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Many natural substances and drugs are radical scavengers that prevent the oxidative damage to fundamental cell com-
ponents. This process may occur via different mechanisms, among which, one of the most important, is hydrogen
atom transfer (HAT). The feasibility of this process can be assessed in silico using quantum mechanics to compute the
∆G◦HAT . This approach is accurate, but time consuming. The use of machine learning allows to reduce tremendously
the computational cost of the assessment of the scavenging properties of a potential antioxidant, almost without af-
fecting the quality of the results. However, in many machine learning implementations the description of the relevant
features of a molecule in a machine-friendly language is still the most challenging aspect. In this work, we present a
newly developed machine-readable molecular representation aimed at the application of automatized machine learning
algorithms. In particular, we show an application on the calculation of ∆G◦HAT .

I. INTRODUCTION

The term radical was used in chemistry since the 18 th cen-
tury. However, it acquired its modern meaning in the early
20 th century first, with the discovery of a carbon trivalent
species1 and then, when molecules containing unpaired elec-
trons were seen to be responsible of a very peculiar chemical
reactivity.2 It was however from the beginning of the 21 st cen-
tury, when the efforts of chemistry and biology fused together
to investigate the functioning of living systems, that the rec-
ognized importance of radicals in biological processes lead to
the birth and development of redox biology.3

In this relatively young field, radicals, especially free rad-
icals, are commonly associated to oxidative stress, another
term that has a somewhat liquid definition,3 and belong to a
wider class of compounds known as reactive oxygen species
(ROS) or reactive nitrogen species (RNS). There is a common
misconception about free radicals that sees only their harm-
ful effect. On the contrary, radicals play an essential role in
the process of redox signaling4,5 and are therefore the natural
products of many biological processes.6 However, due to their,
in many cases, high reactivity, accumulation of these species
can indeed result in fatal damage to cellular activity.6,7 There-
fore, the intricate and delicate balance present inside the cell
must be maintained at all cost, lest the insurgence of cellular
damage leading to severe pathological conditions.7–11 Some-
times the endogenous mechanisms that maintain this balance
can falter and an external source of antioxidants is required
to prevent the insurgence of high levels of oxidative stress.
Many natural compounds were known since ancient times to
cure or alleviate conditions that were much later discovered
being caused by oxidative stress, and many other were syn-
thesized in modern times to be used as antioxidant drugs.12–17
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Unfortunately, there is a vast variety of different molecules
that possess known antioxidant properties but, in most cases,
the exact mechanism of their action has not been completely
elucidated. Among these, flavonoids, a widespread class of
polyphenols found mainly in plants, have been recognized as
beneficial compounds and employed in different pharmaceuti-
cal and cosmetical applications.18,19 Although their efficiency
in vitro as antioxidants has been confirmed,20,21 their in vivo
role is not completely clear as both prooxidant and antioxidant
effects have been observed.22,23 Different mechanisms for the
activity of these molecules have been modeled and in some
cases the same compound was found to react in multiple ways,
depending on the free radical targeted in the scavenging pro-
cess.24–27 Hydrogen atom transfer (HAT) was recognized as
one of the most frequent reaction pathway found in flavonoids
radical scavenging.28 It involves the transfer of an hydrogen
atom from the scavenger (AH) to the free radical (R• ):

AH+R• −−→ A•+RH (1)

A thorough evaluation of free reaction energies (thermody-
namics) and activation energies (kinetics) would be, in prin-
ciple, necessary to correctly assess the most favorable reac-
tion pathway and hence the overall antioxidant capacity of a
compound. However, such an investigation on a large number
of compounds, each possessing multiple reaction sites is ex-
tremely time consuming. As suggested in previous works,28,29

a simplification of the analysis is possible, provided some
quite general assumptions hold in the cases under investi-
gation. For example, this means assuming the validity of
the Bell-Evans-Polanyi principle, i.e. that the most thermo-
dynamically favored reactions are those that have the high-
est rates, thus considering only the free reaction energies in
the evaluation of the antioxidant capacity of a molecule. In-
deed, once the best compounds have been identified, a com-
plete study comprising both thermodynamics and kinetics is
of course needed to confirm the preliminary results.

With the enormous advancement in computing power
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achieved since the beginning of the 21 st century, computer-
aided molecular design, nowadays a routine practice in many
research groups and laboratories, can be a powerful tool to as-
sess the antioxidant efficiency of a compound and determine
its mechanism of action.26,29–31 As more details on the activity
of efficient antioxidant molecules emerge, new rational routes
on the improvement of both the natural and synthetic species
can be developed to obtain even more efficient and more bio-
compatible structures. Due to the huge number of compounds
that could display antioxidant activity and the presence of dif-
ferent mechanisms for the radical scavenging,24–27 a challeng-
ing problem arises when evaluating the direction in which to
go to obtain the desired enhancements. Even though quan-
tum mechanics (QM) calculations are becoming more and
more affordable and computing power is constantly increas-
ing, the time needed to describe completely the energetics of
the mechanism of action of a common antioxidant is still in
the order of magnitude of hours, if not days. This is mostly
due because, if no prior knowledge has been obtained, radical
scavenging reactions could in principle take place involving
different sites of an antioxidant, creating a substantial num-
ber of possible pathways. For example, in the specific case
of HAT, different H• can be transferred in the scavenging of
the free radicals, with each process having a different Gibbs
free energy of reaction. A possible way to decrease the com-
putational cost to study these reactions would be to perform a
preemptive screening of the different sites to determine which
are reactive (i.e. which are very likely to have a negative free
energy of reaction). In this case, far lesser expensive tech-
niques could be employed and accurate calculations could be
performed only on a reduced subset of the original possible
routes. To this end, machine learning (ML) presents a very
appealing method that can act as an initial, computationally
inexpensive approach to separate the favored from the unfa-
vored reaction paths.

Machine learning in chemistry has lately attracted much in-
terest due to the very good results it can achieve with very lim-
ited computational effort.32–35 More specifically, the branch
of techniques belonging to the supervised learning area36 has
found wide application in the estimation of enthalpies of for-
mation,37 melting points,38 reorganization energies,39 solu-
bilities,40 and other relevant chemical properties.41–45 These
methods are able to infer a function that can predict the (ini-
tially unknown) properties of a general set of molecules, pro-
vided a starting set of similar molecules with known proper-
ties is given.36 A very challenging aspect of the application of
these algorithms in chemistry is to provide a suitable machine-
readable descriptor that contains all the required chemical in-
formation, i.e. develop a correct data representation. Many
options on how to perform this classification have been ex-
plored (for an exhaustive overview, which is out of the scope
of this work, the reader can refer to a recent review article46)
and in some cases machine learning itself has been applied
to recognize the most meaningful molecular descriptor for a
given set of molecules.47 However, in most cases data repre-
sentations remain deeply linked to the particular task they are
applied to and to some a priori knowledge. Therefore, human
input is in many cases required to tailor the representation to

the required application.
In this work, we have developed a new model to cre-

ate a simple and machine-friendly representation that can
capture the relevant features needed to describe a large
set of chemically different hydrogen atoms. This rep-
resentation was applied in a combined QM/ML proto-
col for the assessment of the reactivity of HAT reac-
tions on a class of mainly natural antioxidant compounds,
namely flavonoids. Additionally, some very well known
molecules, developed originally to address other condi-
tions, were recently shown to possess promising antioxi-
dant properties48–53 ascribed to HAT mechanism.26,52 There-
fore,a set of analogues of fluoxetine (N-methyl-3-phenyl-3-
[4-(trifluoromethyl)phenoxy]propan-1-amine), were also in-
cluded in this study. We chose a selection of free radicals that
contains the most common species encountered in cellular bi-
ology to obtain a general picture of the overall reactivity of a
compound in the different situations that can be found in vivo.
We selected a machine learning algorithm based on a clas-
sification method to categorize the hydrogen atoms into two
groups: reactive (i.e. those with ∆G◦HAT < 0) and non-reactive
(i.e. those with ∆G◦HAT > 0 ). A database of Gibbs free ener-
gies of reaction for a large set of HAT processes was obtained
through DFT calculations in a automatized manner. This al-
lowed a successful training of the machine learning algorithm
and the prediction of the antioxidant capacity of a large set of
compounds was obtained with satisfactory accuracy and with
a minimal computational effort.

II. THE QM/ML PROTOCOL

A. QM Computational protocol

All geometry optimizations were performed in gas phase
without any constraint, using the M06-2X functional com-
bined with the 6-31G(d) basis set, as implemented in
Gaussian16.54 This functional is a hybrid meta-generalized
gradient-approximations (hybrid meta-GGA) functional, de-
veloped by Truhlar et al.55,56 M06-2X has been chosen be-
cause it has already been used in literature for similar systems
and has provided very satisfactory results.31,52,57 Spin con-
tamination was checked for the doublet ground state species
to assess the reliability of the wave function. Frequency cal-
culations were carried out at the same level of theory (M06-
2X/6-31G(d)) in order to confirm the nature of the energy
minima (all positive frequencies) and to obtain the thermo-
dynamic corrections at 1 atm and 298 K. Single point energy
calculations were performed at M06-2X/6-311+G(d,p) in gas
phase in order to obtain more accurate energy values, and sub-
sequently, at the same level of theory, in benzene and water
using the SMD continuum model.42 This level of theory is de-
noted in the text (SMD)-M06-2X/6-311+G(d,p)//M06-2X/6-
31G(d,p). Benzene and water mimic an apolar and a polar
environment, respectively,57 which could in principle modify
the reactivity of an antioxidant.29
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B. Learning method

1. Data representation

In supervised machine learning, specifically in classifica-
tion contexts, the data set is composed of a set of n pairs
{(x1,y1), . . . ,(xn,yn)} where xi ∈X are called examples (or
patterns), and yi ∈ {−1,1} are the labels associated to the ex-
amples. Given an example x′, the task of the ML method is to
classify x′ correctly, i.e., it has to associate to x′ with the label
y′. The set X is the so-called input space in which examples
lie, and each dimension of an input example is called feature.
To successfully apply a ML algorithm, the chosen representa-
tion for the examples is crucial. In our task at hand, i.e., reac-
tive vs. non reactive hydrogen atoms in a molecule, we rep-
resent examples in term of hydrogen atoms themselves. So,
our representation is a site-based representation rather than the
usual molecule-based one. Thus, an example is characterized
by features extracted for a particular site in a molecule. Im-
portantly, the representation of the sites is needed only in the
starting antioxidant molecule (AH in (1)) and no information
is required on the topology of the hydrogen atoms found in the
radicals formed after the hydrogen transfer. This is another
clear advantage over the quantum mechanical method used to
study chemical reactivity as it requires the precise knowledge
of the structures (and hence the energies) of both the reactants
and products of a reaction.

Since we wanted to build a generic representation that can
be used with any classifier, we needed to define a unified
sites representation. For this reason the number of features of
the proposed representation is molecule independent. Specif-
ically, we included two sets of features:

• statistical: this set of features contains statistics about
the geometrical characteristics of the site w.r.t. the other
atoms in the molecule. Table I summarizes these fea-
tures. As evident in the table, some features are com-
puted using the overall distances from the sites and
types of atoms, while other are computed independently
for each type of atoms.

• domain-specific: this set of features has been added af-
ter some trials, and has been directly suggested by the
experts. As of many other applied ML contexts, the
a priori knowledge is always beneficial to improve the
model accuracy. In particular these features include the
number of atoms that are within a well-defined range
of distances from the site. Three intervals has been se-
lected: up to 2.2 Å, from 2.2 to 2.7 Å and from 2.7 to
3.0 Å.

At the end of this pre-processing, we extracted, for each
site, a total of 79 features, i.e., xi ∈ R79.

Finally, the label associated to an example, i.e. the site, is
(∆G◦HAT ) for that particular site. We created a new example-
label pair for all the free radical/environment combinations
(15 values total, vide infra). This value was then used to gen-
erate the classification label according to the threshold 0, i.e.,
∆G < 0 the site has negative label, positive otherwise. There

Overall For each atom type

average distance average distance
variance of distance variance of distance

total number of atoms number of atoms
minimum distance
maximum distance

TABLE I. Statistical features extracted from the sites/molecule. All
the distances are w.r.t. the site.

ac
tu

al
va

lu
e

Prediction outcome

p n total

p′ True
Positive

False
Negative P′

n′ False
Positive

True
Negative N′

total P N

TABLE II. Binary classification confusion matrix used to compute
accuracy and balanced accuracy.

is an exception for the HO• ROS because the threshold 0 pro-
duced an highly unbalanced data set. In fact, due to the high
reactivity of HO• (the most reactive of the radicals here con-
sidered) only few of the sites are above such threshold and
hence we moved it to -30.

2. Classification

To classify between reactive and non-reactive sites, we em-
ployed a soft-margin SVM58. In our experiments, two kernel
functions have been tested: RBF (Radial Basis Function), and
a polynomial kernel58. The hyper-parameters have been val-
idated using a nested 5-fold cross validation procedure with
grid search. The hyper-parameter γ , that controls the width of
the Gaussian function for the RBF kernel, has been validated
in the range [2−15, . . . , 24], while the degree of the polyno-
mial kernel has been validated in the set {1,2, . . . ,6}. Finally,
the trade-off parameter C of the soft-margin SVM has been
validated in the range [10−2, . . . ,105].

To evaluate the proposed method, we used both accuracy
and balanced accuracy that are computed as follows

accuracy =
TP+TN

P+N

balanced accuracy =
1
2

TP
P

TN
N

where TP, TN, P and N are defined by the standard confusion
matrix for binary classification shown in Table II.
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FIG. 1. General structure of an anthocyanidin

Balanced accuracy is preferred to the standard accuracy be-
cause in unbalanced databases the examples belonging to the
less represented class are often misclassified but the effect on
the standard accuracy would be negligible.

The results in Table III are the average (with standard de-
viation) over 10 repeated experiments with different partition-
ing of 80% training and 20% testing data. We only report the
results achieved with the RBF kernel because it has always
provided better performance than the polynomial kernel.

III. RESULTS AND DISCUSSION

We selected five species that represent the most com-
mon types of free radicals found in biological environments,
namely HO• , CH3O• , HOO• , CH3HOO• and CH2 –– CHOO• .
The reaction energies were obtained with DFT calculations
employing the M06-2X meta hybrid functional.56 Three dif-
ferent reaction environments were included, i.e. gas-phase,
water and benzene. For reactions in condensed phase the
solvation model based on solute electron density (SMD) was
employed.42 We therefore obtained the ∆G◦HAT for 3N possi-
ble reactions, where N is the number of sites from which a
hydrogen atom can be removed.

First, an initial explorative attempt was made to apply this
novel model to a limited group of molecules, namely antho-
cyanidins, a group of natural dyes belonging to the family of
flavonoids (Figure 1).59 They were chosen because they have
high antioxidant activity against ROS, verified in vivo60,61,
with potential beneficial effects such as anti-inflammatory
and chemoprotective and cancer prevention properties62. We
chose a set of 12 anthocyanidins for a total of 162 reactive
sites. We ascertained the reactivity of these 162 sites towards
our selection of five ROS and in the three chosen environ-
ments (gas-phase, water and benzene). Each anthocyanidin
was fully optimized in gas-phase and all the radicals obtained
after hydrogen transfer were optimized too, for a total of 162
calculations. Energies in the condensed phase were obtained
with single point computations on the gas-phase geometry.
From this data, ∆G◦HAT were calculated considering all five
free radicals. On average,calculation on each site took about
30 minutes on a 16 core machine. This has to be multiplied
for the total number of sites (162) affording about 81 hours
(approximately 1300 core-hours). Results confirmed the pre-
dicted reactivity of molecular sites towards HAT, as OH moi-
eties were seen to result in those with the largest negative

∆G◦HAT (Figure 2 and Supporting Information). On the other
hand, aliphatic and aromatic groups were calculated to have
a positive ∆G◦HAT with all the radicals except HO• which was
seen to react with negative ∆G◦HAT in all the cases considered.
(Figure 2).

The obtained ∆G◦HAT values were divided in 15 different
data sets (based on environment and free radical involved),
using which the ML algorithm was trained. For reference time
needed for the evaluation of ∆G◦HAT with the ML method was
less than a minute per data set on a 4 core machine.

After obtaining very good results for this first group of
compounds (see Supplementary Information), the data set
has been extended with new molecules from two main fami-
lies of compounds, chain breaker natural antioxidants, mainly
flavonoids, and psychoactive molecules analogous to fluoxe-
tine, due to the fact that both classes of compounds have been
found to react mainly via the HAT mechanism. Thus the full
database contains 148 molecules with 2118 sites.

We evaluated the reactivity in HAT reaction involving five
different ROS and in three separate environments (gas-phase,
water and benzene). All the scavengers were represented with
a site-based description that contained data divided into three
groups.

Table III shows the performance of the ML algorithm.
Results are very encouraging since for all 15 combinations
of ROS/environment an accuracy higher than 90% has been
achieved, with an overall performance of 93.3%. This means
that nine time out of ten our method is able to correctly predict
if a HAT process is thermodynamically favored, based only on
the starting structure of the involved scavenger. Balanced ac-
curacy is, on average, lower than the accuracy (with the only
exception of CH3O• ) but its overall score is higher than 80%.
This is a rather promising result since some of the classifica-
tion tasks were highly unbalanced (e.g., ∼ 90%-10%). We
want to stress the fact that these numbers indicate the predic-
tive power of the procedure, i.e. the ability to discriminate
between reactive ∆G◦HAT < 0) and nonreactive (∆G◦HAT > 0)
sites. In fact, our method is not aimed at predicting the values
of ∆G◦HAT directly using ML but at recognizing the reactive
sites of a potential antioxidant.

Accuracy-wise the best results were obtained with the
most reactive free radicals (i.e. CH3O• , HO• and
CH3OO• ) whereas the lowest performance was found for
CH2 –– CHOO• . This behavior can be explained looking at
how many reaction sites have a ∆G that falls within the
±2 kcalmol−1. These “borderline” reactions are the hard-
est to classify as they are very close to the boundary cho-
sen to discriminate between reactive and non reactive sites.
For example, the least performing set (i.e. the reactions with
CH2 –– CHOO• in gas-phase) presents a total of 162 sites in the
+2 −2 kcalmol−1 interval (effectively making up for 7.9 %
of the overall sites of the set) whereas in a better perform-
ing series of reactions( CH3O• in gas-phase) only 2.6 % of the
processes fall within these limits (i.e. 53 reactions). From
a balanced accuracy perspective, performance is around 80%
(4 out of 5 times the classifier is right) with peaks of 96%
for CH3O• . The worst performing experiments are the ones
concerning CH3OO• (on average 68%) that is the most unbal-
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FIG. 2. ∆G◦HAT for aurantinidin (R3’, R5’= H; R5, R6, R7 = OH) in gas-phase (a), in water (b) and in benzene (c). Site numbering is shown in
Figure 1. Level of theory (SMD)-M06-2X/6-311+G(d,p)//M06-2X/6-31G(d,p)

ROS solvent accuracy [%] balanced acc. [%]

CH2 –– COO•
Benzene 92.3 ±0.98 81.4 ±3.69
Gas-phase 91.2 ±1.65 73.1 ±6.86
Water 91.5 ±1.01 83.3 ±2.51

CH3O•
Benzene 96.6 ±0.63 96.4 ±0.67
Gas-phase 96.7 ±0.66 96.4 ±0.73
Water 96.4 ±0.51 96.2 ±0.53

CH3OO•
Benzene 93.8 ±0.86 63.7 ±5.01
Gas-phase 94.2 ±0.84 63.4 ±5.06
Water 93.2 ±0.76 76.2 ±4.14

HO• (*)
Benzene 92.8 ±0.83 83.1 ±2.96
Gas-phase 92.3 ±1.05 76.8 ±3.08
Water 91.3 ±1.07 84.1 ±1.82

HOO•
Benzene 92.3 ±0.89 74.9 ±3.64
Gas-phase 92.2 ±1.01 70.0 ±4.38
Water 92.5 ±1.05 82.5 ±3.11

Overall 93.3 80.1

TABLE III. Accuracy and balanced accuracy (along with standard
deviation) of the proposed ML method for the 15 combinations of
solvents and ROS. (*) for HO• , we used ∆G◦HAT > -30 to divide pos-
itive and negative class for unbalancing reasons.

anced ROS in all the solvent.

IV. CONCLUSIONS

The use of machine learning in chemistry is getting more
and more popular, thus opening new horizons for computa-
tional chemistry. A new and challenging area of research has
come to light: the translation of the molecular features of a
molecule from human-friendly to machine-friendly represen-
tations. In this work, we have presented a novel machine-
readable representation based on simple chemically relevant
parameters to describe the molecular topology. This newly de-
rived definition of the structure of a molecule was employed in
the application of a ML algorithm on a series of biologically
relevant reactions, namely a series of hydrogen atom trans-
fers involving a wide range of antioxidant molecules selected
among flavonoids, a class of natural antioxidants, and ana-
logues of fluoxetine, a well known drug that showed promis-
ing radical scavenging properties. Five ROS were considered
and the processes were evaluated in three different environ-
ments to have a broad spectrum of reactions that cover most
of the possible in vivo scenarios.

Our focus was directed to a site based representation that
was convenient to assess the reactivity of each hydrogen atom
that could be transferred. The site-based description of each
hydrogen atom taking part in a HAT consisted of a very sim-
ple collection of geometrical parameters (pairwise atomic dis-
tances from that particular site with the respective atomic
numbers of the atoms considered) coupled with the ∆G◦HAT
of that particular hydrogen atom transfer reaction with each
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of the selected radicals. From this data, two sets of relevant
features were identified and extracted. The first contained the
distance of the closest and furthest atom to the site, the average
distance of the atoms from the site, the total number of atoms
in the molecule and the standard deviation of the atomic dis-
tances. The second included a broader set of features, namely
the presence of atoms within certain distance intervals from
the reaction site. These two models were tested in the appli-
cation of a ML algorithm trained to predict the feasibility of
a HAT on a particular site. The whole process of QM calcu-
lations, features extraction and reactivity prediction was com-
pletely automatized. While even the first and most basic set
of relevant features gave good results, it was the second that,
albeit being still very simple, improved noticeably the perfor-
mance of the applied machine learning algorithm. In partic-
ular, the inclusion of the number of atoms present at specific
distance intervals from the represented site was the key ad-
dition. This choice stemmed from the idea that the chemical
properties of a particular hydrogen atom can be defined by
the presence (or absence) of a certain number of atoms within
well defined distance ranges. The improved results of the ap-
plication of this new model confirmed this initial hypothesis.

Importantly, this study paves the way to relevant future ac-
tivities, among which (a) extension of the database to include
more molecular topologies to expand the applicability of the
screening algorithm; (b) extension of the protocol to other re-
action mechanisms which are important when assessing the
radical scavenging potential of a molecule; (c) refinement and
improvement of the molecular representation, an effort which
requires strong synergy between information scientists and
chemists. As first step, indeed this work represents an ex-
ample of machine learning meeting chemistry!
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