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Abstract

Noisy labeled data is more a norm than a rarity for self-generated content that is contin-
uously published on the web and social media from non-experts. Active querying experts
are conventionally adopted to provide labels for the informative samples which don’t have
labels, instead of possibly incorrect labels. The new challenge that arises here is how to
discern the informative and noisy labels which benefit from expert cleaning. In this paper,
we aim to leverage the stringent oracle budget to robustly maximize learning accuracy.
We propose a noise-aware active learning framework, QActor, and a novel measure CENT,
which considers both cross-entropy and entropy to select informative and noisy labels for
an expert cleansing. QActor iteratively cleans samples via quality models and actively
querying an expert on those noisy yet informative samples. To adapt to learning capacity
per iteration, QActor dynamically adjusts the query limit according to the learning loss for
each learning iteration. We extensively evaluate different image datasets with noise label
ratios ranging between 30% and 60%. Our results show that QActor can nearly match the
optimal accuracy achieved using only clean data at the cost of only an additional 10% of
ground truth data from the oracle.

Keywords: Active Learning, Noisy Labels, Robustness, Filtering

1. Introduction

We are in the era of big data, which are continuously generated on different web platforms,
e.g., social media, and disseminated via search engines often in a casual and unstructured
way. Consequently, such a big data analysis suffers from diversified quality issues, e.g.,
images tagged with incorrect labels, so-called noisy labels. According to (Redman, 2016),
noisy data costs the US industry more than $3 trillion per year to cleanse or to mitigate
the impact of derived incorrect analyses. While the learning models conveniently leverage
such a free source of data, its quality greatly undermines the learning efficiencies and their
associate utilities (Jiang et al., 2018). For instance in (Zhang et al., 2017), using an image
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classifier trained from data with highly noisy labels can significantly degrade classification
accuracy and hinder its applicability on different domains.

Noisy label issue has been a long-standing challenge (Ghiassi et al., 2019), from stan-
dard machine learning (ML) models to deep neural networks (DNN), whose large learning
capacities can have detrimental memorization effects on dirty labels (Zhang et al., 2017).
The central theme here is to filter out the suspicious data which might have corrupted labels
via quality estimates. The drawback of filtering approaches is the risk of dropping informa-
tive data points which can be influential for the underlying learning models. It might be
worthwhile to actively cleanse such data due to its high potential in improving the learning
tasks, even at a certain expense.

Active learning (AL) techniques (Settles, 2009) are designed to query extra information
from an oracle for the data whose (true) labels are not readily available. Such an oracle
is assumed to know the ground truth, but at high costs, e.g. a human expert. Hence,
only the informative/uncertain data is queried within a certain query budget. The efficacy
of active learning relies on uncertainty measurements of learning tasks, e.g., class proba-
bility (Schohn and Cohn, 2000), entropy value (Holub et al., 2008) or posterior predictive
densities (HauBmann et al., 2019).

As the majority of active learning approaches focus on the unsupervised scenarios and
constant budget, it is not clear how the active query approach can be adopted when encoun-
tering noisy data - a kind of noisy supervision.In the noisy labeled data scenario different
from traditional active learning, the sample selection process ought to identify both infor-
mative and noisy samples. Using a limited query budget to cleanse clean samples leads to
the waste of queries. Such a noisy supervision calls for a new measure that asks for the
expert query on highly informative and noisy samples and retain the clean samples.

In this paper, we focus on a challenging multi-class learning problem whose labels are
extremely noisy. Our objective is to enhance the noise-resiliency of the underlying classifier
by selectively learning from good data as well as noisy labels that are critical for training
the classifier. In order to turn the noisy labels into a learning advantage, we resort to the
oracle for recovering their label ground truth under a given query budget. Ultimately, we
ailm to optimize classification accuracy with a minimum number of oracle queries.

To such an end, we design an active learning framework termed Quality-driven Active
Learning (QActor), which marries quality models with active learning. Upon receiving
new data instances, QActor first filters it via the quality model into “clean” and “noisy”
categories. Second, we propose a novel measure noise-aware informative measure, CENT,
combining cross-entropy and regular entropy, to identify erroneous and informative samples
and send them for oracle cleansing. Another unique feature of QActor is that the overall
query budget is fixed but the number of queries per batch is dynamically adjusted based
on the current training loss value. Our results show that in the presence of very large label
noise, i.e., up to 60% corrupted labels, QActor can achieve remarkable accuracy, i.e., almost
match the optimal accuracy obtained excluding all noisy labels, at the cost of just a small
fraction of oracle information, i.e., up to 10% oracle queried labels. Moreover, compared to
state of the art on noise resilient DNN, QActor achieves higher accuracy by 15% and 8%
for CIFAR-10 and CIFAR-100, respectively.

Our contributions are threefold. We design a novel and efficient learning framework,
termed QActor, whose core combines a quality model with active learning. Secondly, we
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propose a novel noise-aware informative measure, CENT. Thirdly we propose a dynamic
learning strategy that can adapt to the dynamic nature of iterative active learning and
achieve better results than the static one. To the best of our knowledge, this is the first
study on the dynamic allocation of an active learning budget.

2. Related Work

Human error and careless annotators result in unreliable datasets with mistakes in labels
available in public domains (Yan et al., 2014; Blum et al., 2003). Adversaries are another
source of label noise attacking the performance of (deep) learning systems (Goodfellow
et al., 2015). Corresponding to the contribution of QActor, we categorize the related work
of learning from noisy supervision into two categories: (i) noise resilient models that filter
the noise or alter the loss function without ground truth, (ii) active learning from the oracle
supervision.

Noise resilient model. Learning with noise in the labels with no quality filtering
shows the effect of noise in the degradation of the classification accuracy of deep neural
networks (Ghiassi et al., 2021). As mentioned in (Zhang et al., 2017), the accuracy of using
trained AlexNet to classify CIFAR-10 images with random label assignment drops from 77%
to 10% due to network memorization of the noisy samples. Co-teaching (Han et al., 2018)
trains two neural networks simultaneously on two different data and exchanges the model
information trained by the data causing the lowest loss. RAD and its extensions (Zhao
et al., 2019, 2021) cascadically train two models to find out ”clean” data. They also use the
help of external experts to verify the labels and optimize the cost with a limited budget.
On the other hand, the study in (Patrini et al., 2017), Forward, assumes there is a noise
transition matrix to cleanse the noisy labels for a deep neural network. Furthermore, D2L
(Wang et al., 2018b) uses the Local Intrinsic Dimension (LID) as a measure to filter the
noisy labeled instances during training. Re-weighting samples based on their similarity
to a clean set to increase the robustness against label noise has been studied in (Ren
et al., 2018). Noise confusion matrix estimation is another method to improve learning on
corrupted data (Ghiassi et al., 2020).

Active learning. Active learning has been employed at a growing rate in recent studies
with deep networks due to the expenses of large dataset collection. Various studies focus
on the identification of informative data instances. The studies in (Sener and Savarese,
2018, 2017) consider geometrical approaches to select the data instances, i.e. the core-
set, that is the representative of the data space. Meanwhile, (Gal et al., 2017) uses deep
Bayesian neural networks with monte-carlo dropout to identify the most uncertain samples
for labeling. Following the same framework, (Kirsch et al., 2019) argues the effectiveness of
batch labeling via a expert in a deep neural network. Furthermore, (Stanitsas et al., 2017)
uses the probability output of the convolutional neural network to label the instances based
on discrete entropy and best-vs-second-best. A relevant line of research in active learning
is to deal with noisy oracles which can not accurately provide the labels. For instance,
(Bouguelia et al., 2018) benefits from the disagreement of a committee of models with the
given label. In (Lin et al., 2016) the goal of the active learner is to identify the informative
noisy instances and ask the oracle their true label. (Zhang and Chaudhuri, 2015) assumes
that a strong labeler is sided by a weak labeler, termed quality model which is cheaper



YOUNESIAN ZHAO GHIASSI BIRKE Y.CHEN

Features Given Labels
I Hh

Noisy Data

_________________________________

Previous clean Quality Model Predicted labels Label Clean H Previous clean
" | e
samples Q Comparator samples samples

Noisy True labels
samples

Z J.

Informative
samples

Active
Learner

Oracle

]

Figure 1: Overview of QActor: workflow of quality model, active learner, and classifier.

than an expert, and only queries the oracle when the two labelers disagree. However, these
studies fail to consider the noisy data characteristic in their query selection strategies.

3. Quality-aware Active Learning QActor
3.1. Problem Statement

We consider multi-class classification problems that map data inputs x of K features into
labels y of C classes, x € XV*K into y € C = {1,..., C}. We assume that given dataset
D = {(x;,9;),7 = 1,..., N} has noisy labels, i.e. the label of a fraction of the data is altered
from its true label. A small set of initial data instances with clean labels used as the initial
seed is given, together with a testing set for evaluation. A clean data instance refers to a
sample whose given label is properly annotated, without any alteration. In this paper, n
shows the noise rate which indicates the ratio of the noisy label data to the entire dataset
size.

The goal is to identify the noisy labeled data samples and clean their labels by an expert
labeler, i.e the oracle!, within a limited budget. Since expert labeling is expensive, we aim
to identify informative noisy labeled data and it to send the oracle for relabeling. In the
end, the evaluation is done by training a classifier on the filtered and cleansed data. In the
following section, we demonstrate the procedure of the introduced method QActor.

3.2. Architecture and Methodology of QActor

Figure 1 depicts the architecture. The main components are the following: 1)quality model
Q :x — g € C where 7 is the predicted label by the quality model, 2) the label comparator
which discerns noisy from clean labels, 3) the active leaner which determines which and how
many data instances to send to the oracle, and 4) the classifier €: % — § € C. X = {&} is
a subset of X defined below.

1. In this paper, we interchangeably use terms of expert and oracle.



QACTOR: ACTIVE LEARNING ON NOISY LABELS

We use Deep Neural Networks (DNN) as the classifier since they have shown extremely
promising results in classifying complex image datasets (Goodfellow et al., 2015). Due to
the high training costs of deep neural networks, to reduce the computational burden, instead
of having two different models for £ and €, we leverage the time difference between data
arrivals to use the previously trained € as Q for the following time period, i.e., Q(t) =
¢(t — 1). This optimization allows us to train only one model per time period.

At each iteration t the data x is first sent to the quality model from the previous time
instance Q(¢ — 1) which predicts their labels g. If the predicted labels are the same as the
given ones, i.e. § = ¢, the label comparator marks them as clean, denoted as x°(t) € X°(¢);
otherwise as suspicious, x°(t) € X*(t). After this filtering step, the goal is to efficiently
clean the suspicious data. Since single sample relabeling is very inefficient for the training
process of deep neural networks, we relabel a batch of informative samples at each iteration
as (Kirsch et al., 2019). To this end, the suspicious data samples are sent to the active
learner to rank them based on their informativeness and select a batch of o(t) data instances
X°(t) to send to the oracle to query their true label. Note that o(t) is limited by the given
available budget B, i.e., Y, 0(t) < B. Since o(t) is typically much smaller than the number
of noisy data instances, i.e. o(t) < |X*(t)|, instances are ranked and selected based on an
uncertainty metric. Highly uncertain samples indicate high informativeness and thus we
argue that re-labeling these samples would increase the performance of the classifier.

The clean and relabeled instances are denoted by X(t) = (UL_;X°(7)) U X°(t) and
used to re-train €(¢) and Q(¢). We repeat this procedure again for a few iterations until
the budget is exceeded or the performance reaches to a desired level. To avoid pitfalls in
learning we monitor the accuracy on a small hold-out of the initial set. If performance drops
by more than a we roll back the model before processing the next data batch.

In the following section, we explain our proposed noise-aware informativeness measure
that identifies the useful samples to be relabeled by the oracle.

3.3. Noise-aware Informative Measure: CENT

Since relabeling all the data in the suspicious set is an expensive and time-consuming task,
we aim to identify the most informative and useful samples to relabel by the oracle. We
argue that in noisy labeled data settings different from traditional active learning where
no label information is available, relabeling is more effective if the budget is spent on
informative and noisy data. To overcome this issue, we introduce a novel noise-aware active
learning measure, CENT, which consists of two parts, informative data identification, and
clean/noisy separation. CENT queries the oracle to relabel an informative noisy set, and
furthermore, identifies the informative clean set within the suspicious set and keeps their
own label and then adds to clean set X€¢(t). The motivation behind this strategy is to
leverage the clean data that is mistakenly categorized as noisy and is then discarded by the
traditional AL methods for their lack of informativeness.

To measure the informativeness of the data, first, we calculate the entropy of the suspi-

cious set:
C

Lp(x}) == ply=cxj)logply = cx]) (1)
c=1
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where p is the neural network’s softmax prediction output for each class label ¢: p(c|x) =

Cerezj where z; are the logits.

’ Entropy is an information-theoretic measure and the higher this value, the higher in
information in the data sample is. We pick 2 - o(t) samples with the highest Lg value
and put them in the informative set X7 (t). Although entropy is a popular informativeness
measure in active learning literature where the data is unlabeled, in noisy labeled data
problems it doesn’t necessarily identify the noisy informative data. Therefore, we employ

another metric, cross-entropy, which can distinguish between noisy and clean data:

C
Lop(x],y:) == qlclx])logp(y = clx]) (2)

c=1

where ¢(c|x;) denotes the given label probability distribution over the C class labels where
q(c|x;) = 1 for ¢ equal to the given class g; and ¢(c|x;) = 0 for all ¢ # y;. We show in
Theorem 1 that the higher values of CE are the indication of noisy labeled data. Therefore,
we pick the o(t) data with the highest CE values among X’ (¢) as X°(¢) and send them to
the oracle to relabel. Moreover, since smaller values of CE represent the clean data among
the informative set, we pick the other half of X'(¢) that have the lowest CE values and
call them the semi-clean data X*¢™~¢(t) to add to the clean set, keeping their own labels.
Algorithm 1 shows the overview of our proposed method.

Theorem 1 With uniform label noise with the rate n and the accuracy A of the classifier
in a C class classification task, the average of Lop(X,y) for noisy samples is higher than
Lop(x,7) for clean samples with the given label §, if %ﬁ < C—1 where v << 1

n
) S N
is a positive number.

Proof Let § and g be the given (noisy) and the predicted label for the true label y. We show
the clean and noisy set as Q = {(x;, 9;)|y; = y;} with |Q| samples and ® = {(x;, 9:)|9: # vi}
with |®| samples respectively. We argue that the average Lo g value for the noisy samples
is higher than the clean samples:

EXNQ(X,{/) Lcg (Xa Q) < Ex~‘1>(x,gj)£C’E‘ (Xa Q) (3)

According to equation 2, since ¢ is a one-hot vector of the labels, Log(Xi, 5i) = — log p(U;|x;).
By removing logarithm from both sides, we have:

Ex~axp{P0%)} < Exwaxg{p(@x)} (4)

where p is the neural network’s softmax prediction output. Consider Figure 2 which cate-
gorizes the clean and noisy data based on the noise ratio and the classifier’s accuracy. With
the uniform noise patter, the probability of the noisy label being equal to the predicted label

is ﬁ, and % otherwise. Therefore, the inequality above is equivalent to the following:

—A
AnEx~¢’(x,Q) {p(y‘xu y= y)} + (10_1)77E><~q>(x,y) {pmaz (X)}+
L=, iy (ol y 75 # 9)) < ®)

AL = 1) Exnx,) {Pmaz ()} + (1= A1 = 0)Exnapeg) (PII%,5 # 5 = )}
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Figure 2: Categorization of the data D based on the true, given and predicted labels. TP
and FP indicate true and false positives and, TN and FN indicate true and false negatives
respectively, where noisy and clean data are considered positive and negative respectively.

where pjq, for the data x; is the maximum value of prediction vector for x;, associated
with . The inequality will hold by omitting the rest of the p values in the left hand side
which are significantly smaller than p,,.,. Moreover, on the right had side, we can use

EXNQ(X,Q){p(vag #F 9= y)} = ’YEXNQ(X,Q){pmax(X)} where v << 1. Therefore we will
have:
(1—A)n

C_1 Ex~<1>(x,g}){pma:r(x)} < (1 - 77)(14 + (1 - A)/V)EXPvQ(x,Q){pmax(X)} (6)

Since Exa(x,5){Pmaz(X)} < Exq(x,5)1Pmaz(X)}, therefore, the inequality holds when:

(1-4) U
A+(1-A)y(1-n)

<C-1 (7)

|
3.4. Active Learner Query Policies

The aforementioned uncertainty measures are used by the active learner in combination
with two different policies on how to deplete the query budget over time:

Static policy. The active learner asks a constant number o(t) = M,Vt of queries at
every iteration of learning. Essentially, for each iteration, the active learner queries the
most uncertain M data instances that are considered noisy by the quality model.

Dynamic policy. The active learner dynamically adjusts o(¢) based on the value of the
loss function of the quality model. The rationale behind this is to increase the number of
queries when the quality model has a low learning capacity, reflected by high loss function
values, and to decrease the number of queries when the loss function converges to lower
values. Specifically, we propose to adjust o(t) as following:

Lt —2) — L2t - 1)
-1 ) ®)

o(t)y=o0(t—1)(1 —
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Algorithm 1: Quality Driven Active Learning.

Input : Initial Dataset D!, Noisy Labeled Dataset D = {(x;,9;)}, Budget B, Total
Number of Iterations T

Output: Quality model £, Classifier €

Train  and € with D!

while iteration t <1 do
y; := Predicted label by Quality model Q for x;

Xe(t) = {vx; € D,y; = §;}

X3(t) = {vx; € D,y; # 45}

o(t) = Query size according to Section 3.4

if Informativeness Measure is CENT then
X1(t) = The first 20(t) high entropy samples selected from X*(t)
Sort X (t) based on their CE value
X°(t) = The o(t) samples from X’ (t) with the highest CE
Xsemi—¢(t)= The o(t) samples from X (¢) with the lowest CE

else

| X°(t) = The o(t) samples with the highest informativeness from X*(¢)

end

Send X°(t) to the oracle to relabel

Train Q and € with X (t) = (UL_, X°(7)) U X(t) U X 5emi=¢(¢t)

end

where
C

LA(t) = > ply = cx;)logp(y = clx;) 9)

;€

c=1

M1

is the average entropy loss across all training samples used at period ¢. Since the re-training
of the model(s) happens after the oracle querying, we use the loss from the periods t — 1
and t — 2. Finally, we note that the number of active queries is capped by the given budget
B, i.e. the number of active queries used is min(B — Zt;:ll o(T),0(t)).

Standard active learning studies query one instance at a time and train the model by
adding that instance to the training set. Then the learner queries the next instance based
on the retrained model and repeats the procedures recursively until all the budget is spent
or the desired performance is achieved. However, it is computationally too expensive to
retrain the model after each oracle query and repeat for the next one. Therefore, we decide
to query o(t) instances per round. This applies to both policies: static and dynamic.

4. Experimental Setup

Here we describe the datasets, the model parameters and the baselines used for comparison.

Datasets. We consider image datasets using the pixel values as inputs. In particular
we use the well-known CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al., 2009). These
datasets try to classify colored 32 x 32-pixel images into ten and hundred classes, respectively.
CIFAR-100 is more complex due to both the higher number of classes and lower number
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of data per class. For both dataset we use 50000 samples for training and the rest 10000
samples for testing.

Label Noise. We inject label noise into the training set by corrupting the label of ran-
domly sampled data instances. We term the sampling probability as noise rate. Corrupted
samples are subject to symmetric noise, e.g., the true label is exchanged with a random
different label with uniform probability. We consider noise rates of 30% and 60%. Test data
is not subject to label noise.

Baselines. To better show the overall effectiveness of our proposed QActor method we
compare it two sets of baselines. First we compare against different active query selection
baselines:

No-Sel: uses all samples that arrive in the batch to train the classifier without filter-
ing.

Q-only: in this case the quality model filters the suspicious samples but there is no
active learner to relabel the informative noisy instances. Therefore the classifier will
train only on the clean data instances identified by the quality model.

Opt-Sel: which assumes a perfect quality model able to identify all the true clean
and noisy samples and uses all the clean samples for training the classifier without
active learning.

Entropy (ENT): ranks the data based on their entropy value, i.e. 25:1 ply =
clx?) log p(y = ¢|x). Entropy is an information theoretic measure and the higher this
value, the higher in information in the data sample is.

Re-Active: based on the idea discussed by (Lin et al., 2016), where a weighted
average of entropy and cross-entropy values are use for informative sample selection,
ie. (1—a)lp+alck.

Random: among the suspicious set, randomly selects o(t) samples in each iteration
to be relabeled by the oracle.

Semi-Random: among the suspicious set, randomly selects 20(t) samples in each
iteration, one half to be relabeled by the oracle and another half to be added directly
to the clean set keeping their own label.

Second we put QActor in the context of other noise-resistant techniques drawn from the
related work on learning with noise. For a fair comparison we have used extra clean data
also when training the noise resilient baselines, so that they have the same number of initial
clean data during their training processes.

D2L (Wang et al., 2018a): estimates the dimensionality of sub-spaces during training
to adapt the loss function.

Forward (Patrini et al., 2017): corrects the loss function based on the noise transition
matrix.

Bootstrap (Reed et al., 2015): using convex combination of the given and predicted
labels for training.

Co-teaching (Han et al., 2018): exchanges mini-batches between two networks trained
in parallel.

Re-weighting (Ren et al., 2018): Trains the neural network with a weighted loss
function per samples, where the weights are learned based on the similarity of the
data to a clean set.
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4.1. Model Parameters

As QActor classifier for CIFAR-10 and CIFAR-100 we use the Convolutional Neural Network
(CNN) architectures defined in (Wang et al., 2018a) with ReLU and softmax activation
functions as image classifier and cross-entropy as loss function. We train the models by
using stochastic gradient descent with momentum 0.9, learning rate 0.01, and weight decay
10~%. QActor and all baselines are implemented using Keras v2.2.4 and Tensorflow v1.12,
except Co-teaching and Reweight. They are based on PyTorch v1.1.0, and we reproduce
the same CNN structure in PyTorch as we use for other baselines implemented with Keras.

With CIFAR-10 QActor is trained initially with clean 1000 instances and 40 epochs. We
inject noise for the remaining 49000 instances with 30% (60%) rate. Under static policy, in
each iteration we query o(t) = {100,300} samples actively from the oracle and retrain the
model for 10 epochs for 50 iterations which adds up to 540 epochs overall. Similarly, the
dynamic policy uses B = 5000 which is equal to the budget used in the static policy with
o(t) = 100. At the end of each batch, we test the model with the test set of 10000 instances.
Rollback uses a = 20%. For CIFAR-100 we increase the initial set size to size to 5000 and
100 epochs per batch to cope with the higher complexity. We also lower the total training
iterations for CIFAR-100 to 30, but the epochs per iteration and o(t) stay the same, which
would be 400 epochs overall. For fair comparison, baselines are also trained under the same
initial set and the same CNN structure. Therefore, we change Re-weighting neural network
from Wide-ResNet to our own network structure. All baselines use the same parameters
as from their papers except for D2L. Here we reduce the dimensionality estimation interval
to 40 and 10 for the initial and subsequent batches, respectively. This keeps roughly the
original ratio against the overall training period. We repeat each experiment for 3 times
and for each experiment we report the average accuracy of the last 5 iterations.

5. Results

Here we present the accuracy achieved by QActor on the CIFAR-10 and CIFAR-100 datasets.
We first compare QActor against six noise-resistant models (without using active learning
strategies) from four state-of-the-art related papers, followed by the analysis over the un-
certainty metrics. Finally, we unravel our model sensitivity analysis and eventually show
the effect of the dynamic policy.

5.1. Noise-resistant Models

We compared our proposed QActor with the measure CENT, with the noise-resistant de-
scribed in Section 4. Table 1 summarizes the results for different noise-resistant prior arts
and QActor. For a fair comparison, we use the same initial clean set and neural network
architecture to train all models. As the results illustrate, QActor is outperforming all the
prior arts significantly by relabeling only 10% of the data. Although these state-of-the-art
models are successful in classification tasks of samples affected by label noise, they don’t
benefit from an expert labeler during their training procedure. The best performance is
achieved by D2L and Bootstrap hard which however are still 15 percent points lower than
our QActor with 100 active queries per iteration for CIFAR-10. Increasing the active queries
to 300 per iteration increases the gap by another 6 percent point. The other models, i.e.
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Table 1: Accuracy (%) of different noise resilient networks under 60% label noise.

Methods Baselines Our
D2L | Forward | Co-teaching | Bootstrap soft | Bootstrap hard | Re-weighting | QActor(100) [ QActor(300) | QActor P(100)
CIFAR-10 | 69.33 62.89 35.45 64.46 69.20 46.36 76.94 81.26 77.83
CIFAR-100 | 37.35 39.52 6.92 38.51 29.99 8.54 47.63 50.57 48.40

Co-teaching, Forward, Bootstrap soft, and Re-weighting only achieve at best about 46%
accuracy. This underlines how our method copes very well with noisy labeled data. For
CIFAR-100, Forward and Bootstrap soft are best performing models while being almost 9%
and 12% below QActor with only 100 and 300 queries per iteration respectively. As the
last row of the table demonstrates, dynamic allocation of the budget boosts the accuracy of
QActor with 100 up to one more percent. We will analyze this dynamic policy with more
details in section 5.4.

5.2. Information Metrics

Here we compare the effect on the accuracy obtained on the test set when changing the
underlying uncertainty measure.

In particular, we consider the uncertainty measures CENT, highest Entropy (ENT),
and random baselines Random and Semi-Random to select samples from the noisy set to
be queried for their labels. Moreover, we also analyze the methodology discussed by (Lin
et al., 2016) and we set & = 0.8. Figure 3 summarises the results on CIFAR-10 for 60%
noise and o(t) = 100 over 50 iterations. As the figure shows, CENT is outperforming all
the baselines over the iteration particularly in the earlier stages. As the number of queried
samples grows, the performance of all the methods converges close to each other except
for Semi-Random. The reason is that in the final iterations a large number of cleaned
samples weigh more than the informativeness of them which is observed in all AL studies.
Comparing ENT and CENT overtime shows the that leveraging the ability of CE function
to detect the clean samples in the suspicious set and training on them is beneficial especially
with small query number in the early stages. Moreover, results show the weighted average of
entropy and cross-entropy values in Re-Active is not a suitable measure for informativeness.
Analyzing the performance of Random, however, shows that random selection of samples
to be cleaned by the oracle is less effective than smartly querying the informative samples.

The decline in the performance of Semi-Random over time is due to the selection of the
noisy samples as the semi-clean data and adding them to the training pool. The reason
is that Semi-Random randomly chooses samples from the informative suspicious set and
directly sends them to the training set without cleaning, while CENT chooses these samples
based on their low CE value. This comparison shows the effectiveness of using CE values
to distinguish between clean and noisy samples.

Table 2 shows the detailed statistics of clean samples in the active for CENT and the
sample selection baselines for both CIFAR-10 and CIFAR-~100. Observing the last column
that indicates the ratio of the FP (samples that are clean but have been considered noisy
in the suspicious set by the quality model) to the suspicious set size, shows the total ratio
of the clean samples in the suspicious set. This number is close to the Semi-Random clean
ratio which shows the Semi-Random fails smartly select clean samples for the semi-clean
set. Moreover, to see the effect of the semi-clean set in CENT, we compare the percentage
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Table 2: Comparison of CENT and the query selection baselines for CIFAR-10 and CIFAR-
100 with 60% noise and o(t) = 100 over 50 and 30 iterations respectively. FP and TP are
false and true positives in the suspicious set where positive is considered the noisy data.

Dataset ‘ Method ‘ Accuracy (%) ‘ Clean(%) in Active Set ‘ FP/(FP+TP)(%)
CENT 76.94 9.58 11.62
ENT 75.77 39.92 11.27
CIFAR-10 Re-Active 73.62 1.16 12.67
Random 75.37 12.56 13.01
Semi-Random 71.52 12.04 11.55
CENT 47.63 9.06 27.34
ENT 45.80 38.07 26.98
CIFAR-100 Re-Active 47.00 1.97 26.75
Random 47.59 25.24 26.50
Semi-Random 46.76 26.99 26.41

of the clean samples in that set with the same value with Semi-Random strategy, where the
data in the semi-clean set is selected randomly. For CIFAR-10 this number is 63.24% while
it is only 11.98% for Semi-Random. The numbers are 73.86% and 26.24% for CIFAR-100
respectively. This illustrates how the cross-entropy value helps CENT to select mostly clean
samples as the semi-clean set.

Furthermore, comparing the number of clean samples in the active set for ENT and
CENT validates our argument over the ability of CE value to recognize noisy samples. It
should be noted that although Re-Active is successful in including mostly noisy samples in
the active set, the selected samples are the least helpful for the performance. Our detailed
analysis indicates that this measure results in selecting the data mainly from a few classes
instead of a more homogeneous selection. The high value of clean samples in the active set
for ENT indicates that over half of the budget is being wasted on the samples that, although
informative, were already clean. As mentioned earlier, our motivation to introduce CENT,
was to overcome this waste and have a measure that focuses on both informativeness and
noisiness of the samples that are being selected to be relabeled. As the experimental results
confirm, we believe having such a measure is essential in active learning applications on
noisy labeled data.

5.3. QActor Model Sensitivity Analysis

Here we present the results using the static policy termed QActor(100) and QActor(300)
with constant 100 and 300 queries per iteration, respectively. We compare our QActor
using CENT with the selection baselines from Section 4 with the different numbers of
active queries and noise rates. Table 3 summarises the results. As expected, No-Sel which
directly learns from the data has the worst results in the presence of noise, achieving at
most 68.11% accuracy. Note that the accuracy of No-Sel declines over time and we reported
the highest accuracy that the model achieved over epochs. However, our static QActor with
CENT with only 100 active querying per iteration from the oracle comes remarkably close
to Opt-Sel, where the model is trained with only the clean samples.
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Figure 3: The impact of noise-aware informative measures: accuracy and loss for CIFAR-10
with 60% noise where at each iteration 100 queries are labeled by the oracle.
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Figure 4: The impact of dynamic queries: comparison between QActor(100) and QActor?
on CIFAR-10 with 60% noise.

Applying either sample selection or active querying alone achieves intermediate results
compared to No-Sel. Q-only alone is more efficient driving up the accuracy to approximately
78% for CIFAR-10. However, Q-only has very poor performance for CIFAR-100. This
comparison shows the effectiveness of both the quality model and active learning since
neglecting any of both would result in a decrease in the accuracy. Moreover, we can observe
with the increase in the number of the active query per iteration the performance increases
over time.

5.4. Dynamic QActor

We compare our dynamic policy QActor? using a given budget of B = 5000 with our static
policy QActor (100) that queries over the whole time horizon the same number of instances.
Figure 4(a) and Table 3 summarize the accuracy results for CIFAR-10. Using dynamic query
allocation policy (red line) of the budget across the batches leads to a better performance
of 77.83% than the static policy (blue line) 76.94%. This increase in performance is more
visible in higher noise rate as it is more crucial to clean more samples by the oracle. Looking
at the evolution, we observe a higher performance compared to the static policy particularly
in the first iterations.
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Table 3: Accuracy on noisy CIFAR. Three alternative approaches v.s. static and dynamic
versions of QActor, namely QActor(100) and QActor”(100) which uses the same budget as
QActor(100).

Dataset \ Noise \ Opt-sel \ No-sel \ Q-only \ QActor(100) \ QActor?”(100)

30% 88.52 68.11 78.74 86.24 86.31
CIFAR-10 60% 85.19 64.86 75.04 76.94 77.83
30% 59.29 50.50 36.52 54.28 54.74
CIFAR-100 60% 52.67 33.71 35.75 47.63 48.40

This result stems from the fact that the dynamic model queries more in the earlier
batches when the model is less accurate and confident. Figure 4(b) shows the evolution of
the number of active queries used in QActor? across the time periods. We see that indeed
in the beginning the number of queries increases goes above the static assignment (100).
In later batches, the number of queries goes then near and lower than the static case. The
fluctuation of the query number per iteration shows how this number imitates the model’s
overall performance. Eventually all the budget is used over the whole time.

6. Conclusion

In this paper, we consider a challenging problem of image classification with corrupted
labels. We propose QActor, a learning algorithm for very noisy label datasets, introducing
an active learning methodology suited for noisy labeled data called CENT. The core of
QActor is composed of a quality model that filters out the noisy labels and an active
learner that smartly selects informative noisy instances to be relabeled by an oracle. The
unique feature of QActor is its noise-awareness while selecting the informative data and its
dynamic query allocation over training iterations based on the training loss. The flexible
design enables QActor to be generalized on both standard and deep learning models that
have limited clean data labels. Our extensive evaluation on CIFAR-10 and CIFAR-100 show
that QActor can effectively combine the merits of the quality model and active learning
when encountering extremely noisy labels, i.e., up to 60%. Compared to the state of the
art addressing noisy labels, QActor can achieve higher accuracy by at least 8% at the
cost of querying oracle to cleansing 10% suspicious images. For future work, we plan to
explore different types of DNN models which can either provide more accurate predictions on
probability, e.g., Bayesian neural networks. Moreover, to further improve the performance
of the noise resilient prior arts we plan to combine QActor with them benefiting from expert
relabeling in those models.
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