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Abstract: Exosomes have shown promising potential as a therapeutic approach for wound healing.
Nevertheless, the translation from experimental studies to commercially available treatments is still
lacking. To assess the current state of research in this field, a systematic review was performed
involving studies conducted and published over the past five years. A PubMed search was per-
formed for English-language, full-text available papers published from 2018 to June 2023, focusing
on exosomes derived from mammalian sources and their application in wound healing, particularly
those involving in vivo assays. Out of 531 results, 148 papers were selected for analysis. The findings
revealed that exosome-based treatments improve wound healing by increasing angiogenesis, reep-
ithelization, collagen deposition, and decreasing scar formation. Furthermore, there was significant
variability in terms of cell sources and types, biomaterials, and administration routes under investiga-
tion, indicating the need for further research in this field. Additionally, a comparative examination
encompassing diverse cellular origins, types, administration pathways, or biomaterials is imperative.
Furthermore, the predominance of rodent-based animal models raises concerns, as there have been
limited advancements towards more complex in vivo models and scale-up assays. These constraints
underscore the substantial efforts that remain necessary before attaining commercially viable and
extensively applicable therapeutic approaches using exosomes.

Keywords: animal models; exosomes; skin regeneration; wound healing; systematic review

1. Introduction

The skin serves as the body’s external protection against harmful agents, regulating
the internal temperature and integrity while maintaining homeostasis. Under normal con-
ditions, the skin can regenerate itself through a complex process that comprises four distinct
phases: hemostasis, inflammation, proliferation, and remodeling. However, when this
process fails or is disrupted, it can culminate in impaired tissue regeneration or prolonged
wound healing, leading to the formation of chronic wounds [1–3].
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Chronic wounds are characterized by a prolonged inflammation (lasting from 4 to
12 weeks), often associated with infections, microbial biofilms, and impaired response from
epithelial cells [4]. These wounds are multifactorial and frequently occur in individuals
with several diseases, including diabetes, infections, and arterial/venous insufficiency [5].

The prevalence of chronic non-healing wounds is increasing due to factors such
as population aging and aging-associated diseases, concomitant diseases, tumors, and
congenital defects, negatively impacting the quality of life of millions of people worldwide.
Therefore, the socioeconomical and health care burden is also increasing [1–3].

Current therapies such as debridement, antibiotherapy, and dressings remain insuffi-
cient, as they are not efficient, and there is still a need for new treatments. In the last few
years, regenerative medicine has gained popularity, and extensive research has been con-
ducted on mesenchymal stem cells (MSCs) and their derivates in several fields, including
wound healing and skin regeneration.

MSCs are defined by the International Society of Cellular Therapy as similar to fi-
broblasts, adherent to plastic, and with the ability to differentiate into three different cell
lines in vitro (chondrocytes, osteoblasts, and adipocytes). These cells should express the
surface markers CD73, CD90, and CD105 while not expressing hematopoietic markers
(CD14, CD45, CD34, CD19/HLA-DR, and CD11b/CD79). These undifferentiated cells have
the potential to repair different tissues as they undergo differentiation. Furthermore, MSCs
can be obtained from different sources and species. In recent years, there has been a notable
rise in the use of MSCs for wound-healing purposes, with numerous studies showcasing
promising outcomes utilizing cells obtained from diverse sources [1,2].

The use of MSC-derived products, such as secretome and exosomes, when compared
to MSCs offers some advantages, including a reduced risk of tumorigenesis and minimal
immune rejection [4], which is steadily rising. Exosomes are nanovesicles secreted from
the endosomal system (30–150 nm) and represent one of the three major subpopulations
of extracellular vesicles [6]. The other subpopulations include apoptotic bodies (>100 nm)
and microvesicles (100–1000 nm). Exosomes are produced by several different cell types
from different origins [7].

Previous research has highlighted the crucial role of exosomes in facilitating cell-to-
cell communication, namely by sharing their cargo as miRNAs and proteins. Several
studies have indicated that exosomes obtained from stem cells have the potential to assist
with and promote tissue repair. This is attributed to their unique advantages, including
exceptional stability, minimal risk of immune rejection, targeted delivery to specific tissues,
straightforward control of dosage, and definable concentration [8].

Several studies have shown that exosomes derived from MSCs have similar therapeu-
tic properties, angiogenic ability, and immune modulation as the cells from which they
originate [3,9–11].

The quality of wound healing relies on the fibroblast’s migration and proliferation as well as
collagen synthesis and deposition. Exosomes, with their abundant content of RNAs and proteins
relevant to fibroblast functions, are thought to facilitate these processes. This optimization of
fibroblast activities ultimately contributes to the accelerated wound-healing mechanism [8].

Multiple studies have demonstrated the therapeutic potential of exosomes in vari-
ous stages of wound healing. In the inflammation phase, exosomes have been shown to
modulate immune cells and resident tissue cells, leading to a reduction in uncontrolled
inflammatory responses. During the proliferation phase, exosomes play a role in wound
closure by activating endothelial cells and fibroblasts. This activation promotes a proangio-
genic environment and initiates the deposition of extracellular matrix. In the remodeling
phase, exosomes influence the balance between matrix metalloproteinases and tissue in-
hibitors of matrix metalloproteinases, favoring optimal wound-healing outcomes. Exosome
therapy also enhances wound healing by stabilizing and stimulating a wide range of
mediators involved in each phase [10].

The aim of this systematic review was to access the exosome-based therapies wound-
healing effects and methodological heterogeneity in studies and furnish the scientific
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community with a comprehensive overview of the advancements made in this field over
the past five years. Additionally, the review encompasses an analysis of the animal models
used to evaluate the translational potential of the data to human medicine.

2. Data and Methods

This systematic review was performed according to PRISMA (Preferred Reporting
Items for Systematic Reviews and Meta-Analyses) guidelines.

The main goal of this study was to assess the methodology heterogeneity and provide
insights into the progress of exosome research in wound healing over the past five years.

The research involved using the PubMed database, covering the period from 2018
to June 2023. The search query used the following keywords: “wound healing” (Ti-
tle/Abstract) AND “exosomes” (Title/Abstract) NOT “review” (Title/Abstract), which
initially retrieved 531 results.

All 531 publications underwent title, abstract, and full-text article examination.
The eligibility criteria included: (1) English language, (2) full access to the publication,

(3) use of exosomes from mammalian sources, (4) exosomes applications in wound healing,
and (5) use of animal models (in vivo studies).

Exclusion criteria were applied to filter out the studies that did not meet the research
goals, such as: (1) in vitro studies, (2) review articles, (3) non-English-language publication,
(4) studies unrelated to wound healing, (5) no full access to the publication, and (6) studies
not involving exosomes.

To ensure rigorous study selection, all authors participated in the process and con-
ducted double checks. Any discrepancies or disagreements were resolved through dis-
cussion and consensus. Duplicates were searched through Endnote software, and data
analysis was performed using an Excel form specifically designed by the authors.

Among the initial 531 studies, 383 were excluded based on the exclusion criteria
mentioned above, resulting in 148 papers. These remaining papers underwent a thorough
double check by all authors.

The extracted information from the selected studies included PMID (PubMed Identification),
paper title, publication date, corresponding author’s country, cell species, cell type, biomaterial
usage, administration route, animal models, and exclusion criteria (when applicable).

GraphPad Prism version 8.0.1 was used to elaborate the graphical representations of
the collected data.

Bias assessment was evaluated for each study regarding the adherence to MSCs
minimal criteria, and animal models were examined to determine external validity.

The selection process is summarized in Figure 1.
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Through this systematic review, the study aimed to provide valuable insights and
contribute to the understanding of exosome-derived treatments in wound healing, with
potential implications for potential translation into human medicine.

3. Results
3.1. Retrieved Data

The following table summarizes the retrieved data from the selected 148 papers
(Table 1).

Table 1. Summary of the retrieved data from the 148 papers. x—No biomaterial.

Ref Year Country Cell Source Cell Type Biomaterial Administration
Route

Animal
Models

[12] 2019 China Human ADSC Hydrogel SC Injection Mice
[13] 2020 China Human UCMSC Hydrogel SC Injection Rat
[14] 2018 China Human UCMSC x SC Injection Mice
[15] 2020 China Human BMSC x SC Injection Rat
[16] 2022 China Human UVEC Patch Patch Mice
[17] 2022 China Human ADSC Hydrogel Topical Mice
[18] 2020 China Human BMSC x SC Injection Rat
[19] 2021 China Rat BMSC x SC Injection Rat
[20] 2021 China Human ADSC x SC Injection Mice
[21] 2018 China Human ADSC x SC Injection Rat
[22] 2022 China Mice BMSC Hydrogel SC Injection Mice
[23] 2022 USA Human Epidermal x SC Injection Mice
[24] 2020 USA Mice Keratinocyte x SC Injection Mice
[25] 2022 China Human ADSC x SC Injection Mice
[26] 2020 China Human BMSC x SC Injection Rat
[27] 2022 China Rat BMSC Hydrogel Topical Rat
[28] 2020 China Human Peripheral Blood x SC Injection Mice
[29] 2020 India Rat ADSC Scaffold Scaffold Rat
[30] 2022 China Human DPs x SC Injection Mice
[31] 2019 China Human ADSC Scaffold Scaffold Mice
[32] 2021 China Human UCMSC x EV Injection Rat
[33] 2019 China Human BMSC x SC Injection Mice
[34] 2022 Republic of Korea Mice BMSC Hydrogel SC Injection Mice
[35] 2020 China Human ADSC x SC Injection Rat
[36] 2020 China Mice BMSC x ID Injection Mice
[37] 2021 China Human ADSC x SC Injection Mice
[38] 2022 China Human Epidermal Hydrogel SC Injection Mice
[39] 2022 Republic of Korea Human ADSC x SC Injection Mice
[40] 2022 China Human ADSC x SC Injection Mice
[41] 2019 Republic of Korea Mice BMSC x SC Injection Mice
[42] 2020 China Human BMSC x SC Injection Mice
[43] 2023 China Mice ADSC Hydrogel SC Injection Mice
[44] 2021 China Human ADSC Scaffold Scaffold Mice
[45] 2021 China Mice Serum x SC Injection Mice
[46] 2022 China Mice Fibroblast x ID Injection Mice
[47] 2018 China Human ADSC x SC and ID Injection Mice
[48] 2019 China Human ADSC x SC Injection Mice
[49] 2023 China Human Placenta Patch Patch Mice
[50] 2019 China Human Embryonic x Topical Mice
[51] 2022 China Human UCMSC x SC Injection Mice
[52] 2022 China Mice ADSC x SC Injection Mice
[53] 2021 China Rat and Mice Serum x SC Injection Mice
[54] 2019 China Human Macrophage x SC Injection Mice
[55] 2022 China Human UCMSC x Topical Mice
[56] 2019 China Macaque iPSCs x Topical Macaque
[57] 2022 China Mice ADSC x SC Injection Mice
[58] 2022 China Human UCMSC x SC Injection Mice
[59] 2020 China Human ADSC x SC Injection Mice
[60] 2022 China Human UCMSC x SC Injection Rat
[61] 2020 China Human UCMSC x SC Injection Mice
[62] 2020 China Human UVEC Hydrogel Topical Rat
[63] 2022 China Human iPSCs Hydrogel Topical Mice
[64] 2023 China Mice ADSC x SC Injection Mice
[65] 2020 China Human Amniotic Membrane x SC Injection Mice
[66] 2022 China Human UVEC x SC Injection Mice
[67] 2021 China Human ADSC x Injection and Topical Mice
[68] 2021 China Human UCMSC Hydrogel Topical Mice
[69] 2019 China Human UVEC x SC Injection Rat
[70] 2023 China Human UVEC Hydrogel Microneedle Rat
[71] 2021 China Human UCMSC Hydrogel SC Injection Rat
[72] 2020 China Human UVEC Hydrogel SC Injection Rat
[73] 2022 China Rat BMSC x SC Injection Rat
[74] 2022 China Human ADSC x SC Injection Rat
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Table 1. Cont.

Ref Year Country Cell Source Cell Type Biomaterial Administration
Route

Animal
Models

[75] 2023 China Human UCMSC x SC Injection Mice
[76] 2022 China Mice ADSC Hydrogel Topical Rat
[77] 2022 China Human ADSC x SC Injection Mice
[78] 2019 Japan Human Epithelial x Topical Rat
[79] 2022 China Human DPs x SC Injection Mice
[80] 2021 China Rat Dermal x SC Injection Rat
[81] 2022 Portugal Human UCMSC x SC Injection Rat
[82] 2022 China Rat Placenta and ADSC x SC Injection Rat
[83] 2022 China Human UCMSC Hydrogel SC Injection Mice
[84] 2021 China Human ADSC x SC Injection Rat
[85] 2022 China Human UVEC x SC Injection Mice
[86] 2019 China Human Fetal dermal x SC Injection Mice
[87] 2020 China Mice BMSC x Topical Mice
[88] 2023 Iran Human Fetal dermal x Topical Rat
[89] 2022 Taiwan Mice ADSC and dermal x Topical Mice
[90] 2020 China and Finland Human ADSC x IP Injection Mice
[91] 2022 USA Human BMSC x SC Injection Mice and Rat
[92] 2020 China Human BMSC x SC Injection Mice
[93] 2021 China Human UCMSC x SC Injection Rat
[94] 2022 China Human ADSC x SC Injection Mice
[95] 2020 India Rat ADSC Scaffold Scaffold Rat
[96] 2019 China Human Placenta Hydrogel SC Injection Mice
[97] 2020 China Human BMSC x SC Injection Rat
[98] 2023 China Rat BMSC and plasma Hydrogel Topical Rat
[99] 2021 China and Finland Human ADSC x IP Injection Mice

[100] 2021 China Human UCMSC x SC Injection Mice
[101] 2020 China Human Epidermal x SC Injection Rat
[102] 2020 China Human ADSC Hydrogel Topical Rat
[103] 2018 China Human Plasma Sponge Sponge Rat
[104] 2021 China Human UCMSC and ADSC x SC Injection Mice
[105] 2019 Iran Human Menstrual Blood x ID Injection Mice
[106] 2020 China Human Saliva x SC Injection Mice
[107] 2023 China Human ADSC Hydrogel SC Injection Mice
[108] 2021 China Human Peripheral Blood x SC Injection Mice
[109] 2021 China Mice Plasma x SC Injection Mice
[110] 2018 Japan Human iPSCs x SC Injection Mice

[111] 2022 USA Mice and
Human Plasma x Topical Mice

[112] 2023 China Human UCMSC x Topical Mice
[113] 2020 China Human Amnion x SC Injection Rat
[114] 2022 China Human Keratinocyte x SC Injection Mice
[115] 2022 China Mice ADSC Hydrogel SC Injection Rat
[116] 2021 China Mice Dermal x ID Injection Mice
[117] 2022 USA Mice Skin Sponge Sponge Mice
[118] 2023 China Human UCMSC x SC Injection Mice
[119] 2019 China Human BMSC x SC Injection Rat
[120] 2021 China Human Amniotic Fluid x SC Injection Rat
[121] 2022 China Human ADSC x SC Injection Mice
[122] 2018 China Human Amniotic Fluid x SC Injection Mice
[123] 2021 China Human ADSC x SC Injection Rat
[124] 2020 China Human Peripheral Blood x Injection Mice
[125] 2022 China Rat ADSC Hydrogel Topical Rat
[126] 2020 China Human UCMSC Nanoparticles EV Injection Rat
[127] 2023 Republic of Korea Human UCMSC x Injection and Topical Mice and Rat
[128] 2022 China Human Gingival x SC Injection Mice
[129] 2021 China Human UCMSC Hydrogel Topical Rat
[130] 2022 China Human BMSC x EV Injection Mice
[131] 2023 China Human Keratinocyte x SC Injection Mice
[132] 2021 China Human DPs x Topical Mice
[133] 2020 China Human UCMSC Dressing Topical Mice
[134] 2023 China Human UCMSC x SC Injection Mice
[135] 2021 China Human Embryonic x SC Injection Rat

[136] 2022 China Mice Dendritic epidermal T
cells x SC Injection Mice

[137] 2021 USA Mice Skin Sponge Topical Mice
[138] 2023 China Human Epidermal x SC Injection Mice
[139] 2022 China Human UVEC x SC Injection Mice
[140] 2019 Portugal Human UCMSC Hydrogel Topical Mice
[141] 2023 China Mice Macrophage x Topical Rat
[142] 2021 Portugal Human UCMSC Hydrogel Topical Mice
[143] 2023 China Human UCMSC x SC Injection Mice
[144] 2021 China Human BMSC x SC Injection Mice

[145] 2018 USA Mice and
Human

BMSCs, Skin and
Gingiva x SC Injection Mice

[146] 2023 China Mice ADSC x SC Injection Mice
[147] 2023 China Human Plasma x SC Injection Mice
[148] 2023 China Human Hair follicle x SC Injection Mice
[149] 2020 China Human ADSC x SC Injection Mice
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Table 1. Cont.

Ref Year Country Cell Source Cell Type Biomaterial Administration
Route

Animal
Models

[150] 2023 China Rat ADSC x SC Injection Rat
[151] 2023 China Mice BMSC Dressing Topical Rat
[152] 2020 China Human Peripheral Blood x SC Injection Mice
[153] 2023 China Rat BMSC Hydrogel SC Injection Mice and Rat
[154] 2019 Republic of Korea Human Fibroblast x Topical Mice
[155] 2020 China Human ADSC x SC Injection Mice
[156] 2023 USA Human Placenta x Topical Mice
[157] 2023 China Human ADSC x SC Injection Mice
[158] 2021 Egypt Dog BMSC Hydrogel Topical Dog
[159] 2021 China Human ADSC x SC Injection Mice

3.2. Scientific Data Production and Publication Distribution between 2018 and June 2023

All 148 papers selected were comprehensively analyzed to assess the temporal distri-
bution of their publication across the five-year timeframe (Figure 2). In 2018, a total of seven
papers were published (4.7%). The subsequent year, 2019, witnessed a notable increase in
publications, with 16 papers, accounting for 10.8% of the selection. The publication rate
continued to rise in 2020, reaching 30 papers (20.3%). In 2021, 29 papers were published
(19.6%). The most significant publication rate occurred in 2022, with 42 papers published
(28.4%). Up until June 2023, 24 additional papers had already been published, indicating
that the year will probably surpass previous records (16.2%). These data demonstrate that
there has been a continuous and stable increase in scientific investment in this research
area, with the number of works carried out and published results increasing continuously.
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The geographical distribution of scientific publications in the field of exosome applica-
tion in wound healing was examined, focusing on the corresponding author’s country over
a 5-year timeframe (Figure 3). China emerged as the country with the highest scientific
publication rate in this field, with 122 publications (82.4%). The United States of America
(USA) followed with eight publications (5.4%), South Korea with five publications (3.4%)
and Portugal with three publications (2.0%). Other countries have lower publication rates:
Japan recorded two publications (1.4%), as did Iran (1.4%) and India (1.4%). Similarly,
Egypt and Taiwan each had one publication (0.7%). Additionally, a collaboration between
China and Finland resulted in two publications (1.4%).



Biomedicines 2023, 11, 2099 7 of 23
Biomedicines 2023, 11, x FOR PEER REVIEW 3 of 18 
 

 
Figure 3. Graphical representation of publication distribution per corresponding authors country 
(2018–June 2023). 

3.3. Cell Source and Type 
Cell source was analyzed as seen in Figure 4. Among the papers analyzed, human 

tissues were the preferred cell source for exosome extraction (73.6%). Then, rodent-
derived cells corresponded to 23%, with 15.5% from mice and 7.4% from rat. The other 
sources, although less frequent, consisted of dog (0.7%) and macaque (0.7%). Furthermore, 
one study compared mice- and rat-derived exosomes (0.7%), while two independent 
studies compared both mice- and human-derived exosomes (1.4%).  

 
Figure 4. Graphical representation of cell tissue source distribution in the scientific literature 
between 2018 and June 2023. 

Figure 3. Graphical representation of publication distribution per corresponding authors country
(2018–June 2023).

3.3. Cell Source and Type

Cell source was analyzed as seen in Figure 4. Among the papers analyzed, human
tissues were the preferred cell source for exosome extraction (73.6%). Then, rodent-derived
cells corresponded to 23%, with 15.5% from mice and 7.4% from rat. The other sources,
although less frequent, consisted of dog (0.7%) and macaque (0.7%). Furthermore, one
study compared mice- and rat-derived exosomes (0.7%), while two independent studies
compared both mice- and human-derived exosomes (1.4%).
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According to the data presented in Table 2, the most commonly used to extract ex-
osomes in humans is the adipose tissue (ADSC) with 26.6%, followed by the UCMSCs
(umbilical cord mesenchymal stem cells) with 22.9%, and the BMSCs (bone-marrow-derived
mesenchymal stem cells) with 10.1%. Other tissues still present considerable percentages
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of use, such as placenta (2.8%), peripheral blood (3.7%), epidermal (3.7%), DP (dental-
pulp-derived mesenchymal stem cells) (2.8%), and umbilical vein (7.3%). Regarding mice,
adipose tissue emerges as the preferred source (30.4%), followed by bone marrow (26.1%).
In rats, both adipose tissue and bone marrow (36.4%) are favored as primary sources for
exosome extraction. These results are in agreement with the general scientific literature
related to the use of cell-based therapies, where adipose tissue, bone marrow, and umbilical
cord are the most explored tissues, and the respective MSCs are the most studied and
characterized cells both for their direct use and use of their secretion products.

Table 2. Summary of the most used cell types of the most common species. X—Not applicable.

Human (109 Studies) Mice (23 Studies) Rat (11 Studies)

BMSC 11 (10.1%) 6 (26.1%) 4 (36.4%)

ADSC 29 (26.6%) 7 (30.4%) 4 (36.4%)

UCMSC 25 (22.9%) X X

UVECS 8 (7.3%) X X

DP 3 (2.8%) X X

Epidermal 4 (3.7%) X X

Peripherical blood 4 (3.7%) X X

Placenta 3 (2.8%) X X

Others 22 (20.2%) 10 (43.5%) 3 (27.3%)

3.4. Biomaterials and Administration Route

As seen in Figure 5, the analysis of biomaterials used in all 148 papers revealed that
the majority of studies chose to use exosomes without any biomaterial (73.6%). However,
when a biomaterial was selected, hydrogels were the most commonly used (18.2%). Other
biomaterials were also employed in several studies, such as scaffolds (2.7%), patches (1.4%),
sponges (2.0%), nanoparticles (0.7%), and dressings (1.4%).
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In the analysis of these 148 papers, the administration route of exosomes was analyzed
and compared to the selected biomaterials, as illustrated in Figure 6. The preferred method,
regardless of the presence of biomaterials, was via subcutaneous (SC) injection at the wound
margins (66.2%). Within this route, subcutaneous injection without a biomaterial (57.8%)
was the most common approach, while the association with a biomaterial was only 8.8%.

Biomedicines 2023, 11, x FOR PEER REVIEW 5 of 18 
 

 
Figure 6. Graphical representation of the administration route of exosomes used in wound healing 
between 2018 and June 2023. EV, endovenous; ID, intradermal; IP, intraperitoneal; SC, 
subcutaneous. 

3.5. Animal Models 
Among the studies included in the analysis, rodents were used in the majority, 

accounting for 96.6% of the total (143 studies), with mice comprising 66.9% (99 studies) 
and rats 29.7% (44 studies). Also, two studies used both mice and rats (1.4%), while one 
study used a non-human primate model (0.7%), and the last used a canine model (0.7%). 
Figure 7 provides a visual representation of the distribution of in vivo models used in the 
selected studies. 

 
Figure 7. Graphical representation of the animal models used in wound healing between 2018 and 
June 2023. 

Figure 6. Graphical representation of the administration route of exosomes used in wound healing
between 2018 and June 2023. EV, endovenous; ID, intradermal; IP, intraperitoneal; SC, subcutaneous.

Topical administration was used 25.7%, with 16.9% involving the use of a biomaterial
and 8.8% without one. Other administration routes included intradermal (ID) injection
(2.7%), intraperitoneal (IP) injection (1.4%), and endovenous (EV) injection (2.0%). There
were also two papers that compared topical and subcutaneous injections (1.4%), while one
study compared topical and intradermal injections (0.7%).

3.5. Animal Models

Among the studies included in the analysis, rodents were used in the majority, accounting
for 96.6% of the total (143 studies), with mice comprising 66.9% (99 studies) and rats 29.7%
(44 studies). Also, two studies used both mice and rats (1.4%), while one study used a non-
human primate model (0.7%), and the last used a canine model (0.7%). Figure 7 provides a
visual representation of the distribution of in vivo models used in the selected studies.
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4. Discussion
4.1. Scientific Data Production and Publication Distribution between 2018 and June 2023

The publication rate regarding the use of exosomes for wound healing has shown a
significant increase in the last five years, with 2022 marking the highest publication rate
to date. Based on the count of 24 publications as of June, 2023 is expected to surpass
previous records.

This notable increase in scientific publications reflects the recent emergence and promis-
ing outcomes of exosome-based therapies in wound healing. It is expected that even more
valuable data will be published in the next years.

In addition, China stands out as the leading country regarding publication rate, which
demonstrates the high importance this topic in this country. However, there remains a gap
in research development and publication in this field in other countries, particularly in
Europe and America. It is essential to encourage research and publication in these regions
in order to promote advancements in the field of exosome-based therapy worldwide.

4.2. Cell Source and Type

Among the preferred tissue source for exosome production, human-derived cells
accounted for 73.6% of the studies, followed by rodent-derived cells at 23%, with 15.5%
from mice and 7.4% from rat.

Within the human-derived cells, the most commonly used tissue is the adipose tissue
(26.6%), followed by the umbilical cord (22.9%) and the bone marrow (10.1%). In mice,
adipose tissue emerges as the preferred source (30.4%), followed by bone marrow (26.1%).
In rats, both adipose tissue and bone marrow (36.4%) are favored as primary sources for
exosome extraction.

Given that the ultimate objective of most studies is the development of exosome-based
therapies for human medicine, the retrieval of exosomes from human tissues appears to
be a logical approach. However, the significant heterogeneity within the tissues poses
challenges in comparing results, as researchers have not reached an understanding of the
most efficacious treatment option.

The preferred use of ADSCs (adipose-tissue-derived mesenchymal stem cells) is prob-
ably due to its low ethical issues, easy extraction, and cost-effectiveness. ADSCs have
shown potential in wound healing by increasing vascularization, fibroblasts migration, and
differentiation and upregulating macrophages chemotaxis [2,160,161].

BMSCs have also demonstrated great potential in wound healing, increasing angio-
genesis, and reducing wound contraction [161]. Additionally, BM-MSCs have garnered
significant attention as the most extensively investigated subset of MSCs and have been
recognized for their relatively low immunogenicity [2].

UCMSCs have also shown their wound-healing potential, as they can differentiate
into epidermal tissue and are easier to harvest than BM-MSCs [1,2].

The variation observed in exosomes derived from different species and tissues still
needs further research and understanding. The goal should be to identify the most ef-
fective sources and optimize and standardize the isolation processes to ensure consistent
and reliable outcomes. By doing so, the scientific community can more accurately make
comparisons between studies and advance towards the development of efficacious thera-
peutic approaches.

In addition, it is valuable to explore alternative sources of exosomes beyond those
currently described, as it may uncover potential benefits and characteristics, broadening
the range of therapeutic options.

Overall, while human-derived exosomes remain the preferred choice due to their
ultimate clinical relevance, efforts should be made to refine the current methodologies and
promote collaborations between research groups to better understand the most effective
exosome-based treatments.
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4.3. Biomaterials and Administration Route

In most studies, exosomes were administered via SC injection in the wound margins,
either without a biomaterial (57.8%) or in combination with a biomaterial (8.8%). This
delivery method offers ease, speed, and localized treatment administration. Considering
that most skin wounds are created on the animal’s dorsum, incorporating biomaterials
can be difficult, requiring prior development and testing. SC injection of MSCs has also
demonstrated great results regarding wound closure, angiogenesis, and re-epithelization.
Alternatively, topical administration is also used (25.7%), as it is less invasive and less
painful than the injection methods [162].

However, when a biomaterial was selected, it was predominantly a hydrogel (18.2%).
Other biomaterials were also applied in several studies, including scaffolds (2.7%), patches
(1.4%), sponges (2.0%), nanoparticles (0.7%), and dressings (1.4%).

The combination of biomaterials aims to improve the therapeutic functionality of
exosomes by stabilizing them and prolonging their release at the wound site, thereby
preventing rapid entry into blood circulation and systemic dilution. Hydrogels, specifically,
offer several advantages in wound healing, such as antibacterial activity, facilitation of tissue
adhesion, protection against UV radiation, hemostatic capacity, promotion of spontaneous
regeneration, and easy injectability. They can also provide a 3D environment and mimic the
extracellular matrix while maintaining proper moister levels at the wound site. Therefore,
the use of exosomes associated with hydrogels has shown to improve wound healing,
enhancing re-epithelization and vascularization [4,163].

Hydrogels based on chitosan or methylcellulose are considered great options for
diabetic wound treatment and have been used in some of the selected studies. These
polymers have good biodegradability and biocompatibility and are nontoxic. Geng et al.
developed a loaded carboxyethyl chitosan hydrogel loaded with bone-marrow-derived
exosomes to improve chronic diabetic wound healing. It increased angiogenesis and
neovascularization, reduced local inflammation, and improved wound healing in diabetic
rats [27].

Pluronic F-12 hydrogels have also been used in selected studies, as they are injectable,
biocompatible, and thermosensitive. Zhou et al. used a pluronic F-12 hydrogel combined
with adipose-tissue-derived exosomes to improve re-epithelization, angiogenesis, collagen
synthesis, and wound healing and cellular proliferation in mice [17]. Yang et al. also used a
similar hydrogel combined with human umbilical-cord-derived exosomes with increased
wound-closure rate and granulation tissue in rats [13].

Gelatin methacryloyl (GelMA) hydrogels were also chosen in different studies due to
their mechanical properties and ability to retain exosomes for a prolonged time. Zhao et al.
used human umbilical vein endothelial cells (HUVECs)-derived exosomes in association
with a GelMA hydrogel and demonstrated an improvement of angiogenesis and collagen
maturity in rats [56]. Hu et al. used a similar hydrogel with ADSCs-derived exosomes
and showed an improvement of wound healing with increased blood vessel regeneration,
proliferation, and migration in mice [43].

Several studies have combined hydrogels and MSCs with promising results in skin
regeneration. The use of BMSCs seeded into hydrogels improved angiogenesis and acceler-
ated wound healing in mice [164]. Another study demonstrated reduced scar formation
and improved angiogenesis, collagen, granulation, and re-epithelization in rabbits through
ADSCs combined with a hydrogel [165].

These findings emphasize the importance of carefully selecting the biomaterials and
administration route to optimize the therapeutic effects of exosomes in wound healing.

4.4. Animal Models

The results showed that rodents are the main animal models in studies involving
exosome-based therapies in wound healing (96.6%). These findings are consistent with
Al-Masawa et al.’s previous findings up until March 2021 [3].
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The use of small-animal models has several advantages, such as researchers’ familiarity,
easy handling, affordability, and availability. However, there are also limitations associated
with these models, including skin thickness, fast hair growth cycles, follicular pattern,
and wound size [166]. Rodents exhibit a thin epidermis and loose skin adherence along
with dense hair that has been suggested to potentially enhance the wound-healing rate.
In addition, these animals lack apocrine and eccrine glands but possess a subcutaneous
panniculus carnosus muscle that enhances rapid wound contraction. Moreover, they also
have stronger immune systems and have endogenous sources of vitamin C, which plays a
significant role in wound healing [167,168].

Although rodent models are frequently used in the initial stages of new therapy
approaches, it is necessary to scale up to more complex animal models to better reflect the
similarities between such models and the human species. The main goal of most researchers
is to develop new treatments options for non-healing chronic wounds and make them
commercially available to the human population. Therefore, the consistent use of rodents
in 96.6% of studies over the last five years limits the broader application of these data.

Although the use of exosome-based therapies has been showing promising results
over last few years, the inclusion of larger animal models, such as ovine, swine, dog, and
non-human primates, is crucial. In addition, it is important to fulfill the 3Rs principle
(replace, reduce, and refine) regarding animal use, implying that research data should
evolve until commercialization becomes possible [169,170].

However, these more complex models present challenges, as they are more expensive,
more difficult to handle, and require large set-ups. Pigs, for instance, are regarded as
standard models for wound-healing research due to the resemblance of their skin to that of
humans. They also present physiological and anatomical similarity to the human species.
Nonetheless, to date, no studies have been conducted on this particular species. Non-
human primates, although sharing greater similarity with humans, are rarely used mainly
due to ethical concerns [166,167].

The porcine model has been used in wound-healing research with promising results.
In particular, the administration of BMSC and ADSC intradermally into partial-thickness
wounds enhanced local epithelization and improved wound appearance when compared
to the control [171,172]. This suggests that the use of these cells can accelerate the wound-
healing process.

Martinello et al. used the ovine model in wound healing and achieved great results.
The local injection of peripheral-blood MSCs into the wound margins revealed improved
re-epithelization, proliferation, neovascularization, and contraction, with a higher wound-
closer rate [173].

In dogs, the use of MSCs to treat chronic wounds has also demonstrated great po-
tential. UCMSCs used in association with a PVA hydrogel showed significant progress
in wound regeneration and decreased local ulceration [174]. Other study using ADSc
also improved re-epithelization, reduced local inflammation, and promoted epidermal
and dermal regeneration in both acute and chronic wounds [175]. In the selected study
using a dog model, Bahr et al. used BM-MSCs-derived exosomes in association with a
carboxymethylcellulose hydrogel. The results were promising, as the treatment enhanced
wound healing with no scaring, with organized collagen deposition and increased dermal
fibroblasts [158].

Lu et al. used autologous and allogeneic iPSCs-derived exosomes to improve wound
healing in macaques. It demonstrated an increased angiogenesis, collagen deposition,
epithelial coverage, and wound-closure rate [56].

While acknowledging the differences among animal models, current approaches in
wound healing remain highly relevant. However, it is crucial to increase the use of diverse
and more complex animal models to bridge the gap between current findings and their
practical application in the human species [176].

All the selected papers consistently reported positive outcomes in vivo, highlighting
the ability of exosomes to promote wound healing.
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Exosome treatment was found to enhance wound-closure rates, stimulate local an-
giogenesis and reepithelization, and facilitate collagen deposition [12,14,17,18]. Further-
more, exosomes promoted a reduction in scar formation and decreased local inflammation
in multiple studies [18,23,158]. Additionally, exosome treatments resulted in increased
granulation tissue formation and enhanced the proliferation and migration of dermal
fibroblasts [65,155,157].

The findings consistently indicate that exosomes possess therapeutic properties and
contribute to the healing of skin wounds. Importantly, these beneficial effects remain
consistent across various experimental animal models, methods of administration, exosome
concentrations, number of administrations, and sources of exosomes.

Some meta-analyses have been published with positive outcomes that corroborate
these findings. Qiao et al. and Masawa et al. demonstrated that exosome-based ther-
apies improve angiogenesis, reepithelization, and collagen deposition while decreasing
local inflammation. Therefore, the results indicate that the treatments accelerate wound
healing [3,177].

5. Conclusions

Addressing the need for effective therapeutic options to promote skin regeneration
remains a significant goal, as it poses an ongoing challenge to public health. This challenge
is expected to intensify with the increasing population suffering from chronic diseases and
the general aging of the population associated with an increase in average life expectancy.
As a potential biological therapeutic approach, exosome-based therapies emerge as a
promising strategy for wound healing.

This comprehensive systematic review highlights the great potential of exosomes as
therapeutic options for non-healing chronic wounds. In summary, exosome treatment has
shown consistent positive outcomes, including enhanced wound-closure rates, stimulation
of local angiogenesis and reepithelization, and increased collagen deposition. Moreover,
exosomes have demonstrated the ability to reduce scar formation, alleviate local inflam-
mation, promote increased granulation tissue formation, and enhance the proliferation
and migration of dermal fibroblasts. These findings underscore the therapeutic efficacy of
exosomes in promoting wound healing. The field has also witnessed significant advance-
ments in the last 5 years by combining exosomes with innovative engineering strategies.
Exosome-based therapies have emerged as promising tools for wound healing, with advan-
tages such as abundant sources; ease of preparation, storage, and transportation; as well as
minimal immunogenicity.

Despite the potential of exosomes in wound treatment, challenges persist. The method-
ology associated with the use of exosomes-based therapies in wound healing remains highly
heterogeneous. The mechanisms underlying exosome biogenesis, cellular interactions, and
communication remain largely unknown. Comprehensive research is necessary to deepen
our understanding of exosome biology for safe and effective applications. Standardized
preparation methods and technical issues pose obstacles that impact the pharmacokinetic
and pharmacodynamic performance of exosomes. Precise cargo loading, large-scale pro-
duction, targeted delivery, reduced contamination, and cytotoxicity all require further
exploration. Nonetheless, standardization and optimization of exosomes isolation and pu-
rification methods, scalability for clinical applications, and enhancing therapeutic potential
through tissue engineering strategies are important challenges to address.

Further research endeavors are imperative to facilitate the commercial availability and
clinical application of these treatments.

The considerable variability in cell sources, types, biomaterials, and administration
routes under investigation shows the urgent need of further research in this field. Moreover,
the lack of comparative studies exploring different cell sources/types, administration routes,
or even biomaterials is a critical gap that must be addressed. Furthermore, the predominant
use of rodent-based animal models raises concerns, as limited progress has been made in
advancing toward more complex in vivo models that closely resemble human physiology.
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This study also has certain limitations, primarily due to the potential bias associated
with study design and methodology of the included studies. To address these limitations, it
is crucial that future research incorporates measures to mitigate bias, such as randomization,
blinding, and standardized protocols. Due to the absence of a universally agreed-upon
set of techniques for isolating, characterizing, and applying exosomes, we were unable to
strictly enforce inclusion and exclusion criteria in our study. Additionally, the scope of
our study did not allow for a comprehensive comparison between various wound-healing
models. It is worth noting that a bias may have been introduced during data collection and
reporting due to the prevalent practice of publishing only successful or efficacious studies.

To achieve a commercially viable and widely accessible range of therapeutic options,
several key objectives must be pursued in the future. Standardizing methodologies is
paramount to ensure more reliable and comparable results. In addition, the inclusion
of more complex animal models that closely mimic the human species will enable the
effective translation of research outcomes. These collective efforts will drive the field closer
to its ultimate goal of achieving large-scale production and widespread availability of
exosome-based therapeutic option for wound healing.

To overcome the limitations associated with solely relying on rodent models, we
suggest expanding our investigation to include a diverse range of models, including non-
rodent and non-animal alternatives. Furthermore, it is crucial to extend the follow-up
period to thoroughly evaluate the impact of exosomes on the maturation and scarring of
healed skin as well as the immunological response. Additionally, future research endeavors
should encompass various skin lesions, such as burns, ulcers, and incisional ischemic
lesions, and utilize more representative models of diabetic type 2 and non-healing wounds.

In conclusion, our research findings support the hypothesis that exosomes have great
potential as therapeutic options for wound-healing applications. However, it is crucial
to establish a consensus regarding the definition and standardization of variables related
to exosome isolation, quantification, administration, and reporting. Multidisciplinary
research is crucial to address the scientific questions and technical challenges associated
with exosomes and to bridge the gap between experimental studies and commercialization.
Continued advancements in the field will pave the way for the translation of exosome-
based therapies into clinically applicable approaches. With ongoing advancements in the
field of exosome research and continued efforts in addressing these challenges, exosome-
based therapies hold great promise for future clinical applications. Achieving unanimous
agreement on these variables will undoubtedly facilitate the advancement of the exosome
field and pave the way for a promising future, allowing its translation into clinical practice.
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Abbreviations

ADSC Adipose-tissue-derived mesenchymal stem cells
BMSC Bone-marrow-derived mesenchymal stem cells
DPs Dental-pulp-derived mesenchymal stem cells
EV Endovenous
ID Intradermal
IP Intraperitoneal
iPSCs Induced pluripotent stem cells
MSCs Mesenchymal stem cells
PMID PubMed identification
PRISMA Preferred Reporting Items for Systematic Reviews and Meta-Analyses
SC Subcutaneous
UCMSC Umbilical cord mesenchymal stem cells
UVEC Umbilical vein endothelial cells
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