Erratum: Collinear factorization in wide-angle hadron pair production in $e^{+} e^{-}$annihilation
 [Phys. Rev. D 100, 094014 (2019)]

E. Moffat, T. C. Rogers, N. Sato, and A. Signori©

(Received 24 August 2021; published 28 September 2021)

DOI: 10.1103/PhysRevD.104.059904

In our original publication, we presented analytical expressions for the short distance partonic cross sections for dihadron production in $e^{+} e^{-}$reaction in collinear factorization relevant for the large transverse momentum region of the exchange photon in the frame where the detected hadrons are back-to-back. After a new examination of the results, we found a mistake arising from the hadronic tensor decomposition. The full hadronic tensor is (e.g., [1])

$$
\begin{align*}
W^{\mu \nu}\left(q, p_{A}, p_{B}\right)= & \left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{Q^{2}}-Z^{\mu} Z^{\nu}\right) W_{T}+Z^{\mu} Z^{\nu} W_{L}-\left(X^{\mu} Z^{\nu}+Z^{\mu} X^{\nu}\right) W_{\Delta} \\
& +\left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{Q^{2}}-2 X^{\mu} X^{\nu}-Z^{\mu} Z^{\nu}\right) W_{\Delta \Delta} \tag{1}
\end{align*}
$$

In deriving the projection tensors, the paper dropped the contributions from W_{Δ} and $W_{\Delta \Delta}$, which gives incorrect results. After implementing the necessary corrections, we have found that numerically the corrections are at most 3-4\% at the very large q_{T} and vanishes at small q_{T}. Therefore, the phenomenological conclusions and the associated discussion in our manuscript are not significantly impacted by the mistake.

The relevant corrections are as follows:
(i) Equation (12): This expression needs to be replaced by the above expression Eq. (1)
(ii) In Eq. (14) the projector $P_{T}^{\mu \nu}$ is now given by

$$
\begin{equation*}
P_{T}^{\mu \nu}=-\frac{1}{2}\left(g^{\mu \nu}+Z^{\mu} Z^{\nu}\right) \tag{2}
\end{equation*}
$$

(iii) Equation (B2a) reads

$$
\begin{equation*}
\frac{\mathrm{d} \hat{\sigma}_{q \bar{q}}}{\mathrm{~d} \hat{z}_{A} \mathrm{~d} \hat{z}_{B} \mathrm{~d} q_{\mathrm{T}}}=\frac{\mathrm{d} \hat{\sigma}_{\bar{q} q}}{\mathrm{~d} \hat{z}_{A} \mathrm{~d} \hat{z}_{B} \mathrm{~d} q_{\mathrm{T}}}=F \frac{32\left(Q^{2}+q_{\mathrm{T}}^{2}\right)^{2}\left(\hat{z}_{A}^{2}+\hat{z}_{B}^{2}\right)}{\left(Q^{2} \hat{z}_{A}-Q^{2}+\hat{z}_{A} q_{\mathrm{T}}^{2}\right)\left(Q^{2} \hat{z}_{B}-Q^{2}+\hat{z}_{B} q_{\mathrm{T}}^{2}\right)} \tag{3}
\end{equation*}
$$

(iv) Equation (B2b) reads

$$
\begin{align*}
\frac{\mathrm{d} \hat{\sigma}_{q g}}{\mathrm{~d} \hat{z}_{A} \mathrm{~d} \hat{z}_{B} \mathrm{~d} q_{\mathrm{T}}}= & \frac{\mathrm{d} \hat{\sigma}_{\bar{q} g}}{\mathrm{~d} \hat{z}_{A} \mathrm{~d} \hat{z}_{B} \mathrm{~d} q_{\mathrm{T}}} \\
= & F\left(-64 Q^{4} \hat{z}_{A}^{2}-64 Q^{4} \hat{z}_{A} \hat{z}_{B}+128 Q^{4} \hat{z}_{A}-32 Q^{4} \hat{z}_{B}^{2}+128 Q^{4} \hat{z}_{B}-128 Q^{4}-32 q_{\mathrm{T}}^{4}\left(2 \hat{z}_{A}^{2}+2 \hat{z}_{A} \hat{z}_{B}+\hat{z}_{B}^{2}\right)\right. \\
& -32 q_{\mathrm{T}}^{2}\left(4 Q^{2} \hat{z}_{A}^{2}+4 Q^{2} \hat{z}_{A} \hat{z}_{B}-4 Q^{2} \hat{z}_{A}+2 Q^{2} \hat{z}_{B}^{2}-4 Q^{2} \hat{z}_{B}\right) /\left(Q^{2}\left(\hat{z}_{A}-1\right)+\hat{z}_{A} q_{\mathrm{T}}^{2}\right)\left(\left(Q^{2}+q_{\mathrm{T}}^{2}\right)\left(\hat{z}_{A}+\hat{z}_{B}\right)-Q^{2}\right) \tag{4}
\end{align*}
$$

[^0](v) Equation (B2c) reads
\[

$$
\begin{align*}
\frac{\mathrm{d} \hat{\sigma}_{g \bar{q}}}{\mathrm{~d} \hat{z}_{A} \mathrm{~d} \hat{z}_{B} \mathrm{~d} q_{\mathrm{T}}}= & \frac{\mathrm{d} \hat{\sigma}_{g q}}{\mathrm{~d} \hat{z}_{A} \mathrm{~d} \hat{z}_{B} \mathrm{~d} q_{\mathrm{T}}} \\
= & F\left(-32 Q^{4} \hat{z}_{A}^{2}-64 Q^{4} \hat{z}_{A} \hat{z}_{B}+128 Q^{4} \hat{z}_{A}-64 Q^{4} \hat{z}_{B}^{2}+128 Q^{4} \hat{z}_{B}-128 Q^{4}\right. \\
& \left.-32 q_{\mathrm{T}}^{4}\left(\hat{z}_{A}^{2}+2 \hat{z}_{A} \hat{z}_{B}+2 \hat{z}_{B}^{2}\right)-32 q_{\mathrm{T}}^{2}\left(2 Q^{2} \hat{z}_{A}^{2}+4 Q^{2} \hat{z}_{A} \hat{z}_{B}-4 Q^{2} \hat{z}_{A}+4 Q^{2} \hat{z}_{B}^{2}-4 Q^{2} \hat{z}_{B}\right)\right) / \\
& \left(Q^{2}\left(\hat{z}_{B}-1\right)+\hat{z}_{B} q_{\mathrm{T}}^{2}\right)\left(\left(Q^{2}+q_{\mathrm{T}}^{2}\right)\left(\hat{z}_{A}+\hat{z}_{B}\right)-Q^{2}\right) \tag{5}
\end{align*}
$$
\]

where

$$
\begin{equation*}
F=\delta_{+}\left(k_{C}^{2}\right) \frac{\alpha_{\mathrm{em}}^{2} e_{q}^{2} \alpha_{\mathrm{S}} \hat{z}_{A} \hat{z}_{B} q_{\mathrm{T}}\left(Q^{2}+q_{\mathrm{T}}^{2}\right)^{2}}{6 Q^{6}} \tag{6}
\end{equation*}
$$

ACKNOWLEDGMENTS

We thank T. Rainaldi for drawing our attention to the issue. T. Rogers, E. Moffat, and N. Sato were supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award No. DE-SC0018106. This work was also supported by the DOE Contract No. DE-AC05-06OR23177, under which Jefferson Science Associates, LLC operates Jefferson Lab. A. Signori acknowledges support from the European Commission through the Marie Skłodowska-Curie Action SQuHadron (Grant Agreement No. 795475).
[1] J. C. Collins, Foundations of Perturbative QCD (Cambridge University Press, Cambridge, England, 2011).

[^0]: Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.

