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We present a unified and highly numerically efficient formalism for the simulation of

quantum dynamics of complex molecular systems which takes into account both tem-

perature effects and static disorder. The methodology is based on the Thermo-Field

Dynamics formalism and Gaussian static disorder is included into simulations via

auxiliary bosonic operators. This approach, combined with the Tensor-Train/Matrix-

Product States representation of the thermalized stochastic wave function, is applied

to study the effect of dynamic and static disorder in charge-transfer processes in model

organic semiconductor chains employing the Su-Schrieffer-Heeger (Holstein-Peierls)

model Hamiltonian.
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I. INTRODUCTION

The measurement of chemico-physical properties of real molecular systems is always af-

fected by thermal motion and inherent static disorder of the microscopic degrees of freedom

(DoFs) of matter.1 Thermal motion having a characteristic timescale comparable to that of

the observable under examination generates dynamic disorder, while static disorder origi-

nates from the presence of uncorrelated fluctuations of microscopic structural parameters

whose values have a significant dispersion but do not change substantially during the ob-

servation time. Recent research has clearly demonstrated that understanding the way in

which dynamic and static disorder affect molecular properties is of utmost importance for

the design and development of new materials for organic photovoltaics in particular and for

energy transport and transduction in general.2

A common approach to include static disorder effects in the evaluation of the desired

property is to average the result of a quantum dynamical simulation over a large number of

realizations of the microscopic system.3,4 Similarly, thermal motion, i.e. dynamic disorder,

is often treated either within the reduced density matrix framework,5,6 or with an explicit

full quantum treatment of thermalized DoFs of interest,7 that again requires a sampling

of the initial thermal distribution of the system. In both cases, when the sampling space

becomes very large, these approaches might become cumbersome and inefficient. The ex-

isting analytical methods of performing static disorder averaging can be applied in certain

limiting cases only (see Ref.8 and references therein). It is therefore instrumental to develop

computationally efficient and numerically accurate approaches to simulate quantum dynam-

ics of realistic systems that can take into account both thermal motion and static disorder

effects. Recently, we have proposed an alternative approach to describing quantum dynam-

ics of complex molecular systems in a thermal environment which is based on the so-called

Thermo-Field Dynamics (TFD) theory,9–14 combined with a very efficient Tensor-Train (TT)

representation of the thermal wave function15 (see also Ref.16 for a recent review). The main

advantage of the this TFD-TT methodology is that it provides a thermally averaged property

with a single propagation of an extended wave function,9,17 and its effectiveness in studying

fundamental chemico-physical processes and in simulating non-linear spectroscopic signals

has been clearly demonstrated.10,11,18,19

Here we extend the TFD-TT theoretical framework to treat both thermal and static dis-
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order on equal footing, in order to accurately evaluate the expectation value of any dynamic

variable averaged over static disorder with a single time-dependent simulation of an extended

thermal Schrödinger-like equation. More specifically, we present an efficient theoretical and

computational method for the simulation of time-dependent properties of quantum electron-

vibrational systems with many DoFs that can take into account both thermal motion of low

frequency vibrations, and static disorder of the electronic DoFs. Thermal motion is de-

scribed using a temperature dependent formulation of the Schrödinger equation which has

been recently developed by Borrelli and Gelin,9 and static disorder is accurately treated via

the stochastic Liouville equation.6,20 Within this formalism a generalized wave function is

used to compute, with just a single time propagation, thermal and static disorder averaged

properties of observables. We further show how to take advantage of recently developed

techniques based on Tensor Networks to solve the resulting dynamical problem.21 In partic-

ular we demonstrate that the TT decomposition21–24, also known as Matrix Product State

(MPS) representation, can provide a robust and efficient numerical tool for the solution of

the TFD Schrödinger equation, and enables the treatment of static disorder with a minimal

computational extra cost. Applications of the new computational framework are presented

and discussed in section IV.

II. STOCHASTIC EFFECTS IN FINITE-TEMPERATURE

SCHRÖDINGER EQUATION

The aim of this section is to derive a new Schrödinger-like equation that describes the

evolution of a collection of quantum systems at finite temperature, whose characteristic

parameters show a certain degree of disorder. More specifically we assume that the sys-

tem dynamics can be described by a vibronic coupling (VC) model. These models, in

which diabatic potential energy surfaces are represented by polynomials of nuclear coordi-

nates, are commonly used for the construction of ab initio-based Hamiltonians of polyatomic

chromophores25,26, molecular aggregates27–31 and molecular materials32,33. The VC models

can also be efficiently interfaced with classical trajectory simulations34. Usually, diagonal

terms in the diabatic potential energy surfaces of VC Hamiltonians are retained up to the

second order in nuclear coordinates (harmonic approximation), while off-diagonal inter-state

couplings are assumed to be either coordinate independent (constant VC (CVC) models de-
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scribing avoided crossings between diabatic electronic states) or linear in nuclear coordinates

(linear VC (LVC) models describing conical intersections between diabatic electronic states).

VC Hamiltonians usually contain high-frequency Franck-Condon-active vibrational modes

(which are strongly coupled to electronic states) as well as relevant low-frequency vibra-

tional modes responsible for thermal effects. For definiteness, here we consider a generic

CVC model Hamiltonian in which electronic energies and couplings have a certain degree

of disorder. LVC and other higher-order polynomial VC Hamiltonians can be treated in the

same manner.

The generalized CVC Hamiltonian can be written as follows:

HΩ =
∑

n,m

(
εnm +

∑

j

V j
nmσjΩj +

∑

k

gknm√
2

(a†k + ak)

)
∣∣n
〉〈
m
∣∣+
∑

k

ωka
†
kak. (1)

Here
∣∣n
〉

are the electronic states, εnm are the electronic energies (n = m) and couplings

(n 6= m), a†k (ak) are the creation (annihilation) operators of the kth harmonic mode with

frequency ωk, gnmk are the electron-vibrational coupling parameters, Ωj are dimensionless

random variables, σj are the dispersion parameters quantifying static disorder (precise mean-

ing of σj is clarified below), and V j
nm specify coupling of Ωj to the electronic subsystem. For

a given quantum observable A we wish to evaluate its expectation value

A(t) =

∫
dΩ〈AΩ(t)〉 (2)

where 〈AΩ(t)〉 represents the expectation value for a single realization of Ω,

〈AΩ(t)〉 = Tr(ρΩ(t)A),

and the density matrix ρΩ(t) satisfies the Liouville – von Neumann equation (~ = 1)

∂tρΩ(t) = −i[HΩ, ρΩ(t)] (3)

with the initial condition

ρΩ(0) = |e〉〈e|ρvPΩ. (4)

Here |e〉 is a certain initial excited electronic state,

ρv = Z−1
v exp{−β

∑

k

ωka
†
kak}, (5)

is the equilibrium Boltzmann vibrational distribution (Zv is the partition function, β =

(kBT )−1, kB is the Boltzmann constant, and T is the temperature), and PΩ is the probability
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density of static disorder variables Ωj. We assume that PΩ is described by a Gaussian

distribution with unit dispersion,

PΩ =
∏

j

1√
2π
e−Ω2

j/2. (6)

With this definition, the variables σjΩj possess a Gaussian distribution with dispersion σj.

Hence the term V j
nmσjΩj in the Hamiltonian of Eq. (1).

Following a common approach originally formulated within the stochastic Liouville equa-

tion formalism (see, e.g., Ref.6) we treat stochastic disorder variables as harmonic oscillator

coordinates and write

Ωj = (z†j + zj)/
√

2

where z†j (zj) are the creation and annihilation operators of the jth disorder parameter.

Then the Hamiltonian of Eq. (1) assumes the form

HΩ =
∑

n,m

(
εnm +

∑

j

V j
nm

σj√
2

(z†j + zj) +
∑

k

gknm√
2

(a†k + ak)

)
∣∣n
〉〈
m
∣∣+
∑

k

ωka
†
kak (7)

and Eq. (2) can be rewritten as

A(t) =
〈
0Ω

∣∣〈AΩ(t)〉
∣∣0Ω

〉
(8)

where
∣∣0Ω

〉
is the ground state wave function of the multi-dimensional harmonic oscillator

∣∣0Ω

〉
=
∏

j

1
4
√

2π
e−Ω2

j/4 (9)

so that

PΩ =
∣∣0Ω

〉〈
0Ω

∣∣. (10)

We have thus reformulated, in absolutely equivalent manner, the original problem by em-

ploying the second quantization representation for disorder variables Ωj.

At this point, the general TFD scheme developed in Refs.9,10,17 can be readily applied to

the Liouville – von Neumann equation (3) driven by the Hamiltonian of Eq. (7). The details

of the derivation can be found in the Appendix and the final is given below. The disorder

averaged expectation value can be expressed as

A(t) =
〈
0Ω

∣∣〈0v0̃v|〈e|eiHθtAθe−iHθt|e〉|0v0̃v〉
∣∣0Ω

〉
(11)
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where Hθ is the Hamiltonian HΩ of Eq. (7) after the thermal Bogoliubov transformation10,

Hθ =
∑

k

ωk
2

(
a†kak − ã

†
kãk

)
+ (12)

∑

n,m

(
εnm +

∑

j

V j
nm

σj√
2

(z†j + zj)−
∑

k

gknm√
2

{(
ak + a†k

)
cosh(θk) +

(
ãk + ã†k

)
sinh(θk)

}) ∣∣n
〉〈
m
∣∣,

and

θk = arctanh(e−βωk/2). (13)

Here were have introduced the creation (annihilation) operators ã†k (ãk) of the auxiliary

(so-called tilde) vibrational modes which, according to the TFD formalism, take care of

temperature effects and |0v0̃v〉 is the collective ground (vacuum) state for both physical

(ak, a
†
k) and tilde (ãk, ã

†
k) vibrational DoFs. The Bogoliubov-transformed operator Aθ is

defined by Eq. (A16). If the original operator A depends on electronic DoFs only (this is

the case for the system studied below) then Aθ = A.

Equivalently, Eq. (11) can be rewritten as

A(t) =
〈
ψθ(t)

∣∣Aθ
∣∣ψθ(t)

〉
(14)

where the wave function
∣∣ψθ(t)

〉
satisfies the TFD Schrödinger equation

i∂t
∣∣ψθ(t)

〉
= Hθ

∣∣ψθ(t)
〉

(15)

with the initial condition
∣∣ψθ(0)

〉
= |e〉|0v0̃v〉

∣∣0Ω

〉
. (16)

The TFD Schrödinger equation (15) is fully equivalent to the original Liouville – von Neu-

mann equation (3). The number of vibrational modes in Hθ is double of that in the original

Hamiltonian HΩ of Eq. (1), and electron-vibrational couplings in Hθ are renormalized by

temperature-dependent factors: cosh(θk) for physical vibrational modes and sinh(θk) for

tilde vibrational modes. If T → 0 then θj → 0, the coupling to the tilde space disappears,

and the standard Schrödinger equation is recovered as expected. Nonzero temperature

causes dynamical mixing of physical (ak, a
†
k) and tilde (ãk, ã

†
k) variables. It is essential that

the disorder modes (zk, z
†
k) are not doubled, because averaging over variables Ωj with the

Gaussian distribution of Eq. (6) is fully equivalent to the vacuum averaging of the disorder

oscillators according to Eq. (10). Notice also that kinetic terms corresponding to disorder
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modes are missing in HΩ and Hθ. This literally reflects static nature of the disorder modes

which can be interpreted as intra- or inter-molecular nuclear modes whose frequencies tend

to zero. This observation demonstrates logical consistency of the combined treatment of

static and dynamic disorder. Summarizing, only vibrational DoFs are doubled in the TFD

Schrödinger equation (15), while the number of the electronic DoFs and the number of

disorder oscillators remains unchanged.

Let Nel, Nv, and NΩ be the number of the electronic, vibrational, and static disorder

DoFs in the original Hamiltonian of Eq. (1). Then traditional evaluation of A(t) via the

Liouville – von Neumann equation (3) requires MΩ propagations of the density matrix ρΩ(t)

for the system with Nel electronic and Nv vibrational DoFs, where MΩ � NΩ is the number

of Monte Carlo samplings necessary for the calculation of the NΩ-dimensional integral (2)

over the static disorder variables Ωj. Evaluation of A(t) via the TFD Schrödinger equation

(15) requires just a single propagation of the wave function
∣∣ψθ(t)

〉
for the system with Nel

electronic and 2Nv + NΩ vibrational DoFs. As we will show in the next section the time

propagation can be performed using extremely efficient methods based on the TT/MPS

formalism leading to enormous computational savings in the calculation of expectation values

of operators averaged over static disorder.

III. TENSOR TRAINS/ MATRIX PRODUCT STATES

The solution of the TFD Schrödinger equation (15) with the Hamiltonian of Eq. (12)

requires efficient numerical methods, suitable to accurately treat a large number of dynamical

variables. Several techniques have been developed which can, at least in principle, overcome

what has been termed the curse of dimensionality.15,35 In our approach the Tensor-Train

(TT) decomposition, the simplest form of Tensor Network, has been adopted. Below we

sketch the basic principles of the TT decomposition, and show how it can be applied to

solve the thermal Schrödinger equation in twin-formulation. The reader is referred to the

original papers15,22,36 for a detailed analysis of the TT theory.

Let us consider a generic state |ψ〉 of a N dimensional quantum system having the form

|ψ〉 =
∑

i1,i2,...,iN

C(i1, ..., iN) |i1〉 |i2〉 · · · |iN〉 . (17)

where |ik〉 labels the basis states of the kth dynamical variable, and the elements C(i1, ..., iN)
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are complex numbers labeled by N indices. If we truncate the summation of each index ik

the elements C(i1, ..., iN) represent a tensor of order N . The evaluation of the summation in

Eq. (17) requires the computation (and storage) of pN terms, where p is the average size of

the one-dimensional basis set that is usually much larger than 2. This becomes prohibitive

for large N . Using the TT format, each element C(i1, ..., iN) of the tensor C is approximated

as

C(i1, ..., iN) ≈ C1(i1)C2(i2) · · ·CN(iN) (18)

where each Ck(ik) is a rk−1 × rk complex matrix. In the explicit index notation

C(i1, ..., iN) ≈

∑

α0α1···αN

C1(α0, i1, α1)C2(α1, i2, α2) · · ·CN(αN−1, iN , αN) =
∑

{αk}

N∏

k=1

Ck(αk−1, ik, αk) (19)

The matrices Ck are three dimensional arrays, called cores of the TT decomposition. The

dimensions rk are called compression ranks, that in the MPS language are referred to as bond

dimensions. Since the product of Eq. (18) must be a scalar, the constraint α0 = αN = 1

must be imposed. Using the TT decomposition of Eq. (18) it is possible, at least in principle,

to overcome most of the difficulties caused by the dimensionality problem. Indeed, the wave

function is entirely defined by N arrays of dimensions rk−1×nk×rk thus requiring a storage

dimension of the order Npr2.

The TT approximation is effective only if the ranks rk of the cores are small. The structure

of the train, that is the order of the indices of the tensor, can have a deep impact on the

growth of the entanglement. A key aspect is that if two DoFs are highly entangled their

indices should be as close as possible in the sequence that defines the TT representation of

the wave function. The most desirable situation would correspond to a systems showing only

nearest neighbor interactions and a structure of the tensor train that reflects the natural

form of the Hamiltonian operator.

Several techniques exist to map the Hamiltonian of Eq. (12) to chain-like models,

thus easing the application of the TT format.37–39 It has been recently demonstrated,

however, that this mapping might not be necessary at all, and sometimes can even be

counterproductive.40 In all the applications of the present work we have found that ordering

of the electronic and vibrational DoFs of the Hamiltonian in Eq. (A14) with increasing val-

ues of their frequency ωi provides very good convergence properties of the TT representation,
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and the mapping to a chain form is not required.

The TT cores of a time-dependent wave function are time dependent complex-valued

matrices which must be determined from the numerical solution of the equations of motion

of the system.23,24,41 The simplest possible approach to tackle this problem is to use standard

integrators of systems of ordinary differential equations combined with the TT algebra.24

Fast Fourier Transform techniques have also been successfully exploited.42 An alternative

method is based on the application of the Dirac-Frenkel time-dependent variational principle

(TDVP) to the parametrised form of the state given by Eq. (18).43 Since TTs of fixed rank

form a closed manifold MTT the resulting equations of motion can be written in the form

d

dt

∣∣ψ(C(t))
〉

= −iP̂T (ψ(C(t)))H
∣∣ψ(C(t))

〉
, (20)

where C labels all the cores of the TT representation (18), and P̂T (ψ(C(t))) is the orthogonal

projection into the tangent space of MTT at
∣∣ψ(C(t))

〉
. Eq. (20) provides an approximate

solution of the original equation on the manifold of TTs of fixed rank, MTT .36 This means

that the projected evolution gives the best solution with a prescribed upper bound for the

ranks of the cores. This strategy is extremely appealing because it avoids, by construction,

the growth of the ranks of the TT solution. The drawback of the methodology is that the

accuracy of the solution must be verified a posteriori : Several calculations with increasing

values of the TT ranks rk should be performed until a global convergence on a desired

observable is reached.

We refer the reader to Refs.23,44,45 for a discussion of time-dependent TT/MPS approx-

imations. The results presented in section IV have been obtained with an in-home code

developed using the TDVP algorithm.

IV. APPLICATION TO CHARGE-TRANSFER IN ORGANIC

SEMICONDUCTORS

The theoretical framework developed in the preceding section has a wide range of ap-

plications and, as already pointed out, it is not limited to CVC/LVC models but can be

applied to a much wider class of Hamiltonian operators. It is of particular interest to show

how it can be exploited to study the interplay between static and dynamics disorder effects

in model organic semiconductor systems. More specifically we consider a molecular chain
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comprised of identical sites with nearest-neighbour couplings in which the inter-site cou-

plings are modulated by the low frequency modes of the sites, and the site energies have a

certain degree of static disorder. This situation, that is widespread in a variety of molecular

aggregates,46,47 can be formalized employing the so-called Su-Schrieffer-Heeger (SSH) VC

Hamiltonian,48

HΩ =

Nel∑

n=1

(ωxna
†
xnaxn + ωyna

†
ynayn)+ (21)

Nel∑

n=1

(
ε+ σnΩn + gxn

)∣∣n
〉〈
n
∣∣+

Nel−1∑

n=1

(
J + α(yn − yn+1)

) (∣∣n
〉〈
n+ 1

∣∣+
∣∣n+ 1

〉〈
n
∣∣) .

Here xn = (axn+a†xn)/
√

2 denotes the vibrational coordinate with frequency ωxn localized on

site n and yn = (ayn +a†yn)/
√

2 is the transversal coordinate with frequency ωyn . We assume

that the SSH chain is comprised of identical sites and the state energy ε, electron-vibrational

intra-state coupling g, electronic inter-state coupling J and vibronic inter-state coupling α

are n-independent. We further assume that static disorder affects only site energies and

the variances are independent of n, σn = σ. The values of the system parameters adopted

in the simulations are given in Table I. These values are representative for a wide class

of oligoacene derivatives exhibiting the common vynil stretch around 1300 cm−1 with a

reorganization energy of about 557 cm−1 which falls within the range usually associated to

organic semiconductors.49 This model has been widely employed in the literature to describe

charge-transport phenomena in oligoacene systems.50,51 Effects of static disorder on the site

energies, that from a physical point of view can be caused by solid state imperfections, are

often neglected in the study of the mechanistic aspects of the charge-transfer (CT) processes

in molecular crystals.52 Here we study the behaviour of the charge delocalization dynamics

as a function of the degree of static disorder σ and of the temperature for a Nel = 10 site

SSH model system.

The TT-TDVP calculations were performed for several values of the bond dimension

until convergence of the desired populations was reached. More specifically, we consider the

calculation fully converged if the time averaged relative error of a given property, i.e. the

site populations, falls below a given threshold, which in the present case is set to 0.01. Our

calculations show that an average value of the bond dimension close to 120 guarantees the

required convergence on the specified time interval.

We assume that the population at t = 0 is localized in site 1 (p1(0) = 1, pk(0) = 0 for
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TABLE I. Numerical values (in cm−1) of the parameters of the SSH Hamiltonian used in the

simulations of the present work.

ωx ωy g J α σ

1300 50 1200 300 100, 300 0, 100, 300

k 6= 1). In order to provide a concise and clear analysis of the CT mechanism we report

the behavior of three quantities: electronic populations pk(t), the inverse participation ratio

(IPR)10,53–56

Π(t) =

[
Nel∑

k=1

pk(t)
2

]−1

(22)

and the second moment

m2(t) =
1

Nel

Nel∑

k=1

k2 〈pk〉 . (23)

pk(t) gives a direct view of the CT process. Π(t) provides a simple visualization of the charge

delocalization, being 1 for a completely localized state and Nel for a charge delocalized over

Nel sites. m2(t) is used to classify different CT regimes. Indeed, the square root of this

quantity frequently follows a power law of the type
√
m2(t) ∝ tν where ν = 0 corresponds

to complete localization, ν = 1/2 corresponds to a classical small-step diffusion, ν = 1

corresponds to ballistic motion, ν ∈ (0, 1) corresponds to anomalous diffusion, and ν > 1

corresponds to superballistic motion. In complex dynamical processes, the parameter ν is

not constant, and the type of dynamics can be described as piecewise ballistic or diffusive

according to the approximate value of ν in a specific time interval.

It is convenient to characterize the initial decay of the expectation values of quantum

observables by so-called Zeno time τZ which is defined through the formula57

A(t) = exp{−(t/τZ)2}+O(t3).

As shown in Refs.19,58, Zeno rate νZ ≡ τ−1
Z can be calculated analytically for VC Hamilto-

nians. Applying this analysis to p1(t), one obtains:

ν2
Z = J2 + α2

(
〈y2

1〉+ 〈y2
2〉
)

= J2 + α2

(
1 +

2

exp{βωy} − 1

)
. (24)

Zeno rate νZ increases with temperature: it is minimal at T = 0 (νZ =
√
J2 + α2) , reaches

the value νZ =
√
J2 + α22kBT/ωy in the classical limit kBT � ωy and becomes ∼

√
T for
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FIG. 1. Population of site 1, p1(t) for α = 100 cm−1 (a) and α = 300 cm−1 (b). σ = 0, T = 0

(continuous black line), σ = 300 cm−1, T = 0 (continuous red line), σ = 0, T = 300 K (dashed

black line), σ = 300 cm−1, T = 300 K (dashed red line). Insets show the initial dynamics on an

enlarged scale and the Zeno-time evolutions (pink lines).

α22kBT/ωy � J2, yielding νZ = α
√

2kBT/ωy. The initial decay of p1(t) is thus indepen-

dent of static disorder and high-frequency modes. It is specified by the interstate coupling

constants J and α as well as by the low-frequency mode ωy which is responsible for the

temperature dependence of νZ .

We begin with the analysis of site populations. Fig. 1 shows evolution of the initially

populated site, p1(t), for weak (α = 100 cm−1, a)) and relatively strong (α = 300 cm−1, b))

modulation of the interstate vibronic coupling by the low-frequency mode ωy. Each panel

displays p1(t) without static disorder (σ = 0, black lines) and with relatively strong static

disorder (σ = 300 cm−1, red lines) at T = 0 K (continuous lines) and 300 K (dashed lines).

Let us first consider panel a) which corresponds to α = 100 cm−1. The p1(t) curves

reveals two global characteristic times: Zeno time τZ of the order of ten femtoseconds and

a σ-dependent changeover time τch of the order of several hundreds of femtoseconds at

which the dashed and the continuous curves intersect (see infra). The short-time (t < τZ)

dynamics of p1(t) is shown in the inset of Fig. 1. It is consistent with the predictions of
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Eq. (24): black lines (no static disorder) and red lines (strong static disorder) coincide

for the same temperature, while continuous lines corresponding to τZ = 16.8 fs at T =

0 K are above dashed lines corresponding to τZ = 12.7 fs at T = 300 K. Notice also

that the Zeno curves calculated via Eq. (24) reproduce p1(t) on the timescale of a few

femtoseconds, due to the substantially non-Gaussian evolution of p1(t) at longer times.

For t > τZ , depopulation of p1(t) decreases with static disorder (continuous/dashed red

lines go above the corresponding black lines), which is a manifestation of the disorder-

induced localization. As for the temperature, the behavior is richer. For τch > t > τZ

(τch ≈ 150 fs for red curves and τch ≈ 270 fs for black curves) depopulation of p1(t) decreases

with temperature (continuous lines are below the dashed lines of the same color) while for

t > τch this tendency is inverted. This reveals two major effects due to the increase of

temperature. On the one hand, it makes the system more classical, increases irreversibly,

and opens more channels for the energy transfer. This facilitates the onset of irreversible

depopulation which is characterized by the changeover time τch. On the other hand, it

reduces quantum coherent effects, and this can hinder the short-time depopulation. It

is tempting to define a time τcoh defining the timescale of quantum coherent effects. In

our model, the lower limit of τcoh is given by the vibrational period of the high-frequency

mode τx = 2π/ωx = 25.7 fs, but τcoh can be higher due to the strong vibronic effects (see

below). For τch > τcoh, vibrational/vibronic coherent effects contribute significantly and the

changeover time is clearly visible. If, however, τch < τcoh, then depopulation always increases

with temperature.

Panel b) of Fig. 1 displays p1(t) for a relatively strong vibronic coupling α = 300 cm−1.

The comparison of panels a) and b) reveals that increasing α has a profound effect on

the population evolution. First, Zeno times are shortened: τZ = 12.5 for continuous lines

and τZ = 5.8 for dashed lines (see the inset). Second, stronger α diminishes the impact

of static disorder (continuous/dashed lines of different color are quite similar, notably at

T = 300 K). Third, temperature always facilitates the p1(t) depopulation (continuous lines

are above dashed lines of the same color). We thus conclude that the characteristic time

τch significantly decreases with α, becoming comparable to or shorter than τcoh for a broad

range of temperatures.

Fig. 2 depicts populations of site number 4, p4(t), for the same set of parameters as in

Fig. 1. Obviously, p4(0) = 0 and it takes some time to populate this site (peculiarities of
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FIG. 2. Same as in Fig. 1 but for the population of site 4, p4(t).

the population transfer along the chain are considered in detail below). At longer times,

populations in both panels of Fig. 2 exhibit a similar tendency: p4(t) decreases with static

disorder (black lines are above red lines), which is a manifestation of the disorder-induced

localization and is fully consistent with the behavior of p1(t). To elucidate temperature

effects, it is worthwhile to consider the weak a) and relatively strong b) vibronic couplings

separately.

p4(t) at T = 0 K in Fig. 2 a) exhibits high-amplitude oscillations of vibronic charac-

ter with a characteristic time τcoh ' 60 fs (continuous lines). This reflects importance of

quantum coherent effects in low-temperature transport. An increase in temperature sub-

stantially suppresses these coherent effects (dashed lines). The characteristic changeover

times discussed above can clearly be established for p4(t) in panel a) of Fig. 2. Furthermore,

the corresponding τch for p1(t) and p4(t) are quite close (cf. panels a) in Figs. 1 and 2).

If we turn to Fig. 2 b), two aspects should be pointed out. First, stronger α substan-

tially quenches high-amplitude vibronic oscillations in p4(t). Second, the changeover time

τch ≈ 170 fs can clearly be established for σ = 0 (black lines in Fig. 2(b)). Under the same

conditions, p1(t) in Fig. 1(b) does not exhibit any changeover effect.

It should be pointed out that pk(t) in Figs. 1 and 2 (as well as Π(t) and
√
m2(t) in the

14



figures below) exhibit low-amplitude oscillations with a period around 26 fs revealing the

high-frequency vibrational mode ωx. These oscillations persist for observables calculated

without (black lines) and with (red lines) averaging over static disorder. This behavior is

fully consistent with the predictions of Refs.18,19 which demonstrate that dynamical vari-

ables averaged over static disorder with a characteristic dispersion σ exhibit predominantly

vibrational oscillations at times t > 2π/σ:

pk(t) ≈
∑

k=x,y

Mk∑

m=0

akm(t) cos(mωkt− ϕkm(t)). (25)

Here akm(t), ϕkm(t) are some slowly varying functions of time, and Mk is the maximal num-

ber of overtones for the kth vibrational mode. Despite strong electron-vibrational coupling

described by the Hamiltonian of Eq. (21), vibrational coherences featuring the fundamen-

tal of the high-frequency vibrational mode ωx survive averaging over static disorder and

are clearly visible in evolutions of pk(t), Π(t), and m2(t) considered in the present work.

It should be noted that the high-frequency modes xn are the tuning modes and the low-

frequency modes yn are the coupling modes shaping the conical intersections between the

neighboring sites in the SSH model. The potential energy functions of the tuning modes in

excited electronic states are normally shifted with respect to the potential energy functions

in the electronic ground state (parameter g of the SSH model), while the corresponding

potential energy functions of the coupling modes are not shifted. Due to that, the tuning

modes are manifested in the electronic population evolutions and their probability densities

exhibit a high-amplitude wave-packet motion, while the coupling modes are not manifested

in population evolutions, and their wavepackets exhibit a characteristic pulsating motion59,60.

Fig. 3 shows the IPR Π(t) as a function of time for relatively weak (σ = 100 cm−1,

panel a)) and strong (σ = 300 cm−1, panel b)) static disorder at T = 0 K (continuous

lines), T = 300 K (dashed lines), weak (α = 100 cm−1, black lines) and relatively strong

(α = 300 cm−1, red lines) vibronic coupling. For α = 300 cm−1, temperature always

increases delocalization: red dashed lines are above continuous red lines, and static disorder

does not have significant effect on the Π(t) behavior. For α = 100 cm−1, the IPR dynamics

is more complex.

Let us first inspect Π(t) for weak static disorder (panel a) of Fig. 3). Apart from the low-

amplitude vibrational beatings, delocalization clearly increases with time, though almost

saturates for α = 300 cm−1(red lines). For α = 100 cm−1, Π(t) tends to the limiting value
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FIG. 3. IPR Π(t) for T = 0, α = 100 cm−1(continuous black line), T = 300 K, α = 100

cm−1(dashed black line), T = 0, α = 300 cm−1(continuous red line), and T = 300 K, α = 300

cm−1(dashed red line). For panel a), σ = 0. For panel b), σ = 300 cm−1.

of Nel = 10, indicating an almost complete delocalization over 10 sites (black lines). When

α = 300 cm−1and T = 0, Π(t) reaches a value of 5 (continuous red line) showing that

dynamic disorder induced by the vibronic coupling increases the long-time localization (and

therefore decreases delocalization) at low temperatures. At T = 0 and α = 100 cm−1, Π(t)

exhibits a changeover around τch ≈ 300 fs (cf. continuous an dashed black lines). This is the

manifestation of the dual effect of temperature discussed above. The value of the changeover

time is close to the corresponing value τch ≈ 270 for p1(t). Panel b) displays Π(t) for σ = 300

cm−1. We clearly observe that for α = 100 cm−1(black curves) the increase of static disorder

significantly decreases the maximum IPR values and shortens the changeover time to 170
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FIG. 4.
√
m2(t) for T = 0, α = 100 cm−1(continuous black line), T = 300 K, α = 100

cm−1(dashed black line), T = 0, α = 300 cm−1(continuous red line), and T = 300 K, α = 300

cm−1(dashed red line). For panel a), σ = 0. For panel b), σ = 300 cm−1.

fs, which is again consistent with τch ≈ 150 fs for p1(t).

Finally, the square of the second moment,
√
m2(t), is plotted in Fig. 4 for σ = 100

cm−1 a) and σ = 300 cm−1 b). Continuous (dashed) lines correspond to T = 0 (300 K), while

black (red) lines correspond to α = 100 cm−1 (300 cm−1). Interestingly,
√
m2(t) does not

exhibit ballistic regime for any parameter set and for any time interval. For T = 0, α = 100

cm−1 and relatively weak disorder (continuous black line in panel a)),
√
m2(t) clearly shows

two regimes:
√
m2(t) ∼ t0.55 for 300 > t > 30 fs and

√
m2(t) ∼ t0.2 for 1000 > t > 300

fs. All remaining second moments cannot be approximated by a power low with constant

exponent, but definitely correspond to the anomalous diffusion regime, exhibiting scaling
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∼ tν(t) with ν(t) < 0.2. Static disorder does not produce significant effect on
√
m2(t) in

the case of strong vibronic coupling α = 300 cm−1(cf. red lines in panels a) and b)), while

temperature always increases
√
m2(t). This is fully consistent with the IPR behavior. For

α = 100 cm−1, on the other hand,
√
m2(t) exhibits a changeover at around 320 fs a) and

200 fs b), which, again, are consistent with the corresponding τch for p1(t).

V. DISCUSSION AND CONCLUSIONS

By exploiting finite-temperature representation of the Schrödinger equation, we have de-

veloped a computationally efficient and numerically accurate wavefunction-based approach

for the evaluation of quantum observables averaged over static disorder, A(t). In this ap-

proach static-disorder variables are incorporated into the system Hamiltonian and treated

as harmonic modes modifying the electronic parameters of the system. These static disorder

modes are thus handled on equal footing with the system vibrational modes responsible for

dynamic disorder. If Nel, Nv, and NΩ denote the number of the electronic, vibrational, and

static disorder DoFs in the system, then traditional evaluation of A(t) requires MΩ propa-

gations of the density matrix for the system with Nel electronic and Nv vibrational DoFs,

where MΩ � NΩ is the number of Monte Carlo samplings necessary for the calculation of

the NΩ-dimensional integral. The methodology developed in the present work requires just

a single propagation of the wave function of the system with Nel electronic and 2Nv + NΩ

vibrational DoFs, leading to huge computational savings. In conjunction with TT decom-

position techniques for the solution of the TFD Schrödinger equation, the methodology of

the present work enables the treatment of static disorder with a minimal computational cost

for a large number of multidimensional problems.

In the present work, we have made the standard assumption that electronic parameters

εnm of the system Hamiltonian HΩ are linear in static disorder variables Ωj. However, the

methodology remains valid for any dependence of HΩ on Ωj. In addition, the dynamical

variable A can also be an arbitrary function of Ωj. The assumption about independent

static disorder variables can also be relaxed, if necessary: a simple diagonalization of the

quadratic form in the multidimensional Gaussian distribution introduces normal disorder

modes which can be directly handled by the method of the present work.

The developed method of averaging over static disorder is not limited to the TFD repre-
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sentation. Without alterations, it can be incorporated into any wavefunction/ density ma-

trix/ stochastic description of quantum dynamics governed by the multidimensional electron-

vibrational VC Hamiltoninas. For example, it looks promising to combine the present static

disorder averaging technique with multi-configuration time-dependent Hartree method,61–63

Davydov Ansatz method,64–67 multiconfigurational Ehrenfest method,68–70 time-dependent

density matrix renormalization group method,71–75 variants of MPS/TT,76–78 recent modi-

fications of real-time path integral techniques79–81 and with the machinery for the solution

of hierarchy equations of motion recently developed in Refs.82–86 Work in this direction is

currently in progress.
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Appendix A: TFD formalism in the presence of static disorder

Let us introduce the eigenvectors of the vibrational Hamiltonian,

∑

l

ωla
†
lal|k〉 = Ek|k〉.

Obviously,

|k〉 =
∏

l

|kl〉, Ek =
∑

l

klωl (A1)

where |kl〉 are the eigenvectors of the lth harmonic mode. We also define vectors |k̃〉 which

are a copy of the original vectors |k〉 but belong to the so-called tilde Hilbert space. Adopting
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the notation

|kk̃〉 = |k〉|k̃〉,

we introduce the unit vector in the |k〉 ⊗ |k̃〉 vector space,

|Iv〉 =
∑

k

|kk̃〉, (A2)

and the so-called thermal vacuum state,

|0v(β)〉 =
√
ρv|Iv〉 = Z

− 1
2

v e−
1
2

∑
l ωla

†
l al |Iv〉. (A3)

With the above definitions, the thermal Boltzmann distribution of Eq. (5) can be rewritten

in the form

ρv = Trk̃{|0v(β)〉〈0v(β)|} (A4)

where Trk̃{...} denotes the trace over the tilde subspace. The equivalence of Eqs. (5) and

(A4) follows immediately from the orthogonality of the harmonic oscillator eigenvectors.

Let us now consider the Liouville – von Neumann equation

∂tσΩ(t) = −i[HΩ, σΩ(t)] (A5)

driven by the Hamiltonian HΩ of Eq. (7) and evaluated with the initial condition

σΩ(0) = |e〉〈e| ⊗ |0Ω〉〈0Ω| ⊗ |0v(β)〉〈0v(β)|. (A6)

Eq. (A4) guarantees that the system density matrix ρΩ(t) satisfying the original Liouville –

von Neumann equation (3) with the initial condition of Eq. (4) is given by

ρΩ(t) = Trk̃{σΩ(t)}. (A7)

Furthermore, it is easy to verify that any Liouville – von Neumann equation of the form

∂tσΩ(t) = −i[HΩ − h̃v, σΩ(t)] (A8)

h̃v being any operator acting in the tilde subspace only, together with the initial condition

(4) fulfills Eq. (A7).

Since the initial condition of Eq. (A6) corresponds to a pure state in the extended Hilbert

space, the solution of Eq. (A8) reads

σΩ(t) = |ψΩ(t)〉〈ψΩ(t)| (A9)
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where the wave function |ψΩ(t)〉 obeys the TFD Schrödinger equation

∂t|ψΩ(t)〉 = −iĤΩ|ψΩ(t)〉 (A10)

with the extended Hamiltonian

ĤΩ = HΩ − h̃v (A11)

and the initial condition

|ψΩ(0)〉 = |e〉|0Ω〉|0v(β)〉. (A12)

We have thus demonstrated that the solution of the original Liouville – von Neumann equa-

tion (3) with the initial condition (4) is equivalent to the solution of the TFD Schrödinger

equation (A10) with the initial condition (A12).

The key advantage of the TFD machinery is a compact analytical representation of the

thermal vacuum state given by thermal Bogoliubov transformation

e−iG|0v0̃v〉 = |0v(β)〉 (A13)

where |0v0̃v〉 is the ground state in the |k〉 ⊗ |k̃〉 subspace. Applying the inverse thermal

Bogoliubov transformation to Eq. (A10), we obtain the TFD Schrödinger equation (15) in

which

Hθ = eiGĤΩe
−iG (A14)

and

∣∣ψθ(t)
〉

= eiG
∣∣ψΩ(t)

〉
. (A15)

Hence the expectation value of any quantum observable A averaged over static disorder is

given by Eq. (14) where

Aθ = eiGAe−iG. (A16)

For thermal vacuum state |0v(β)〉 of Eq. (A3), the operator of thermal Bogoliubov trans-

formation reads13,87–90

G = −i
∑

j

θj(aj ãj − a†j ã
†
j) (A17)

where θj are defined per Eq. (13). The explicit form of the transformed Hamiltonian Hθ,

can then be easily obtained by making a common assumption that the electronic terms εnm
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are independent of nuclear DoFs coordinates.25–28 By choosing

h̃v =
∑

k

ωkã
†
kãk

and using the fundamental relations13

eiGaje
−iG = aj cosh(θj) + ã†j sinh(θj), (A18)

eiGãje
−iG = ãj cosh(θj) + a†j sinh(θj). (A19)

we obtain the Hamiltonian of Eq. (12).
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21R. Orús, “A practical introduction to tensor networks: Matrix product states and projected

entangled pair states,” Annals of Physics 349, 117–158 (2014).

22I. Oseledets, “Tensor-Train Decomposition,” SIAM J. Sci. Comput. 33, 2295–2317 (2011).

23



23C. Lubich, I. Oseledets, and B. Vandereycken, “Time Integration of Tensor Trains,” SIAM

J. Numer. Anal. 53, 917–941 (2015).
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Multidimensional Optical Spectroscopy of Excitons in Molecular Aggregates; Quasiparticle

versus Supermolecule Perspectives,” Chem. Rev. 109, 2350–2408 (2009).

29R. Borrelli and W. Domcke, “First-principles study of photoinduced electron-transfer dy-

namics in a Mg–porphyrin–quinone complex,” Chem. Phys. Lett. 498, 230–234 (2010).

30R. Borrelli, M. Di Donato, and A. Peluso, “Electron transfer rates and Franck–Condon

factors: An application to the early electron transfer steps in photosynthetic reaction

centers,” Theor. Chem. Acc. Theory Comput. Model. Theor. Chim. Acta 117, 957–967

(2007).

31N. J. Hestand and F. C. Spano, “Expanded theory of H- and J- molecular aggregates:

The effects of vibronic coupling and intermolecular charge transfer,” Chem. Rev. 118,

7069–7163 (2018).

32D. Chen, J. Ye, H. Zhang, and Y. Zhao, “On the Munn-Silbey approach to polaron trans-

port with off-diagonal coupling and temperature-dependent canonical transformations,” J.

Phys. Chem. B 115, 5312–5321 (2011).

33H. Oberhofer, K. Reuter, and J. Blumberger, “Charge transport in molecular materials:

An assessment of computational methods,” Chem. Rev. 117, 10319–10357 (2017).
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54V. Chorošajev, O. Rancova, and D. Abramavicius, en“Polaronic effects at finite temper-

atures in the B850 ring of the LH2 complex,” Phys. Chem. Chem. Phys. 18, 7966–7977

(2016).

55A. Somoza, K. Sun, R. Molina, and Y. Zhao, “Dynamics of coherence, localization and

excitation transfer in disordered nanorings,” Phys. Chem. Chem. Phys. 19, 25996–26013

(2017).

56R. Borrelli and M. F. Gelin, en“Quantum dynamics of vibrational energy flow in oscillator

chains driven by anharmonic interactions,” New J. Phys. 22, 123002 (2020).

57P. Facchi and S. Pascazio, en“Quantum Zeno Phenomena: Pulsed versus Continuous Mea-

surement,” Fortschritte Phys. 49, 941 (2001).

58K. Sun, Q. Xu, L. Chen, M. F. Gelin, and Y. Zhao, “Temperature effects on singlet fission

dynamics mediated by a conical intersection,” J. Chem. Phys. 153, 194106 (2020).

59L. Chen, M. F. Gelin, and W. Domcke, “Multimode quantum dynamics with multiple

Davydov D2 trial states: Application to a 24-dimensional conical intersection model,” J.

Chem. Phys. 150, 024101 (2019).

60K. Sun, W. Xie, L. Chen, W. Domcke, and M. F. Gelin, “Multi-faceted spectroscopic

mapping of ultrafast nonadiabatic dynamics near conical intersections: A computational

26



study,” J. Chem. Phys. 153, 174111 (2020).

61H. Wang and M. Thoss, “Nonperturbative quantum simulation of time-resolved nonlinear

spectra: Methodology and application to electron transfer reactions in the condensed

phase,” Chem. Phys. 347, 139–151 (2008).

62W. Popp, D. Brey, R. Binder, and I. Burghardt, “Quantum dynamics of exciton transport

and dissociation in multichromophoric systems,” Annu. Rev. Phys. Chem. 72, 591–616

(2021).

63F. Di Maiolo, G. A. Worth, and B. Irene, “Multi-layer Gaussian-based multi-configuration

time-dependent Hartree (ML-GMCTDH) simulations of ultrafast charge separation in a

donor–acceptor complex,” J. Chem. Phys. 154, 144106 (2021).

64K. W. Sun, M. F. Gelin, V. Y. Chernyak, and Y. Zhao, “Davydov Ansatz as an efficient

tool for the simulation of nonlinear optical response of molecular aggregates,” J. Chem.

Phys. 142, 212448 (2015).

65L. Wang, Y. Fujihashi, L. Chen, and Y. Zhao, “Finite-temperature time-dependent vari-

ation with multiple Davydov states,” J. Chem. Phys. 146, 124127 (2017).

66M. Werther, F. Grossmann, Z. Huang, and Y. Zhao, “Davydov-Ansatz for Landau-Zener-

Stueckelberg-Majorana transitions in an environment: Tuning the survival probability via

number state excitation,” J. Chem. Phys. 150, 234109 (2021).

67K. Sun, X. Liu, W. Hu, M. Zhang, G. Long, and Y. Zhao, “Singlet fission dynamics and

optical spectra of pentacene and its derivatives,” Phys. Chem. Chem. Phys. 23, 12654–

12667 (2021).

68L. Chen, M. F. Gelin, and D. V. Shalashilin, “Dynamics of a one-dimensional holstein

polaron: The multiconfigurational Ehrenfest method,” J. Chem. Phys. 151, 244116 (2019).

69L. Chen, K. Sun, D. Shalashilin, M. F. Gelin, and Y. Zhao, “Efficient simulation of

time- and frequency-resolved four-wave-mixing signals with multiconfigurational Ehrenfest

approach,” J. Chem. Phys. 153, 174111 (2021).

70L. Chen, R. Borrelli, D. V. Shalashilin, Y. Zhao, and M. F. Gelin, “Simulation of time-

and frequency-resolved four-wave-mixing signals at finite temperatures: A thermo-field

dynamics approach,” J. Chem. Theory Comput. 17, 4359–4373 (2021).

71J. Ren, Z. Shuai, and G. K.-L. Chan, “Time-dependent density matrix renormalization

group algorithms for nearly exact absorption and fluorescence spectra of molecular ag-

gregates at both zero and finite temperature,” J. Chem. Theory Comput. 14, 5027–5039

27



(2018).

72T. Jiang, W. Li, J. Ren, and Z. Shuai, “Finite temperature dynamical density matrix

renormalization group for spectroscopy in frequency domain,” J. Phys. Chem. Lett. 11,

3761–3768 (2020).

73A. Baiardi and M. Reiher, “Large-scale quantum dynamics with matrix product states,”

J. Chem. Theory Comput. 15, 3481–3498 (2019).
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