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Neuronal markers in psychiatry:
(Still) an open issue

In the context of clinical research, the term “diagnostic
biomarker” denotes a diverse spectrum of medically relevant
signals or objective indices of clinical status with the poten-
tial to detect and/or confirm the presence of a condition
of interest.! The advent of structural magnetic resonance
imaging (sMRI) nearly 3 decades ago generated fervent
enthusiasm about its potential to revolutionize our com-
prehension of the neuroanatomical basis of psychiatric
disorders and to identify clinically valuable brain-based
markers. Although the development of several sMRI-based
techniques and the associated exponential proliferation
of studies have facilitated substantial progress in elucidat-
ing the former goal (graphical overview in Fig. 1), it is crucial
to emphasize that no discernible metrics or models stem-
ming from these advanced techniques have been integrated
into daily clinical diagnostic practice thus far.2-!! Asaresult,
contemporary psychiatric diagnoses rely on descriptive data
collected through clinical observation,'? leaving the devel-
opment of neuroimaging biomarkers for predicting diag-
nostic categories or disease progression an open challenge.

What underlies this translational gap in psychiatric neuro-
imaging? While some researchers advocate for the need to re-
form the current standards concerning group-level sample
size,'>1* others posit that the further development of single-
subject methods is essential to capture inter-individual fea-
tures of this group of conditions characterized by aberrations
in mood, cognition and behavior.!>17 Choices pertaining
population stratification, phenotypic profile selection, MRI
data transformation, imaging modalities, multimodal mea-
sures, and algorithms are also a matter of ongoing debate 18-2¢
No less important, the clinical and biological heterogeneity
of patients in terms of type of symptomatology, medication
status, neurodevelopmental stage, and medical comorbidities
malkes it challenging to detect a sound neurophysiological
signature for the clinical population of interest.?>~3°

Here, we add further complexity to the issue by stat-
ing that clinical inferences drawn from canonical group-
level sMRI techniques with case-control designs fall short
of translational goals. The main claim of this editorial
is to elucidate the inferential drawbacks evident in current
sMRI psychiatric research and provide suggestions for
overcoming these drawbacks within an existing knowl-
edge framework. We propose that reverse inference rea-
soning via Bayesian statistics provides an ideal stepping
stone to suit specific clinically relevant questions across
the spectrum of translational neuroimaging.

Inferential reasoning
in clinical neuroimaging

In the field of clinical neuroscience, SMRI techniques
such as voxel-based morphometry (VBM), cortical thickness
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(CT), diffusion-weighted imaging (DW1), and diffusion ten-
sor imaging (DTT) play a pivotal role. As well as their specific
biological significance, these advanced computational tech-
niques allow researchers to identify regional neuroanatomi-
cal variations associated with a clinical population of interest
by means of a whole-brain data-driven voxel-wise inter-
group comparison with a neurotypical control group.3*?
Frequentist-based parametric statistics like the two-sample
t-test are generally employed to this end, which reveals clus-
ters of voxels where the null hypothesis (i.e., no difference
in neuronal morphometry between the groups in question)
is rejected using a certain user-selected p-value.?® In this
scenario, a precise type of reasoning can be delineated:
A “disorder-to-alteration estimation” or forward infer-
ence.?* In formal terms, the forward inference represents
the probability p(alteration|disorder) of detecting alteration
of some brain territories based on the hypothesis of the pres-
ence of a given disorder (Fig. 1). For example, it answers

Fig. 1. A. Annual publication count in PubMed search engine for
psychiatric research using structural magnetic resonance imaging (sMRI).
Search, conducted on January 15, 2024, reveals trends in voxel-based
morphometry (VBM), diffusion tensor imaging (DTI), cortical thickness
(CT), and other sMRI-based techniques (Other); B. Forward inference

in brain imaging. Given a known psychiatric disorder (e.g., schizophrenia),
one can identify the corresponding changes in brain anatomy and
generate a forward inference; C. Reverse inference in brain imaging. Given
posterior probability maps for multiple disorders (e.g., depression, bipolar,
and schizophrenia), one can classify a new alteration map by identifying
the disorder with the highest probability (P) given the new data (in this
example, schizophrenia). The maps shown here were obtained from

the NeuroSynth database [https://www.neurosynth.org/], serving a sole
purpose for visualization


https://www.neurosynth.org
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the question “How probable is it to observe this pattern
of neuroanatomical variation since I hypothesize that my
patient is affected by this given disorder?”

Forward inference-based reasoning is used extensively
in quantitative clinical sMRI research due to its role in un-
covering the neural substrates co-occurring with a men-
tal illness.?>3¢ Nevertheless, it is important to note that
such reasoning was not designed with translational goals
in mind and has a number of fundamental limitations,
most importantly its inability to establish differential di-
agnosis and estimate the selectivity of the effect under
investigation.?*3738 In other words, researchers can only
infer the presence of a neuroanatomical pattern of varia-
tion in the disorder under study, but not “whether” and
“to what extent” this pattern is pathognomonic for the dis-
order of interest or observable in other clear-cut clinical
conditions. In recent years, this issue has been repeatedly
accentuated in MRI-derived meta-analyses, which have
demonstrated a shared neuroanatomical/functional ab-
normal substrate for major psychiatric disorders.3*-*> For
example, recent studies*®*’ taking into account forward-
inference based VBM data from 82 different brain disor-
ders and over 19,000 study participants found that a broad
array of cortical and subcortical regions exhibit alterations
in the context of numerous, if not all, of the considered
disorders (Fig. 2). Hence, this substantial convergence hin-
ders the utility of sMRI methods for diagnostic purposes
in pinpointing a specific clinical condition, given the no-
ticeable absence of selectivity in the alteration patterns
within these regions.

Building on the seminal contributions of Poldrack,
a different reasoning pattern in the human brain mapping
community has recently been introduced: The reverse in-
ference via Bayesian statistics. In formal terms, the reverse
inference represents the probability p(disorder|alteration)
of the presence of a given disorder based on the observed
alteration (Fig. 1). Moreover, in practice, it can answer
the question “How probable is that my patient is indeed
affected with the disorder I hypothesize since I observe
this pattern of neuroanatomical variation?” Of note, this
type of experimental evidence can be quantified using
Bayes’ rule® (for methodological details and explanations
specific to the MRI environment, refer to Poldrack*® and
Liloia et al.>!). This perspective underscores that the de-
gree of belief of a reverse inference hinges on the selec-
tivity of neuroanatomical alterations in the disorder un-
der scrutiny (i.e., the ratio of disorder-specific variation
in the brain to the overall likelihood of variation across
all other brain disorders), along with the prior belief
of observing neuroanatomical variations associated with
the disorder of interest. Consequently, we can obtain
an estimate of how likely the disorder is given the ob-
served pattern of neuroanatomical variation. It is crucial
to acknowledge that this reasoning offers numerous ad-
vantages over canonical forward-inference methods.? Pri-
marily, it overcomes the binary decision of rejecting or not
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rejecting null hypotheses, instead providing a quantitative
assessment of the evidence supporting the hypothesis un-
der scrutiny.”

Neuronal markers and reverse
inference: State of the field

While the reverse inference reasoning has provided im-
portant new information about the functional architecture
of the human brain in normative populations using task-
based fMRI data,*®>3-5% its application in the field of clinical
sMRI has been systematically neglected. Recently, a new
trend has started to emerge to address this issue. Specifi-
cally, in Cauda et al.,* the authors delved into the 2 distinct
selective volumetric alteration patterns observed in Al-
zheimer’s disease and schizophrenia. This was achieved
by analyzing published data derived from the entire VBM
BrainMap database®® utilizing the Bayes factor (BF),°”
a statistical measure that quantifies the strength of evi-
dence for one hypothesis over another. Taking the research
a step further, the same group developed a meta-analytic
reverse inference toolbox called Bayes fACtor mOdeliNg
(BACON).5® This user-friendly and open access resource
facilitates the generation of whole-brain maps, which dis-
play the selective alteration landscape at the voxel-level
for a given disorder. In doing so, it compares the pattern
of alteration that can be observed based on VBM results
about a given disorder of interest (e.g., schizophrenia)
against the pattern of alteration that can be observed based
on VBM results about all the possible disorders excluding
that of interest (e.g., everything but schizophrenia). Then,
the BF is computed to quantify the strength of evidence for
selective alterations associated with the disorder of inter-
est (in our example, the pattern of alteration that can be
observed in schizophrenia is much more likely than in any
other disorder) (Fig. 2).

Recently, BACON was used to explore the presence of se-
lective brain abnormalities in autism spectrum disorder
across an extensive dataset of 849 VBM experiments, ac-
counting for over 22,000 clinical study participants diag-
nosed with 132 different brain disorders.”! Intriguingly,
findings highlighted the existence of significant abnormal-
ities in both cortical and cerebellar regions, with a selectiv-
ity value =290% (i.e., p0.9) (Fig. 2). Significantly, this study
not only introduced a new perspective on understanding
the autistic brain, but also presented a reverse inference
framework with wide-reaching potential. In fact, the BA-
CON approach is applicable to any other clinical condition
that exhibits regional variations in brain structure, as de-
tected through VBM, CT, DWI, DTI, or other group-level
sMRI techniques with case-control designs. Furthermore,
this toolbox is also potentially applicable to the study of dis-
order-selective functional brain aberrations as revealed us-
ing several whole-brain voxel-wise nuclear medicine and
fMRI techniques, such as positron emission tomography
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Fig. 2. A. The voxel-wise extent of spatial overlap in neuroanatomical alterations among the complete range of neurological and psychiatric disorders stored

in the BrainMap database [adapted with permission from Cauda et al*°]; B. Graphical representation of the data analytic pipeline of the Bayes fACtor mOdeliNg
(BACON) toolbox (adapted with permission from Costa et al.#); C. Selective clusters of neuroanatomical variation in autism spectrum disorder (ASD) derived
from Bayes fACtor mOdeliNg (BACON) analysis and thresholded at p (ASD|alteration) =0.9 (i.e, 90%) (adapted with permission from Liloia et al.*%)
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(PET), arterial spin labeling (ASL), regional homogeneity
(ReHo), or amplitude of low-frequency fluctuations (ALFF),
broadening its utility in the field of clinical neuroimaging.
Nonetheless, it is crucial to note the current lack of stud-
ies in this specific area of research, which underscores
the necessity for future multimodal imaging endeavors.

Methodological considerations
and future (clinical) directions

The studies surveyed above offer hope for understanding
the neuropathological basis of psychiatric disorders and
yielding valuable diagnostic applications. Nevertheless,
there are essential initial ways in which modeling efforts
may undergo to start a paradigm shift.

Current reverse inference literature is based on meta-
analytic data that, by definition, are characterized by more
spatial uncertainty than native statistical parametric
mapping data, thereby diminishing the ability to identify
smaller but potentially highly selective brain areas.>°0
As a matter of fact, so far, the use of meta-analytic and
coordinate-based repositories (i.e., BrainMap®® or Neu-
roSynth®3) is the prime approach to create posterior
probability maps capable of giving an overarching pic-
ture of the disorder-specific brain variations utilizing
VBM and fMRI data exclusively.*#°16!1 While the trend
toward sharing is gaining traction,®?~% the establishment
of publicly accessible, automated repositories for storing,
sharing and querying voxel-wise whole-brain multimodal
data from published neuroimaging studies is still in its
infancy. In this context, we expect that the systematic
and widespread use of fine-grained maps derived from
a plethora of advanced imaging techniques will enhance
the relevance of reverse inference research. The culture
of sharing is also crucial to improve the generalizability
of brain reverse inference models. For translational utility,
these models must generalize to new individual cases, and
their key signatures should be globally distributed across
laboratories. This can enable testing in diverse settings
with reduced complexity and error potential.

Can these methodological enhancements initiate the de-
velopment of imaging biomarkers for psychiatry, or even
modify current diagnostic criteria, in the absence of a de-
finitive biological gold standard? We anticipate an itera-
tive process in the near future, where prior neuroimaging-
based prediction findings inform new hypotheses and serve
as foundational knowledge for future diagnostic-oriented
studies. In this context, we claim that the Bayesian reverse
inference approach offers a significant advantage over tra-
ditional frequentist methods, as it allows for continuous
updating of data supporting the hypotheses of interest
(i.e., Bayesian updating).>®%¢ Furthermore, if this process
proves capable of identifying highly selective regions of in-
terest among studies, future clinical efforts will be able
to adopt tailored measurements on these specific areas,
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e.g., utilizing targeted strategies based on biological ap-
proaches at the micro- and meso-levels.

Another concrete goal of clinical neuroimaging based
on reverse inference can be seen in its potential ability
to integrate information from daily clinical practice.
We expect that selective brain maps can assist in convinc-
ing clinicians of the robustness of their behavioral-based
predictions, especially when the highlighted areas have
been independently linked to the outcome by other reports,
or to resolve uncertainties regarding complex scenarios.

In summary, this editorial discusses the latest develop-
ments in the role of reverse inference reasoning in struc-
tural MRI in psychiatry. The essence of this work is pro-
grammatic, aiming to delineate the interplay and potential
synergies between forward-based and reverse-based re-
search approaches. We posit that this distinction can il-
luminate current discussions on diagnostic brain markers,
offering clarity on key issues, and fostering new avenues for
methodological and clinical consideration in this domain.
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