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Abstract: The Poisson-stopped sum of the Hurwitz–Lerch zeta distribution is proposed as a model for
interarrival times and rainfall depths. Theoretical properties and characterizations are investigated in
comparison with other two models implemented to perform the same task: the Hurwitz–Lerch zeta
distribution and the one inflated Hurwitz–Lerch zeta distribution. Within this framework, the capa-
bility of these three distributions to fit the main statistical features of rainfall time series was tested on
a dataset never previously considered in the literature and chosen in order to represent very different
climates from the rainfall characteristics point of view. The results address the Hurwitz–Lerch zeta
distribution as a natural framework in rainfall modelling using the additional random convolution
induced by the Poisson-stopped model as a further refinement. Indeed the Poisson contribution
allows more flexibility and depiction in reproducing statistical features, even in the presence of very
different climates.

Keywords: Hurwitz-Lerch zeta distribution; log-concavity; compound poisson distribution; one
inflated model; moment; simulated annealing

1. Introduction

Analysis of rainfall data, and the subsequent modelling of the many variables concern-
ing rainfall, is fundamental to many areas such as agricultural, ecological and engineering
disciplines. From assessing hydrological risk to both crop and hydropower plannings, rain-
fall modelling is of the utmost importance. Moreover, being able to provide reliable rainfall
modelling is essential in the well known issue of climate change. Due to the complexity
of hydrological systems, their analysis and modelling rely heavily on historical records.
Rainfall historical records are of various time scales, from hourly data to annual data. How-
ever, daily rainfall series are arguably the most used information in environmental, climate,
hydrological, and water resources studies [1]. Rainfall manifests one peculiar characteristic
which is common to many other geophysical processes: intermittence [2]. Intermittence
is found in variables which are related to the internal and external structure of rainfall.
The most commonly seen for the external structure are the Wet Spells (WS) and Dry Spells
(DS), meaning the sequences of rainy days and non-rainy days, respectively. A way of
studying the alternance of WS and DS is through the Interarrival Times (IT), that is the
time elapsed between two consecutive days of rain. If we suppose that IT observations are
independent and identically distributed (i.i.d.), one natural way to model them is through
the well known renewal processes [3]. Many examples can be found in the literature. The
simplest renewal process, the Bernoulli process, has been used in [4] for example. In this
case, the IT’s are geometrically distributed. Its continuous counterpart, the Poisson process,
has been used for its simpler mathematical tractability, but requires dealing with the IT
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random variable (r.v.) as continuous, despite its discrete nature. The need to suppose a
non-constant probability of rain requires slightly more sophisticated models.

The challenge of this paper is to propose a suitable discrete distribution to fit IT at the
daily scale. It is on this time scale that the intermittent character of precipitation can be
appreciated and at the same time most practical applications are possible. The proposed
distribution must be able to model both the numerous occurrences of the value equal to
one, which represent the sequence of rainy days, and some large values scattered over time
and responsible for drought phenomena. Our starting point is the three parameter family
Hurwitz–Lerch Zeta distribution (HLZD), successfully proposed in [5]. Such a distribution
represents a step forward with respect to other commonly used IT modelling distributions,
such as the logarithmic one. In Section 3, we summarize the main properties of the HLZD
and state new results on its log-concavity and convolution. As a step forward, in this
paper we propose to model the IT r.v. using the Poisson-stopped HLZD (PSHLZD). This
discrete distribution presents excess zeroes (paralleling the excess of IT=1) and a long
tail [6]. The PSHLZD has been used in [6] for comparisons with the negative binomial
distribution, a popular model for fitting over-dispersed data. Indeed the PSHLZD can be
seen both as a Poisson-stopped sum of HLZD’s as well as a generalization of a negative
binomial distribution. The Poisson contribution allows us to model the superposition of
i.i.d. HLZD’s in the observed time series as rare event. In Section 4, we summarize its main
properties using the combinatorics of exponential Bell polynomials. It is noteworthy to
mention that Bell polynomials are used within fractional calculus, see for example [7,8]
and within fractal models [9]. Moreover, new results are added on the the PSHLZD, as for
example on log-concavity.

A second goal of this paper is to show that the PSHLZD is also a suitable model for
a different feature strictly related to the internal structure of rainfall: the depth (or the
intensity) of the rainy days [10]. In the literature, refs. [11,12] rainfall depths are more
often treated as continuous despite that sometimes these models fail to account for the
time discreteness of the sample process [13]. Daily rainfall depth measurements are almost
always performed by automatically counting how many times a small bucket corresponding
to 0.2 mm is filled. This led use to treat them as discrete, because of the abundance of ties in
the data. Finally, in Section 5 we have also considered a third modelling distribution: the
One Inflated HLZD (OIHLZD). Such a distribution mixes two generating processes: the first
generates one’s and the latter is governed by a HLZD. This stochastic structure takes into
account the dominance of one’s in the rainfall depth or interarrival time series.

In Section 6, we discuss the results for fitting all these models to rainfall data, proving
that the PSHLZD provides a very general framework for rainfall modelling. Indeed the
PSHLZD replicates the fitting features of the OIHLZD and outperforms the fitted HLZD
in some cases. The PSHLZD has a limited number of parameters and at the same time
can adapt very well to data collected in very different climates, from England to Sicily.
Let us underline that the analyzed dataset has never been considered in the literature and
consists of measures sampled along 70 years at 5 different stations. These stations were
chosen in order to represent different climates from the rainfall characteristics point of view.
In fact, the interarrival data examined are very different from each other, with a regular
pattern of many rainy days in England, and a winter rainy season alternating with long
periods in summer without rain, typical of the Sicily Mediterranean climate. The same is
for the rainfall depth, namely many small depths in England, and few big storms in Sicily.
This made it possible to confirm the great utility of the proposed statistical models within
rainfall modelling. Some concluding remarks and future developments are addressed at
the end of the paper.

2. Bell Polynomials in a Nutshell

The partial exponential Bell polynomials are usually written as [14]

Bn,j(z1, . . . ,zn−j+1)=∑
n!

(1!)r1 r1!(2!)r2 r2! · · · z
r1
1 · · ·z

rn−j+1
n−j+1 n∈N, j≤n (1)
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where the summation is over all the solutions in non-negative integers r1, . . . ,rn−j+1 of
r1+2r2+ · · ·+(n− j+1)rn−j+1 =n and r1+r2+ · · ·+rn−j+1 = j. A lighter expression is ob-
tained using partitions of the integer n with length j. Recall that a partition of an integer n is
a sequence π=(π1,π2, . . .) of weakly decreasing positive integers, named parts of π, such
that π1+π2+ · · ·=n. A different notation is π=(1r1 ,2r2 , . . .), where r1,r2, . . . , named multi-
plicities of π, are the number of parts of π equal to 1,2, . . . respectively. The length of the
partition is l(π)= r1+r2+ · · · and the vector of multiplicities is m(π)= (r1,r2, . . .). We write
π`n to denote that π is a partition of n. Thus the partial exponential Bell polynomials (1)
can be rewritten as [15]

Bn,j(z1, . . . ,zn−j+1)= ∑
π`n, l(π)=j

dπzπ (2)

where the sum is over all the partitions π`n with length l(π)= j and

zπ = zr1
1 zr2

2 · · · dπ =
i!

(1!)r1 r1!(2!)r2 r2! · · · . (3)

Using integer partitions, the explicit expression of the partial exponential polynomials
can be recovered in R using the kStatistics package [16]. A useful property used in the
following is

Bn,j(abz1, . . . ,abn−j+1 zn−j+1)= aj bn Bn,j(z1, . . . ,zn−j+1) (4)

with a,b constants. Equation (4) follows from (2) since from (3) we have

(abz1)
r1(ab2 z2)

r2 · · ·= ar1+r2+··· br1+2r2+···zπ = aj bn zπ

taking into account that l(π)= r1+r2+ · · ·= j and r1+2r2+ · · ·=n.
The n-th complete exponential Bell polynomials in the indeterminates z1, . . . ,zn is

defined as [14]

Bn(z1, . . . ,zn)=
n

∑
j=0

Bn,j(z1, . . . ,zn−j+1) (5)

with {Bn,j} the partial exponential Bell polynomials (1). Note that n is the positive integer
corresponding to the maximum degree of the monomials in (5). This polynomial sequence
satisfies the following recurrence [14]

Bn+1(z1, . . . ,zn+1)=
n

∑
j=0

(
n
j

)
zj+1Bn−j(z1, . . . ,zn−j) (6)

with the initial value B0 =1. The generating function of {Bn} is the formal power series
composition [14]

exp[hz(t)−z0]= ∑
n≥0

tn

n!
Bn(z1, . . . ,zn)∈R[[t]] (7)

where R[[t]] is the ring of formal power series in t and hz(t) is the generating function of
{zk}k≥0, that is

hz(t)= ∑
k≥0

tk

k!
zk.

A different expression of the n-th complete exponential Bell polynomial involves
integer partitions [15] as follows

Bn(z1, . . . ,zn)= ∑
π`n

dπzπ (8)
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where the sum is over all the partitions π`n,dπ and zπ are given in (3). In particular
we have

Bn(λz1, . . . ,λzn)= ∑
π`n

λl(π)dπzπ (9)

with λ a constant. Now, suppose to replace λl(π) in (9) with a numerical sequence {al(π)}.
Thanks to this device, the complete exponential Bell polynomials results as a special case of
a wider class of polynomial families, the generalized partition polynomials [16]

Bn(a1, . . . ,an;z1, . . . ,zn)= ∑
π`n

dπal(π)zπ (10)

where the sum is again over all the partitions π`n. A different expression of (10) involves
the partial exponential Bell polynomials {Bn,j} in (1)

Bn(a1, . . . ,an;z1, . . . ,zn)=
n

∑
j=1

ajBn,j(z1, . . . ,zn−j+1). (11)

An example of a well known polynomial family, arising from (11) is the logarithmic one [14]

Ln(z1, . . . ,zn)=
n

∑
j=0

(−1)j−1(j−1)!Bn,j(z1, . . . ,zn−j+1). (12)

3. The Hurwitz-Lerch Zeta Distribution

Definition 1. A discrete random variable Y d
=HLZD(a,θ,s) if

qy :=P(Y= y)=
θy

T (θ,s,a)(y+ a)s+1 , θ∈ (0,1) , a>−1, s∈R (13)

for y= 1,2, . . . , with T (θ,s,a)= θΦ(θ,s+1,a+1), where

Φ(θ,s,a)=
∞

∑
n=0

θn

(n+ a)s (14)

is the Lerch Transcendent function.

The probability generating function (pgf) of Y d
=HLZD(a,θ,s) is

GY(z)=
θΦ(zθ,s+1,a+1)

Φ(θ,s,a)
, |z|≤ 1 (15)

with GY(0)= 0.

3.1. Moments and Cumulants

HLZD moments have a closed form expression involving the Lerch Transcendent
function. Differently from [17], we find this closed form expression using (13).

Proposition 1. If Y d
=HLZD(a,θ,s), then

ξk :=E[Yk]=
k

∑
j=0

(−a)k−j
(

k
j

)
Φ(θ,s+1− j,a)
Φ(θ,s+1,a+1)

. (16)
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Proof. Using the binomial expansion of yk =(y− a+ a)k, we have

ξk =
∞

∑
y=1

ykP(Y= y)=
∞

∑
y=1

yk θy−1

Φ(θ,s+1,a+1)(y+ a)s+1

=
∞

∑
y=1

(
k

∑
j=0

(
k
j

)
(y+ a)j(−a)k−j

)
θy−1

Φ(θ,s+1,a+1)(y+ a)s+1

=
k

∑
j=0

(
k
j

)
(−a)k−j 1

Φ(θ,s+1,a+1)

∞

∑
y=1

θy−1

(y+ a)s+1−j

from which (16) follows by taking into account (14).

As a corollary, the mean and the variance are respectively:

E[Y]= T (θ,s−1,a)
T (θ,s,a)

− a Var[Y]=
T (θ,s−2,a)
T (θ,s,a)

−
(
T (θ,s−1,a)
T (θ,s,a)

)2

.

More generally, the k-th central moment can be recovered as

ξ ′k :=E[(Y−ξ1)
k]=

k

∑
j=0

(
k
j

)
ξ

j
1 ξk−j

and the factorial moments as

(ξ)k =E[Y(Y−1) · · ·(Y−k+1)]=
k

∑
j=0

s(k, j)ξk (17)

with s(k, j) Stirling numbers of the first kind [14]. HLZD cumulants are such that [14]

κn(Y)=Ln(ξ1, . . . ,ξn) n= 1,2, . . .

where {ξ j} are the moments of Y d
=HLZD(a,θ,s), given in (16), and Ln is the n-th logarith-

mic polynomial (12). Let us recall that, if the moment generating function (mgf) MY(t) of Y is
well defined in a suitable neighborhood of 0, then the coefficients {κn(Y)} in the expansion

MY(t)= exp

(
∑
n≥1

tn

n!
κn(Y)

)

are the cumulants of Y. The first cumulant is the mean E[Y], the second cumulant is the
variance Var(Y), the skewness and the kurtosis of Y can be recovered using the third and
the fourth cumulant of Y respectively.

3.2. Mode

The HLZ distribution is a particular case of a wider class of distributions called the
Modified Power Series Distributions (MPSD) [18].

Definition 2. A discrete random variable Y d
=MPSD(a,g, f ) if

py :=P(Y= y)=
a(y)g(θ)y

f (θ)
, y∈T⊂N (18)

where a(y), g(θ) and f (θ) are positive, bounded, and differentiable functions of y and θ respectively
with f (θ)=∑y∈T a(y)g(θ)y.
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Using this wider class of distributions, we will prove that Y d
=HLZD(a,θ,s) is uni-

modal for all s∈R. To this aim, let us recall that a discrete distribution with support T⊂Z
is said to be strongly unimodal if and only if the sequence {py}y∈T , with py :=P(Y= y), is
a logarithmically concave sequence [19], that is if and only if

p2
y≥ py−1 py+1, ∀y∈T. (19)

Proposition 2. Suppose Y d
=HLZD(a,θ,s).

(i) If s≥−1, the sequence {qy}y≥1 is monotonically decreasing and the mode is y= 1.
(ii) If s<−1, Y is strongly unimodal.

Proof. Similarly to what stated in Section 2.3 of [20], we have

qy

qy−1
= θ

(
1− 1

a+y

)s+1
y= 2,3, . . . . (20)

Since θ∈ (0,1), a>−1 and s≥−1, the rhs of (20) is always between 0 and 1, thus (i) follows.
For (ii) we have to prove that {qy}y≥1 is log-concave, that is it satisfies (19). Using (13), (19)
reduces to (1− (y+ a)−2)s+1≥ 1, which is always true if s<−1.

3.3. Convolution

The family of HLZ distributions is not closed under convolution. Nevertheless, as a
subclass of MPS distributions, the HLZD convolution still returns a MPSD. Indeed we will
prove that the family of MPS distributions is closed under convolution.

Theorem 1. If Y1, . . . ,Yj are independent r.v.’s identically distributed to Y d
=HLZD(a,θ,s), then

Y1+ · · ·+Yj
d
=MPSD(aj,g, f j) with f j(θ)= [T (θ,s,a)]j and

aj(y)=
j!
y! ∑

π`y, l(π)=j
dπ(aπ)

s+1 with aπ =(a+1)−r1(a+2)−r2 · · · (21)

and dπ given in (3).

Proof. Observe that if Y1, . . . ,Yj are r.v.’s i.i.d. to Y d
=MPSD(a,g, f ), then Y1+ · · ·+Yj

d
=

MPSD(aj,g, f j) with f j(θ)= f j(θ) and

aj(y)=


j!
y!

By,j[a(1), . . . ,a(y− j+1)], y∈Tj

0, y 6∈Tj

(22)

with Tj = {y1+ · · ·+yj ∈N|y1, . . . ,yj ∈T}. Indeed in (18), set a(y)=0 if y 6∈T and consider
the sequence {py}y≥1 such that py = 0 if y 6∈T. By using Lemma 1 in [21], we have

P(Y1+ · · ·+Yj = y)=
j!
y!

By,j(p1, . . . , py−j+1) (23)

where {By,j} are the partial exponential Bell polynomials (1). From (23) with pi replaced by
a(i)g(θ)i/ f (θ) for i= 1, . . . ,y− j+1 and using (4) we have

P(Y1+ · · ·+Yj = y)=
j!
y!

g(θ)y

f j(θ)
By,j[a(1), . . . ,a(y− j+1)]. (24)
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Thus Y1+ · · ·+Yj
d
=MPSD(aj,g, f j) with f j(θ)= f j(θ) and aj(y) given in (22). From (24)

note that aj(y)=0 if 1,2, . . . ,y− j+1 6∈T. By replacing g(θ)= θ, f (θ)=T (θ,s,a) and a(k)=
(k+ a)−(s+1) for k= 1, . . . ,y− j+1 in (24) we have

aj(y)=
j!
y!

By,j

[
(a+1)−(s+1), . . . ,(a+y− j+1)−(s+1)

]
y= 1,2, . . . .

The result follows after some manipulations, rewriting the partial Bell exponential polyno-
mials as in (2).

3.4. Maximum Likelihood Estimation

Consider a vector y=(y1, . . . ,yn) of independent observations of Y d
=HLZD(a,θ,s).

The maximum likelihood estimation (MLE) of (θ,s,a) is

(θ̂, ŝ, â)= argmax
(θ,s,a)∈Θ

`n(θ,s,a,y), (25)

with Θ=(0,1)× (−∞,+∞)× (−1,∞), `n(θ,s,a,y)= ln Ln(θ,s,a,y) the log-likelihood func-
tion and

Ln(θ,s,a,y)=
n

∏
i=1

P(Y= yi).

The MLE of the HLZD parameters (θ,s,a) has been studied by Gupta in [20]. He showed
that the three likelihood equations arising from maximizing the log-likelihood correspond
to the equations of the method of moments. In particular we have

n

∑
i=1

yi
n
=E[Y],

n

∑
i=1

log(a+yi)

n
=E[log(a+Y)],

n

∑
i=1

1
n(a+yi)

=E
[

1
a+Y

]
.

Unfortunately, closed form solutions of the above equations are not available and also the
moments E[log(a+Y)] and E[1/(a+Y)] must be numerically approximated. As noted
in [20], the likelihood equations may be solved by standard numerical methods to obtain
the MLE. However, it is well known that this does not guarantee that global maxima of the
likelihood have been achieved. In order to avoid this problem, a global optimization method
can be employed to solve (25). The global optimization method takes advantage of the bounds
of the parameters. More specifically, the MLE of the parameters can be obtained through a
global optimization algorithm known as Simulated Annealing [22]. Simulated annealing is a
stochastic global optimisation technique applicable to a wide range of discrete and continuous
variable problems. It makes use of Markov Chain Monte Carlo samplers, to provide a means
to escape local optima by allowing moves which worsen the objective function, with the aim
of finding a global optimum. Technical details can be found in [22], a variant of which is the
algorithm implemented in the Optim function in the base Stats R-package.

4. The Poisson-Stopped Hurwitz-Lerch Zeta Distribution

Definition 3. A discrete random variable X d
=PSHLZD(λ,a,θ,s) if its pgf is

GX(t)= exp
(

λ

[
θΦ(zθ,s+1,a+1)

Φ(θ,s,a)
−1
])

λ> 0, (26)

where Φ is the Lerch Transcendent function (15).

According to Definition 3, X d
=PSHLZD(λ,a,θ,s) takes non-negative integer values

and belongs to the class of generalized r.v.’s [23]. Indeed given two independent r.v.’s Z
and Y, with pgf GZ(t) and GY(t) respectively, the generalized r.v. X has pgf

GX(t)=GZ[GY(t)]. (27)
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The composition (26) matches (27) when Y d
=HLZD(a,θ,s) and Z is a Poisson r.v. (PS) of

parameter λ> 0, independent of Y, since GZ(t)= exp[λ(t−1)].
In the following we analyse in detail the properties of the PSHLZD using the complete

exponential Bell polynomials. Some of the properties given in [6] will also be briefly recalled.

Proposition 3. If X d
=PSHLZD(λ,a,θ,s) then

px :=P(X= x)=

e−λ, x= 0,

e−λ

x! Bx(λq1, . . . ,λ x!qx), x= 1,2, . . .
(28)

where Bx is the complete exponential Bell polynomial (5) of degree x.

Proof. Observe that GY(0)= 0 and GY(t)=∑y≥1 y!qyty/y!. The result follows from (7) with
z0 = 0 and hz(t)=GY(t), since from (26) we have

exp(−λ)exp[λGY(t)]= ∑
x≥0

tx

x!
e−λBx(λ1!q1, . . . ,λ x!qx).

Corollary 1. If X d
=PSHLZD(λ,a,θ,s) then p0 = P(X= 0)= e−λ and

px :=P(X= x)= θxe−λ ∑
π`x

(
λ

T(θ,s,a)

)l(π) (aπ)s+1

mπ !
x= 1,2, . . . . (29)

where the sum is over all the partitions π` x, mπ != r1!r2! · · · and aπ is given in (21).

Proof. From (28), using (8) and (3), we have

px =
e−λ

x! ∑
π`x

x!
(1!)r1 r1!(2!)r2 r2! · · · (λ1!q1)

r1(λ2!q2)
r2

= e−λ ∑
π`x

λr1+r2+···

r1!r2! · · ·
[(a+1)−(s+1)]r1 [(a+2)−(s+1)]r2 · · ·θr1+2r2+···

T(θ,s,a)r1+r2+···

by which (29) follows observing that r1+r2+ · · ·= l(π) and r1+2r2+ · · ·= x.

As a corollary of Proposition 3 and recursion (6), the sequence {px} in (28) satisfies
the following equations.

Corollary 2. If X d
=PSHLZD(λ,a,θ,s) then

px+1 =
λ

x+1

x

∑
j=0

(j+1)qj+1 px−j, x= 1,2, . . . with p0 = e−λ.

Proof. The result follows using (6) since we have

px+1 =
e−λ

(x+1)!
Bx+1(λq1, . . . ,λ(x+1)!qx+1)

=
e−λ

(x+1)!

x

∑
j=0

(
x
j

)
Bx−j(λq1, . . . ,λ(x− j)!qx−j)(j+1)!qj+1

=
e−λ

(x+1)!

x

∑
j=0

x!
(x− j)!j!

px−j
(x− j)!

e−λ
(j+1)!qj+1.
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The PSHLZD is unimodal if s≥ 0 and −1< a≤ 0 ([6], Property 1).

4.1. Log-Concavity

Under suitable conditions, the PSHLZD is log-concave.

Proposition 4. If X d
=PSHLZD(λ,θ,a,s) and s≥−1, then X has a log-concave cumulative

distribution function (cdf), that is

[P(X≤ x)]2≥P(X≤ x−1)P(X≤ x+1), x= 0,1,2, . . . .

Proof. According to ([24], Theorem 1), a random sum ∑Z
i=1 Yi of i.i.d. r.v.’s has a log-concave

cdf if Z is strongly unimodal and the distribution of {Yi} has a decreasing pdf. Thus, the

result follows as X d
=∑Z

i=1 Yi with Z d
=PS(λ), which has a log-concave pdf (strongly uni-

modal), and Y d
=HLZD(θ,a,s) with a decreasing pdf when s≥−1 (see Proposition 2).

Proposition 4 gives a sufficient condition to get cdf log-concavity. A different way is
to consider the sequence {px}. Indeed, if X has a log-concave pdf (19), then its cdf is also
log-concave [24]. In the more general setting of generalized r.v.’s, X has a log-concave pdf
if and only if the sequence

px :=P(X= x)=
1
x!
Bx(1!q̃1, . . . ,x!q̃x;1!q1, . . . ,x!qx) x= 1,2, . . . (30)

is log-concave with p0 =P(X= 0)=GZ[GY(0)] and q̃x =P(Z= x),qx =P(Y= x). Equation (30)
follows from Equation (2.3) in [23] using the general partition polynomials (8). When

Z d
=PS(λ) a necessary and sufficient condition to recover strong unimodality is related to

the magnitude of q1 and q2, as the following theorem shows.

Theorem 2. If X is a generalized r.v. with Y strongly unimodal and Z d
= PS(λ), then X is strongly

unimodal if and only if λq1≥ 2q2.

Note that a similar result is proved in ([25], Theorem 4). We provide a different proof
using the following lemma.

Lemma 1. If {zj}j≥1∈ [0,∞) is a log-concave sequence, then the sequence { 1
n! Bn(z1, . . . ,zn)}n≥1

is log-concave if and only if z1≥ 2z2, with {Bn} given in (5).

Proof. If {zj}j≥0 with z0 =1 is a log-concave sequence of non-negative real numbers and
the sequence {a(n)}n≥0 is defined by

∞

∑
n=0

a(n)
n!

yn = exp

(
∞

∑
j=1

zj

j!
yj

)
(31)

then the sequence { a(n)
n! }n≥ is log-concave [26]. Equation (31) parallels (7). Therefore, the

sequence { 1
n! Bn(z1, . . . ,zn)}n≥1 results as log-concave if the sequence {zj}j≥0 is log-concave.

Note that for j≥ 2 we have
z2

j

[(j−1)!]2
≥

zj−1

(j−2)!
zj+1

j!
,

which easily reduces to jz2
j ≥ (j−1)zj−1 zj+1 always satisfied when {zj}j≥1 is log-concave.

Now let j= 1. We have {zj}j≥0 is log-concave if and only if z1≥ 2z2 and the result follows.
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Proof of Theorem 2. Following the same arguments of Proposition 3, for a generalized r.v.

with Z d
= PS(λ), (30) reduces to

P(X= x)=
e−λ

x!
Bx(λ1!q1, . . . ,λx!qx)

with qx =P(Y= x) for x= 1,2, . . . . The sequence { e−λ

x! Bx(λ1!q1, . . . ,λx!qx)}x≥1 is log-concave
if and only if the sequence { 1

x! Bx(λ1!q1, . . . ,λx!qx)}x≥1 is log-concave. The result follows
using Lemma 1.

Corollary 3. If s<−1, X d
=PSHLZD(λ,θ,a,s) is strongly unimodal if and only if λq1≥ 2q2.

4.2. Moments and Cumulants

PSHLZD moments and cumulants have closed form expressions in terms of moments

of Y d
=HLZD(a,θ,s).

Proposition 5. If X d
=PSHLZD(λ,a,θ,s) then

µk :=E[Xk]=Bk(λξ1, . . . ,λξk), k= 1,2, . . . , (32)

with Bk the k-th complete exponential Bell polynomial (5) and ξ1, . . . ,ξk the first k moments of

Y d
=HLZD(a,θ,s) given in (16).

Proof. If MX(t) and MY(t) are the mgf’s of X d
=PSHLZD(λ,a,θ,s) and Y d

=HLZD(a,θ,s)
respectively, then

MX(t)=GX(et)= eλ[GY(et)−1]= eλ[MY(t)−1] (33)

from (27). Equation (32) follows as the rhs of (33) can be written as (7), with hz(t)=λMY(t)
and z0 =λ.

Remark 1. Taking into account (33), if X d
=PSHLZD(λ,a,θ,s) then X d

=Y1+ · · ·+YZ with

Y d
=HLZD(a,θ,s) and Z d

=PS(λ), that is X is a compound Poisson r.v. Therefore the PSHLZD is
an infinitely divisible distribution [27].

Moments (32) can be explicited written using (9). A straightforward corollary of
recursion (6) is the following.

Corollary 4. µk+1 =λ∑k
j=0 (

k
j)µk−jξ j+1, k= 1,2, . . . .

If µ′k :=E[(X−µ1)
k] denotes the k-th central moment of X d

=PSHLZD(λ,a,θ,s) then

µ′k =
n

∑
k=0

(
n
k

)
(−λξ1)

n−kBk(λξ1, . . . ,λξk), k= 1,2, . . .

Proposition 6. If X d
=PSHLZD(λ,a,θ,s) then

(µ)k :=E[X(X−1) · · ·(X−k+1)]=Bk(λ(ξ)1, . . . ,λ(ξ)k), k= 1,2, . . . (34)

where (ξ)1, . . . ,(ξ)k are the first k factorial moments of Y d
=HLZD(a,θ,s) given in (17).

Proof. Let us recall that, if QX(t) is the factorial mgf of {(µ)k}, then QX(t)=GX(t+1)
with GX the pgf of X. Therefore we have
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QX(t)=GX(t+1)= exp
(
λ[GY(t+1)−1]

)
= exp

(
λ[QY(t)−1]

)
, (35)

with QY(t) the generating function of the factorial moments {(ξ)k}. Equation (34) follows
as the rhs of (35) can be written as (7), with z0 =λ and hz(t)=λQY(t).

Proposition 7. If κn(X) is the n-th cumulant of X d
=PSHLZD(λ,a,θ,s) then κn(X)=λξn, for

n= 1,2, . . . where ξn is the n-th moment of Y d
=HLZD(a,θ,s) given in (16).

Proof. The result follows since

log MY(t)= log[eλ(MX(t)−1)]=λ[Mx(t)−1]= ∑
n≥1

tn

n!
λE[Xk].

4.3. Maximum Likelihood Estimation

Suppose to have x=(x1, . . . ,xn) independent observations of X d
=PSHLZD(λ,a,θ,s).

The MLE of (λ,θ,s,a) is

(λ̂, θ̂, ŝ, â)= argmax
(λ,θ,s,a)∈Θ

`n(λ,θ,s,a,x),

with Θ=(0,∞)× (0,1)× (−∞,+∞)× (−1,∞), `n(λ,θ,s,a,x)= ln Ln(λ,θ,s,a,x) the log-like-
lihood function and

Ln(λ,θ,s,a,x)=
n

∏
i=1

P(X= xi).

The MLE of the PSHLZD parameters in this case must be directly tackled with the global
optimization method described in Section 3.4, since `n(λ,θ,s,a) is not analytically tractable
referring to (29).

5. The One Inflated Hurwitz-Lerch Zeta Distribution

Definition 4. A discrete random variable Z d
=OIHLZD(p,a,θ,s) if

P(Z= 1) = p+(1− p)P(Y= 1),

P(Z= x) = (1− p)P(Y= x), x= 2,3, . . .
(36)

with p∈ [0,1] and Y d
=HLZD(a,θ,s).

This definition parallels the definition of the Zero Inflated Modified Power Series

Distribution given by Gupta [28]. If GZ(t) denotes the pgf of Z d
=OIHLZD(p,a,θ,s) then

GZ(t)= pt+(1− p)GY(t) (37)

and the HLZD is retrieved by setting p= 0.

5.1. Moments and Cumulants

If Z d
=OIHLZD(p,a,θ,s) then MZ(t)=GZ(et)= pet+(1− p)GY(et)= pet+(1− p)

MY(t) from (37). Thus

νk :=E[Zk]= p+(1− p)ξk k= 0,1, . . . (38)

with ξk the k-th moment of Y d
=HLZD(a,θ,s) given in (16). For example, we have

E[Z]= p+(1− p)E[Y] and Var[Z]= (1− p)
[
Var[Y]+ p(1+E[Y]2−2E[Y])

]
.
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Similarly, if QZ(t) is the factorial mgf of Z d
=OIHLZD(p,a,θ,s), since QZ(t)=GZ(t+1)=

p(t+1)+(1− p)GY(t+1)= p(t+1)+(1− p)QY(t), with QY(t) the factorial mgf of Y d
=

HLZD(a,θ,s), then

(ν)k :=E[Z(Z−1) · · ·(Z−k+1)]=
{

p+(1− p)(ξ)1 k= 1
(1− p)(ξ)k k= 2,3, . . .

with (ξ)k the k-th factorial moment of Y d
=HLZD(a,θ,s) given in (17).

OIHLZD cumulants are κn(Z)=Ln(ν1, . . . ,νn), n=1,2, . . . with {νj} moments of

Z d
=OIHLZD(p,a,θ,s) given in (38), and Ln the n-th logarithmic polynomial (12).

5.2. Maximum Likelihood Estimation

To estimate the OIHLZD parameters using the MLE, let us first rewrite (36) using (18),
that is

P(Z= 1) = 1−w,

P(Z= x) = (1− p)
a(x)g(θ)x

f (θ)
, x= 1,2. . .

(39)

where w=(1− p)[1−P(Y=1)],g(θ)= θ,a(x)= (a+x)−(s+1) and f (θ)=T(θ,a,s). Rewrite
(39) as

P(Z= 1)= 1−w

P(Z= x)=wP(W = x)

where W has a One Truncated Hurwitz-Lerch Zeta Distribution (OTHLZD) [29], that is

P(W = x) :=
1

1− a(1)g(θ)
f (θ)

a(x)g(θ)x

f (θ)
, x= 1,2. . . (40)

Suppose z=(z1, . . . ,zn) is a vector of independent observations of Z d
=OIHLZD(p,a,θ,s)

and l(θ,a,s,w,z)= ln Ln(θ,a,s,w,z) is the log-likelihood function with

Ln(θ,a,s,w,z)=
n

∏
i=1

P(Z= zi).

If nj is the number of times the integer j appears in the vector z for j=1,2, . . . , then the
log-likelihood l(θ,a,s,w,z) can be written as

l(θ,a,s,w,z)=n1 log(1−w)+(n−n1) log(w)+
∞

∑
j=2

nj log
(

P(Y= j)
1−P(Y= 1)

)
.

Now set
l1(w,z)=n1 log(1−w)+(n−n1) log(w) (41)

and

l2(θ,a,s,z)=
∞

∑
j=2

nj

(
P(Y= j)

1−P(Y= 1)

)
. (42)

From (41) and (42), the parameters (θ,a,s,w) can be estimated separately, that is the esti-
mation ŵ can be recovered from l1(w,z) and the estimations (θ̂, â, ŝ) from l2(θ,a,s,z). The

latter ones give the MLE of the parameters of W d
=OTHLZD(θ,s,a) in (40) using the vector

z restricted to the observations which are greater than 1. As a consequence, the estimation
p̂ of p can be recovered from ŵ as
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p̂= 1− ŵT(θ̂, â, ŝ)
T(θ̂, â, ŝ)− a(1)θ̂

.

6. Data-Fitting
6.1. Rainfall Depths and Interarrival Times

With rainfall depth we indicate to what depth liquid precipitation would cover a
horizontal surface in an observation period if nothing could drain, evaporate or percolate
from this surface. Let a time series of rainfall data be defined as h= {h1, . . . ,hn}, where h
(mm) is the rainfall depth recorded at a fixed uniform unit τ of time (e.g., a day). A day k
is considered rainy if the rainfall depth hk≥ h∗, where h∗ is a fixed rainfall threshold. The
sub-series of h of the rainy days can be defined as the event series E= {t1, . . . ,tnr}, where
nr≤n is an integer multiple of the time-scale τ. The sequence built with the times elapsed
between each element of E (except the first one) and the immediately preceding one is
defined as the interarrival time series IT= {IT2, . . . , ITnr}. In order to select an appropriate
distribution for IT, some statistical characteristics usually observed in IT samples have to
be considered: very high variance and skewness, relatively high frequency associated to the
observation IT= 1, monotonically decreasing frequencies with a slowly decaying tail and
a drop in the passage from the frequency at IT=1 to the one at IT=2. The HLZD in (13)
has been fitted to rain IT in [5] for stations in Sicily and in [30] for stations in Piedmont,
with good results. However, it has not yet been considered for rainfall depths. Recall that
in the following we assume to model rainfall depths with a discrete r.v.

6.2. The Data

In this paper, the IT series analyzed were obtained from the recorded rainfall observa-
tions, using the rainfall threshold h∗= 1 mm, which is the conventional threshold stated by
the World Meteorological Organization in order to discriminate between rainy and non
rainy days. This dataset has not been previously considered in the literature and consists
of both IT and h measured over 70 years at the following five stations: Floresta, Trapani,
Torino, Oxford, Ceva. They were chosen in order to represent different climates from the
rainfall characteristics point of view. Floresta and Trapani represent the Mediterranean
climate with a very wet and a very dry situation respectively. For both stations, the rainfall
is concentrated in the colder part of the year, as typical of the Mediterranean climate. Torino
and Ceva are more continental, but Ceva is more influenced by the Ligurian sea. Therefore,
Torino has its maximum rain in Spring, while that of Ceva is in Autumn, because of the
heating of the sea in the Summer. Finally, Oxford is a northern Europe station with rainfall
homogeneously spread across the whole year. The recordings start in 1947 and end in 2017,
for a total of 70 years. Moreover, the time series were further subdivided. Thus for each
station we considered for a total of 33 samples. Note that we did not consider wet and dry
seasons for Oxford station due to its climate.

More specifically let station_name ∈ {Floresta, Trapani, Torino, Oxford, Ceva} and
season_name ∈ {wet, dry, spring, summer, autumn, winter}. Then the samples tagged with
station_name year span the whole length of the series for the station_name station, while the
samples tagged with station_name season_name are the union of all the season_name seasons
in the whole time series for the station_name station, omitting all the other seasons from the
dataset. The MLE was used to fit the HLZD (Section 3), the PSHLZD (Section 4) and the
OIHLZD (Section 5) to the dataset (Note that the PSHLZD has support k= 0,1, . . . and the
r.v. IT naturally has support k= 1,2, . . . so we had to consider the shifted r.v. IT′= IT−1.).
In all cases, the MLE has been tackled with the method described in Section 3.4. The ad-
dressed global optimization procedure was further simplified by the previously mentioned
statistical characteristics of the data allowing to work on a subset of the parameter space Θ.

• the whole time series, without subdividing the different seasons;
• all the wet seasons and all the dry seasons;
• the standard meteorological seasons,
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6.3. Results

In the following we summarize the results of the distribution fitting for IT and h
data. The fitting was satisfactory for both the PSHLZD and the HLZD. The assessment of
the goodness-of-fit was obtained by following the methodology suggested by [31]. In the
case of long tailed distributions, the goodness-of-fit through the classical χ2 test might be
biased, because if there are several small classes, strong asymmetry might occur [31] and
some problems of inaccuracy might appear if the classes are grouped [32]. The alternative
procedure used to test the goodness-of-fit relies on Monte Carlo simulation to numerically
reconstruct the null hypothesis of the χ2 test to compute the p-values [33].

To further inspect the differences between the distributions, we have measured the
fitting errors whose magnitude is strictly related to the discrepancy between the empirical
frequencies and the fitted ones. Since many empirical frequencies are zero (in the tail),
the cdf has been considered. In particular we considered the mean absolute error (MAE)
and the mean relative absolute error (MRAE). Let us recall that, if x=(x1, . . . ,xn) is an
ordered sample, then MAE(x)=∑n

j=1
1
n |FN(xj)− F̂(xj)| and MRAE(x)=∑n

j=1
1
n |Fn(xj)−

F̂(xj)|/Fn(xj) with Fn the empirical cdf and F̂ the fitted cdf.

6.3.1. Interarrival Times

We have compared the fitted PSHLZD with the fitted HLZD and the fitted PSHLZD with
the fitted OIHLZD. To summarize the results, we have selected 4 of the 33 available samples
since they have been considered particularly meaningful with respect to the whole dataset.
The selected samples were Floresta Summer, Trapani Wet, Trapani Dry and Torino Winter.

Figure 1 is an example of IT empirical frequencies: they usually range from a high
peak located at IT=1 to a multitude of rather smaller values in the slow decaying tails.
Therefore, to perform comparisons, a log-log scale for all the plots has been adopted.

IT

Figure 1. Histogram of the empirical IT frequency for the Trapani station over the whole year. The
range is up to 133. The mode is IT=1 with relative frequency 0.44. The mean and the standard
deviation are 5.89 and 11.97 respectively.

Figure 2 shows plots of the fitted PSHLZD (solid line) and HLZD (dotted line) com-
pared with the empirical frequencies (dot line) for the 4 selected samples. The fitting in
both cases is very good. In particular, in the cases of Floresta Summer, Torino Winter and
Trapani Dry the PSHLZD succeeds in fitting the drop from IT=1 to IT=2 whereas the
HLZD fails. This happens in the drier periods, where this drop is more prominent.
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Figure 2. Log-log plots of the fitted HLZD (green dotted line), the fitted PSHLZD (black solid line)
and the IT empirical frequencies (red dot line) for the 4 selected samples Floresta Summer, Torino
Winter, Trapani Wet and Trapani Dry.

Moreover, Figure 1 shows the dominance of the frequencies corresponding to IT=1
and IT=2, which are particularly meaningful in hydrology. Figure 3 shows the plots of
MAE and MRAE obtained by comparing the fitted cdf’s of the PSHLZD (circle) and the
HLZD (triangle) with the empirical IT cdf’s. Note that the MAE and the MRAE are in gen-
eral lower for the PSHLZD. Due to the dominance of the frequency corresponding to IT= 1,
we explored modelling IT with the OIHLZD for all the samples. In all cases, the fitted
OIHLZD and the PSHLZD one have minimal differences and are almost indistinguishable
(see Figure 4 for an example), confirming the great flexibility of the latter distribution.

Figure 3. Dot plots of MAE and MRAE taking as reference the cdf of the PSHLZD (black circle) and
of the HLZD (red triangle) for all the IT samples. The maximum MAE as well as the mean MAE are
given in the top left for both the fitting distributions.
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(a) (b)

Figure 4. (a), the fitted PSHLZD (black solid line) is plotted together with the fitted HLZD (green
dotted line) and the IT empirical frequencies (red dot line) for the sample of Trapani Dry. (b) the fitted
OIHLZD (black solid line) is plotted together with the fitted HLZD (green dotted line) and the IT
empirical frequencies (red dot line) for the same sample.

To conclude the validation analysis, we compared sample means and sample vari-
ances with the same theoretical moments of the HLZD and the PSHLZD computed in
Section 3 and 4 respectively. In Table 1, we show the results for the 4 selected samples.
In all cases, the fitted distributions agree with the sample means. For the variances, the
PSHLZD performs better in many cases. In Table 1, an exception is Trapani Wet because the
data are highly dispersed.

Table 1. The sample means and the sample variances for the 4 selected samples are given in the first
column. The means and the variances of the fitted HLZD and of the fitted PSHLZD are given in the
second and in the third column respectively.

Trapani Dry

Sample HLZ PSHLZ

Mean 3.758 3.758 3.758
Var 26.173 26.668 26.588

Trapani Wet

Sample HLZ PSHLZ

Mean 12.788 12.788 12.788
Var 461.938 461.168 529.513

Floresta Summer

Sample HLZ PSHLZ

Mean 8.93 8.93 8.93
Var 161.344 189.699 153.808

Torino Winter

Sample HLZD PSHLZD

Mean 6.594 6.594 6.594
Var 99.561 130.709 107.723

6.3.2. Rainfall Depths

In this section, we summarize the fitting of the rainfall depth time series using both the
PSHLZD and the HLZD. We omit the comparison with the OIHLZD since this distribution
does not add more insights on the fitting nor what happens for the IT datasets.

Figure 5 shows again an empirical frequency histogram ranging from a high peak in
h= 1 to a multitude of rather smaller values in the slowly decaying tails. As in the previous
section, we employed a log-log scale for all the plots. The selected samples were Ceva
Winter, Torino Winter, Floresta Dry and Trapani Summer.
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h

Figure 5. Plot of the empirical h frequency histogram for the Trapani station over the whole year. 111
is the maximum registered depth. The mode is h= 1 with relative frequency 0.22. The mean and the
standard deviation are 6.81 and 9.16 respectively.

In Figure 6 we have plotted the fitted PSHLZD and HLZD compared with the empirical
frequencies. As with IT samples, the fitting is very good, even better that in the IT case.
Moreover there is less difference between the performances of the PSHLZD and the HLZD.

Figure 7 shows the plots of the MAE and the MRAE obtained by comparing the
fitted cdf’s of the PSHLZD (circle) and the HLZD (triangle) with the empirical h cdf’s.
Even though both errors are smaller for the PSHLZD, there is less difference between the
two distributions and they are generally lower than for the IT case.

Figure 6. Log-log plots of the fitted HLZD (green dotted line), the fitted PSHLZD (black solid line)
and the h empirical frequencies (red dot line) for the 4 selected samples Ceva Winter, Torino Winter,
Floresta Dry and Trapani Summer.
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Figure 7. Dot plots of MAE and MRAE taking as reference the cdf of the PSHLZD (black circle) and
of the HLZD (red triangle) for all the h samples. The maximum MAE as well as the mean MAE are
given in the top left for both the fitting distributions.

7. Conclusions

The first part of this paper focuses on a class of discrete distributions useful to describe
very high one counts and long tails. We have reviewed the main properties using the
combinatorics of exponential Bell polynomials. This device has permitted the derivation
of closed form expressions for the pdf’s and their convolutions, as well as moments and
cumulants. Moreover, new results on log-concavity have been presented. We have also
considered the OIHLZD to compare its features with the HLZD and the PSHLZD. This
deep analysis was aimed of investigating how to use these models to find a better fit for
rainfall data. Indeed, the PSHLZD and the HLZD were fitted on Interarrival Times IT and
rainfall depths h data coming from 5 different stations, which composed a dataset never
previously analyzed in the literature. The h data were treated as observations of a discrete
r.v., which is not the usual practice in the literature, but seems reasonable when taking into
account how they are measured. The fitting was performed with the classical MLE method,
but the likelihood was maximized using the Simulated Annealing procedure, which turns
out to be fundamental since there are no closed forms of the likelihood equations. The fit
was very good for both distributions, with the PSHLZD performing slightly better than
the HLZD. This mostly happens for the IT data. Moreover, the PSHLZD was also able to
replicate the fit of the OIHLZD further validating its flexibility.

From the modelling point of view, let us underline two final remarks. Firstly, the fit
was excellent for both the IT and the h data, suggesting that the PSHLZD can be proposed
as a general framework in rainfall modelling. Secondly, it is noteworthy to underline that
these models capture the variability of rainfall stochastic phenomena, even though the
5 considered stations represent very different climates: a case study not yet considered in
the literature that deals with previous applications of HLZD. Future works will consider
modelling the dependence (inter-correlation) between IT and h. Given the remarkable
performance of these distribution families in the univariate modelling, a first step would be
to consider bivariate modified power series distributions [34] and the methods to estimate
their parameters on a rainfall time series. This is in the agenda for our future developments.
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