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A B S T R A C T   

This paper presents an innovative Early Warning System for predicting conflicts and unrest based on Anomaly 
Detection, identifying sudden and unexpected changes in behavioral patterns that may indicate the potential for 
these events to occur. This approach draws inspiration from various fields – including industry, such as 
manufacturing, physics and networking – but its application in the domain of diplomacy is entirely new. The 
system, tested on three case studies, showcase its ability to enhance open-source intelligence technique in the 
diplomatic arena. The study provides a fresh perspective on predictive analytics and focuses on examining 
outbreaks.   

1. Introduction 

Conflict prevention is critical to international relations and diplo-
macy, as early intervention can often lead to conflicts being resolved 
before they are able to escalate into larger and more destructive events. 
Early warning systems play a crucial role in this context as they identify 
potential risks and threats and provide decision-makers with timely 
information to help define policies for mitigating or preventing any 
conflict. 

Early warning systems are often based on data analysis and advanced 
computational techniques thanks to the large amounts of data gathered 
in information systems, shared via the Internet, and advancements in the 
fields of Machine Learning and Artificial Intelligence. Data can be 
extrapolated from various sources, including open-sources, satellite 
imagery, and social media. However, knowledge discovered from data is 
the final step in a much longer process that begins with identifying 
patterns and anomalies that may indicate a potential conflict. This al-
lows decision-makers to address the underlying causes of conflict pro-
actively and to take action to prevent its emergence. 

Prior to these technological advancements taking place, potential 
conflict was traditionally identified largely by way of individual diplo-
matic and political knowledge, intuition, and subjective judgment. 
Although this approach had some success, intuitive approaches to con-
flict prediction have been criticized for their lack of rigor and strong 
subjectivity. Human analysts are often biased due to their own 

experiences, beliefs, and perspectives, leading to inconsistent and un-
reliable predictions (Gleditsch, 2002), thus entailing a more reactive 
than a proactive approach. Data and technology have the potential to 
revolutionize the field of conflict prevention, providing early warning 
signals of potential unrest. With the advent of big data from multiple 
sources and machine learning, vast amounts of data can now be 
analyzed in real time, identifying potential risk factors before they 
escalate into full-blown conflicts, and standardizing predictions in an 
objective and accountable way. This can improve the accuracy and 
timeliness of conflict prevention efforts and give decision-makers the 
technical support they require in order to act promptly and effectively at 
the first sign of crises. 

Governments and international organizations now have come to 
acknowledge the importance of using technology and data analysis for 
conflict prediction in order to prevent or mitigate the imminent risk. 
This has been the case for several decades, as demonstrated by early 
studies on preventive diplomacy (George, 1999; Ackermann, 2003) and 
more recent works, such as the book Violence, Wars, Peace, Security 
(Wallensteen et al., 2018). The use of data and technology may poten-
tially facilitate early peacekeeping interventions, which are a crucial 
factor in reducing conflict, as indicated in the research by Håvard Hegre, 
Lisa Hultman, and Håvard Mokleiv Nygård (Hegre et al., 2019b). Their 
study simulated a scenario in which the United Nations ceased its 
peacekeeping efforts after 2001. They found that, compared to the 
actual number of countries with ongoing peacekeeping efforts, three to 
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four more countries would have suffered major conflicts by 2013 in the 
absence of the UN's efforts. 

In response to this, various organizations initiated the development 
of data analysis and data collection and interpretation systems, such as 
the Global Conflict Risk Index (Halkia et al., 2020a) by the Joint 
Research Center of the European Commission and the Violence and 
Impacts Early-Warning System (VIEWS) (Hegre et al., 2019a) developed 
by Uppsala University. 

This paper outlines the development and outcomes of a new Early 
Warning System, using Machine Learning techniques. More specifically, 
it uses an Anomaly Detection approach for the purposes of preventing 
conflict and unrest. It was chosen to use this approach, which has never 
been used in this field, and which differs from previous supervised 
methods, as it is more apt to identify anomalies in a country. The 
promising results of the three case studies infer that this approach could 
be used for a wider range of conflicts. The Section 2 and the Section 4 of 
this paper provide a comprehensive overview of current conflict pre-
vention models and illustrate how paper models could provide a valid 
alternative to those already in use. 

2. Artwork 

The conflict prediction field has traditionally used various Machine 
Learning models, including Logistic Regression (Halkia et al., 2020a), 
Dynamic Multinomial Logit (Hegre et al., 2012), Random Forest 
(Muchlinski et al., 2016), naive Bayes classifiers (Perry, 2013), and 
Neural Networks (Beck et al., 2000). All of these methods are super-
vised, meaning that they require labeled data, with domain experts 
providing the correct output for each input. This allows the algorithms 
to learn patterns and to make predictions based on past data. While 
supervised methods rely on labeled data to learn patterns and make 
predictions, unsupervised methods uncover underlying structures in 
unlabeled data, making them effective for anomaly detection where 
supervised methods might fall short. 

This work, however, adopts an innovative approach based upon 
Anomaly Detection, which can be treated as an unsupervised method. 
Unsupervised methods do not require labeled data and instead identify 
patterns or anomalies within the data themselves. Anomaly Detection 
has achieved successful results in several domains, such as industry 
(Siegel, 2020) and physics (Nakazawa and Kulkarni, 2019), as well as 
with multi-variate time series (Zhang et al., 2021). It is an attractive 
method of conflict prediction as it does not require domain-expert 
intervention and it is well-suited to detecting rare events. This is dis-
cussed in the book Understanding Deep Learning (Ranjan, 2020), which 
argues that anomaly detection can identify unusual patterns in data that 
may indicate a rare occurrence, whereas supervised methods struggle to 
manage rare events due to their reliance on statistical metrics which are 
better suited to identifying frequent categories and the majority class. 
Ranjan's book focuses on using an Autoencoder model in Anomaly 
Detection for rare-event detection. 

An Autoencoder is an unsupervised machine learning model which 
aims to identify patterns or anomalies in data. The first step is to divide 
the data into two groups: the majority class, which represents the 
normal state of the data, and the minority class, which represents the 
rare events. The Autoencoder then compresses and extracts the impor-
tant information from the majority class, reconstructs it and creats a 
latent representation (hereinafter, Latent Space) of the majority class. 
During the last inference step, the Autoencoder compares the recon-
structed data with the original data. Once the Latent Space is built, new 
data are given to the Autoencoder as input, with a view to reconstructing 
that input. If there is little difference between the new original data and 
the new reconstructed data, this means that the sample belongs to the 
majority class, or the normal state. However, if there is a large difference 
between the two, this suggests that the sample belongs to the minority 
class and is thus an anomaly. 

In the paper entitled A Variational Autoencoder Solution for Road Tra c 

Forecasting Systems (Boquet et al., 2020), the author shows that anomaly 
detection utilizing an autoencoder can be a valuable approach to pre-
dicting rare events, such as sudden shifts in road traffic patterns; it does 
so by learning a subspace that captures the underlying characteristics of 
the traffic data. Boquet proposes an autoencoder model that can extract 
valuable, compressed information from complex and multidimensional 
road traffic data sets and assign missing values online, without super-
vision. This extraction and compression technique improves the accu-
racy of forecasting systems. The author also highlights that the Latent 
Space, i.e. the compressed information learned by the model, is suitable 
for traffic anomaly detection. Similarly, events such as armed conflicts, 
coups, and unrest can be considered anomalies in a country's history and 
can be predicted as rare events. In the context of this academic evidence, 
this paper uses an unsupervised Anomaly Detection Autoencoder model 
for a conflict prevention Early Warning System. The Sections 3 and 7 
below will discuss the databases and the results of this approach. 

3. Dataset implementation 

Dataset selection is a critical factor in a heavily data-driven model. 
The datasets adopted for conflict prediction primarily fall into two cat-
egories: social and diplomatic. 

Many forecasting works have relied on data obtained from social 
media platforms, particularly Twitter, due to its ease of access. In recent 
years, numerous examples of conflict prediction using social media have 
emerged, such as the work by Korkmaz (Korkmaz et al., 2015). That 
article focuses on the use of multiple data sources, including Twitter, to 
predict and analyze civil unrest in six Latin American countries, high-
lighting the importance of using this platform as a dataset in predicting 
civil unrest. Another example of conflict prediction using Twitter is 
demonstrated in Ryan Compton's paper Using Publicly Visible Social 
Media to Build Detailed Forecasts of Civil Unrest (Compton et al., 2014). 
Compton presents a data mining system that generates forecasts of civil 
unrest incidents in Latin America using public posts on Twitter and 
Tumblr. The system identifies informational posts through filters 
applied to tens of millions of posts per day and generates predictions by 
annotating filtered posts with demographic, spatial, and temporal 
information. 

However, as noted in the paper Towards Understanding the Use of 
Telegram by Political Groups in Brazil (Junior et al., 2021), Twitter is no 
longer used as a platform for organizing insurrections due to the pro-
hibition imposed on violent threat tweets and on the tracking and 
persecution of Twitter users by authoritarian regimes. Consequently, a 
new social messaging platform, Telegram, has taken its place. This study 
specifically examines the use of Telegram by political communities in 
Brazil, with the results revealing a significant increase in political 
mobilization on this platform in recent years. Telegram's large-group 
structure has proven to be more effective in spreading messages 
compared to other preceding social media channels. 

Telegram, as mentioned in the paper Telegram: Data Collection, Op-
portunities and Challenges (Khaund et al., 2021), remains an unexplored 
platform for data mining purposes, with only a proposed framework for 
conducting data mining and no notable applications in the field of 
conflict prediction. 

For these reasons, we discarded social datasets and focused on 
diplomatic datasets. However, in creating our dataset, we decided to use 
time-series datasets that were updated regularly and contained daily 
observations, leading us to consider the Armed Conflict Location and 
Event Data Project (ACLED) (Raleigh et al., 2023) and Global Database 
of Events, Language, and Tone (GDELT) datasets and to discard other 
diplomatic, economic, and sociopolitical sources, such as the World 
Bank – which is adopted in several conflict prevention projects, 
including the Global Conflict Risk Index (Halkia et al., 2020b) – due to 
its non-daily variables. 

The use of both datasets has been demonstrated to be valuable in 
conflict prediction research, as highlighted by other works (Matina 
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et al., 2019), as this provides a more comprehensive and diverse set of 
variables for the model: ACLED offers a more exhaustive view of events 
such as conflicts, protests, and riots, while GDELT focuses more on 
Natural Language Processing and sentiment analysis. This combination 
of perspectives improves the performance of the analysis models 
compared to the use of either dataset alone. 

In addition, this study benefits from both human-coded and 
machine-coded diplomatic databases in order to overcome the limita-
tions of relying on a single dataset. The human-coded database, ACLED, 
offers the advantage of accurate information, but with a weekly update 
frequency. Conversely, the machine-coded database, GDELT, provides a 
more frequent update cycle – every 15 min – including news from 
various media sources in over 100 languages, dating back to 1979 
(Leetaru and Schrodt, 2013). The merits of merging and combining these 
two datasets were explored in the paper Comparison Metrics for Large 
Scale Political Event Data Sets (Schrodt and Analytics, 2015). 

Data wrangling had to be performed in order to obtain clear and 
functional variables from the two datasets. The ACLED data are avail-
able for download on its platform (ACLED, 2022b) in the form of .csv 
files, which can be filtered by date range and event type. The types of 
events recorded in the dataset include battles, explosions and remote 
violence, violence against civilians, riots, protests, and strategic 
developments. 

One limitation of the ACLED dataset is that its coverage period varies 
by country and region. For example, while most African regions have 
data from 1997, some European and Asian regions have data from 2018. 
An exhaustive country and time coverage list is available on the ACLED 
website (ACLED, 2022a). 

To wrangle the dataset, we initially downloaded separate ones for 
each event type and then created new copies for each dataset, grouping 
them by ISO 3166-1 alpha-3 code and date. ISO 3166-1 alpha-3 codes are 
three-letter codes used to identify countries in the ISO standard. This 
produced a dataset in which each row corresponded to a day in a specific 
country, with the number of events of a specific type that occurred on 
that day in that country. 

The GDELT dataset, on the other hand, contains many articles, as 
transpires from its Power Law distribution of the number of mentions 
per article (as shown in Fig. 1). However, many of these articles are 
considered noise, lacking significant information relevant to our anal-
ysis. To overcome this, the dataset was reduced, retaining only articles 

that received at least 10 mentions within the first 15 min of publication. 
This reduction strategy resulted in a dataset size of just 1.4 % of the 
original. The threshold of 10 mentions was determined using the elbow 
method, as depicted in Fig. 1. This reduction strategy may lead to the 
exclusion of important information from countries where freedom of the 
press is suppressed and international media attention is limited; how-
ever, this approach was deemed acceptable as there are relatively few 
countries of this nature. The Dynamic GCRI – a conflict risk model 
developed by the European Commission's Joint Research Centre which 
uses event data to predict conflict – adopted the same approach (Matina 
et al., 2019) based on the idea that, when an event actually happens, it 
will be reproduced by more than one media source and in more than one 
article. Moreover, the Dynamic GCRI highlights that the inclusion of all 
available information within the GDELT database would lead to greater 
bias than the exclusion of some information. 

Although the results obtained were promising, for the purpose of 
global implementation, a careful assessment of the freedom of press in 
each country is recommended by monitoring relevant indices and tools. 
To this end, we suggest using the Media Freedom Analyzer proposed by 
Laura Schneider (Schneider, 2019) or other established indices such as 
the Freedom of the Press Index by Freedom House and the Press Freedom 
Index by Reporters Without Borders, analyzed by Ewa Sapiezynska and 
Claudia Lagos (Sapiezynska and Lagos, 2016). 

The GDELT dataset includes 62 attributes, which are grouped into 
the following four categories:  

• Date attributes, used to identify the globally unique identifier 
number and the date of the event;  

• Actor attributes, used to identify the countries actively or passively 
involved in the event, using a unique 3-letter ISO 3166-1 alpha-3 
code. We use this attribute to identify and associate the observation 
with a specific country. In the case of the absence of this attribute, 
the “Event geography” is applied.  

• Event geography, used to identify geographical information in cases 
where the actor attributes are null. 

• Event action attributes, which include the Average Tone – a senti-
ment value obtained through sentiment analysis – the Number of 
Mentions of the event received in the last 15 min, and the QuadClass 
taxonomy. The latter classifies the event type into four primary 
categories: verbal cooperation, material cooperation, verbal conflict, 

Fig. 1. GDELT mentions distribution from July 1, 2022 to August 1, 2022. The P(number of mentions > k) for a single news article follows a Power Law distribution. In 
this paper, k = 10 and P(number of mentions > 10) ƒ 1.4 %. 
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and material conflict. Finally, there is the Goldstein Scale, a numeric 
score between − 10 and 10 which captures the event's theoretical 
potential impact on a country's stability. 

Detailed information about the attributes can be found in their 
documentation (GDELT, 2022). 

It is important to note that the GDELT dataset is obtained by 
semantically analyzing each news item using Natural Language Pro-
cessing. This analysis identifies the event location, the actors involved, 
and the other relevant elements embedded in the news. Actors are 
associated with ISO 3166-1 alpha-3 codes. News articles lacking infor-
mation on actors or event locations were removed. 

The resulting dataset was then grouped by country and date, as was 
done for the ACLED dataset. Only the ISO 3166-1 alpha-3 code associ-
ated with the actors actively or passively involved was recorded for each 
news item, excluding other actors. The country was recorded based on 
the event location in cases where the news item did not report actors. 
The dataset included additional attributes, such as the number of news 
items, the GoldsteinScale, and the Average Tone associated with each 
newsgroup belonging to the same QuadClass, for each date and country. 

In addition to the variables extracted and grouped daily from the two 
databases, a new variable called Violence was created, inspired by the 
definition of violence given by ACLED (ACLED, 2022c): 

Violence rates are calculated using the number of battle events, ex-
plosion or remote violence events, violence against civilians, and riot 
events, as well as the excessive force against protesters, sub-event 
type of the protest event type, excluding peaceful protest events 
and protest-with-intervention events. 

The Violence variable was used as the target variable for the final case 
study to predict the onset of violence in Sri Lanka on 9 May 2022. In the 
final case study, the system attempted to predict the sudden increase in 
unrest events considered in the construction of the variable itself. 

4. Methodology 

In order to implement Anomaly Detection – a key method for 
recognizing unusual occurrences within data – we utilized an Autoen-
coder constructed utilizing an Encoder-Decoder architecture. 

The Encoder-Decoder architecture is based on the idea of com-
pressing data into a lower-dimensional representation, known as Latent 
Space, and then reconstructing the original data from this compressed 
representation. The Encoder component processes the input data matrix 
X and compresses it into a lower-dimensional representation. The 
Decoder component is responsible for reconstructing the original data 
from the compressed representation. 

This compressed representation H aims to capture the most salient 
features of the original data and acts as input for the Decoder compo-
nent, which is responsible for reconstructing the original data (Eq. (1)). 

fenc(X) = H (1) 

The decoder component uses the compressed representation, H, as 
input and reconstructs a new matrix, X̃, which aims to be as similar as 
possible to the original matrix X (Eq. (2)). 

fdec(H) = X̃ (2) 

The squared error SE (Eq. (3)) is used as a similarity measure to 
calculate the difference between the original data and the reconstructed 
data for each day. Specifically, it computes the dissimilarity between the 
original data xi, and the reconstructed data ̃xi, for the i-th day, where i is 
the index for the day. This provides a scalar value representing the 
dissimilarity between the original data and the reconstructed data for 
each day. By minimizing the SE, the decoder aims to reconstruct the 
original data as accurately as possible for each day, while the encoder's 
goal is to identify the most compact data representation for each day 

(Fig. 2). 

SE
(

xi, x̃i

)
= (xi − x̃i)

2 (3) 

Both models were trained with data from “normal” days (i.e. days far 
away from a conflict) to establish a baseline, or in other words, a Latent 
Space for what is considered normal behavior. During validation and 
testing, days that deviated significantly from this normal behavior were 
labeled as anomalous. These anomalies are indicative of potential “pre- 
unrest” days, which are days leading up to an outbreak of civil unrest or 
conflict. 

To determine the “normal” and “pre-unrest”, the data was first 
filtered to remove actual “unrest” days, namely the days with the highest 
number of violent occurences and unrest reported in news sources. The 
remaining data were then analyzed to identify patterns and to classify 
the days into “normal” and “pre-unrest” categories. The purpose of this 
process was not to identify “unrest” days, being a trivial task, but rather 
to distinguish between “normal” days and “pre-unrest” days, which may 
be characterized by increased tension, signs of social unrest, or other 
indicators of potential violence. 

Two parameters were used to make the distinction between “normal” 
days and “pre-unrest” days through statistical analysis: Target Variable 
Threshold and Pre-Unrest Days. Unlike previous studies which used a 
fixed threshold to define the state of war and unrest (Halkia et al., 
2020a) and a set number of days to predict unrest in the short term, such 
as, 30 or 90 days (Rustad et al., 2011; Hegre et al., 2019a, 2019b), this 
study used an optimization system which selects the threshold of “un-
rest” and the number of “pre-unrest” days; this is unique to each country 
and has a predefined range. 

The Target Variable Threshold refers to the value which, if surpassed, 
defines an event as being in a state of “unrest”. The Pre-Unrest Days are 
the n days prior to the “unrest” day. These parameters were determined 
through a Grid Search optimization technique. The Grid Search was used 
to distinguish effectively between the “normal” days and the “pre-un-
rest” days by identifying the optimal values for the Pre-Unrest Days and 
Target Variable Threshold from a set of possible values. To define an 
“unrest” day, the value of the target variable – i.e., the variable exam-
ined to assess the sociopolitical unrest in a given country – had to be 
higher than at least than 98 % of the values of the same target variable 
on all the other days in the country dataset in question, as it had to be a 
rare event. 

The possible values for each case study, which will be analyzed in 
detail in Section 6, are listed in Table 1. 

The selection of pre-unrest days was established within a range of 
one to three months with the aim of assessing the short-term efficacy of 
the approach. The lower limit was specifically set at 30 days, repre-
senting the minimum prediction threshold reported in prior literature, 
as mentioned above. For each combination of possible values (i.e., 
Thresh-old - Pre-Unrest Days), the model's performance in separating the 
“pre-unrest” days from the “normal” days was evaluated during 

Fig. 2. Illustration of the process of transforming input data matrix X into 
reconstructed matrix X~ using an Encoder-Decoder architecture. The Encoder 
component compresses the input data matrix X into a lower-dimensional rep-
resentation H through the encoder function fenc. The compressed representation 
H, depicted in the latent space, is the output of fenc(X). Subsequently, the 
Decoder component utilizes the compressed representation H as input to the 
decoder function fdec to generate the reconstructed matrix X~, aiming to closely 
resemble the original matrix X. 
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validation. The combinations that performed best during validation are 
listed in Table 2. 

The values reported in Table 2 were those ultimately used during 
testing to evaluate the performance for each case study. A more 
comprehensive examination of the determination of the parameters and 
the framework of the data is provided in the Appendix. 

The Early Warning System implemented uses two different models 
based on the Encoder-Decoder architecture: an Encoder-Decoder Prin-
cipal Component Analysis (PCA) model and a Long Short-Term Memory 
(LSTM) Autoencoder. The Encoder-Decoder PCA model was selected for 
its computational efficiency, as it can optimize two key parameters – 
Target Variable Threshold and Pre-Unrest Days – quicker than the LSTM 
Autoencoder. This is due to the fact that the Encoder-Decoder PCA 
model uses only linear combinations when identifying the Latent Space. 
Using the computer provided for this research, the Encoder-Decoder 
PCA model takes approximately 0.01 s to compile, compared to the 2 
min taken by the LSTM Autoencoder. However, the LSTM Autoencoder 
can use non-linear functions, leading to a more accurate representation 
of the Latent Space and ultimately a better performance. Accordingly, 
the Encoder-Decoder PCA model was used to identify rapidly the 
optimal parameters, while the LSTM Autoencoder used those parame-
ters to achieve a better performance. 

5. Performance measure 

Two plots were used to evaluate the performance of the proposed 
Early Warning System's performance: the reconstruction error plot and 
the receiver operating characteristic (ROC) plot. The reconstruction 
error plot displays the chronological progression of test set days from left 
to right, up until the day before the unrest event, as shown in Fig. 3. 

Each day is represented as a dot, with the height of the dot indicating 
the squared error (SE) value. The higher the dot, the higher the SE value 
and, therefore, the more likely the day is considered a “pre-unrest” day. 
Orange circles represent “normal” days, while coral crosses represent 
“pre-unrest” days. A horizontal black line shows the threshold for 
separating “normal” days from “pre-unrest” days. 

A ROC plot was also used to assess further the model's ability to 
distinguish between the two types of days. The ROC plot displays the 
Area Under the Curve (AUC), which is used as a precision measure to 
evaluate the model. AUC values close to 1 (100 %) indicate that the 
model has distinguished all days perfectly, while an AUC value of 0.5 
(50 %) indicates that the model cannot distinguish between the two 

types of days. The ROC plot examines the relationship between the True 
Positive Rate (TPR, fraction of true positives) and False Positive Rate 
(FPR, fraction of false positives) or the relationship between true and 
false alarms. The closer the AUC in the ROC plot is to 1, the more 
effective the model is in separating true and false alarms. Therefore, the 
AUC can be interpreted as the probability of a day being a true alarm (a 
“pre-unrest” day) if the threshold is crossed, or the probability of being a 
“normal” day if the threshold is not crossed. This evaluates more accu-
rately the model's ability to distinguish between “normal” days and “pre- 
unrest” days and, thus, its effectiveness in predicting and preventing 
potential conflicts. 

6. Case studies 

In order to evaluate the effectiveness of the models, recent case 
studies concerning socio-political unrest events were analyzed. For each 
case, the ACLED database was examined to identify any variables that 
underwent a dramatic change in trend leading up to the event. The case 
studies chosen for this analysis were carefully selected to represent a 
range of potential scenarios in which the Early Warning System may be 
used. 

6.1. Russian invasion of Ukraine 

The first case study analyzes a critical event in the continuing Russia- 
Ukraine conflict that escalated significantly on February 24, 2022. This 
date marked a dramatic increase in battle-related fatalities, originating 
from military tensions that began in February 2014. The main objective 
of this case study is to explore whether this sharp increase in fatalities 
could have been anticipated earlier through the early warning system. 

In the 56 days before the invasion, a total of 1600 events were 
recorded in Ukraine leading up to the Russian invasion. Despite this, 
fatalities remained relatively low during this period, with only 31 deaths 
registered prior to February 24, in stark contrast to the 103 fatalities 
recorded on the day of the invasion itself. 92 % of the reported events 
were categorized as Explosions/Remote violence and Battles, indicating 
prevalent but initially low-lethality conflict activities. Additionally, the 
geographical distribution of these events was strikingly concentrated, 
with >92 % occurring in two eastern regions near the Russian border-
–Donetsk and Luhansk (Fig. 4). 

Table 1 
The Date Range column includes the start date and end date. The start date is the 
first day of coverage by ACLED for each country in question; the end date is the 
day of unrest considered for each case study. (*) 98 % of days in the dataset have 
a value below the lower threshold; (**) is the highest value of the target variable 
in the dataset.  

Case study Date range Target variable Threshold Pre-unrest days 

Ukraine Jan. 01, 2018 
Feb. 24, 2022 

Battle fatalities 5*–52** 30–90 

Burkina Faso Jan. 01, 1997 
Jan. 24, 2022 

Battle fatalities 6*–147** 30–90 

Sri Lanka Jan. 01, 2010 
May 9, 2022 

Violence 2*–18** 30–90  

Table 2 
(*) 98.1 % of days in the Ukraine dataset have battle fatalities lower than 6; (⊛) 
99.8 % of days in the Burkina Faso dataset have battle fatalities lower than 52; 
(⊝) 99.8 % of days in the Sri Lanka dataset have violence lower than 15.  

Case study Target variable Threshold Pre-unrest days 

Ukraine Battle fatalities 6 (98.1 %)*  56 
Burkina Faso Battle fatalities 52 (99.8 %)⊛  63 
Sri Lanka Violence 15 (99.8 %)⊝  47  

Fig. 3. Reconstruction error plot of the ideal model, where all “normal” days, i. 
e. days far from the unrest event – are represented by orange circles, and have a 
lower squared error than the “pre-unrest” days, i.e. the days near the unrest 
event, represented by coral crosses. A clear separation by threshold is possible: 
the horizontal black line represents the threshold for separating “normal” days 
from “pre-unrest” days. A moving average – the blue line – had to be included 
due to the potential for fluctuations in the squared error for a single day in real- 
world scenarios. This is achieved by computing the squared error over the most 
recent 15 days, instead of solely relying on the score of a single day. As a result, 
the moving average provides a more robust indication of potential unrest when 
it surpasses the threshold, as it considers a larger squared error sample size. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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6.2. Burkina Faso coup 

The second case study concerns the overthrowing of the 
democratically-elected government headed by Roch Marc Christian 
Kaboré on behalf of a fringe army, which occurred between January 23 
and 24, 2022. The study primarily explores whether the spike in battle- 
related fatalities observed just days prior to January 24 could have been 
anticipated by an early warning system, despite unclear trend changes. 

In the 58 days preceding the critical increase in fatalities on January 
19, a total of 437 events were reported, leading to 615 fatalities. How-
ever, the trend in fatalities did not show a noticeable increase until the 
five days before the coup. During this period, 41 events occurred with 

204 fatalities—an alarming rise in deaths. Most of these events were 
battles and strategic developments, but there was also significant 
violence against civilians, riots, and other violent activities. Moreover, 
from November 22, 2021, to January 24, 2022, the militants involved in 
the coup engaged in significant property destruction, including sabotage 
of telecommunications systems, burning buildings and government in-
frastructures, vandalism, and destruction of schools. These acts of 
sabotage and destruction underscored the intense escalation leading up 
to the coup (Fig. 5). 

Fig. 4. Evolution of battle fatalities (red) and battles (blue) in Ukraine from Jun. 24, 2021, to Apr. 24, 2022. The black dashed line corresponds to the Russian 
invasion of Ukraine on Feb. 24, 2022. Source: Armed Conflict Location & Event Data Project (ACLED); www.acleddata.com. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Evolution of battles (blue) and battle fatalities (red) in Burkina Faso from Jan. 01, 2021, to Feb. 28, 2022. The green dotted line corresponds to the peak of 
battle fatalities on Jan. 19, 2022; the black dashed line corresponds to the coup on Jan. 23, 2022. Source: Armed Conflict Location & Event Data Project (ACLED); 
www.acleddata.com. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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6.3. Sri Lanka's protests 

The last case study focuses on the violence variable, derived from the 
ACLED dataset's disorder factors. Beginning with peaceful protests in 
late March 2022, the situation quickly escalated after declaring a state of 
emergency on April 1, witnessing a surge in mass protests that pro-
gressively became more violent. Notably, by May 11, the intensity of the 
unrest compelled the government to deploy the army with shoot-on- 
sight orders. This study notably investigates if the significant rise in 
violence from May 9, 2022, was foreseeable. Prior to this peak, several 
incidents hinted at the escalating tension, starting with inter-group 
clashes and worsening with responses to the economic downturn, fuel 
shortages, and the demanding of President Gotabaya Rajapaksa's resig-
nation, culminating in nationwide strikes on April 28. The increasing 
frequency and intensity of these events painted a clear picture of the 
unrest leading up to the mentioned surge in violence (Fig. 6). 

7. Results 

The aim of the first case study was to detect the 56 “pre-unrest” days 
prior the Russian invasion of Ukraine in 2022 using an LSTM Autoen-
coder. As already mentioned in the Section 4, the specific parameters 
used in the study are listed in Table 3. 

As noted, the optimal values for the parameters Battle Fatalities 
Threshold and Pre-Unrest Days were determined through a Grid Search 
optimization technique. The case study evaluated the model's ability to 
detect the 56 “pre-unrest” days preceding the Russian invasion of 
Ukraine on February 24, 2022. The model was considered successful if it 
could classify a day as “pre-unrest” even if the number of battle fatalities 
on that specific day was <6; the requirement was that this day was one 
of the 56 days leading up to an “unrest” day with >6 battle fatalities. 

The analysis of the reconstruction error plot (as shown in Fig. 7) 
reveals that the days preceding the Russian invasion of Ukraine 
(February 24, 2022) exhibit a higher reconstruction error than the days 
deemed normal (represented by orange circles in the plot). The threshold 
for separating “normal” days from “pre-unrest” days, determined during 
the validation phase in the framework mentioned above, is represented 
by the black line in the plot. The blue line represents a moving average 
concerning the reconstruction error of the last 15 days. This moving 
average was added as an indicator of the trend in the reconstruction 

error. The day the moving average surpasses the threshold indicates a 
higher probability of a sudden increase in battle fatalities. The results of 
this analysis demonstrate the ability of the LSTM Autoencoder model to 
discriminate “normal” days from “pre-unrest” days effectively. This is 
further supported by the ROC plot, which shows an AUC very close to 1, 
at 0.9377. 

In the second case study, we aimed to investigate whether it was 
possible to predict the high number of battle fatalities prior to the 
Burkina Faso coup that occurred on January 23, 2022. The optimal 
values for the parameters Battle Fatalities Threshold and Pre-unrest days 
were once again determined through a Grid Search optimization tech-
nique in this case study. The case study evaluated the model's ability to 
detect the 63 “pre-unrest” days preceding the coup on January 23, 2022. 
The model was considered successful if it could classify a day as “pre- 
unrest” even if the number of battle fatalities on that specific day was 
<52, as long as it was one of the 63 days leading up to an “unrest” day 
with >52 battle fatalities (Table 4). 

As shown in Fig. 8, the LSTM Autoencoder model effectively dis-
criminates the “pre-unrest” days from the “normal” days, as highlighted 
by the reconstruction error plot. The 15-day moving average of the 
reconstruction error (the technique adopted in Fig. 7) surpasses the 
threshold in April 2021 and remains above the threshold throughout the 
period in question. This indicates a higher probability of approaching a 
situation of socio-political instability. Additionally, the model's perfor-
mance can be seen from the ROC plot, with an AUC of 0.8723. It is 
important to note that while the trend of increasing battle fatalities in 
Burkina Faso may seem apparent, this case study tested the model's 
ability to predict such trends rather than sudden breaks in behavior 
patterns, as seen in the previous case study. Nevertheless, the results can 
be regarded as excellent given the high AUC value close to the maximum 
value of 1. 

In the final case study, we aimed to predict the onset of violence in 
Sri Lanka that occurred on May 9, 2022, two days before the 

Fig. 6. Evolution of violence (red) and protests (light blue) in Sri Lanka from Jan. 01, 2022, to Jun. 01, 2022. The black dashed line corresponds to the declaration of 
a state of emergency; the black dotted line corresponds to the deployment of the army by the government. Source: Armed Conflict Location & Event Data Project 
(ACLED); www.acleddata.com. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 3 
ú98.1 % of days in the entire dataset have battle fatalities <6 battle 
fatalities.  

Battle fatalities threshold Pre-unrest days 

6 (98.1 %)ú 56  
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government's announcement that it was deploying the army with orders 
to shoot on sight to bring the violence under control. Once again in this 
final case study, the optimal values for the parameters Violence Threshold 
and Pre-Unrest Days were determined through a Grid Search optimiza-
tion technique. The case study evaluated the model's ability to detect the 
47 “pre-unrest” days preceding the onset of violence on May 9, 2022. 
The model was considered successful if it could classify a day as “pre- 
unrest” even if the amount of violence on that specific day was <15, as 
long as it was one of the 47 days leading up to an “unrest” day with >15 
violent events (Table 5). 

As can be observed from the plots in Fig. 9, the model performed 
exceptionally well. The reconstruction error plot clearly distinguishes 
between “normal” and “pre-unrest” days, and the ROC plot demon-
strates an AUC of 0.9191. Additionally, this case study is evidence of the 
model's ability effectively to identify a breaking trend using the variable 
violence, which was derived from other variables in the ACLED dataset. 

8. Conclusion 

This paper presents an original method for predicting sudden in-
creases in battle fatalities and violence using machine learning models. 
It should be noted that most studies in this field tend to adopt supervised 
approaches to conflict prediction, which require labeled data to learn 
patterns and make predictions. However, it turns out that this approach 
can be limited in detecting anomalous patterns, especially in contexts 
where anomalies are rare or ill-defined. We have therefore introduced 
the unsupervised method of anomaly detection for the first time in the 
study of conflict early warning. This allows us to explore the underlying 
structures in the data by analyzing the concept of a conflict anomaly, an 
unlabelled data, providing an additional tool to identify and address 
anomalies that may not be captured by traditional supervised 
approaches. 

The anomaly detection approach uses historical data to identify a 
threshold for the target variable and then applies this threshold to 

Fig. 7. Reconstruction error and ROC plot, Ukraine. AUC: 0.9377. The circles are “normal” days; the crosses are “pre-unrest” days; the black line is the threshold; the 
blue line is the moving average concerning the reconstruction error of the last 15 days; the vertical dotted and dashed line represents the date of the Russian invasion 
of Ukraine. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 4 
ú99.8 % of days in the entire dataset have battle fatalities <52.  

Battle fatalities threshold Pre-unrest days 

52 (99.8 %)ú 63  

Fig. 8. Reconstruction error and ROC plot, Burkina Faso. AUC: 0.8723. The red dashed and dotted line corresponds to the highest peak in battle fatalities ever 
recorded (147), which occurred on Aug. 18, 2021; the red dotted line corresponds to the high number of battle fatalities that happened on Jan. 19, 2022 (107), 4 days 
before the coup. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 5 
ú99.8 % of days in the entire dataset have violence <15.  

Violence threshold Pre-unrest days 

15 (99.8 %)ú 47  
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predict the likelihood of an imminent dramatic increase. The results 
demonstrate that the models developed are highly accurate, with AUC 
scores ranging from 87.2 % to 93.7 % for predicting battle fatalities and 
86.6 % for predicting violence. 

The key advantage of this approach is that it prioritizes the identi-
fication of sudden outbreaks, rather than predicting the exact number of 
occurrences. This is crucial for governments and international organi-
zations, as it allows for early intervention and the implementation of 
preventative measures to mitigate the impact of an unrest event. This 
method should be used to complement, rather than replace, diplomatic 
efforts, by providing a quantifiable perspective on potential sociopolit-
ical instability. 

There are several avenues for future research that could further 
improve the accuracy of these models. For instance, creating new in-
dependent variables to consider the diplomatic relationships between 
neighboring countries, testing new variables derived from existing 
datasets, such as the violence variable, the integration with data that is 
more strictly economic, climatic or otherwise not geopolitical from a 
human perspective, or incorporating ensemble models that use multiple 
models instead of just the best-performing one. 

Another possible future development in addition to extending it to 
more countries is to train the model by merging countries in such a way 
as to predict anomalies occurring in a similar way in other countries, the 
basic idea behind this possible development being that a crisis occurring 
for example in Nigeria could be similar to a crisis about to occur in 
Kenya. 

Moreover, the outputs generated by these models can be used as 
independent variables in forecasting models aimed at predicting the 
exact number of occurrences. The squared error score assigned to each 
day can be used as an indicator of potential outbreaks, with a higher 
score identifying a higher likelihood of occurrence. Incorporating this 
unsupervised approach as input into classical supervised machine 
learning models has the potential to enhance the accuracy in predicting 
the exact number of occurrences (Boquet et al., 2020). In conclusion, the 
predictive diplomacy method presented in this paper has the potential to 
assist governments and international organizations in anticipating and 
preventing sociopolitical instability. Additionally, this method can also 
be applied in fields other than peacekeeping, such as in the procurement 
of rare earths, raw materials, and energy sources. For example, if a 
supplier country is identified as being susceptible to an outbreak, the 
importing country may be able to pursue the diversification of its 
sources proactively. 

The development and implementation of these models should 
receive political attention and ought to be integrated into diplomatic 
efforts to ensure the safety and stability of nations and their citizens 

worldwide. 
It is important to highlight that the conclusions drawn from this 

study are subject to some limitations. Firstly, we cannot assume that the 
characteristics of anomalous 60-day periods will repeat exactly at 60- 
day intervals in subsequent crises, nor can we guarantee that anoma-
lous days will inevitably lead to a crisis. Further studies are needed to 
better understand the nature of the signal preceding a crisis and to more 
fully validate the proposed method. Additionally, it is important to note 
that the presence of an anomalous day does not necessarily guarantee 
the proximity of a crisis, as days, weeks, or even months may pass before 
a critical event occurs. Only through rigorous and comprehensive 
research can we improve our understanding and prediction capabilities 
of critical events. It is necessary to emphasize that our methodology may 
not be applicable in all situations or geopolitical contexts, and that 
customizations and adaptations may be required to make it effective in 
certain scenarios. Ultimately, while the preliminary results are very 
promising, it is essential to proceed with caution and continue to 
develop and enhance these models to ensure their reliability and utility 
in preventing international crises. 

It is also for these reasons that a rigorous evaluation is planned in the 
coming months to assess this method's efficiency through live fore-
casting, rather than mere case studies. The ability to support diplomatic 
action in anticipating and preventing conflicts through data-driven de-
cision-making has the potential to impact greatly the global security, 
stability, and resilience of all countries. 
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