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Abstract

In this paper we consider a class of p-evolution equations of arbitrary order with variable coefficients 
depending on time and space variables (t, x). We prove necessary conditions on the decay rates of the 
coefficients for the well-posedness of the related Cauchy problem in Gevrey spaces.
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1. Introduction

The main concern in this paper is the Gevrey well-posedness of the Cauchy problem

{
Pu(t, x) = 0, (t, x) ∈ [0, T ] ×R,

u(0, x) = φ(x), x ∈ R
(1.1)

where, for a fixed p ∈N, p ≥ 2, P is a non-kowalewskian linear evolution operator of the form

P = Dt + ap(t)D
p
x +

p∑
j=1

ap−j (t, x)D
p−j
x , (t, x) ∈ [0, T ] ×R, D = −i∂. (1.2)

We assume that ap ∈ C([0, T ]; R), ap(t) �= 0 ∀t ∈ [0, T ] and ap−j ∈ C([0, T ]; B∞(R)), j =
1, . . . , p, where B∞(R) stands for the space of complex-valued functions bounded on R to-
gether with all their derivatives. The operator P is known in the literature as a p-evolution 
operator with real characteristics (cf. [15]). To point out some outstanding particular cases, 
we recover a Schrödinger-type operator when p = 2 and linearized KdV-type equations when 
p = 3, cf. [1]. Also for higher values of p the linearizations of several dispersive evolution equa-
tions can be written using an operator of the form (1.2), see e.g. [16] and the references therein. 
The Cauchy problem (1.1) for (1.2) has been intensively investigated and well understood in 
H∞(R) =⋂m∈R Hm(R), see [4,5,8,11–13] and in the Schwartz spaces S (R), S ′(R), see [6].

In fact, our assumption ap(t) ∈ R agrees with the necessary condition for well-posedness in 
H∞(R) given by Theorem 3 on page 31 of [15]: Imap(t) ≤ 0 ∀t ∈ [0, T ]. Under this condition, 
if the coefficients aj of the lower order terms are all real-valued, then the problem (1.1) is L2

well-posed; well-posedness of (1.1) may fail if Imaj �= 0 for some 1 ≤ j ≤ p − 1.
A necessary condition on the coefficient ap−1(t, x) of the subprincipal part of P for well-

posedness in H∞(R) has been given in [11] when p = 2 and in [5] for general p ≥ 3; it reads as 
follows:
if (1.1) is well-posed in H∞(R), then there exist M, N > 0 such that

min
0≤τ≤t≤T

�∫
−�

Imap−1(t, x + pap(τ)θ)dθ ≤ M log(1 + �) + N, ∀� > 0, ∀x ∈R. (1.3)

We recall that dealing with one space dimension, for p = 2 condition (1.3) is also sufficient 
for H∞ well-posedness and with M = 0 it is necessary and sufficient for L2 well-posedness, 
cf. [12].

The condition (1.3) clearly implies that if ap−1 does not depend on x, the problem (1.1) is 
not H∞ well-posed. On the other hand, x-dependent coefficients with bounded primitive are 
allowed. For instance, the operator Dt + D2

x + i cosx Dx fulfills (1.3) with M = 0 and the 
associated Cauchy problem is L2 well-posed, cf. [15]. Nevertheless, if we test condition (1.3)
on the model operator

Dt + D
p
x + i〈x〉−σ D

p−1
x , 〈x〉 :=

√
1 + x2, (1.4)
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we immediately realize that for σ ∈ (0, 1) H∞ well-posedness does not hold. In other words, 
if ap−1 is vanishing for |x| → ∞, then its decay must be fast enough to hope for H∞ well 
posedness.

In the study of sufficient conditions for the H∞ well-posedness of (1.1) it is customary to 
impose some pointwise decay conditions as |x| → ∞ on the coefficients ap−j (t, x), 1 ≤ j ≤
p − 1, see [8,13] for p = 2 and [4] for general p ≥ 3. These decay conditions are of the form

| Imap−j (t, x)| ≤ CT 〈x〉− p−j
p−1 ,1 ≤ j ≤ p − 1,

matched with suitable decay conditions on the x-derivatives of aj .

Coming now to well-posedness in Gevrey type spaces, the known results are restricted to the 
case p = 2 for necessary conditions, see [9,10], and to the cases p = 2 and p = 3 for suffi-
cient conditions, see [13] and [2] respectively. Concerning sufficient conditions, as in the H∞
case, they are expressed as decay conditions for |x| → ∞ on the coefficients of the lower order 
terms. As far as we know, there are no results concerning necessary conditions for Gevrey well-
posedness for p ≥ 3. The above mentioned results are settled in the following class of Gevrey 
functions:

H∞
θ (R) :=

⋃
ρ>0

H 0
ρ;θ (R), H 0

ρ;θ (R) := {u ∈ L2(R) : eρ〈ξ〉 1
θ
û(ξ) ∈ L2(R)}

endowed with the norm

‖u‖H 0
ρ;θ (R) := ‖eρ〈·〉 1

θ
û(·)‖L2(R),

where ρ > 0 and ̂u denotes the Fourier transform of u. The space H∞
θ (R) is related to the class 

of Gevrey functions in the following sense:

Gθ
0(R) ⊂ H∞

θ (R) ⊂ Gθ(R),

where Gθ(R) denotes the space of all smooth functions f such that for some C > 0

sup
α∈N0

sup
x∈R

|∂α
x f (x)|C−αα!−θ < +∞,

and Gθ
0(R) is the space of all compactly supported functions contained in Gθ(R).

The definition of well-posedness in H∞
θ (R) for the Cauchy problem (1.1) reads as follows:

Definition 1. We say that the Cauchy problem (1.1) is well-posed in H∞
θ (R) if for any given 

ρ0 > 0 there exist ρ > 0 and C := C(ρ, T ) > 0 such that for all φ ∈ H 0
ρ0;θ (R) there exists a 

unique solution u ∈ C1([0, T ]; H 0
ρ;θ (R)) and the following energy inequality holds

‖u(t, ·)‖H 0 (R) ≤ C‖φ‖H 0 (R), ∀t ∈ [0, T ].

ρ;θ ρ0;θ
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To explain the available results in the literature in a simple way it is convenient to use the 
model operator (1.4) for p = 2 and p = 3 with σ ∈ (0, 1). For results concerning the more 
general operator (1.2) we refer to [13, Theorem 1.1] in the case p = 2 and to [2, Theorem 1] in 
the case p = 3.

• By [10] and [13], for the operator Dt + D2
x + i〈x〉−σ Dx we have:

σ ∈ (0,1) and 1 − σ ≤ 1

θ
⇐⇒ well-posedness inH∞

θ (R), θ > 1.

In the limit case 1 − σ = 1
θ

we have local in time well-posedness, whereas when 1 − σ < 1
θ

we get it on the whole interval [0, T ]. The number 1/(1 − σ) works so as a threshold for the 
Gevrey indices θ for which well-posedness results can be found. The case 1 − σ > 1

θ
has 

been also investigated in [7], where under additional exponential decay conditions on the 
datum g a solution in suitable Gevrey classes has been obtained.

• By [2], for the operator Dt + D3
x + i〈x〉−σ D2

x we have:

σ ∈
(

1

2
,1

)
and 2(1 − σ) ≤ 1

θ
=⇒ well-posedness inH∞

θ (R), θ > 1.

Again, in the limit case 2(1 − σ) = 1
θ

we have local in time well-posedness, whereas when 
2(1 − σ) < 1

θ
we get it on the whole interval [0, T ].

Thus, in the case p = 3 the following two questions arise:

Q1) What happens when the decay rate σ is less than or equal to 1
2 ?

Q2) What happens when 2(1 − σ) > 1
θ

?

The main goal of this manuscript is to answer the two above questions, and at the same time 
to generalize both the questions and the answers to the more general operator (1.2). Namely, we 
give a necessary condition on the Gevrey index θ and on the decay rates of the imaginary parts 
of the coefficients of (1.2) for the well-posedness of the Cauchy problem (1.1) in H∞

θ (R), θ > 1. 
Our main theorem reads as follows.

Theorem 1. Let θ > 1. Let P be an operator of the form (1.2) with ap ∈ C([0, T ]; R) and 
ap(t) �= 0 ∀t ∈ [0, T ], and assume that the coefficients ap−j satisfy the following conditions:

(i) there exist R, A > 0 and σp−j ∈ [0, 1], j = 1, . . . , p − 1, such that

Im ap−j (t, x) ≥ A〈x〉−σp−j , x > R (or x < −R), t ∈ [0, T ], j = 1, . . . , p − 1;

(ii) there exists C > 0 such that for every β ∈ N:

|∂β
x ap−j (t, x)| ≤ Cβ+1β!〈x〉−β, x ∈R, t ∈ [0, T ], j = 1, . . . , p.
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If the Cauchy problem (1.1) is well-posed in H∞
θ (R), then

� := max
j=1,...,p−1

{(p − 1)(1 − σp−j ) − j + 1} ≤ 1

θ
. (1.5)

Remark 1. Notice that in the case p = 2, the condition i) in Theorem 1 is equivalent in one space 
dimension to the slow decay condition assumed in [10].

Remark 2. Let us notice that since (p − 1)(1 − σp−1) > 0 we always have � > 0. We also point 
out the following inequalities

(p − 1)(1 − σp−j ) − j + 1 ≥ 1 ⇐⇒ σp−j ≤ p − 1 − j

p − 1
,

(p − 1)(1 − σp−j ) − j + 1 ≤ 0 ⇐⇒ σp−j ≥ p − j

p − 1
.

Therefore, as a consequence of (1.5), when θ > 1 we conclude the following:

• If σp−j ≤ p−1−j
p−1 for some j = 1, . . . , p − 1, the Cauchy problem is not well-posed in 

H∞
θ (R);

• If σp−j ≥ p−j
p−1 for some j = 1, . . . , p − 1, then the power σp−j has no effect on the H∞

θ

well-posedness;

• If σp−j ∈
(

p−1−j
p−1 ,

p−j
p−1

)
for some j = 1, . . . , p − 1, then the power σp−j imposes the re-

striction

(p − 1)(1 − σp−j ) − j + 1 ≤ 1

θ

for the indices θ where H∞
θ well-posedness can be found.

In particular, we conclude that a first order coefficient of the type a1(t, x) = i〈x〉−σ1 , σ1 ∈ (0, 1)

cannot affect the H∞
θ well-posedness of (1.1) for all θ > 1, whereas ap−j (t, x) = i〈x〉−σp−j , 

j = 1, . . . , p − 2, can compromise well-posedness provided that σp−j is close enough to zero.

Remark 3. We also notice that if at least one of the coefficients ap−j (t, x) decays less rapidly 
than any negative power of 〈x〉, e.g. if ap−j (t, x) = i(log(

√
2 + x2))−1 for some j , then ap−j

fulfills the assumption (ii) for any σp−j > 0. So, for any fixed θ > 1 we can find σp−j ∈ (0, 1)

so that (p − 1)(1 −σp−j ) − j + 1 > θ−1. Hence, there is no well-posedness in H∞
θ (R), θ > 1 in 

this case. This opens the new question of finding a suitable functional setting where the Cauchy 
problem is well-posed in this situation.

Considering the model operator Dt + D3
x + i〈x〉−σ D2

x , σ ∈ (0, 1), from Theorem 1 and the 
above remark we obtain the answer to the two questions posed before.

A1) There is no well-posedness in H∞
θ (R) of the Cauchy problem for Dt + D3

x + i〈x〉−σ D2
x

when σ ≤ 1 .
2
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A2) If σ ∈ (1/2, 1), the Cauchy problem associated with Dt +D3
x + i〈x〉−σ D2

x is not well-posed 
in H∞

θ (R) when 2(1 − σ) > 1
θ

. Thus, 2(1 − σ) is the threshold for the Gevrey indices θ for 
which well-posedness results in H∞

θ (R) can be obtained.

Remark 4. By the known results for p = 2, 3 and by Theorem 1, we conjecture that we can 
obtain well-posedness for (1.1) in H∞

θ (R) for all θ ∈ (1, �−1) for a generic p. Notice that the 
latter interval becomes more and more narrow as p increases. We intend to treat this problem in 
a future paper.

The paper is organized as follows. In Section 2 we recall some classical definitions and pre-
liminary results that will be needed for the subsequent parts of the work. Section 3 is devoted to 
define the principal tools for the proof of Theorem 1 and to explain the strategy we will follow to 
prove it. Section 4 contains several technical estimates needed to obtain our main result. Finally, 
in Section 5, we present the proof of Theorem 1.

2. Preliminaries

In this section we fix some notation and recall the basic definitions and results we will employ 
in the subsequent sections. Throughout the paper we shall denote respectively by 〈·, ·〉 and ‖ · ‖
the scalar product and the norm in L2(R). For functions depending on (t, x) appearing in the 
next sections, 〈·, ·〉 and ‖ · ‖ will always denote the scalar product and the norm in L2(Rx) for a 
fixed t ∈ [0, T ].

Given m ∈R, we denote by Sm
0,0(R) the space of all functions p ∈ C∞(R2) such that for any 

α, β ∈ N0 the following estimate holds

|∂α
ξ ∂β

x p(x, ξ)| ≤ Cα,β〈ξ 〉m

for a positive constant Cα,β . The topology of the space Sm
0,0(R) is induced by the following 

family of seminorms

|p|(m)

 := max

α≤
,β≤

sup

x,ξ∈R
|∂α

ξ ∂β
x p(x, ξ)|〈ξ 〉−m, p ∈ Sm

0,0(R), 
 ∈ N0.

As usual we associate to every symbol p ∈ Sm
0,0(R) the continuous operator on the Schwartz 

space of rapidly decreasing functions p(x, D) : S (R) → S (R), known as pseudodifferential 
operator, given by

p(x,D)u(x) =
∫

eiξxp(x, ξ )̂u(ξ)d−ξ, u ∈ S (R),

where d−ξ := dξ
2π

. Sometimes we will write p(x, D) = op(p(x, ξ)). The next Theorem 2 gives the 
action of operators coming from symbols Sm

0,0(R) in the standard Sobolev spaces Hs(R), s ∈ R, 
defined by

Hs(R) := {u ∈ S ′(R) : 〈ξ 〉s û(ξ) ∈ L2(R)}, ‖u‖Hs(R) := ‖〈ξ 〉su‖.

We recall that, when s is a positive integer we can replace ‖u‖Hs(R) by the equivalent norm
225
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‖u‖s :=
s∑

j=0

‖Dj
xu‖.

Theorem 2. [Calderón-Vaillancourt] Let p ∈ Sm
0,0(R). Then for any real number s ∈ R there 

exist 
 := 
(s, m) ∈ N0 and C := Cs,m > 0 such that

‖p(·,D)u‖Hs(R) ≤ C|p|(m)

 ‖u‖Hs+m(R), ∀u ∈ Hs+m(R).

Besides, when m = s = 0 we can replace |p|(m)

 by

max
α,β≤2

sup
x,ξ∈R

|∂α
ξ ∂β

x p(x, ξ)|.

For a proof of Theorem 2 we address the reader to Theorem 1.6 on page 224 of [14]. Now 
we consider the algebra properties of Sm

0,0(R) with respect to the composition of operators. Let 

pj ∈ S
mj

0,0(R), j = 1, 2, and define

q(x, ξ) = Os −
∫∫

e−iyηp1(x, ξ + η)p2(x + y, ξ)dyd−η (2.1)

= lim
ε→0

∫∫
e−iyηp1(x, ξ + η)p2(x + y, ξ)e−ε2y2

e−ε2η2
dyd−η.

Then we have the following theorem (for a proof see Lemma 2.4 on page 69 and Theorem 1.4
on page 223 of [14]).

Theorem 3. Let pj ∈ S
mj

0,0(R), j = 1, 2, and consider q defined by (2.1). Then q ∈ S
m1+m2
0,0 (R)

and q(x, D) = p1(x, D)p2(x, D). Moreover, the symbol q has the following asymptotic expan-
sion

q(x, ξ) =
∑
α<N

1

α!∂
α
ξ p1(x, ξ)Dα

x p2(x, ξ) + rN(x, ξ),

where

rN(x, ξ) = N

1∫
0

(1 − θ)N−1

N ! Os −
∫∫

e−iyη∂N
ξ p1(x, ξ + θη)DN

x p2(x + y, ξ)dyd−η dθ,

and the seminorms of rN may be estimated in the following way: for any 
0 ∈ N0 there exists 

1 := 
1(
0) ∈ N0 such that

|rN |(m1+m2)

0

≤ C
0 |∂N
ξ p1|(m1)


1
|∂N

x p2|(m2)

1

.

The last theorem that we recall is a version of the so-called sharp Gårding inequality which 
takes into account the polynomial behavior at infinity on |x| of the symbol. To state this result 
it is convenient to introduce the SG symbol classes. Given m1, m2 ∈ R, we say that a smooth 
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function p ∈ C∞(R2) belongs to the class SGm1,m2(R2) if for every α, β ∈ N0 there exists a 
positive constant Cα,β > 0 such that

|∂α
ξ ∂β

x p(x, ξ)| ≤ Cα,β〈ξ 〉m1−α〈x〉m2−β.

Let p ∈ SGm1,m2(R2), then we consider the following special type of Friedrichs’ symmetrization

pF,L(x, ξ) = Os −
∫∫

e−iyηpF (ξ + η,x + y, ξ)dyd−η, (2.2)

where

pF (ξ, x′, ξ ′) =
∫

F(x′, ξ, ζ )p(x′, ζ )F (x′, ξ ′, ζ )dζ, x′, ξ, ξ ′ ∈R,

F (x′, ξ, ζ ) = q(〈x′〉 1
2 〈ξ 〉− 1

2 (ξ − ζ ))〈ξ 〉− 1
4 〈x′〉 1

4 , x′, ξ, ζ ∈R,

for some even cutoff function q ∈ C∞
0 (R) such that 

∫
q2 = 1 (cf. Definition 11 of [3]). Then we 

have the following result (see Theorem 4 and Proposition 6 of [3]).

Theorem 4. Let p ∈ SGm1,m2(R) and let moreover pF,L be the symbol defined by (2.2). 
Then pF,L ∈ SGm1,m2(R) and p − pF,L ∈ SGm1−1,m2−1(R). Moreover, if p(x, ξ) ≥ 0 then 
〈pF,L(x, D)u, u〉 ≥ 0 for all u ∈ S (R).

3. Idea of the proof

To prove our result we follow an argument inspired by [10]. We shall prove that if the Cauchy 
problem (1.1) is well-posed in H∞

θ (R), then the denial of (1.5) leads to a contradiction. With 
this idea in mind let us start by defining the main ingredients to get the desired contradiction. 
Consider a Gevrey cutoff function h ∈ G

θh

0 (R) for some θh > 1 close to 1 such that

h(x) =
{

1, |x| ≤ 1
2 ,

0, |x| ≥ 1.

For a sequence {νk} of positive real numbers such that νk → ∞ as k → ∞, we define the follow-
ing sequence of symbols

wk(x, ξ) = h

(
x − 4ν

p−1
k

ν
p−1
k

)
h

(
ξ − νk

1
4νk

)
. (3.1)

Note that wk(x, ξ) is a symbol localized around the bicharacteristic curve of ξp passing through 
the point (0, νk) at some fixed time t (in this case t = 4/p). Indeed, the bicharacteristic curve of 
ξp (usually called Hamilton flow generated by the operator Dt + D

p
x ) passing through a point 

(x0, ξ0) ∈ R2, is the solution of{
x′(t) = pξ(t)p−1, x(0) = x0,

ξ ′(t) = 0, ξ(0) = ξ0,
(3.2)
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that is (x(t), ξ(t)) = (x0 + ptξ
p−1
0 , ξ0).

Remark 5. On the support of wk(·, ·) we have that ξ is comparable with νk and x is comparable 
with νp−1

k . Indeed, if ξ ∈ suppwk(x, ·) then

|ξ − νk| ≤ 1

4
νk ⇐⇒ 3νk

4
≤ ξ ≤ 5νk

4
,

for all k ∈ N0. Similarly, if x ∈ suppwk(·, ξ) then

|x − 4ν
p−1
k | ≤ ν

p−1
k ⇐⇒ 3ν

p−1
k ≤ x ≤ 5ν

p−1
k ,

for all k ∈ N0.

Consider now φ ∈ Gθ(R) such that

φ̂(ξ) = e−2ρ0〈ξ〉 1
θ
,

for some ρ0 > 0 and define φk(x) = φ(x − 4ν
p−1
k ) for all k ∈ N0. From the assumed H∞

θ

well-posedness, let uk ∈ C1([0, T ]; H 0
ρ;θ (R)) be the solution of (1.1) with initial datum φk ∈

H 0
ρ0;θ (R). Then for λ ∈ (0, 1) and θ1 > θh (still close to 1) to be chosen later, we define

Nk = �ν
λ
θ1
k � (3.3)

and then we introduce the energy

Ek(t) =
∑

α≤Nk,β≤Nk

1

(α!β!)θ1
‖w(αβ)

k (x,D)uk(t, x)‖ =
∑

α≤Nk,β≤Nk

Ek,α,β(t), (3.4)

where

w
(αβ)
k (x, ξ) = h(α)

(
x − 4ν

p−1
k

ν
p−1
k

)
h(β)

(
ξ − νk

1
4νk

)
.

The next lemma, whose proof follows from Remark 5 and a simple computation, gives esti-
mates for the norms of wk .

Lemma 1. Let α, β, γ, δ, μ, 
 ∈ N0. Then w(αβ)
k ∈ S0

0,0(R
2) and there exists C := C(θh) such 

that

|ξμ∂δ
x∂

γ
w

(αβ)
(x, ξ)|(0) ≤ Cα+β+γ+δ+μ+
+1(α!β!γ !δ!
!2)θhν

μ−γ
ν

−δ(p−1)
.
ξ k 
 k k
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Assuming that the Cauchy problem (1.1) is H∞
θ well-posed, by the energy estimate for the 

solution (see Definition 1) we simply obtain a uniform upper bound for the energies Ek(t) with 
respect to both k ∈ N0 and t ∈ [0, T ]. Indeed, the Calderón-Vaillancourt theorem implies (for the 
same constant C of Lemma 1) that

Ek,α,β(t) ≤ Cα+β+1(α!β!)θh−θ1‖uk(t)‖ ≤ Cα+β+1(α!β!)θh−θ1‖uk(t)‖H 0
ρ,θ (R)

and then from the H∞
θ well-posedness

Ek,α,β(t) ≤ CT,ρ0C
α+β(α!β!)θh−θ1‖φk‖H 0

ρ0,θ (R) (3.5)

= CT,ρ0C
α+β(α!β!)θh−θ1‖φ‖H 0

ρ0,θ (R)

= CT,ρ0,φCα+β(α!β!)θh−θ1 .

Recalling that θ1 > θh, we conclude that

Ek(t) ≤ CT,ρ0,φ

∑
α≤Nk,β≤Nk

Cα+β(α!β!)θh−θ1 ≤ CT,ρ0,φ

∑
α,β≥0

Cα+β(α!β!)θh−θ1 (3.6)

= C1CT,ρ0,φ, ∀ t ∈ [0, T ], k ∈N0.

The idea to get a contradiction is to use the energy method to obtain an estimate from below 
for Ek(t), t ∈ [0, T ], of the type

Ek(t) ≥ f (νk),

where f (νk) → +∞ if (1.5) does not hold. Obtaining such estimate is the most involving part of 
the proof, so we shall dedicate the next section to deal with this problem.

4. Estimates from below for Ek(t)

We denote

v
(αβ)
k (t, x) = w

(αβ)
k (x,D)uk(t, x). (4.1)

Then we have

Pv
(αβ)
k = w

(αβ)
k Puk︸︷︷︸

=0

+[P,w
(αβ)
k ]uk = [P,w

(αβ)
k ]uk =: f (αβ)

k ,

and therefore
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‖v(αβ)
k ‖∂t‖v(αβ)

k ‖ = 1

2
∂t {‖v(αβ)

k ‖2} (4.2)

= Re 〈∂tv
(αβ)
k , v

(αβ)
k 〉

= Re 〈if (αβ)
k , v

(αβ)
k 〉 − Re 〈iap(t)D

p
x v

(αβ)
k , v

(αβ)
k 〉︸ ︷︷ ︸

=0

−
p∑

j=1

Re 〈iap−j (t, x)D
p−j
x v

(αβ)
k , v

αβ
k 〉

≥ −‖f (αβ)
k ‖‖v(αβ)

k ‖ −
p−1∑
j=1

Re 〈iap−j (t, x)D
p−j
x v

(αβ)
k , v

αβ
k 〉 − Ca0‖v(αβ)

k ‖2.

The terms Re 〈iap−j (t, x)D
p−j
x v

(αβ)
k , v(αβ)

k 〉 (j = 1, . . . , p − 1) will provide the contradic-

tion, whereas ‖f (αβ)
k ‖ will be negligible in some sense. Being more precise, we shall obtain 

estimates from above for ‖f (αβ)
k ‖ and absorb them into an estimate from below for the terms 

Re 〈iap−j (t, x)D
p−j
x v

(αβ)
k , v(αβ)

k 〉. In the next two subsections we shall discuss these estimates.

4.1. Estimate from below for Re 〈iap−j (t, x)D
p−j
x v

(αβ)
k , v(αβ)

k 〉

For j = 1, . . . , p − 1 we write

− Re 〈iap−jD
p−j
x v

(αβ)
k , v

(αβ)
k 〉

= Re 〈Im ap−jD
p−j
x v

(αβ)
k , v

(αβ)
k 〉 − Re 〈i Re ap−jD

p−j
x v

(αβ)
k , v

(αβ)
k 〉

= Re 〈Im ap−jD
p−j
x v

(αβ)
k , v

(αβ)
k 〉 + 1

2

p−j−1∑
s=0

(
p − j

s

)
〈iDp−j−s

x Re ap−jD
s
xv

(αβ)
k , v

(αβ)
k 〉.

Then we consider the following cutoff functions

χk(ξ) = h

(
ξ − νk

3
4νk

)
, ψk(x) = h

(
x − 4ν

p−1
k

3ν
p−1
k

)
. (4.3)

Note that on the support of ψk(x)χk(ξ) we have the following

|ξ − νk| ≤ 3

4
νk ⇐⇒ νk

4
≤ ξ ≤ 7νk

4
,

|x − 4ν
p−1
k | ≤ 3ν

p−1
k ⇐⇒ ν

p−1
k ≤ x ≤ 7ν

p−1
k ,

for all k ∈ N0. Therefore,

(x, ξ) ∈ suppψk(x)χk(ξ) ⇒ ξp−j ≥ ν
p−j
k

4p−j
, 〈x〉−σp−j ≥ 7−σp−j 〈νp−1

k 〉−σp−j . (4.4)

Denoting
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cp−j = A
7−σp−j

4p−j
, (4.5)

where A is the constant appearing in condition i) of Theorem 1, we decompose the symbol of 
Im ap−j (t, x)D

p−j
x as follows

Im ap−j (t, x)ξp−j

= cp−j 〈νp−1
k 〉−σp−j ν

p−j
k +

(
Im ap−j (t, x)ξp−j − cp−j 〈νp−1

k 〉−σp−j ν
p−j
k

)
= cp−j 〈νp−1

k 〉−σp−j ν
p−j
k +

(
Im ap−j (t, x)ξp−j − cp−j 〈νp−1

k 〉−σp−j ν
p−j
k

)
ψk(x)χk(ξ)

+
(

Im ap−j (t, x)ξp−j − cp−j 〈νp−j
k 〉−σp−j ν

p−j
k

)
(1 − ψk(x)χk(ξ)) .

Using assumption (i) we get for k sufficiently large

Im ap−j (t, x)ξp−j ≥ cp−j 〈νp−1
k 〉−σp−j ν

p−j
k + Ip−j,k(x, ξ) + Jp−j,k(t, x, ξ), (4.6)

where

Ip−j,k(x, ξ) =
(
A〈x〉−σp−j ξp−j − cp−j 〈νp−1

k 〉−σp−j ν
p−j
k

)
ψk(x)χk(ξ), (4.7)

Jp−j,k(t, x, ξ) =
(

Im ap−j (t, x)ξp−j − cp−j 〈νp−1
k 〉−σp−j ν

p−j
k

)
(1 − ψk(x)χk(ξ)) . (4.8)

Let us immediately notice that by (4.4), (4.7) and the choice (4.5) of cp−j we have

Ip−j,k(x, ξ) ≥ 0, ∀ (x, ξ) ∈ R2. (4.9)

Hence

Re 〈 Im ap−j (t, x)D
p−j
x v

(αβ)
k , v

(αβ)
k 〉 ≥ Re 〈cp−j 〈νp−1

k 〉−σp−j ν
p−j
k v

(αβ)
k , v

(αβ)
k 〉 (4.10)

+ Re 〈Ip−j,k(x,D)v
(αβ)
k , v

(αβ)
k 〉 + Re 〈Jp−j,k(t, x,D)v

(αβ)
k , v

(αβ)
k 〉

= cp−j 〈νp−1
k 〉−σp−j ν

p−j
k ‖v(αβ)

k ‖2

+ Re 〈Ip−j,k(x,D)v
(αβ)
k , v

(αβ)
k 〉 + Re 〈Jp−j,k(t, x,D)v

(αβ)
k , v

(αβ)
k 〉

≥ cp−j 2−σp−j /2ν
(p−1)(1−σp−j )−j+1
k ‖v(αβ)

k ‖2

+ Re 〈Ip−j,k(x,D)v
(αβ)
k , v

(αβ)
k 〉 + Re 〈Jp−j,k(t, x,D)v

(αβ)
k , v

(αβ)
k 〉.

From now on, we shall denote by C a positive constant independent of k, α, β, Nk but possibly 
depending on φ, ρ0, T and on the coefficients ap−j .
231



A. Arias Junior, A. Ascanelli and M. Cappiello Journal of Differential Equations 405 (2024) 220–246
Lemma 2. If (1.1) is well-posed in H∞
θ (R), then for any M ∈N the following estimate holds:

‖Dr
xv

(αβ)
k ‖ ≤ Cνr

k‖v(αβ)
k ‖ + Cα+β+M+1{α!β!}θhM!2θh−1νr−M

k

for some C > 0 independent of k.

Proof. We split the symbol of Dr
x as

ξ r = ξ rχk(ξ) + ξ r{1 − χk(ξ)}.
Using the properties of the support of χk (ξ comparable with νk) and the Calderón-Vaillancourt 
theorem we obtain

‖Dr
xχk(D)v

(αβ)
k ‖ ≤ Cνr

k‖v(αβ)
k ‖. (4.11)

Since the supports of w(αβ)
k (x, ξ) and of 1 − χk(ξ) are disjoint, recalling (4.1) we get

op
(
ξ r{1 − χk(ξ)})w(αβ)

k (x,D) = r
(αβ)
k,M (x,D), (4.12)

where, defining qk(ξ) = ξ r{1 − χk(ξ)},

r
(αβ)
k,M (x, ξ) = M

1∫
0

(1 − θ)M−1

M! Os −
∫∫

e−iyη∂M
ξ qk(ξ + θη)DM

x w
(αβ)
k (x + y, ξ)dyd−η dθ.

We write ∂M
ξ qk in the following way:

∂M
ξ qk(ξ)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{1 − χk(ξ)} r!
(r − M)!ξ

r−M −
∑

M1+M2=M

M1≥1

M!
M1!M2!∂

M1
ξ χk(ξ)

r!
(r − M2)!ξ

r−M2, M ≤ r,

−
∑

M1+M2=M

M2≤r

M!
M1!M2!∂

M1
ξ χk(ξ)

r!
(r − M2)!ξ

r−M2, M > r.

(4.13)
If M > r we see that supp∂M

ξ qk ⊂ suppχk , so we can estimate the seminorms of rαβ
k,M as follows: 

for every 
0 ∈N0 there exists 
1 := 
1(
0) such that

|r(αβ)
k,M |(0)


0
≤ C(
0)

M

M! |∂
M
ξ qk|(0)


1
|∂M

x w
(αβ)
k |(0)


1
.

From Lemma 1 we get

|∂M
x w

(αβ)
k |(0)


1
≤ C
1+α+β+M+1
1!2θh{α!β!M!}θhν

−M(p−1)
k .

On the other hand (using the support of χk) we have
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|∂M
ξ qk(ξ)|(0)


1
≤ C
1+M+1
1!θhM!θhνr−M

k .

Therefore

|r(αβ)
k,M |(0)


0
≤ Cα+β+M+1{α!β!}θhM!2θh−1νr−M

k ν
−M(p−1)
k .

When M ≤ r , from (4.13) we have ∂M
ξ qk(ξ) = {1 − χk(ξ)}r!(r − M)!−1ξ r−M + bk(ξ) where 

suppbk ⊂ suppχk . Since the part of r(αβ)
k,M involving bk can be estimated as before, we only 

explain how to treat the part regarding {1 − χk(ξ)}r!(r − M)!−1ξ r−M which will be denoted by 
a

(αβ)
k,M in the following. Writing

(ξ + θη)r−M =
∑

r1+r2=r−M

(r − M)!
r1!r2! ξ r1(θη)r2 ,

integration by parts gives

a
(αβ)
k,M (x, ξ) = r!

(r − M)!
∑

r1+r2=r−M

(r − M)!
r1!r2! M

1∫
0

(1 − θ)M−1

M! θr2

Os −
∫∫

e−iyη{1 − χk}(ξ + θη)DM+r2
x w

(αβ)
k (x + y, ξ)ξ r1dyd−η dθ.

In this way, for any 
0 ∈N0 there exists 
1 := 
1(
0) such that

|a(αβ)
k,M (x, ξ)|(0)


0
≤ r!M

M!
∑

r1+r2=r−M

1

r1!r2! |{1 − χk}(ξ)|(0)

1

|ξ r1DM+r2
x w

(αβ)
k (x, ξ)|(0)


1

≤ r!M
M!

∑
r1+r2=r−M

1

r1!r2!C
α+β+r+1

0

{α!β!M!r2!}θhν
−(p−1)(M+r2)
k ν

r1
k

≤ C
α+β+M+1

1,r

{α!β!}θhM!2θh−1νr−M
k ν

−(p−1)M
k .

Thus, we also have

|r(αβ)
k,M |(0)


0
≤ Cα+β+M+1{α!β!}θhM!2θh−1ν

r−pM
k , (4.14)

when M ≤ r . Therefore, from (4.1), (4.12), the Calderón-Vaillancourt Theorem, (4.14) and the 
energy estimate for uk (coming from the assumed H∞

θ (R) well-posedness) we get

‖Dr
x(1 − χk(D))v

(αβ)
k ‖ ≤ Cα+β+M+1{α!β!}θhM!2θh−1ν

r−pM
k . (4.15)

From (4.11) and (4.15) we conclude the desired estimate. �
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4.1.1. Estimate of Re 〈Ip−j,k(x, D)v
(αβ)
k , v(αβ)

k 〉
The symbol Ip−j,k defined by (4.7) belongs to SGp−j,−σp−j (R2) and its seminorms are uni-

formly bounded with respect to k. Indeed, since x is comparable with νp−1
k and ξ is comparable 

with νk on the support of ψk(x)χk(ξ) we obtain

|∂γ
ξ ∂δ

xIp−j,k(x, ξ)|

≤
∑

γ1+γ2=γ

δ1+δ2=δ

γ !δ!
γ1!γ2!δ1!δ2! |∂

γ1
ξ ∂δ1

x {A〈x〉−σp−j ξp−j − cp−j 〈νp−1
k 〉−σp−j ν

p−1
k }|

× |∂δ2
x ψk(x)∂

γ2
ξ χk(ξ)|

≤
∑

γ1+γ2=γ

δ1+δ2=δ

γ !δ!
γ1!γ2!δ1!δ2!C

γ1+δ1+1γ1!δ1!〈ξ 〉p−j−γ1〈x〉−σp−j −δ1Cγ2+δ2+1γ2!θhδ2!θhν
−γ2−δ2(p−1)

k

≤ Cγ+δ+1{γ !δ!}θh〈ξ 〉p−j−γ 〈x〉−σp−j −δ.

Thanks to (4.9), we can apply Theorem 4 to Ip−j,k(x, D) to get the following decomposition

Ip−j,k(x,D) = pp−j,k(x,D) + rp−j,k(x,D),

where pp−j,k(x, D) is a positive operator and rp−j,k ∈ SGp−j−1,−σp−j −1(R2). In addition, since 
the seminorms of Ip−j,k are uniformly bounded with respect to k, the same holds for the semi-
norms of rp−j,k . In this way we conclude that

Re 〈Ip−j,k(x,D)v
(αβ)
k , v

(αβ)
k 〉 ≥ Re 〈rp−j,k(x,D)v

(αβ)
k , v

(αβ)
k 〉

= Re 〈rp−j,k(x,D)〈x〉σp−j +1︸ ︷︷ ︸
orderp−j−1

〈x〉−σp−j −1v
(αβ)
k , v

(αβ)
k 〉

≥ −C‖〈x〉−σp−j −1v
(αβ)
k ‖Hp−j−1(R)‖v(αβ)

k ‖

≥ −C‖v(αβ)
k ‖

p−j−1∑
r=0

‖Dr
x{〈x〉−1−σp−j v

(αβ)
k }‖.

To handle with the terms ‖Dr
x{〈x〉−σp−j −1v

(αβ)
k }‖ we first write

Dr
x{〈x〉−σp−j −1v

(αβ)
k } =

r∑
r ′=0

(
r

r ′

)
Dr ′

x 〈x〉−σp−j −1Dr−r ′
x v

(αβ)
k .

On the support of Dr−r ′
x v

(αβ)
k we have that x is comparable with νp−1

k , so

‖Dr
x{〈x〉−σp−j −1v

(αβ)
k }‖ ≤ Cr+1ν

−(p−1)(σp−j +1)

k

r∑
r ′=0

r!
(r − r ′)! ‖D

r−r ′
x v

(αβ)
k ‖.
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Applying Lemma 2 for M = Nk we obtain

‖Dr
x{〈x〉−σp−j −1v

(αβ)
k }‖ ≤Cν

−(p−1)(σp−j +1)+r

k ‖v(αβ)
k ‖

+ Cα+β+Nk+1{α!β!}θhNk!2θh−1ν
−(p−1)(σp−j +1)

k ν
r−Nk

k .

Hence,

Re 〈Ip−j,k(x,D)v
(αβ)
k , v

(αβ)
k 〉 ≥ −Cν

−(p−1)σp−j −j

k ‖v(αβ)
k ‖2 (4.16)

− Cα+β+Nk+1{α!β!}θhNk!2θh−1ν
−(p−1)σp−j −j−Nk

k ‖v(αβ)
k ‖.

4.1.2. Estimate of Re 〈Jp−j,k(t, x, D)v
(αβ)
k , v(αβ)

k 〉
Since the supports of 1 − ψk(x)χk(ξ) and of w(αβ)

k (x, ξ) are disjoint, we may write

Jp−j,k(t, x,D)w
(αβ)
k (x,D) = R

(αβ)
p−j,k(t, x,D),

where

R
(αβ)
p−j,k(t, x, ξ) = Nk

1∫
0

(1 − θ)Nk−1

Nk! Os

−
∫∫

e−iyη∂
Nk

ξ Jp−j,k(t, x, ξ + θη)DNk
x w

(αβ)
k (x + y, ξ)dyd−η dθ.

The seminorms of R(αβ)
k can be estimated in the following way: for every 
0 ∈ N0 there exists 


1 = 
1(
0) such that

|R(αβ)
p−j,k|(0)


0
≤ C(
0)

Nk

Nk! |∂
Nk

ξ Jp−j,k|(0)

1

|∂Nk
x w

(αβ)
k |(0)


1
.

From Lemma 1 we get

|∂Nk
x w

(αβ)
k |(0)


1
≤ C
1+α+β+Nk+1
1!2θh{α!β!Nk!}θhν

−Nk(p−1)
k .

On the other hand, with similar computations as in (4.13) and since there is no harm into assum-
ing Nk ≥ p (because νk → +∞ and Nk is defined by (3.3)),

∂
Nk

ξ Jp−j,k(t, x, ξ)

= −
∑

N1+N2=Nk
N1≤p−j

Nk!
N1!N2!∂

N1
ξ {Im ap−j (t, x)ξp−j − cp−j 〈νp−1

k 〉−σp−j ν
p−j
k }ψk(x)∂

N2
ξ χk(ξ)

hence

|∂NkJp−j,k(t, x, ξ)|(0) ≤ C
1+Nk+1
1!2θhNk!θhν
p−j−Nk .
ξ 
1 k
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Therefore

|R(αβ)
p−j,k|(0)


0
≤ Cα+β+Nk+1{α!β!}θhNk!2θh−1ν

p−j−Nk

k ν
−Nk(p−1)
k ,

which allows us to conclude

‖Jp−j,k(t, x,D)v
(αβ)
k ‖ ≤ Cα+β+Nk+1{α!β!}θhNk!2θh−1ν

p−j−Nk

k ν
−Nk(p−1)
k .

So,

Re 〈Jp−j,k(t, x,D)v
(αβ)
k , v

(αβ)
k 〉 ≥ −Cα+β+Nk+1{α!β!}θhNk!2θh−1ν

p−j−Nk

k ν
−Nk(p−1)
k ‖v(αβ)

k ‖.
(4.17)

4.1.3. Estimate of 
∑p−j−1

s=0

(
p−j

s

)〈iDp−j−s
x Re ap−jD

s
xv

(αβ)
k , v(αβ)

k 〉
From assumption (ii), the support of Ds

xv
(αβ)
k and Lemma 2 we get, for s ≤ p − j − 1,

‖Dp−j−s
x Re ap−jD

s
xv

(αβ)
k ‖

≤ Cν
−(p−j−s)(p−1)
k ‖Ds

xv
(αβ)
k ‖

≤ Cν
−(p−j−s)(p−1)
k {Cνs

k‖v(αβ)
k ‖ + Cα+β+Nk+1(α!β!)θhNk!2θh−1ν

s−Nk

k }
≤ Cν

−j
k ‖v(αβ)

k ‖ + Cα+β+Nk+1(α!β!)θhNk!2θh−1ν
−j−Nk

k .

Hence

1

2

p−j−1∑
s=0

(
p − j

s

)
〈iDp−j−s

x Re ap−jD
s
xv

(αβ)
k , v

(αβ)
k 〉 (4.18)

≥ −Cν
−j
k ‖v(αβ)

k ‖2 − Cα+β+Nk+1(α!β!)θhNk!2θh−1ν
−j−Nk

k ‖v(αβ)
k ‖.

From (4.10), (4.16), (4.17) and (4.18) using the fact that νk → +∞ we obtain the following 
lemma.

Lemma 3. If (1.1) is well-posed in H∞
θ (R), then for all k sufficiently large the estimate

−
p−1∑
j=1

Re 〈iap−j (t, x)D
p−j
x v

(αβ)
k , v

αβ
k 〉 ≥ c1ν

�
k ‖v(αβ)

k ‖2

− Cα+β+Nk+1{α!β!}θhNk!2θh−1ν
−1−Nk

k ‖v(αβ)
k ‖,

holds for some c1 > 0 independent of k, α, β and Nk , where � is defined by (1.5).
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4.2. Estimate from below of f (αβ)
k

We start recalling that

f
(αβ)
k = [P,w

(αβ)
k ]uk = [Dt + ap(t)D

p
x ,w

(αβ)
k ]uk +

p∑
j=1

[ap−j (t, x)D
p−j
x ,w

(αβ)
k ]uk.

In the sequel we shall explain how to estimate the above commutators.

4.2.1. Estimate of [Dt + D
p
x , w(αβ)

k ]uk

Since w(αβ)
k is independent of t we have

[Dt + ap(t)D
p
x ,w

(αβ)
k ] = ap(t)

p∑
γ=1

1

γ !
p!

(p − γ )!D
γ
x w

(αβ)
k D

p−γ
x .

Now we use the formula

f (x)Dλg(x) =
λ∑

j=0

(−1)j
(

λ

j

)
Dλ−j (g(x)Djf (x)) (4.19)

for smooth functions f, g, and the following elementary identities:

p∑
γ=1

p−γ∑
j=0

cγ,j aγ+j =
p∑


=1

{

∑

s=1

cs,
−s

}
a
,

(−1)
+1


! =

∑

s=1

(−1)
−s

s!(
 − s)! ,

to deduce that

[Dt + ap(t)D
p
x ,w

(αβ)
k ]

= ap(t)

p∑
γ=1

p−γ∑
j=0

(−1)jp!
γ !j !(p − γ − j)!

(
1

iν
p−1
k

)γ+j

D
p−γ−j
x ◦ w

((α+γ+j)β)

k (x,D)

= ap(t)

p∑

=1

{

∑

s=1

(−1)
−s

s!(
 − s)!

}
p!

(p − 
)!

(
1

iν
p−1
k

)


D
p−

x ◦ w

((α+
)β)
k (x,D)

= ap(t)

p∑

=1

(−1)
+1
(

p




)(
1

iν
p−1
k

)


D
p−

x ◦ w

((α+
)β)
k (x,D).

Thus, from Lemma 2 and using the fact that ap(t) is continuous on [0, T ] we get
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‖[Dt + ap(t)D
p
x ,w

(αβ)
k ]uk‖

≤ C

p∑

=1

(
p




)(
1

ν
p−1
k

)


‖Dp−

x v

((α+
)β)
k ‖

≤ C

p∑

=1

1

ν
p(
−1)
k

‖v((α+
)β)
k ‖ + Cα+β+Nk+1(α!β!)θhNk!2θh−1ν

p−1−Nk

k . (4.20)

4.2.2. Estimate of [iap−j (t, x)D
p−j
x , w(αβ)

k ]uk

We first observe that

[iap−j (t, x)D
p−j
x ,w

(αβ)
k ] = iap−j (t, x)

p−j∑
γ=1

(
p − j

γ

)
D

γ
x w

(αβ)
k (x,D)D

p−j−γ
x (4.21)

− i

Nk−1∑
γ=1

1

γ !D
γ
x ap−j (t, x)∂

γ
ξ w

(αβ)
k (x,D)D

p−j
x + r

(αβ)
p−j,k(t, x,D),

where

r
(αβ)
p−j,k(t, x, ξ) = −iNk

1∫
0

(1 − θ)Nk−1

Nk!

× Os −
∫∫

e−iyη∂
Nk

ξ w
(αβ)
k (x, ξ + θη)DNk

x ap−j (t, x + y)ξp−j dyd−η dθ.

To estimate r(αβ)
p−j,k we need to use the support properties of w(αβ)

k , then we write

ξp−j = (ξ + θη − θη)p−j =
p−j∑

=0

(
p − j




)
(ξ + θη)
(−θη)p−j−
.

Now, integration by parts gives

Os −
∫∫

e−iyη∂
Nk

ξ w
(αβ)
k (x, ξ + θη)DNk

x ap−j (t, x + y)ξp−j dyd−η

=
p−j∑

=0

(
p − j




)
θp−j−


× Os −
∫∫

D
p−j−

y e−iyη∂

Nk

ξ w
(αβ)
k (x, ξ + θη)(ξ + θη)
DNk

x ap−j (t, x + y)dyd−η

=
p−j∑(

p − j




)
(−θ)p−j−


=0
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× Os −
∫∫

e−iyη∂
Nk

ξ w
(αβ)
k (x, ξ + θη)(ξ + θη)
D

Nk+p−j−

x ap−j (t, x + y)dyd−η.

Hence, using assumption (ii), we estimate the seminorms of r(αβ)
k in the following way

|r(αβ)
p−j,k|0
0

≤ CNk+p−j

Nk!
p−j∑

=0

|ξ
∂
Nk

ξ w
(αβ)
k |(0)


1
|DNk+p−j−


x ap−j (t, x)|(0)

1

≤ Cα+β+Nk+1{α!β!}θhNk!2θh−1ν
p−j−Nk

k ,

which allows to conclude (using the assumed H∞
θ well-posedness) that

‖r(αβ)
p−j,k(·,D)uk‖ ≤ Cα+β+Nk+1{α!β!}θhNk!2θh−1ν

p−j−Nk

k . (4.22)

Now we consider the second term in (4.21), and by (4.19) we write

Nk−1∑
γ=1

1

γ !D
γ
x ap−j (t, x)∂

γ
ξ w

(αβ)
k (x,D)D

p−j
x

=
Nk−1∑
γ=1

p−j∑
s=0

1

γ !
(

p − j

s

)(
4

νk

)γ
(

i

ν
p−1
k

)s

D
γ
x ap−j (t, x)D

p−j−s
x ◦ w

((α+s)(β+γ ))

k (x,D).

Using the support of Dp−j−s
x v

((α+s)(β+γ ))

k and the assumption (ii) we get

‖Dγ
x ap−j (t, x)D

p−j−s
x v

((α+s)(β+γ ))

k ‖ ≤ Cγ+1γ !ν−γ (p−1)

k ‖Dp−j−s
x v

((α+s)(β+γ ))

k ‖.

Now, applying Lemma 2 with M = Nk − γ we obtain

‖Dγ
x ap−j (t, x)D

p−j−s
x v

((α+s)(β+γ ))

k ‖ ≤ Cγ+1γ !ν−γ (p−1)

k ν
p−j−s
k ‖v((α+s)(β+γ ))

k ‖
+ Cγ+1γ !ν−γ (p−1)

k Cα+s+β+Nk {α!β!s!γ !}θh(Nk − γ )!2θh−1ν
p−j−s−(Nk−γ )

k .

Hence

∥∥∥∥∥
Nk−1∑
γ=1

1

γ !D
γ
x ap−j (t, x)∂

γ
ξ w

(αβ)
k (x,D)D

p−j
x uk

∥∥∥∥∥≤ (4.23)

≤ C

p−j∑
s=0

Nk−1∑
γ=1

Cγ ν
−(p−j)(s+γ−1)−j (s+γ )

k ‖v((α+s)(β+γ ))

k ‖

+ Cα+β+Nk+1{α!β!}θhNk!2θh−1ν
1−j−Nk

k .
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Finally, for the first term in (4.21), we follow the same steps of Subsection 4.2.1 to get

p−j∑
γ=1

(
p − j

γ

)
D

γ
x w

(αβ)
k (x,D)D

p−j−γ
x

=
p−j∑

=1

(−1)
+1
(

p − j




)
1

(iν
p−1
k )


D
p−j−

x ◦ w

((α+
)β)
k (x,D),

and therefore∥∥∥∥∥iap−j (t, x)

p−j∑
γ=1

(
p − j

γ

)
D

γ
x w

(αβ)
k (x,D)D

p−j−γ
x uk

∥∥∥∥∥≤ (4.24)

≤ C

p−j∑

=1

1

ν
j+p(
−1)
k

‖v((α+
)β)
k ‖ + Cα+β+Nk+1{α!β!}θhNk!2θh−1ν

1−j−Nk

k .

Gathering (4.22), (4.23) and (4.24) we obtain

p∑
j=1

‖[iap−j (t, x)D
p−j
x ,w

(αβ)
j ]uk‖ ≤ (4.25)

≤ C

p∑
j=1

p−j∑
s=0

Nk−1∑
γ=1

Cγ ν
−(p−j)(s+γ−1)−j (s+γ )

k ‖v((α+s)(β+γ ))

k ‖

+ C

p∑
j=1

p−j∑

=1

1

ν
j+p(
−1)
k

‖v((α+
)β)
k ‖ + Cα+β+Nk+1{α!β!}θhNk!2θh−1ν

p−1−Nk

k

≤ C

p−1∑
s=0

Nk−1∑
γ=1

Cγ ν
−(p−1)(s+γ−1)−(s+γ )

k ‖v((α+s)(β+γ ))

k ‖

+ C

p−1∑

=1

1

ν
1+p(
−1)
k

‖v((α+
)β)
k ‖ + Cα+β+Nk+1{α!β!}θhNk!2θh−1ν

p−1−Nk

k .

Now, combining (4.20) and (4.25) we can summarize the computations of Subsection 4.2 in the 
following lemma.

Lemma 4. If (1.1) is well-posed in H∞
θ (R), then

‖f (αβ)
k ‖ ≤ C

p∑

=1

1

ν
p(
−1)
k

‖v((α+
)β)
k ‖ + C

p−1∑
s=0

Nk−1∑
γ=1

Cγ ν
−(p−1)(s+γ−1)−s−γ

k ‖v((α+s)(β+γ ))

k ‖

+ Cα+β+Nk+1(α!β!)θhNk!2θh−1ν
p−1−Nk
k
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for some constant C > 0 independent from k, α, β and Nk .

4.3. A lower bound estimate for ∂tEk(t)

Lemmas 3, 4 and (4.2) give the following

∂t‖v(αβ)
k ‖ ≥ c1ν

�
k ‖v(αβ)

k ‖ − Ca0‖v(αβ)
k ‖ − C

p∑

=1

1

ν
p(
−1)
k

‖v((α+
)β)
k ‖

− C

p−1∑
s=0

Nk−1∑
γ=1

Cγ ν
−(p−1)(s+γ−1)−s−γ

k ‖v((α+s)(β+γ ))

k ‖

− Cα+β+Nk+1(α!β!)θhNk!2θh−1ν
p−1−Nk

k .

Therefore

∂tEk(t) =
∑

α≤Nk,β≤Nk

1

(α!β!)θ1
∂t‖v(αβ)

k (t, ·)‖ (4.26)

≥
∑

α≤Nk,β≤Nk

1

(α!β!)θ1
{c1ν

�
k − Ca0}‖v(αβ)

k ‖

− C

p∑

=1

1

ν
p(
−1)
k

∑
α≤Nk,β≤Nk

1

(α!β!)θ1
‖v((α+
)β)

k ‖

− C

p−1∑
s=0

Nk−1∑
γ=1

Cγ ν
−(p−1)(s+γ−1)−s−γ

k

∑
α≤Nk,β≤Nk

1

(α!β!)θ1
‖v((α+s)(β+γ ))

k ‖

−
∑

α≤Nk,β≤Nk

1

(α!β!)θ1
Cα+β+Nk+1(α!β!)θhNk!2θh−1ν

p−1−Nk

k .

In the sequel we shall discuss how to treat all the terms appearing in the above summation. 
For the first one, by (3.4) and (4.1) we simply have

∑
α≤Nk,β≤Nk

1

(α!β!)θ1
{c1ν

�
k − Ca0}‖v(αβ)

k ‖ = {c1ν
�
k − Ca0}Ek(t). (4.27)

For the second one we proceed as follows

p∑

=1

C

ν
p(
−1)
k

∑
α≤Nk,β≤Nk

1

(α!β!)θ1
‖v((α+
)β)

k ‖ =
p∑


=1

C

ν
p(
−1)
k

∑
α≤Nk,β≤Nk

(α + 
)!θ1

α!θ1
Ek,α+
,β

≤
p∑


=1

CN

θ1
k

ν
p(
−1)
k

{
Ek +

Nk∑
α=Nk−
+1

∑
β≤Nk

Ek,α+
,β

}
.
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Recalling (3.5) we get the upper bound

Ek,α+
,β ≤ Cα+β+
+1{(α + 
)!β!}θh−θ1 ,

so, since α + 
 ≥ Nk , we obtain

p∑

=1

C

ν
p(
−1)
k

∑
α≤Nk,β≤Nk

1

(α!β!)θ1
‖v((α+
)β)

k ‖ ≤
p∑


=1

CN

θ1
k

ν
p(
−1)
k

{
Ek + CNk+1Nk!θh−θ1

}
.

Now we use the definition of Nk := �ν
λ
θ1
k � and the inequality NNk

k ≤ eNkNk! to conclude that

p∑

=1

C

ν
p(
−1)
k

∑
α≤Nk,β≤Nk

1

(α!β!)θ1
‖v((α+
)β)

k ‖ (4.28)

≤ C

p∑

=1

ν
λ
k

ν
p(
−1)
k

{
Ek + CNk+1eNk(θh−θ1)ν

λ(θh−θ1)Nk
θ1

k

}

≤ C

p∑

=1

ν
λ
k

ν
p(
−1)
k

Ek + CNk+1ν
C−cNk

k ,

where, from now on, c > 0 shall denote a constant independent from k.
For the third term in (4.26) we recall the following inequality

(β + γ )!
β! ≤ (β + γ )γ ≤ (rNk)

γ ≤ rγ (ν

λ
θ1
k )γ , provided thatβ + γ ≤ rNk, r ∈ N,

thus, since λ ∈ (0, 1), for k sufficiently large so that Cνλ−1
k < 1 we have

p−1∑
s=0

Nk−1∑
γ=1

Cγ ν
−(p−1)(s+γ−1)−s−γ

k

∑
α≤Nk,β≤Nk

1

(α!β!)θ1
‖v((α+s)(β+γ ))

k ‖

=
p−1∑
s=0

Nk−1∑
γ=1

{ ∑
α≤Nk−s

β≤Nk−γ

+
∑

α≤Nk,β≤Nk
α+s>Nk orβ+γ>Nk

}
Cγ ν

−(p−1)(s+γ−1)−s−γ

k

(
(α + s)!(β + γ )!

α!β!
)θ1

× Ek,α+s,β+γ

≤
p−1∑
s=0

Nk−1∑
γ=1

∑
α≤Nk,β≤Nk

{ ∑
α≤Nk−s

β≤Nk−γ

+
∑

α≤Nk,β≤Nk
α+s>Nk orβ+γ>Nk

}
(Cνλ−1

k )γ+sν
−(p−1)(s+γ−1)

k Ek,α+s,β+γ

≤
[
Ek +

p−1∑
s=0

Nk−1∑
γ=1

∑
α≤Nk,β≤Nk

Cα+s+β+γ+1{(α + s)!(β + γ )!}θh−θ1

]

α+s>Nk orβ+γ>Nk
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≤ Ek + CNk+1Nk!θh−θ1 .

From the definition of Nk := �ν
λ
θ1
k � we obtain

p−1∑
s=0

Nk−1∑
γ=1

Cγ ν
−(p−1)(s+γ−1)−s−γ

k

∑
α≤Nk,β≤Nk

1

(α!β!)θ1
‖v((α+s)(β+γ ))

k ‖ ≤ Ek + CNk+1ν
C−cNk

k

(4.29)

for all k large enough, where C, c are positive constants independent of k.

Finally, for the last term in (4.26), using the definition of Nk := �ν
λ
θ1
k � and recalling that 

θ1 > θh we easily conclude that

∑
α≤Nk,β≤Nk

1

(α!β!)θ1
Cα+β+Nk+1(α!β!)θhNk!2θh−1ν

p−1−Nk

k ≤ CNk+1ν
C−cNk

k . (4.30)

From (4.27), (4.28), (4.29) and (4.30) we obtain the following proposition.

Proposition 1. If (1.1) is well-posed in H∞
θ (R), then for all t ∈ [0, T ] and k sufficiently large the 

inequality

∂tEk(t) ≥
[
c1ν

�
k − C

p∑

=1

ν
λ
k

ν
p(
−1)
k

]
Ek(t) − CNk+1ν

C−cNk

k

holds for some C, c > 0 independent from k and Nk .

5. The proof of Theorem 1

We are now ready to prove our main result.

Proof of Theorem 1. Denote by

Ak := c1ν
�
k − C

p∑

=1

ν
λ
k

ν
p(
−1)
k

, Rk = CNk+1ν
C−cNk

k . (5.1)

By Proposition 1 we have ∂tEk(t) ≥ AkEk(t) − Rk .
Choosing the parameter λ < min{�, 1}, then we have (
 − 1)(λ − p) + λ ≤ λ < �, and so 


λ −p(
 −1) < �, and this means that the leading term in Ak is the first one; so for k sufficiently 
large we obtain

Ak ≥ c1

2
ν�
k .

In the next estimates we shall always consider k sufficiently large. Applying Gronwall’s in-
equality we obtain
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Ek(t) ≥ eAkt

⎛⎝Ek(0) − Rk

t∫
0

e−Akτ dτ

⎞⎠≥ et
c1
2 ν�

k (Ek(0) − tRk) , t ∈ (0, T ]. (5.2)

Now we need to estimate properly the term Rk from above and Ek(0) from below. Recalling 

that Rk = Cν
C−cNk

k and Nk := �ν
λ
θ1
k � we may estimate Rk from above in the following way

Rk ≤ Ce−cν

λ
θ1
k . (5.3)

The estimate for Ek(0) is more involved. We have

Ek(0) ≥ ‖wk(x,D)φk‖L2(Rx) =
∥∥∥∥∥h
(

x − 4ν
p−1
k

ν
p−1
k

)
h

(
D − νk

1
4νk

)
φk

∥∥∥∥∥
L2(Rx)

=
∥∥∥∥∥F
[
h

(
x − 4ν

p−1
k

ν
p−1
k

)]
(ξ) ∗ h

(
ξ − νk

1
4νk

)
φ̂k(ξ)

∥∥∥∥∥
L2(Rξ )

= ν
p−1
k

∥∥∥∥∥e−4iν
p−1
k ξ ĥ(ν

p−1
k ξ) ∗ h

(
ξ − νk

1
4νk

)
e−4iν

p−1
k ξ φ̂(ξ)

∥∥∥∥∥
L2(Rξ )

hence

E2
k (0) ≥ ν

2(p−1)
k

∫
Rξ

∣∣∣∣∣∣∣
∫
Rη

ĥ(ν
p−1
k (ξ − η))h

(
η − νk

1
4νk

)
φ̂(η)dη

∣∣∣∣∣∣∣
2

dξ.

We choose the Gevrey cutoff function h in such a way that ̂h(0) > 0 and ̂h(ξ) ≥ 0 for all ξ ∈ R. 
Then we get an estimate from below for E2

k (0) by restricting the integration domain. Indeed, we 
set

G1,k =
[
νk − νk

8
, νk − νk

8
+ ν

−p
k

]⋃[
νk + νk

8
− ν

−p
k , νk + νk

8

]
,

G2,k =
[
νk − νk

8
− ν

−p
k , νk − νk

8
+ ν

−p
k

]⋃[
νk + νk

8
− ν

−p
k , νk + νk

8
+ ν

−p
k

]
.

Then |η − νk| ≤ 8−1νk for all η ∈ G1,k and νp−1
k |ξ −η| ≤ 2ν−1

k for all η ∈ G1,k and all ξ ∈ G2,k . 

Now, if (ξ, η) ∈ G2,k × G1,k , then νp−1
k (ξ − η) is close to zero at least for k large enough, 

and so by the choice ĥ(0) > 0 and ĥ(ξ) ≥ 0 there exists a positive constant C such that for 

k large enough we have ĥ(ν
p−1
k (ξ − η)) > C. Moreover, if η ∈ G1,k then h 

(
η−νk

1
4 νk

)
= 1, and 

finally using the fact that φ̂(η) = e−2ρ0〈η〉 1
θ , but η is comparable with νk on G1,k , we can write 

φ̂(η) ≥ e−cρ0ν
1
θ
k for a positive constant cρ0 depending on ρ0. Summing up, by restricting the 

domain of integration we have
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E2
k (0) ≥ Cν

2(p−1)
k e−2cρ0 ν

1
θ
k

∫
G2,k

∣∣∣∣∣∣∣
∫

G1,k

dη

∣∣∣∣∣∣∣
2

dξ

= Cν
−(p+2)
k e−2cρ0ν

1
θ
k .

In this way we get the following estimate

Ek(0) ≥ Cν
−(p+2)/2
k e−cρ0ν

1
θ
k . (5.4)

From (5.2), (5.3) and (5.4) we conclude that for all t ∈ (0, T ]

Ek(t) ≥ Cet
c1
2 ν�

k

[
ν

−(p+2)/2
k e−cρ0ν

1
θ
k − te−cν

λ
θ1
k

]
, (5.5)

provided that λ < min{�, 1} and k being sufficiently large.
Suppose now that (1.1) is H∞

θ (R) well-posed and assume by contradiction that 1
θ

< �. Then we 
take λ = 1

θ
+ ε̃ with ε̃ > 0 small so that λ < � and λ < 1. After that, we choose θ1 very close to 

1 to get λ
θ1

> 1
θ

. In this way (5.5) implies for k sufficiently large

Ek(t) ≥ C2e
c̃0ν

�
k e−c̃ρ0ν

1
θ
k .

Thus, for k sufficiently large

Ek(t) ≥ C3e
c̃0
2 ν�

k → ∞ for k → ∞.

The latter inequality provides a contradiction, since the assumed H∞
θ well-posedness implies 

that the energy Ek(t) is uniformly bounded from above, see (3.6). �
Data availability
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