik et al. (2012; dashed line), and the 
paleolatitudes calculated using the reference paleomagnetic data from different continents: these have been selected by time 
windows as explained in the main text, rotated into Australian coordinates, and combined with the inclination data of this 
work (white diamonds with 95% confidence bars; Table 2).
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5.3.2.  Implications for Paleogeography and Climate Modeling

Global climate models (GCMs) provide a powerful means to understand past (and future) Earth surface “observ-
ables” such as sea surface temperatures (SSTs), atmospheric temperatures and precipitation, or seasonal vari-
ations, and they are under continuous development (Baatsen et al., 2020; Hollis et al., 2019; Lunt et al., 2021; 
Tebaldi et al., 2006). As already noted across some regions and during some geological intervals, an observation 
predicted from a GCM often does not match that one reconstructed from a proxy (Hollis et  al.,  2012; Lunt 
et  al.,  2021). Debate typically has focused on problems with GCMs or proxies, particularly their underlying 
assumptions and parameters (Hollis et  al.,  2012,  2019). Perhaps obviously, recent literature also emphasizes 
the need of an accurate paleogeography, especially paleolatitude (e.g., van Hinsbergen et al., 2015). Consider 
present-day SSTs across Earth, which highly correlate with latitude (Merchant et al., 2019), because they mostly 
relate to incoming solar energy across Earth's spherical surface. A site with an accurately reconstructed SST 
record at mid to high latitudes, but with a 10° latitude misplacement in the past, would lead to a significant 
mismatch (∼5°C) between proxy data and GCM results. A paleogeography reconstruction built on a non-spin 
axis reference frame like the Earth's mantle can result in absolute paleolatitude misplacement by several degrees. 
This problem has been addressed specifically for the southwest Pacific during the Eocene (Hollis et al., 2019), 
because existing sets of boundary conditions for the Eocene used a mantle-based reference frame (e.g., Herold 
et al., 2014).

The absolute position estimate of northern Zealandia is heavily affected by the chosen reference frame. Figure 8 
shows the paleolatitude for the five selected intervals determined in this work compared with the ones deter-
mined by reference APM model (red lines) and with the paleolatitude predicted by the global APWP of Torsvik 
et  al.  (2012, calculated using paleolatitude.org; van Hinsbergen et  al.,  2015). The new data set for northern 
Zealandia (and Australia) presented here is consistent with the global APWP. The minor differences are likely due 
to the fact that the global compilation is built using a 20 Myr sliding window, which over-smooths polar wander 
details on a shorter time-scale. For the purpose of climate numerical modeling, we thus recommend the adoption 
of topographies that are based on maps built using paleomagnetic reference frames. Similarly, regional analyses 
should prioritize the use of regional paleomagnetic data.

6.  Conclusions
There are very few paleomagnetic data from the Australia-northern Zealandia plate during the Cenozoic. Paleo-
magnetic data are assumed to provide a direct estimate of the paleolatitude of a specific plate with respect to the 
spin-axis reference frame, because the geomagnetic field geometry is related to fluid motion in the outer core and 
thus is largely independent from the Earth's mantle. We calculated a set of five paleolatitudes using paleomag-
netic directional data (corrected for sedimentary inclination shallowing) from IODP Expedition 371: one for Site 
U1511, centered at ∼42.5 Ma (middle Eocene), and four for Site U1507, centered at approximately 37, 30, 25, 
and 20 Ma (late Eocene, early and late Oligocene, early Miocene, respectively), which are tied with the recent 
CENOGRID GPTS (Westerhold et al., 2020).

Our paleolatitude estimates are in agreement with global paleomagnetic poles rotated into Australian coordi-
nates. However, when compared with a recent APM model, they generally indicate lower paleolatitudes, and this 
discrepancy is significant for the late Eocene (∼37 Ma). We suggest that estimates of true polar wander since the 
Eocene require revision and explain this discrepancy.

Reliable paleogeographic reconstructions of the Pacific hemisphere during the Eocene-Oligocene require a 
correction for true polar wander and should, as much as possible, be constrained by local paleomagnetic data. 
Paleogeographic reconstructions with incorrect absolute plate positions could have significant consequences 
when modeling ocean circulation, paleoclimate, and paleobiogeography of the geological past. A regional-
ly-constrained paleomagnetic plate tectonic reference frame still represents the most reliable input for most 
studies.

Data Availability Statement
Data supporting the conclusion are stored in Zenodo (https://doi.org/10.5281/zenodo.7043268). IODP Exp. 371 
shipboard data are available at https://web.iodp.tamu.edu.

http://paleolatitude.org
https://doi.org/10.5281/zenodo.7043268
https://web.iodp.tamu.edu/
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