Bioremediation of wastewater: a microalgae-based approach

Marta Zoppi^{1,2,3}, Elisa Falasco^{1,2}, Benoît Schoefs³, Justine Marchand³, Francesca Bona^{1,2}

¹ DBIOS, University of Turin, Turin, Italy. ² ALPSTREAM, Alpine Stream Research Center/Parco del Monviso, Ostana, Italy. ³ Metabolism, Molecular Engineering of Microalga and Applications (MIMMA), Biologie des Organismes Stress Santé Environnement, Le Mans University, Le Mans, France.

BACKGROUND

Circular economy: promotion of more rational and sustainable use of resources and waste management.

Green pRocesses for Industrial Productions and cost-effective effluents valorization (GRIP) project:

SPECIFIC AIM

1. Test diatoms growth response to increasing nutrient concentrations

2. Evaluate the bioremediation potential

METHODS

- Implementation and application of the circular economy
- Promotion of rational and sustainable use of resources and waste management

Application of circular economy approaches to freshwater resource management:

- Sustainable and circular approach to water resource management
- Valorization and reuse of liquid wastes
- **Preservation** of the natural capital

Bioremediation using microalgae is a sustainable and highpotential strategy for wastewater valorization and reuse.

Diatoms are a promising algal group, but they are still little used for wastewater treatment applications.

DIATOMS

 $\left\{ \circ \right\}$

One pelagic species and two benthic species:

• Phaeodactylum tricornutum: Pt1 strain grown in regular F/2 (salt Pt) and F/2 without NaCl (fresh Pt)

(Z)

- Achnanthidium sp.
- Planothidium frequentissimum

SPIKED AQUACULTURE WASTEWATER

Aquaculture wastewater originating from trout farming may have high nutrient concentrations.

Spiked wastewater was enriched in NO₃, with concentrations ranging from 0.15 to 48.84 mg/L.

6)

Tests performed in multiwell plates:

- Absorbance at Optical Density 750
- t_{OD750/2} inferred from OD data

ACHNANTHIDIUM SP. AND PLANOTHIDIUM FREQUENTISSIMUM

- 8.89 mg NO_3/L corresponds to the lowest $t_{DO750/2}$ value for both strains
- 8.89 mg NO_3/L is the best concentration for unialgal culture
- Diatom Medium (DM), consisting of 0 mg NO_3/L , determines high $t_{DO750/2}$

- NO₃ concentrations from this study are consistent with tolerance ranges and optima values for species in natural biofilms (data from North Italy)
- Achnanthidium and Planothidium species demonstrate the ability to grow in waters with moderate-to-bad ecological status in both unialgal condition (this study) and diatom communities (data from North Italy)

NO_3 concentration (mg/L)

PHAEODACTYLUM TRICORNUTUM

- Salt Pt and fresh Pt demonstrate growth in a wide NO₃ concentration: 0.15 - 664.71 mg/L
- Salt Pt has a lower t_{D0750/2} than fresh Pt
- F/2 Medium consisting of 664.71 mg NO₃/L determines the lowest $t_{DO750/2}$
- Results are consistent with Scarsini et al., 2022: cell division rate is similar in a range $0.15 - 13 \text{ NO}_3 \text{ mM}$

• The two species are suitable candidates for bioremediation

trials

FUTURE PERSPECTIVES

- Bioremediation tests in Multi Cultivator 1000-OD (PSI, Czech Republic)
- New strain: *Nitzschia palea*
- New effluents: dairy effluent, heavy metalpolluted wastewater

This publication is part of the project NODES which has received funding from the MUR – M4C2 1.5 of PNRR funded by the European Union - NextGenerationEU (Grant agreement no. ECS0000036).

664.71

