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Chapter 1

Introduction

It has been a tumultuous decade for Machine Learning and Artificial In-
telligence. Connectionist approaches under the name of “deep neural net-
works” have seen a resurgence, estabilishing state of the art results in a
plethora of applications. The most well-known result is perhaps due to Alex
Krizhevsky et al. [KSH12] who showed how Yann LeCunn’s convolutional
networks |LeC+90] could be made deeper (i.e. with many hidden layers)
and faster to train via GPU programming. The authors’ model, dubbed
“AlexNet”, pushed the object recognition performance on the ImageNet
dataset [Den+09] by more than 10 percentage points in terms of top-1 accu-
racy. Since then, deep neural networks have been dominating the ImageNet
leaderboards on object recognition and detection. Neural networks are now

the de facto standard for many computer vision applications.

Neural networks have also been employed in recent years in speech-to-text
applications. Since Graves’ Connectionist Temporal Classification in 2014,
other models based on Recurrent Neural Networks have provided impressive
benefits in terms of WER (Word Error Rate). Success stories in Natural

Language Processing are numerous, but the most impressive and suggestive
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are perhaps in language modelling, where the GPT family of models is able

to generate human-passing text.

In short, Machine Learning models based on neural networks are now part
of our everyday life, being deployed in smartphones and embedded systems.
However, neural networks are not without their issues. While the new wave
of connectionist systems displays impressive performance in various tasks,
these models are very hard to understand in various ways. Neural network
training objectives are highly non-convex, which impedes convergence guar-
antees. While in practice this does not seem to be an issue, it makes it hard
to understand training progress. Furthermore, there is a tension between
classic machine learning theory, which analyzes a model’s generalization per-
formance via complexity measures such as its VC dimension, and neural
networks: some ResNet models [He+16| have a number of trainable parame-
ters in the tens of millions. The usual connectionist rebuttal here underlines
the number of neurons in the brain, which is estimated to be around 100
billion; however, the recently developed GPT-3 language model employs 175
billion learnable weights. It goes without saying that these models are not
at all human readable: no symbolic computation is involved, and in case of

incidents it is nigh impossible to understand what has gone wrong.

The technical optimism and excitement around Machine Learning has
also pushed businesses to apply it in situations where it may impact people’s
well-being directly, such as loan applications |Ols11], candidate selection for
job offers [CLM20; BR18| and evaluating the chance of re-offending for peo-
ple who commited crimes [Ang+16|. Computer vision applications based on
neural networks have even been employed to judge beauty contests [Lev16].
In such contexts, opaque models are particularly problematic as there is a

concrete risk for discrimination against certain groups of people. Protected



characteristics such as gender and ethnicity might be used in the computation
of the final decision, which is problematic on moral grounds and unlawful.
These pieces of information are usually called sensitive attributes in the fair
ML literature. While it is of course possible to exclude these attributes from
the training data, opting for what has been called a “colorblind” approach
(by e.g. Zehlike et al. [ZC19]), this is often not sufficient to avoid discrimina-
tion. The existence of the gender pay gap [WWO05|, for example, shows how
there are complex correlations between sensitive attributes and non-sensitive
attributes such as a person’s yearly salary. If models are learning from bi-
ased data, it follows that they will learn to output biased decisions; if we are
unable to explain those decisions, we are left with very little human control
over what ultimately is a software process. On top of being philosophically
troubling and unethical, recent legislation might see these methodologies as
unlawful. Taking the General Data Protection Regulation in the European
Union as an example, transparency and fairness have to be guaranteed to

individuals who are subject to automatic decision-making software systems.

In absence of fully explainable models, the fair ML literature has fo-
cused on non-discriminating models, under many possible definitions. The
approach here is usually to reformulate training objectives so that they can
include non-discrimination (fairness), but pre-processing and post-processing
approaches have also been developed (see e.g. the contribution by Kamiran
and Calders [KC09]). In this context, neural networks provide both chal-
lenges and opportunities. On one hand, new methodologies and training
objectives have to be developed so to constrain neural networks for fairness;
on the other, there is opportunity to learn invariant representations. To ex-
plain this concept, let us track back to the gender pay gap example, where

there is an obvious but complex correlation between the gender of the in-
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dividual and their salary. If it were possible to train a neural network to
actively remove that correlation in its internal representations - the neuronal
activations - then we would have fairness guarantees even in an overall non-
explainable model. The overarching approach of this thesis is to explore this
idea and develop Machine Learning methodologies which can obtain invariant
representations.

In the next chapter I will explore the concept of “invariance” in statistics
with a focus on Mutual Information. Chapter 3 goes deeper into the intuitive
ideas of non-discrimination and fairness. Chapter 4 introduces the relevant
connectionist literature. My own experimental work is contained in Chapter
5, drawing from papers I have published during the last three years. My

contributions might be summarized as follows:

1. A noise module for invariant representation learning. Invariant
representation learning requires ad-hoc architectures on top of fairness-
focused learning objectives. Inspired from recent academic discussion
on the equitability of Mutual Information, I developed a new layer which
can be included in any neural network architecture. This contribution

has emerged from a collaboration with Dr. Laura Li Puma.

2. A fair pairwise ranker. An extension of a state of the art pairwise
ranker so that it is constrained for fairness. The noise module again
proves to be beneficial, both in the developed architecture and in others
already present in the literature. This body of work has been developed
during a visiting period in Prof. Dr. Stefan Kramer’s group at the

Johannes-Gutenberg Universitat in Mainz, Germany.

3. An interpretable fairness framework. Via a simple architectural

change, it is possible to constrain neural architectures to learn fair



corrections instead of fair representations. This manages to somewhat

open the “black box” of deep networks and guarantee an explanation.

4. Fair Group-Shared Representations. Leveraging invertible neu-
ral network models, I show how to learn a mapping between different
groups of individuals. The result is that individuals from different
groups are “mixed together” in feature space and indistinguishable in

practice.

The last three topics have seen contributions by Dr. Alexander Segner
and Dr. Marius Koppel from the University of Mainz. All four would not
have been possible without the contributions and guidance of my advisor,

Prof. Roberto Esposito.
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Chapter 2

Invariance

The concepts of invariance and independence is often used in data analysis
and statistics to establish that two events or variables have no relation be-
tween them, that is, obtaining information about one of the two does not give
any information about the other. Two random variables are independent iff
p(X,Y) = p(X)p(Y). Proving that two random variables are independent
requires deep knowledge of the data generating process. In other situations,
it may be sensible to assume independence; when it is not, one might try
to quantify the level of dependence (or correlation) between two variables.
There are a plethora of available measures to achieve this goal, the most
well-known being the Pearson correlation coefficient. However, this measure
is limited as it is only able to capture linear correlations. Other measures,
which are also able to detect non-linear relationships between two or more
variables, are the Mutual Information and the Maximum Mean Discrepancy
(developed by Gretton et al. [Gre+12]). While these metrics are reasonably
cheap and simple to compute when having full information about the distri-
butions involved, estimating their value from a data sample is challenging.

In our setting, which involves statistical models that only represent a distri-
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bution implicitly, it is paramount to employ efficient, unbiased estimators for
the aforementioned measures. In the following, I shall discuss the concepts
of invariance and independence and review a number of different measures of
dependence and correlation, while commenting on their applicability to the

purpose of evaluating neural representations.

2.1 Pearson Correlation Coefficient

The Pearson Correlation Coefficient is widely employed to obtain information
about the linear relationships between two random variables. It is defined

| E[(X — E[X])(Y — E[Y))] _ Cov(X,Y)

00y 00y

pxy = (2.1)

Where we used E as notation for the expected value, Cov(X,Y’) for the
covariance and o, for the standard deviation of X. The Pearson Correlation
Coefficient is defined between -1 and 1, and since if p(X,Y) = p(X)p(Y)
then cov(X,Y) = 0, it follows that p(X,Y) = p(X)p(Y) — pxy = 0.
However, the Pearson Correlation Coefficient cannot be employed to test
independence at large, since the inverse is in general not true |[Murl2|. For
instance, if X ~ Uniform(—1,1) and Y ~ X2 Cov(X,Y) = 0 even though
one variable is a function of the other.

Because of its relationship with the linear regression problem, where the
slope of the regression line can be computed by cov(X,Y') /var(X), Pearson’s
Correlation Coefficient is often thought of as a measure of linear correlation
between two variables. This limits its applicability for our purpose of evaluat-
ing the invariance of neural representations w.r.t. some nuisance variable. As
modern neural architectures employ a number of non-linear activation func-

tions (see Chapter , more complex correlation measures which can account
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for non-linear relationships have been preferred by many authors [Gre+12;

TZ15; Yu+20; |Gan+16].

2.2 Mutual Information

The Mutual Information measure has been introduced in the context of noisy
channel coding by Shannon [Sha48|. It can be defined for both discrete and

continuous random variables:

ZZp:cy log ();)()) (2.2)

rzeX yeYy

I(X:Y) // (@.1) log- )]’?())dxdy (2.3)

It is easy to see that if X and Y are independent, the Mutual Information is
0. To build an intuition about the Mutual Information, it is relevant to see its
connection with the Kullback-Leibler (KL) Divergence. The KL Divergence
is defined between two probability mass functions p(X) and ¢(X) as follows:

fE
Dir(p |l q) =) p(x) log (2.4)

rzeX :U)

Or, equivalently, when p and ¢ are densities defined over a continuous random

variable:

Dustolla) = [ (@) tog 22 ga (25)

0 q()
In general, the KL divergence measures the distance between the two dis-
tributions, with the important caveat that it is not a metric as it does not

respect the triangle inequality [Murl2]. Furthermore, the KL divergence can
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be defined in terms of the cross entropy H(p, q):

Dkr(pll ¢) = —H(p,p) + H(p,q) (2.6)
==Y p(z) log q(x (2.7)
Zp log p(x (2.8)

It is possible to show that the cross entropy is the average number of bits
one needs to encode data coming from distribution p when using ¢ to define
a codebookﬂ [CT06]. The measure is not symmetric as, in general, it is not
true that this value is equal when one instead uses p to define a codebook
for g. In contrast, the entropy H(p,p) is the expected number of bits one
needs to define a codebook if using the true distribution p; therefore, the KL
divergence is the difference between these two values. Besides this intuitive
result, it is possible to show formally [Murl2; |CT06] that the KL divergence
is positive. Thus, it is possible to interpret Mutual Information as the KL
divergence between two distributions p(X,Y") and p(X)p(Y') by substituting
them in Equation 2.2}

Zpr y) log ();;(>) (2.9)

rzeX yey

= Drr(p(X)p(Y) || p(X,Y)) (2.10)

Mutual Information is an attractive measure of independence as it is 0 only
when p(z,y) = p(z)p(y). However, it requires knowledge about the joint
distribution which can be expensive or impossible to acquire. Furthermore,
many neural network models express a distribution only implicitly, not to

mention that the encoded distribution for discriminative models is usually

LA codebook is a mapping from values of p to symbols which can then be transmitted

over a noisy channel.
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the conditional p(y | x) where y is the ground truth and z is the input data.
In our case we are however interested in evaluating the neural representations
z! at some level | w.r.t. some nuisance factor s. It is relevant to note that
p(z! | s) is not usually included in the training objective of discriminative
networks, whereas p(y | x) is usually optimized for via the maximum likeli-
hood criterion [Murl2] by means of a cross entropy loss. In this situation,
we are limited to sampling from p(z'). It is also challenging to estimate the
joint distribution p(z!, s) with sampled data only. However, the properties of
Mutual Information are attractive enough that many authors have focused
on developing estimators for it, both in a general sense and more specifically
to analyze the “Information Flow” inside a deep neural network (see e.g.
[TZ15]). In the following, I propose a review of these topics and discuss their
applicability to our setting. In Subsection 2.3.3) we will see how it is also
possible to develop upper bounds for the mutual information and include the

term p(z! | ) in a loss function.

2.3 Estimating Mutual Information

As briefly discussed above, estimating the mutual information between two
random variables (or, as in our setting, vectors) is a challenging task. De-
tecting non-linear relationships between variates is of interest in many fields.
As a matter of fact, this problem has attracted contributions from scientists
in various disciplines, from pure statistics to signal processing and machine
learning. In the following, I will review some of the approaches with a focus

on more recent literature.
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2.3.1 Histogram-based Approaches

As touched upon previously, estimating Mutual Information is tightly tied to
estimating the density of the involved probability distributions. Per Krasov
et al., [KSGO4| the most straightforward approach is to employ a “binned

approximation” as followsﬂ:

[(X;Y) & Din(X;Y) = Y poin(i, j)log M

ij Diin (D)Ppin (7)

Where p,,,(7) is obtained by dividing the domain of X into a finite number
of bins and calculating how many samples fall into bin 4, then dividing by the
sample size N. Similarly, iterating over index j, for p¥. (j). Lastly, pyn (4, 7)
is computed by counting how many samples fall at the intersection of the i-
th and j-th bin. Intuitively, this family of methods is equivalent to building
a histogram of the distributions from a sample. This simple discretization
has the benefit of converging to the actual value of I(X;Y) when N —
oo and when the bins become infinitely small |[CT06]. This methodology
has been referred to as the “direct” |Pan03] or “plug-in” method and has
been employed in different applications, including Independent Component
Analysis [Alm03| and neuroscience [Str4-98|. One thing to note is that the
bin sizes need not be fixed. The Maximal Information Coefficient (MIC) of
Reshef et al. [Res+11] is one among the methods which search for “optimal”
bin sizes. For each pair of integers (m, n) in a defined range, this methodology
considers a number of possible grids (i.e. bin sizes, without restriction on
equality over X and Y'). I(X;Y') is then estimated on the obtained discrete
distributions as defined above. The grid displaying the highest value for

the estimation is the computed MIC value. Reshef et al. also include a

2nota per me: una discussione formalizzata si puo’ trovare in gretton05
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normalization term which ensures that the maximum MIC is 1. While MI is
not upper bounded, the MIC still satisfies the more relevant property to our
purpose: i.e. that it is 0 iff X and Y are independent.

2.3.2 Kernel Approaches

Just as histogram-based approaches may be employed in density estimation
and therefore in mutual information estimation, the same is true for kernel
methods. In kernel density estimation, the hyperrectangle-sized bins of the
preceding section are replaced with kernel functions. One kernel function is
placed at each sample’s position. Each sample’s contribution to the density
estimate is then computed following the kernel’s shape (usually a Gaussian).
Let ... z, be a sample from the random variable (or vector) X. Then, the

kernel density estimate can be defined as follows:

(X)) = %Z Kp(X — ;)

where H is a bandwidth matrix, symmetric and positive definite; K is
the kernel function; and Ky (X) = det(H) /2K (H~'/2X). The bandwidth
matrix is in general a hyperparameter and it is possible to select it via cross-
validation or similar strategies |Gre+05; [MRL95|. After having obtained
estimates for the involved densities, one can compute the MI in a similar
fashion as the one described in the previous section. It is relevant to note
that one may avoid computing a density estimate for the joint distribution
by relying on Bayes’ theorem or on the conditional entropy formulation for

MI:

I(X;YV)=HX)-H(X|Y)=HY)-HY | X)
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2.3.3 Variational Approaches

A relatively recent trend in deep representation learning is employing variational-
based objectives to train neural networks. This family of methods has been
brought to deep learning relevance by Kingma and Welling [KW14] who con-
tributed a general algorithm to train a hybrid neural network/directed graph-
ical model architecture which they called a variational autoencoder (VAE).
A similar model based on variational inference has also been developed by
Rezende et al. [RMW14] under the name of Deep latent Gaussian model
(DLGM). The attractiveness of these methods is their generative capabili-
ties, as they can estimateﬂ p(X) for complex data spaces such as images.
When compared with other modern generative models such as Generative
Adversarial Networks (GANs) [Goo+14], their main benefit is the absence
of a complex two-model game. Instead, the optimization objective is the
evidence lower bound (ELBO) which can be reachedﬁ via stochastic gradient
descent. This is a more stable objective when compared to the saddle point
which is the global minimum for GAN models (an expository analysis of the

GAN objective can be found e.g. in [GoolT]).

While the literature on this topic is vast and not especially related to
fairness and invariance, it is still of relevance to the present discussion to
introduce some of the main ideas behind variational inference. From there,
I will touch upon a number of MI estimators which employ the same con-
cepts while leveraging the well-known KL-divergence formulation of MI, also

discussed here at the top of the current chapter.

Variational inference has been developed in the context of graphical mod-

31t is relevant to say that this estimation is implicit, meaning that a trained VAE can

sample from p(X), but point density estimates are not available.
4The usual caveats for non-conex optimization apply.
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els as a way to perform approximate inference. The core idea behind the gen-
eral methodology is to cast the inference process as an optimization problem.
When given an intractable distribution p, the variational inference approach
is to approximate the distribution with a class of tractable distributions gg.
The parameters will then be selected via search techniques, with most mod-
ern models employing stochastic gradient descent [RMW14; KW14]. A bare-
bones, expository example for variational inference is to assume a simple
directed graphical model Z — X. If Z is representing the class or a feature
of an example (e.g. “dog”), X is the observed data (e.g. images, possibly
of dogs). Estimating p(Z | X) can then be problematic. By Bayes’ the-
orem, p(Z | X) = %; however, both the marginals involved are in
general intractable in high-dimensionality settings. The variational inference
approach here is to instead minimize some divergence measure between a

known, tractable distribution ¢(Z | X) and p(Z | X). By taking the KL

divergence, one can show the following:

KL(¢(Z | X) || p(Z | X)) ZQZ'XZO%E;;Q

sz)

:—Z z|Xlog< |X)

= — z ) P(X ) !
== Doale | Xlew 155

:_Z (z | X)[log (( \X>) log p(X)]

:_Z (2 | X)log <(’ +Z (2 | X)log p(X)

:—Zqz|Xlog ((’ ))+logp( ) >0
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Where the last inequality holds since the KL divergence is always positive.

Taking the RHS we have:

p(X, 2)
q(z | X)
2)p(2)

| X)

log p(X >Zqz|Xlog

p(X
log p(X >Z z|Xlog((|

z

log p(X) > Eqz1x) log p(X | 2) = KL(q(z | X) || p(2))

The RHS above is referred to as the Evidence Lower Bound or variational
lower bound. Maximizing it is akin to maximizing the log likelihood of the

data. Another way to interpret it is to see the following

KL(q(Z | X) || p(Z | X)) = log p(X)

= (Bqepx) log p(X | 2) + K L(g(z | X) [| p(2))

Thus, maximizing the ELBO implies minimizing the KL divergence be-
tween the intractable p(Z | X) and the variational approximation ¢(Z | X).
When assuming a factorized p(z), we are working in the space of mean field
variational inference. VAE models parametrize the involved distributions
q(z | X) and p(X | z) as an encoder and a decoder architecture respectively;
p(Z) can be any distribution in principle but it is easy to develop a closed-
form loss function when employing Gaussian distributions (for details see for

instance [Odal9)|).
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2.3.4 Mutual Information, Equitability and Noise

As discussed in this chapter, Mutual Information can be employed in dif-
ferent applications for the purpose of quantifying the strength of non-linear
relationship between two random variables. In Information Theory, it is pos-
sible to build a connection between MI, channel capacity and the amount of
noise in the transmission channel. This is relevant to the present discussion
as it will build both an intuition and some theoretical foundation for the
noise-based layer introduced later in Section

A “transmission channel” in Information Theory is an abstract represen-
tation of a physical layer that can transmit information, or messages. Shan-
non [Shad8] showed how a noisy channel can still be employed for message
transmission, even if the noise limits the rate at which messages can be sent
and reconstructed, in the case of errors in the transmission, without errors.
If one defines X as the message sent and Y as the message received, then it
is possible to model the transmission channel by a probability distribution
p(Y | X). Shannon’s noisy channel theorem defines the capacity of a channel
as the supremum of the MI between X and Y over the possible distributions

of X, which can be chosen by who sends the message:

C = supyx)1(X;Y)

The result that bridges capacity, and therefore MI, to noise is the Shannon-
Hartley theorem. Here one assumes that the channel is subject to additive
Gaussian noise (measured in watts), and sees how the capacity is inversely

proportional to it:

S
C:BZOQQ(l_I_N)
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Here, B is the bandwidth of the channel in hertz and S is the average
signal power measured in watts. It is worthwhile to mention that Tishby et
al. [TZ15] have employed a similar “noisy channel” model to study the learn-
ing dynamics of deep neural networks by noting that the same transmitter-
receiver metaphor can be employed in neural network layers. More specifi-
cally, one can estabilish a neural layer H;_; as a transmitter, H; as the channel
and H;,1 as a receiver. Tishby et al. study how the measure I(H;_ 1, H;11)
varies over training time and only employ noise to obtain a well-defined mu-
tual information, as in general the functional relationship between H;_; and

H; ., would imply an infinite MI.

More recently, relating noise to mutual information has attracted interest
when discussing the equitability property. Equitability has been first infor-
mally defined by Reshef et al. [Res+11]. In their paper, Reshef et al. discuss
possible properties for measures that can relate different random variables
together. In their informal discussion, equitability is the property of assign-
ing similar scores to equally noisy relationships of different types. As an
example, let us assume that X and Y are related as follows: Y = f(X) + 17
where 7 is a noise variate. Then, an equitable dependency measure D(X;Y)
should return the same value if we vary different invertible f functions, such
as linear or sine (when analyzed in the proper interval), while keeping the
same 7. Reshef et al. propose to measure equitability by measuring the R?
value of different noisy functional relationships. The authors then propose
an equitable statistic which is a normalization of mutual information, the

Maximal Information Coefficient (MIC).

The contribution by Reshef et al. has attracted considerable attention,
both positive and critical. Simon and Tibshirani [ST14] have noted how MIC

displays low statistical power on some functional relationships; Kinney et al.
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[KA14] expand on their definition of equitability. Critically, they propose
two different definitions. R2-equitability is achieved when the dependency

measure is itself a function of the squared Pearson correlation:

D(X;Y) = g(R*(f(X),Y))

Where Y = f(X) + n. The authors show RZ?-equitability cannot be
achieved by any non-trivial dependency measure; however, they also intro-
duce the new notion of self-equitability, which requires that the dependency

measure is symmetric and that

D(X;Y) = D(f(X);Y)

where f is a deterministic, invertible function and X <+— f(X) «— Y
is a Markov chain. It is worthwhile to notice that the definition does not
specify a form for the noise model, contrary to the additive one defined
above. Kinney et al. reason that this provides a more comprehensive setting
for discussing the abstract concept of equitability. The authors also show
that, while Mutual Information is self-equitable, the MIC of Reshef et al. is
not.

The discussion regarding equitability is relevant when developing neural
architectures that can reduce the MI between the learned representation
and the sensitive attribute. As Kinney et al. highlight how an invertible
deterministic f applied to X cannot change the MI w.r.t. Y, it is sensible to
employ noise. This will be the topic of discussion in Section [4.2]
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Chapter 3

Fairness in Classification and

Ranking

Fairness in Machine Learning has attracted more attention as ML techniques
become pervasive. In this context, Al researchers have been concerned with
the ethics of the employed algorithms. One of the first contributions in the
discussion has been developed by Friedman and Nissenbaum [FN96| in 1996.
The authors reason that when decisions are made by “machines” without
human intervention, there is a concrete risk of unfairness and discrimina-
tion. While this chance is unfortunately present also when dealing with
human decision makers, a victim usually has the chance to appeal or discuss
that decision. In their contribution, Friedman and Nissenbaum reason that
“unfairness” should be defined with particular attention to systemic discrim-
ination and moral reasoning. As an example, a random software error which
impacts a single individual in a minority group is problematic on technical
but not on moral grounds; on the other hand, a software which consistently
displays negative bias towards minorities should be seen as unfair or discrim-

inating. Since then, various authors (Verma and Rubin [VR18]; Mehrabi et

21
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al. [Meh+19] among the others) have coalesced around a definition which
involves the concept of protected and unprotected groups. Simply put, a pro-
tected group is an observable group of people for which there is motivated
concern of bias. Thus, a ML model is said to be “fair” if it does not discrim-
inate against protected groups. This definition is purposefully generic: I will

present specific definitions and how to evaluate them later in this chapter.

In the so-called “Big Data” era, where businesses both small and large are
increasingly employing data analytics and Machine Learning [Nit19|, there
is new cause for concern. Namely, training data which displays biases will
often cause models to reflect that bias, perpetrating it in the model. This is
particularly troubling because it requires no actual discrimination from the
individuals involved in training the models: simply by collecting data and
training a ML model, there is the chance to reflect past biases in society. This
is not an abstract concern, but a situation that has happened time and time
again as ML and Al applications that leverage data attract more attention

and scrutiny from both lawmakers and the general public.

One example is the aforementioned “beauty pageant algorithm” by beauty.ai
[Lev16] which was trained to select the most “beautiful people” out of can-
didates which submitted pictures themselves. While the application itself
is puzzling and problematic, its results were also biased, with a single dark
skinned individual selected out of 44. When asked about the result, the re-
searchers behind the algorithm pointed out the lack of training data for black
and brown individuals. This outcome reflects the biases against women of
color in human-judged competitions (see e.g. [VIal9]). Another example
which attracted attention from the general public is the COMPAS software
developed by Northpointe. This software evaluates the risk of “re-offending”

for individuals who have been arrested and are awaiting trial. The software
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is made available to US judges and may be employed to inform the judge’s
decision about the individual being able to be released on bail (i.e. by paying
a varying amount of money). ProPublica, a US-based consortium of inves-
tigative journalism, has performed a long-term analysis of the COMPAS risk
scores [Ang+16] and has found evidence for bias against black people. The
assumption here is that a high risk score (greater then 5 on the original
COMPAS 1-10 scale - a binarization of sorts) would imply a “will re-offend”
prediction; furthermore, the authors collected the criminal records of various
individuals who have been evaluated by the software after 2 years and saw
whether they did, in fact, commit another crime. The authors showed that
the false positive rate for black individuals was much higher than the false
positive rate for white people. Northpointe rebutted that they did calibrate
their risk scores so that they were independent of ethnicity [DMB16], show-
ing that systemic bias can still emerge in software even when designers and
engineers take such issues into account.

In account of these issues, there has been a growing call, coming from both
lawmakers and the general public, to have some guarantees of fair treatment
in automatic decision making. Perhaps the most important regulation in
the field has been put forward by the EU Parliament in the form of the
General Data Protection Regulation (GDPR). This regulation concerns many
concepts and procedures relating data processing for companies acting in the
EU. Precise interpretation of the GDPR is beyond the scope of this thesis
and the topic of active research. One recent contribution by Malgieri [Mal20]
outlines how Recital 71 strongly specifies requirements for fairness in terms

of non-discrimination. An excerpt follows:

[...] In order to ensure fair and transparent processing in respect

of the data subject, taking into account the specific circumstances
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and context in which the personal data are processed, the con-
troller should use appropriate mathematical or statistical proce-
dures for the profiling, implement technical and organisational
measures appropriate to ensure, in particular, that factors which
result in inaccuracies in personal data are corrected and the risk
of errors is minimised, secure personal data in a manner that
takes account of the potential risks involved for the interests and
rights of the data subject, and prevent, inter alia, discriminatory
effects on natural persons on the basis of racial or ethnic origin,
political opinion, religion or beliefs, trade union membership, ge-
netic or health status or sexual orientation, or processing that

results in measures having such an effect.

Malgieri also focuses on the transparency requirements, citing again Recital

71:

The data subject should have the right not to be subject to a de-
cision, which may include a measure, evaluating personal aspects
relating to him or her which is based solely on automated pro-
cessing and which produces legal effects concerning him or her or
similarly significantly affects him or her, such as automatic refusal
of an online credit application or e-recruiting practices without

any human intervention.

]

In any case, such processing should be subject to suitable safe-
guards, which should include specific information to the data sub-
ject and the right to obtain human intervention, to express his

or her point of view, to obtain an explanation of the decision
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reached after such assessment and to challenge the decision.

The above recital is often summarized with the concept of a “right to an
explanation” for individuals which are subject to automatic decision making
and data processing. Therefore, at least two concepts seem to be required
by the GDPR: non-discrimination and transparency. These two topics have
been explored in the Al literature as “fairness” and “interpretability”.

The GDPR is not the only regulation put in place dealing with these
matters. In France, the CNIL requires that “a fair algorithm should not end
up generating, replicating or aggravating any form of discrimination”; in the

US, credit scoring is regulated by the Equal Credit Opportunity Act:

Statement of specific reasons. The statement of reasons for ad-
verse action required by paragraph (a)(2)(i) of this section must
be specific and indicate the principal reason(s) for the adverse ac-
tion. Statements that the adverse action was based on the cred-
itor’s internal standards or policies or that the applicant, joint
applicant, or similar party failed to achieve a qualifying score on

the creditor’s credit scoring system are insufficient.

In light of these concerns, a specific kind of model which has been increas-
ingly adopted seems to be incompatible with the newly developed regulations.
Deep neural networks are being employed in a plethora of applications and
state of the art models often include millions of parameters [LBH15]. Con-
volutional object recognition models such as ResNets [He+4-16] sport as much
as 101 layers and over 44 millions parameters. In this situation, isolating
specific reasons for a model’s decision-making is very challenging. If making
sense in a human-intelligible way of a model’s reasoning were possible, this

would be the most straightforward path to vet a model: the unfair reasons
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and decisions would simply be discarded. Model explanation is indeed a very
active area of research (see e.g. the survey by Adadi et al. [AB18] and the
one by Carvalho et al. |[CPC19]) and far from being solved. Another di-
rection which is relevant to investigate is constraining deep neural network
models so that they may be lawful, enabling them to be actually employed
beyond research labs while limiting the possibility for discrimination.
Research on fairness in ML has developed multiple definitions of fairness.
In this Chapter, I will review the ones relating to classification and ranking
applications as they are relevant to understand and discuss the methodologies
proposed in Chapters 4 and 5. Furthermore, I discuss the opportunities that

representation learning algorithms provide in the context of fairness.

3.1 Definitions of Fairness

As previously discussed in this chapter and in the introduction, definitions
of fairness in ML relate to the concepts of non-discrimination against histor-
ically disadvantaged groups. In this context, the relevant variables are y, the
given ground truth; g, the estimation given by a model f; and s, the sensitive
attribute which holds values indicating whether an individual belongs to a
historically discriminated group. Research on fair ML has focused on binary
sensitive attributes, where s = 1 indicates belonging to a protected group.
While most of the research has focused on classification scenarios, some work
on ranking and regression has also been performed. As a starting point, I
will borrow the three definitions of unfair treatment as summarized by Zafar
et al. |Zaf417].

Disparate impact. A decision system (automatic or otherwise) suffers

from disparate impact when the decisions undertaken benefit (or hurt) a
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group of people more frequently than others. In real world scenarios, one
such example is the Stop-and-Frisk program performed by the New York
Police Department. The concept of such a program is to prevent crimes by
stopping and interrogating people on the streets. Assuming that a civilian
is benefited by avoiding police interrogation, black and latinx people have
been damaged by this system overwhelmingly more than white people, per
the data released by the NY chapter of the American Civil Liberties Union
[ACL19].

Disparate treatment. A decision system suffers from disparate treat-
ment when individuals which differ in their value of the sensitive attribute
but are otherwise similar obtain different decisions. This is perhaps the most
intuitive definition of “discrimination” in everyday language and is exampli-
fied by the gender pay gap (see e.g. [WWO05]).

Disparate mistreatment. A decision system suffers from disparate
mistreatment when its error rates benefit (or hurt) a group of people more
frequently than others. This is the situation in the COMPAS software, which
mis-assigns high risk scores to black people more frequently than white people
[Ang+16].

The concepts presented just may be transposed into formulas which may
then be employed in classification and ranking. In the following, I will present
a number of practical measures that are based on the above general defini-

tions.

3.1.1 Fairness in Classification

Here I will present two measures of fairness which have been developed and
employed by various authors in fair classification scenarios. I will also under-

line their connection with the definitions of unfair treatment as previously
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discussed in this chapter.

Statistical Parity

Statistical parity in its simplest form requires that the following formula is

true:

PlH=1|s=0)=PH=1]s=1) (3.1)

Where ¢ is a variable representing the labels predicted by a classifier.
Here, the assumption is that y = 1 are positive outcomes in a binary classifi-
cation task (e.g. obtaining a loan). The formula may be generalized to allow

a tolerance level e:

P(j=1]s=0)—P(j=1|s=1)<e (3.2)

This metric has been employed by Dwork et al. [Dwo+12| and Zemel et
al. [Zem+13| (who call it “discrimination”) among the others. Statistical
parity may be also employed to measure the difference in positive outcomes
between individuals belonging to two different groups, simply by comput-
ing the difference in Equation [3.2, For this reason, it may be employed to

evaluate disparate impact in a classifier.

Equalized odds

Equalized odds evaluates the disparate mistreatment in a classifier. Plainly
put, the classifier’s false positive rate and false negative rate should be bal-
anced among groups. In our running example of two groups, the two following

equations need to be true:
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PG=0ly=1Ls=0)=PG=0ly=1s=1) (4

As previously mentioned, the COMPAS software has been shown to be
breaking this definition under a specific set of assumptions. This measure is

employed e.g. by Zafar et al. [Zaf+17].

3.1.2 Fairness in Ranking

In ranking applications, the label y often has a different meaning. It may
either represent the position of an individual x; in a query or a relevance class
j. Either way, the label has an ordinal meaning. Nonetheless, the concepts
presented in Section may still be employed. The field of fair ranking
is relatively newer than fair classification and measures are still relatively

scarce.

rND

The rND metric has been introduced by Ke and Stoyanovitch [YS17] in 2017.

The metric is defined as follows:

N

1 1S, | ST
ND = — Lil 3.5
' Z Z logat ) N (3.5)
1€{10,20,...}

This metric computes the difference between the proportion of protected

+
individuals in the top-i documents (SlT) and in the overall population (%)

Z is a normalization factor which is defined as the maximum possible value

of the metric. A fractional log term is also included so to give more impor-

tance to imbalances in the top positions of the query. As argued by Ke and
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Stoyanovitch, this metric can be seen as a generalization of the disparate
impact /statistical parity concept in fair classification. It warrants mention-
ing that over-representation (higher rate than the population proportion) of

protected individuals at the top of the list is also penalized by the metric.

Group-dependent Pairwise Accuracy

This metric is a generalization of the disparate mistreatment concept and
has been introduced by Narasimhan et al. in 2020 [Nar4-20]. Let Gy, ...,Gk
be a set of K protected groups such that every document inside the dataset
D belongs to one of these groups. The group-dependent pairwise accuracy
Ag,>c, 1s then defined as the accuracy of a ranker on documents which
are labeled more relevant belonging to group G; and documents labeled less
relevant belonging to group G;. Since a fair ranker should not discriminate
against protected groups, the difference |A¢,~q; — Ag,>q,| should be close to

zero. In the following, we call the Group-dependent Pairwise Accuracy GPA.

3.2 Fairness in Representation Learning

When dealing with representation learning algorithms, the aforementioned
definitions are all applicable. However, some authors in this literature have
underlined an unique opportunity when it comes down to representation
learning and fairness. McNamara et al. [MOW17| have drawn up a possible
separation of concerns scenario which employs representation learning algo-
rithms at its core. In their contribution, the authors explain how applications
with fairness concern might employ a two-party scheme: user and regulator.
The “user” here is any business which is interested into learning an auto-

matic decision system that learns from individuals’ data; the “regulator” is
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a second entity which employs the aforementioned data and debiases it, giv-
ing it back to the user. If the data truly contains no information about the
sensitive attribute, the user may then employ any machine learning model

without worry of unfair behaviour.

In this setting, the issue is of course how invariance might generalize
to different fairness metrics such as statistical parity and equalized odds.
However, there is still the issue of evaluating how much information is present
in a random variable. While mutual information would provide a natural
metric, as explained in Chapter 2, it is hard to estimate. In the literature
(e.g. [Zem+13; Xie+17; Lou+15] among others) this is often evaluated as the
difference between the accuracy of a classifier trained on the dataset (z,s)
and the majority class performance on the same dataset. The rationale here
is that a classifier finds no information about s when it can do no better than

predicting the majority class for each data vector z;.

When evaluating debiased representations in later Chapters, this is the

approach that we will be employing.

3.3 Fairness Datasets

Evaluating fairness requires data for which there is a concrete concern that
unfair classifiers might discriminate against certain groups. Therefore, one
of the columns available has to be connected to an individual’s protected
characteristics such as gender and ethnicity. In this section, I will briefly

present some datasets which have been employed in fair ML research.
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3.3.1 COMPAS

The COMPAS dataset has been published by Propublica [Ang+16] as a long-
term study of the same named tool by the US company Northpointe. This
tool is made available to US judges who may use it to decide whether a person
may be released on bail (i.e. by paying a fee) while waiting for trial. The
reasoning here is that this opportunity should made available only to people
at low risk of committing further crimes if released. The ground truth here
is whether people have re-offended 2 years after their COMPAS evaluation,
and the sensitive attribute is their ethnicity (white or blackED.

3.3.2 Adult

The Adult dataset has been extracted from the 1994 US Census data by
Kohavi [Koh96]. The ground truth here is represented by a simple indicator
variable on whether an individual’s yearly salary is over 50000 US$. The

sensitive attribute is an individual’s gender.

!'Employing the right words here is a complicated matter. I briefly explain my rationale
here. While “ethnicity” usually refers to cultural aspects, what the COMPAS dataset has
collected is a mixture of concepts (see [Ang+16]). In this dataset, people can fall into
the groups “white”, “black”, “pacific-islander” and “other”. Therefore, while this division
is not about ethnicity per se, it definitely is not about skin color alone. Furthermore, I
intend to avoid the term “race”, which has little basis in scientific reasoning. Therefore, I
chose the term “ethnicity” with some abuse of meaning. In the ProPublica article, “race”
was employed. This is not meant as a critique to actors which employ this term with
awareness: in the collective discourse, this word may be employed in a non-discriminating
fashion, such as articles which may refer to “race relations”. However, I prefer to try and

move away from such terminology because of its loaded meaning and unscientificness.
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3.3.3 German

The German dataset, short for German Credit Data, has been published
on the UCI Repository [DG17] by Prof. Hofmann from the University of
Hamburg. This dataset is a collection of credit-related variables such as
employment and the presence of debtors; the task is to predict whether the
individual is in a good credit standing (a binary variable). The sensitive

attribute is an individual’s gender.

3.3.4 Bank Marketing

The Bank marketing dataset has been published by Moro et al. [MCR14b] in
the context of a data-driven study on the success of telemarketing campaigns.
Here, the ground truth is whether an individual has subscribed to a term

deposit, while the sensitive attribute is whether their age is above 40 years.

3.3.5 Law Students

The Law Students dataset contains information relating to 21,792 US-based,
first-year law students and was collected to the end of understanding whether
the Law Students Admission Test in the US is biased against ethnic minori-
ties [WRC9§|. This dataset has been first employed in fair ranking by Zehlike
et al. |ZC19]. The task here is to rank law students based on their academic
performance, and may be used to simulate a scenario where scholarships or
some other kind of academic benefit needs to be assigned to a subset of

individuals.
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3.3.6 Wiki Talk

The Wiki Talk Page Comments dataset contains 127,820 Wikipedia com-
ments which are labeled toxic or not toxic. A toxic comment can be defined
as having “rude, disrespectful or unreasonable” content. This dataset has
been employed in fairness when evaluating both classification [Dix+18| and
ranking methods |[Nar+-20]. The term “gay” is commonly used as a sensitive
attribute, since 55% of the comments labeled toxic contain the term “gay”,
while only 9% of the comments which do not have the term “gay” are labeled
toxic [Dix+1§|. The task of interest is therefore to provide a list of comments
which are ranked from most to least toxic while taking into consideration the

original, biased sorting.



Chapter 4

Invariance with Neural

Networks

This chapter presents the idea of obtaining invariant representations w.r.t.
a measurable disturbance factor in a neural network. Methods both original
and already present in the literature will be displayed. Invariant representa-

tions, as mentioned in the Introduction, have the following benefits:

o Transferability across domains. In the field of multi-task learning, it is
a well known fact that some tasks (datasets) may be related and that
neural representations extracted from one can also be useful in another
(see e.g. Caruana [Car97]). However, removing task-specific informa-
tion can be beneficial in Domain Adaptation, where the assumption is

that the labels for future tasks are unavailable.

e Fuirness. As described in the previous Chapter, the issue of fairness
in Machine Learning may be addressed as discarding sensitive data
and actively removing their correlates in the feature vectors. Neural

representations that are invariant to sensitive attributes enable any

35
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downstream learning algorithm to be fair “by construction”.

The chapter is organized as follows. First, I will briefly review the core
ideas that led to the interest in neural representations and invariance, also re-
viewing the relevant approaches in previous literature I will then present
my original work on a general noise layer that benefits invariance (Section
and its applications on fair classification (Section [5.1), fair ranking (Sec-
tion [5.2)), fair and interpretable learning (Section [5.3)). Another methodology

for shared/invariant representations is then described in Section [5.4}

4.1 Neural Networks and Neural Represen-

tations

In this chapter, I will refer to networks as functions fy(x) where x is a vector
of features and 6 are real-valued parameters. The topics presented in this
chapter fall under the supervised learning paradigm, where data is available
in the form of n example-label pairs (z;, ;)" ,. When relevant, we will extend
the available data to the triplets (z;, v, s;)i; where s is a measurement of
a disturbance factor or sensitive information. When relevant, the output of
the i-th layer will be written as f§, with a slight abuse of notation w.r.t. the
parameter set. The task here is one of obtaining, as previously mentioned,
an invariant representation w.r.t. s which still has as much information as
possible about = and y. Before discussing more deeply this objective, it is
worthwhile to give context about how the concept of neural representations

has developed in the literature.
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4.1.1 From the Artificial Neuron to Distributed Rep-

resentations

The idea of constructing artificial neural networks (NNs) has a long history,
dating back to the development of the artificial neuron in 1943 by McCullogh
and Pitts [MP90]. In this representation, a neuron’s dendrites are represented
by a number of different input boolean values. A neuron can either be acti-
vated, outputting a value of 1, or not, outputting a value of 0. This kind of
neuron can only be employed to represent logical gates and functions, and
the first ante litteram[T| machine learning application of neural networks is
due to Frank Rosenblatt’s development of the perceptron in 1958 [Ros58|. In
modern terms, we would call the perceptron a supervised learning algorithm
which learns a linear, binary classifier. The input vectors x may be real val-
ued, as the weights for the input w and the bias value b. The output value

f(x) for the neuron is a simple threshold:

1ifwx+b>0;
flz) = (4.1)
0 otherwise
The learning algorithm is iterative and modifies the weights at each step
depending on each w’s contribution to the error. The perceptron is unable to
converge when the data (x,y) is not linearly separable, a point that Minsky
and Papert (“Perceptrons”, 1969 |[MPG69]) stressed by pointing out the algo-

rithm’s inabilityf] in learning the rather simple exclusive-or logical function.

Circumventing this issue would require multiple breakthroughs. The first in-

!The definition of “Machine Learning” is often attributed to Arthur Samuel [Sam59]
who published the description of a self-training algorithm for the game of checkers in 1959,

the year after Rosenblatt’s paper about the perceptron algorithm.
20ne aspect that is often left unsaid about the matter is that a perceptron can learn



38 CHAPTER 4. INVARIANCE WITH NEURAL NETWORKS

tuitive insight is that multiple perceptrons can be connected “horizontally”
so to build two layers of multiple input and output neurons; furthermore,
it is possible to add another “layer” of neurons at the end of this structure,
obtaining what is often called, with some degree of inaccuracyEL a multi-layer
perceptron (MLP). In this kind of architecture, we have three layers of artifi-
cial neurons, which are often called input, hidden, and output layer, and two
set of weights w; (connecting the input to the hidden layer) and wy (connect-
ing the hidden layer to the output layer). Employing Rosenblatt’s training
algorithm would require computing the error contributions for the first set
of weights w;, which is not straightforward. The necessary breakthrough
here is the backpropagation algorithm, which makes it possible to propagate
error gradients from the output layer to the preceding ones. The invention of
backpropagation is a contentious matter. Rumelhart, Hinton and Williams
[RHWS86| are often credited for the discovery. While it is certain that the
authors managed to establish its usefulness in learning representations in the
hidden layers of a multi-layer perceptron in 1986, the idea of employing an
efficient algorithm for automatic reverse-mode differentiation over multiple

applications of different functions is due to Linnainmaa in 197(f] [Lin76]. The

the XOR function if an extra feature is given which is 1 iff the two other features are 1.
This is indeed included in Minsky and Papert’s work and and also cited by Rumelhart,

Hinton and Williams in 1986 [RHWS6].
3As a perceptron has a single output neuron, building multiple layers of perceptrons

would employ the output neuron as the input for other neurons; instead, what is called a
multi-layer perceptron is a stack of perceptrons in both a horizontal (more perceptrons,
side by side, building a output layer with multiple neurons) and vertical (the previously
mentioned output layer can be connected via other weights to another layer, which in turn

becomes the output layer) direction.
4The first English article was indeed published by Linnainmaa in 1976 |Lin76] while his

master thesis which first introduced the aforementioned algorithm was written in Finnish
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first application of efficient reverse-model automatic differentiation to a neu-
ral network-like model is due to Werbos in 1982 [Wer82]. Nonetheless, the
interest in neural architectures was renewed by the possibility of employing
multiple layer of neurons. Furthermore, Cybenko [Cyb89] showed in 1989
that calculating each neuron’s output by means of a sigmoid function makes
it possible to approximate any function via a MLP architecture. The result
would be then extended to other (non-polynomial) activation functions by
Leshno et al. [Les+93] in 1993. Putting this issue aside, Rumelhart Hinton
and Williams do contribute the central idea of internal representations which
may emerge from the training of a neural network in the form of the activation
of a hidden layer’s output. This concept, also explored in depth by Hinton
in “Distributed Representations”, 1984 [Hin|, may be informally described
as a process of automatic feature extraction, where an algorithm learns inde-
pendently combinations of the original features which are useful to the task
at hand. This effect is particularly apparent in networks employing convolu-
tional parameter sharing (also called convolutional neural networks or CNNs)
and trained over image data. In these networks the neural activations can
be thought of as being organized in a 2-dimensional grid. The work of Yann
LeCun et al. in 1990 [LeC+90] showed that a CNN trained via backpropaga-
tion could recognize handwritten digits with a high degree of accuracy while
building internal representations that may be easily visualized and represent
various features of the original input. It warrants mentioning that the back-
propagation algorithm has no understanding of what is interpretable to the
human eye. The visualizable features are therefore an emergent property of
backpropagation-trained networks. In the following chapters, I will refer as a

“neural representation”, or simply representation, as the output of a neural

in 1970 [Lin70].
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network architecture at some layer i. We will now move to a brief review of

some relevant neural architectures and their training algorithms.

4.1.2 Modern Feedforward Networks

Modern architectures which are based on the multi-layer perceptron are being
widely used for a plethora of applications, from computer vision to natural
language processing. The base building block for this kind of applications is
the fully-connected layer, in which all neurons at layer ¢ — 1 are connected to
all neurons at layer ¢. Such a model may be trained with stochastic gradient
descent, in which the error function gradient is approximated. This may be
done by first propagating forward the activations and predictions for a subset
of training examples (usually called batch or mini-batch); error gradients can
then be computed and back-propagated through the architecture. The error
gradient computation depends on the definition of a loss function, i.e. a
training objective. For network which are employed in classification, the
cross entropy loss is usually employed:
J ==Y p(x)log q(x)
zeX

Here p(z) is the given class label distribution for example z, and ¢(z) is the
estimate given by the neural network. A network can output a probability

distribution by employing a softmax function in its last layer:

e*
0(z)i = —%

Zj:1 e
Where z is the vector of non-activated neuron outputs at the last layer.
This guarantees that the activated values sum up to one and the vector of
activations may be interpreted as a probability distribution over the class

labels. Similar models have also been used in fair classification.
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When one is performing ranking, the given labels y have an ordinal mean-
ing. They appear in the form y € {0,1,..., K} where K can either be the
number of relevance classes or the position of a document in a result query
(in this case, K = N, the number of documents in the query). The loss
function and overall architecture depends on the ranking strategy employed.
A pointwise ranker assignes a probability to each document independently; a
pairwise ranker compares two documents z; and 5 and outputs the (y; > y2)
probability; a listwise ranker takes full queries into its input and computes
a loss function which depends on the overall ordering. As an example, the
listwise ranker developed by Cao et al. (|[Cao407b]) compute the top-1 prob-

ability for each document and then employ cross entropy.

4.1.3 Neural Invariance

Invariance in neural representations has emerged as a possible strategy to
construct fair-by-construction machine learning algorithms. While other fair-
ness methodologies focus on constraints on predictions, this family of methods
is centered on constraining representations. In this setting, the concern is not
about directly modeling p(y | s) but to reduce the information content of s
in a predefined layer of a neural network, fi. As discussed in Chapter 2, a
general definition of “information” is complex. While reducing the Mutual
Information between the sensitive attribute s and the obtained representa-
tion & seems to be a sensible target, one has to rely on estimation or vari-
ational approximations. One could then target distributional distances by
reasoning that different values of s imply different distributions, and match-
ing p(x | s = i) with p(x | s = j) would also lead to invariance. Aside
from simple moment-matching, more complex distributional distances are

parametrized by an hypothesis class.
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There are a number of existing methods in the literature which are rel-
evant to the topic at hand. In this section, I introduce the ones which are

relevant to better contextualise my contributions.

4.1.4 Gradient Reversal for Domain Adaptation

Ganin’s Gradient Reversal Layer ( [Gan+16]) has emerged as a tool in un-
supervised domain adaptation. Domain adaptation is a task belonging to
the “transfer learning” field where the objective is to train a neural net-
work architecture so that it employs data from a source task (z;,y;), and
a target task (z;,y;)7L, so that the performance is maximized on the target
task. Usually, n >> m: the rationale for the task is to employ data which
is abundantly available (the source task) to compound scarcely available in-
formation (the target task). More in general, transfer learning with neural
networks has been investigated by various authors in the last decade as a way
to investigate the transferability of learned representations. One of the more
seminal papers in this area is “CNN Features Off the Shelf: An Astounding
Baseline for Recognition” by Razavian et al. [Sha+14]. The authors em-
ployed an AlexNet model [KSH12| pretrained on ImageNet by extracting its
neural activations after the last convolutional layer. Employing non-neural
classifiers trained with these activations as training vectors shows impressive
performance on unrelated datasets. This fact seems to suggest that neural
networks trained via backpropagation are able to extract features which dis-
play strong generalization properties, and has kickstarted the topic of deep
transfer learning (see e.g. the 2018 review by Chuangi et al. [Tan+18§]).

In this context, the contribution by Ganin et al. is to perform transfer
learning in a particular setting, where one has a source and target task which

are known to be related. The running example the authors provide is the
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one of online product reviews with different categories. Assume that an
online shop which traditionally focused on books has trained a classifier to
perform sentiment analysis on text-based reviews; the same shop now wants
to provide the same service for a newly introduced category of products,
such as consumer electronics. Reviews are just now flooding in, and labeled
data is still scarce. This is the more specific setup where domain adaptation

techniques may be applied successfully.

In this context, Ganin et al. contribute a domain-adversarial classifier.
The base idea is to employ a pair of sub-models f, and f; connected to a
number of shared layers f. I will keep the original notation by Ganin et al. in
which domains are noted as different values of a domain variable d; further-
more, I will refer to the connection weights for these models as 6,, 6, and ¢
respectively. Each sub-model is optimized via gradient descent, maximizing
p(§ | ) and p(d | x) respectively; however, the last layer in f is connected
to the first layer of f, via a “gradient reversal layer”, i.e. a layer which com-
putes the identity function during forward propagation and the f(z) = —x
function during backpropagation. The rationale for this layer is to find an
equilibrium /saddle point between two differing objectives: classifying accu-
rately on y and reducing domain-specific information. The sub-network f; is
therefore employed as a “domain regularizer” and its gradient information,
when reversed, may be used to reduce the divergence between the features ex-
tracted from training vectors belonging to the target and the source domain.
Ganin et al. outline how this procedure is related to different distributional

distance measures. One possible formulation of this problem is to find the
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parameters which deliver a saddle point for the following min-max problem:

QAy,é = argmin L(f,)

éd, 0 = argmax L(fy)

Methods based on Ganin et al.’s gradient reversal layer have also been
employed in fairness, e.g. by Xie et al. [Xie+17|. It warrants mentioning
that this methodology is however focusing on performance on the target task.
While the concept of invariance is of course useful as it minimizes domain
divergence, it is not the objective of the contribution. Recently, Zhao et al.
[Zha+19] have highlighted how invariant representations are not a sufficient
condition for domain adaptation, contributing an example where invariance
may instead yield a higher error on the target task. Therefore, there is
some divergence between objectives when dealing with domain transfer and
invariant representation learning.

Having introduced the relevant architectures and methodologies, I now
come to my contributions. Inspired by Ganin et al.’s work, I have developed
a new differentiable layer which employs noise to further reduce the mutual

information between a learned representation Z and a sensitive attribute s.

4.2 A Noise Module

In this section I will present how to develop a differentiable “noise layer”
which is useful in learning invariant representations. This contribution has
been published in the ACM Symposium for Applied Computing 2020 [CEL20)]
in collaboration with Dr. Laura Li Puma and Prof. Roberto Esposito.
Encouraging invariance w.r.t. a nuisance factor or a sensitive attribute

s is, as discussed extensively in Chapter 2 and in the previous section, a
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complex matter. While removing the aforementioned attribute from the
dataset is a sensible starting point, it does not constitute a solid solution. The
issue is that it is still possible to glean information about s from the remaining
features. One example is provided by the existence of the gender pay gap
(see e.g. [WWO05|), which makes it evident that there may be correlations
between salary and gender in datasets relating to loan acceptance.

In neural networks, features are neural activations constructed by way of
complex non-linear combinations of the given input vectors. Thus, removing
information from the internal representation of a network warrants ad-hoc
learning mechanisms, some of which have been introduced in the previous
section. As domain adaptation algorithms do not need to remove all domain
information (and this objective in general may not be desirable, see e.g. Zhao
et al. [Zha+19]), there might be the need to also adapt neural architectures
to the task of information removal.

To provide a motivating, if hyperbolic, example, assume some feature z;
has a high degree of correlation (informally) w.r.t. s, so that information
about z; has to be completely removed to obtain an invariant representa-
tion. Furthermore, x; is a good estimator of y: it follows that learning to
estimate p(y | «) via backpropagation would lead to representations that
still contain information about x; and, by proxy, about s. Provided that
the training algorithm does encourage removing information about s via an
explicit training penalty - as in Ganin et al.’s domain regularizer [Gan+16]
- or otherwise - as in Louizos et al.’s fair disentanglement [Lou+-15| - there
exist at least two different ways to set neural weights so that information

about x; is removed.

e Forcing non-injectivity. That is, the network is not sensitive to changes

in x;. With a slight abuse of notation, let us define a two-argument
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network f(x,z;). Non-injectivity here would imply that f(z,a) =
f(z,b) Y(a,b) € ;.

e Reducing Mutual Information. In Chapter 2 and earlier in this chapter,
I discussed how a possible definition for an invariant representation
is null mutual information w.r.t. s: I(z,s) = 0. This would imply that

p(z,s) = p(Z)p(s), i.e. the two random variables would be independent.

While it stands to reason that domain adaptation and fairness training
objectives might lead to non-injectivity and null mutual information, it is not
obvious how a neural network model might encourage these objectives in its
architecture, i.e. the connection patterns between layers. As an example of
how connection patterns can help in pursuing specific learning objectives or
domains, let us consider convolutional neural networks. Convolutional neural
networks, employ convolutional layers which extract features in a locally-
sensitive way. This idea is suitable for image data, in which pixel locations are
meaningful and give rise to higher-order concepts such as shape, contour and
texture. Developing a similar concept for the idea of invariance would give a
network a simpler way to remove problematic features from the computation
of internal representations. As further motivation, it is relevant to investigate
more deeply into how a fully-connected network could learn to be “non-
injective” or to reduce mutual information. Let us look at the first and
second layers f! and f? of a neural network, with no assumptions on depth.
For now, let us also abstract away the loss function and training objective
details, assuming that a suitable choice has been made. As for the activation
function, let us assume for the sake of simplicity in the discussion that the

identity function has been employed. Therefore, all neurons at the second
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layer activate as a linear combination of the input features:

k
0; =Y wi;;
=1

Now, if we wish the activation vector o = f2(x) to not contain informa-
tion about the problematic feature z;, the simplest solution is to set all the
weights w; ; to 0. Other solutions might be possible, and could produce rep-
resentations that are “invariant enough” for a given task such as domain
adaptation; however, in this extreme case where it is not possible to employ
x; and still be invariant w.r.t. s, the aforementioned solution is the clearest
way to discard z;.

Coming to the objective of reducing mutual information, the issue here
is two-fold. Employing a deterministic, invertible function to transform a
random variable X does not impact its MI w.r.t. a nuisance factor; while
neural networks are in general not invertible, it would be beneficial to in-
stead design a stochastic procedure. Secondly, while Tishby et al. [TZ15]
have contributed an analysis of MI between neural network layers and have
shown how the training of neural networks via stochastic gradient descent
displays a compression phase where information about the input random
variable X is discarded, more recent work by Saxe et al. [Sax+19] has shed
light on the fact that a plethora of factors may impact such an analysis. In
light of the fact that MI is in general unaffected by deterministic invertible
transformations, Saxe et al. show how the aforementioned compression phase
is not displayed by networks which employ non-saturating activation func-
tions. Furthermore, another contribution by Goldfeld et al. [Gol419] has
shown how the compression phase of Tishby et al. might also be explained
by a “clustering effect” of representations instead of actual changes in the

MI between layers. Simply put, neural representations of vectors belonging
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to the same class are clustered together throughout the training process.
Having analyzed two limitations of current neural architectures when em-
ployed in the learning of invariant representation, I now come to the proposal
of a noise layer [CEL20] with a one-to-one connection pattern. That is, the
number of input and output neurons for this layer are not a hyperparameter
but are fixed to be the same. For ease of notation, I will assume that a noise
layer is inserted as the very first layer in the architecture, therefore having
features from x as its output and particularly the feature we are assuming to
be problematic, x;. For each of its output neurons, this layer computes the

following function:

0; = g(w; 12 + w; 2m)

The number of output neurons for the layer is the same as the number of
input neurons, displaying one-to-one connections. This layer has ¢ -2 param-
eters, with one set simply multiplying the previous layer’s neural activation
for the i-th neuron, while the second one regulates the amount of noise n
which gets summed to the previous computation. Here any kind of noise
might be used; my experimentation has focused on uniform (“white”) noise.
A differentiable non-linearity g, which may be chosen by the user, is also
present in the formulation. A schematic of this layer, comparing it to a fully

connected layer, can be seen in Figure 4.2

The comparison with a fully connected layer is relevant as it shows how
the layer’s formulation is tackling the two issues with existing neural architec-
tures when employing them to learn invariant representations. Firstly, elim-

inating a problematic non-sensitive feature x; and achieving non-injectivity
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(4)
a; Wik + NEW2 k

Figure 4.1: Schematic of the k-th component of a noise layer inserted at
depth 7 in a neural network architecture. Here, ai is the activation of the
k-th neuron of layer i. Each neural activation is multiplied with a weight
and an adjustable amount of noise is added. A non-linearity (not shown in

the figure) is also added.

Figure 4.2: The noise layer (right) proposed by Prof. Roberto Esposito,
Dr. Laura Li Puma and I [CEL20|, compared with a regular fully connected
layer (left). The one-to-one connection pattern allows for easier suppression
of problematic features, and adding an adjustable amount of noise helps with

controlling mutual information over the representations.
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requires setting to 0 all the weights connecting it to the neurons in the sec-
ond layer. Employing a one-to-one connection scheme allows for feature-wise
dampening, allowing a single weight w;; to be set to 0. It is relevant now to
generalize this discussion to activation functions beyond identity, as employ-
ing differentiable non-linearities is necessary to have universal approximation,
as discussed previously in this chapter and as discovered by Cybenko et al.

[Cyb&89]. Taking into consideration the sigmoid function:

b(x) = pras]

its value is 0 only in the limit where the input goes to —oc. Thus, a prob-
lematic feature x; can never really be removed; however, it can be propagated
as an arbitrarily small value as the relevant weights become more and more
negative and the function gets “saturated” negatively. Non-injectivity may
also be achieved if the sigmoid is saturated positively. Here, the propagated
value would always be 1, clustering together the activations for different val-
ues of z;. A similar result is valid for the tangent hyperbolic (tanh) activation

function:

et —e®

tanh(z) = pr—

which is instead defined between -1 and 1. Here, positive saturation, neg-
ative saturation and null output are all useful results from a non-injectivity
perspective. However, obtaining an output which is always 0 seems to be
challenging as the function gradient is highest around 0. Other activation
functions such as the rectified linear unit (ReLU) appear to be more chal-
lenging to employ in the invariance setting. Taking into account the afore-

mentioned results by Saxe et al. |Sax+19], which show how the MI between

the layers of a network is not decreasing when employing a non-saturating
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function such as the ReLLU, we have focused our experimentation to sigmoid

functions as the non-linearity of choice for the noise layer.

Coming to the idea of employing a learnable amount of noise, this concept
stems from the contributions in statistical theory dealing with the concept
of “equitability” and mutual information (see Chapter . Kinney et
al. [KA14] have highlighted how MI is invariant to deterministic transforma-
tion as it is self-equitable. Therefore, our noise module allows searching the
space of stochastic transformations where the mutual information between

the learned representations x and the nuisance variable s is reduced.

The noise module presented insofar is fully differentiable and might be
inserted in any neural network model. However, some discussion is warranted
about employing noise. Convergence via gradient descent is in general not
guaranteed when employing randomly sampled variables, as any employed
loss function £ would then not be functional (univalent) - i.e., it would as-
sociate different outputs to the same input value, depending on the sampled
noise. We circumvent this problem by sampling only once, at the beginning
of the learning process. The values of 1 are uncorrelated with s, but we do
not break the functional loss assumption and can therefore expect gradient
descent to converge. The insertion of noise during neural network training
has previously attracted attention in the context of generalization. Srivas-
tava et al. have contributed the Dropout methodology [Sri+14] as a way to
prevent overfitting in over-parametrized neural networks. Dropout is indeed
a “noise layer” as it samples from a Bernoulli distribution during training
and multiplies each neuron’s activation with the trial’s result. Informally,
this can be thought of as randomly “shutting down” neurons in a specific
layer during training. In their experiments, Srivastava et al. show how this

helps in reducing neuron co-adaptation and helps in preventing overfitting
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behavior. Li et al. [LXL16| contributed a generalization of the Dropout
technique (called Whiteout) which instead is sampling from a Gaussian dis-
tribution, adding its value to neural activations. Here, the authors show that
even when employing noise the loss function can be proven to converge in
expectation to the true one. Our strategy is instead to sample once, keeping
the loss function consistent. Furthermore, this allows for the training and in-
ference procedures to be the same, whereas Dropout and Li et a.’s Whiteout

needs to be “turned off” at test time.

As a summary, the noise layer provides two separate mechanisms which

are tailored on the problem of information removal.

o [Feature-wise dampening. Each feature or neural activation is weighted
by a single weight x;. This provides a more efficient mechanism in
removing or dampening problematic features when compared with fully

connected layers.

o [eature-wise noise masking. Each feature is mixed with an adjustable
amount of noise wy-n. Thus, it is possible to avoid the theoretical limits

of reducing MI via deterministic transformations due to equitability

(see Section [2.3.4)).

To provide a first investigation of the noise module’s capabilities in learn-
ing invariant representations, we tested it on a toy dataset in which there
actually is a highly problematic feature which displays a functional relation

with the sensitive attribute. This dataset is defined as follows:
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s ~ B(0.5)
21 ~ U(0,50000)
xo = 20000 - s

Y = a1 42235000 (4.2)

This dataset represents a toy “loan assignment” problem where x; and x-
are two salary-related variables: the ground truth y simply looks at whether
their sum is over a threshold. Here, it is relevant to note that x5 is the prob-
lematic feature. This is because it is a simple function of s, which is sampled
from a Bernoulli distribution. x; is sampled uniformly and may be employed
to classify y fairly. This looks like an easy enough task for any learner, which
has only to ignore x5 to classify accurately (somewhat) and fairly. Of course,
in a real world scenario simple feature selection and preprocessing would
avoid the issue altogether. Furthermore, while this dataset may represent
a very hyperbolic “gender pay gap” situation, the issue is much more nu-
anced in real world data. However, the argument here is that a fair invariant
learner must be able to handle such a clear cut situation. We experiment
with networks that include a noise layer as their first input, varying the size
of a second layer from 4 to 16. The architecture and training objectives are
set up as in Ganin et al.’s domain adversarial network |Gan+16]. What we
see is that networks employing a noise layer are able to learn a representation
2 which contains little information about the sensitive attribute. This can
be observed in Figure [4.3] where we show classifier accuracy for a random
forest model predicting s when trained on the learned representations . The
vertical axis displays the MI estimated by a state of the art methodology
by Belghazi et al. [Bel418]. It is apparent that employing a noise layer
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Figure 4.3: Performance of networks trained on the dataset defined in Equa-
tion [4.2] The horizontal axis represents the mutual information between the
learned representations = and s estimated with the method by Belghazi et
al. [Bel+18]; the vertical axis represents classifier accuracy when trained on
the pairs (#,s). The relationship between the two is noisy, but positively
correlated; furthermore, architectures containing the noise layer were able to

decorrelate w.r.t. x,, the problematic feature.

reduces the estimated MI and that low levels of MI correlate to invariant

representations w.r.t. s.

Starting from these results, we applied the noise module to different tasks
in the fairness framework. At first, we tackled the fair classification problem,
showing superior performance on invariant representation learning; secondly,
we also employed this mechanism to investigate two separate fair ranking

mechanisms. These contributions are analyzed in the next chapter.



Chapter 5

Fairness with Neural Networks

In this chapter I will discuss how the methodologies introduced in this thesis
may be employed to learn invariant representations and fair neural network
models. My contributions have touched upon fair classification and fair rank-
ing with different models and methodologies. I will start from applying the
noise module to the fair classification problem, then moving on to a contribu-
tion in pairwise fair ranking. The last two sections of this chapter touch upon
a framework for interpretable fair learning and an invertible neural network

model.

5.1 Fair Classification with a Noise Module

Fair classification is the task of learning a classifier f while constraining the
results for fairness. As discussed in Chapter 3, there are a number of fairness
definitions. Learning invariant representations enables a multi-agent scenar-
ios where representations are debiased by a third party before being given
back to the end user. Thus, if no information is present in the representa-

tion about the sensitive attribute, even malicious actors would be unable to

95
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actively discriminate against certain groups. In this Section, I present how
a noise module can enable a feedforward neural network trained by back-
propagation in learning representations that are truly invariant w.r.t. to a
sensitive attribute.

The starting point for this work is the gradient reversal concept as devel-
oped by Ganin et al. [Gan+16]. Thus, we employ three networks. One main
network fy which will learn the invariant representations z; two sub-networks
f;’y and fg which are connected to the last layer of fp. The gradients for fg
are reversed when back-propagated through the rest of the network. The

overall training objective is therefore as follows:

~ ~

0.0,,6, = argminlL(y, (/@) + Amax (s, f*(f@)] (5.1

Y

The general structure of the methodology and the gradients employed to

optimize each network and sub-network can be found in Figure 5.1}

We compare networks trained with regular fully connected layers with
other networks which include a noise module as their first layer. A represen-

tation of the latter type of networks can be seen in Figure [5.2

5.1.1 Experiments and Results

We experimented on the Adult, COMPAS, Bank and German datasets (see
Section [3.3] adopting a 60-20-20 train/validation/test split. The experimen-

tal procedure is as follows:

e Each model is trained on the original vectors x from the dataset.

e The invariant representations X = fy(x) are extracted from the model.



5.1. FAIR CLASSIFICATION WITH A NOISE MODULE 57

-

J

—VL(y,Y(R(x)))+VL(s, S(R(x)))

—VL(y,Y(R(x)))
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Figure 5.1: A schematic representing the main network and the sub-networks

employed to optimize for invariant features. Adjacent to each component the

employed gradients are reported. Note that the direction of the gradient for

fayy is inverted when applied to the main network fj.

e Logistic regression and random forest algorithms are trained on (X, y)

and (X,v).

We optimized the following hyperparameters:

e Fuairness importance, i.e. the accuracy /fairness tradeoff parameter \ in

Equation [5.1]

e Learning rate, varying from 1075 to 107 2.

o Number of hidden layers, varying from 1 to 3.

o Number of epochs, starting from 100 and up to 3000.

We report experimental results for the models that include a noise layer

as their first and regular adversarial models in Figures [5.3] through [5.6 The
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Figure 5.2: The general structure of the networks which include a noise layer.

The sub-networks fgy and fg are omitted in this figure.
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Figure 5.3: Results for logistic regression (LR) and random forest (RF) algo-
rithms when trained on the extracted representations on the Adult dataset.
The continuous line refers to the accuracy obtained on y by the classifier on
the original representations. The dotted line refers to the accuracy obtained

on s on the original representations.

evaluation here is performed by estimating classifier performance on both
(Z,y) and (z,s), comparing it with classifier performance on the original
representations, i.e. the datasets (z,y) and (z,s). The ideal result here is
to achieve accuracy on (Z,y) that is just as good as the one on (x,y) while
approaching the random guess performance (i.e. the majority class) on (z, s).
This latter result would imply that different values of the sensitive attribute

s are indistinguishable in the learned representations.

We observe that our methodology leads to representations which are both
fair and discriminative on all datasets, as visible in Figures [5.3] through

In these figures, the solid line refers to the accuracy achievable on the original

Original
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Figure 5.4: Results for logistic regression (LR) and random forest (RF) algo-
rithms when trained on the extracted representations on the German dataset.
The continuous line refers to the accuracy obtained on y by the classifier on
the original representations. The dotted line refers to the accuracy obtained

on s on the original representations.
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Figure 5.5: Results for logistic regression (LR) and random forest (RF) al-
gorithms when trained on the extracted representations on the COMPAS
dataset. The continuous line refers to the accuracy obtained on y by the
classifier on the original representations. The dotted line refers to the accu-

racy obtained on s on the original representations.
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Figure 5.6: Results for logistic regression (LR) and random forest (RF) al-
gorithms when trained on the extracted representations on the COMPAS
dataset. The continuous line refers to the accuracy obtained on y by the
classifier on the original representations. The dotted line refers to the accu-

racy obtained on s on the original representations.
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representation for the data when predicting y, while the dotted line indicates
the random chance accuracy for s. Thus, a classifier trained to predict s with
a perfectly fair representation would display performance which matches the
dotted line, while the performance of a classifier trained to predict y with a
representation which has not lost any of its discriminative information would

match the solid line.

On the Adult dataset (Figure , the representations learned by the
network which employs a noise module have achieved true invariance w.r.t.
s, being close or slightly below the random chance baseline. On the other
hand, the standard adversarial strategy is unable to account for all the cor-
relations between the attributes and the sensitive attribute, as the random
forest classifier is able to predict s with some accuracy, albeit lower than
on the original representation. Experiments on the COMPAS data provide
similar insights. Including the noise module is critical in achieving fair rep-
resentations, as the random forest accuracy on s is even higher than on the
original data when employing the representations learned from the standard
adversarial strategy. The German dataset displays high levels of class im-
balance which lead to non-discriminative representations by all strategies we

tested; however, fairness was still preserved.

5.2 Fair Ranking via Debiasing

The problem of learning to rank is a fundamental application in information
retrieval. In this problem, a list of n documents needs to be sorted based
on relevance w.r.t. a query ¢. Ranking models might also be employed
in situations where they have a direct impact on individuals’ well-being,

such as ranking candidates for admission to higher education or giving out
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scholarships. Models that address the learning to rank problem, in which a
list of n documents needs to be sorted based on relevance to a query, fall
into three broad categories according to whether the objective function is
computed by considering one, two or the whole list of documents at a time
during training. The first approach is called pointwise and is analogous to
classifying each document |[CGD92; LWBO0S8| in the sense that instead of
comparing documents in a list, a score is predicted on each query-document
pair, indicating the single document’s relevance to the query. In the pairwise
approach a model tries to determine the more relevant document out of two
for the given query [Bur+05; Fri00]. The last approach is called listwise, in
which the whole list is used to compute the cost during training [Cao+07a;

XLO07].

It is possible to extend many classification algorithms to the ranking
problem, such as decision trees [Fri00], support vector machines |[Cao+06],

artificial neural networks [Cao+07a] and ensemble boosting [Wu+10].

As far as neural networks are concerned, the issues in employing these
models in ranking problems are of opacity and fairness. While models such
as ListNet [Cao+07a] and RankNet [Bur+05] are state of the art on general
tasks, it is hard to make sense of their decisions, a problematic issue when
people’s well being may be impacted. Therefore, research on fair classification

has been extended in recent years to the problem of ranking fairly.

In fair ranking one wants to find a quasiorder of documents according
to their relevance while guaranteeing some notion of fairness with respect
to a sensitive attribute. Let us define a dataset D = {(¢;, s, si,v:),1 €
{1...N}}, where ¢; are the queries, x; € R™ are vectors describing the non-
sensitive attributes of the documents, s; € R™ are vectors describing sensitive

attributes, and y; represents each document’s relevance for the query. The
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main motivation for exploring the task of ranking fairly is ensuring that
individuals belonging to protected groups are not relegated to lower ranking
positions [Yan+18] because of past or present human biases which may be
reflected in training data.

In this context, my contribution is to devise a pairwise neural network
which employs explicit mechanisms for fairness [Cer+20]. This network has
been developed as an extension of the state of the art model DirectRanker
[Kop+19] by Képpel et al. This contribution has been published in the IEEE
Data Science and Advanced Analytics 2020 Conference in collaboration with
Dr. Marius Koppel, Dr. Alexander Segner, Prof. Dr. Stefan Kramer and
Prof. Roberto Esposito.

5.2.1 The DirectRanker Architecture

The DirectRanker framework enforces a number of properties which enable it
to learn a total quasiorder on a wide variety of feature spaces. Given a qua-
siorder > defined on pairs of documents (z;, z;, i), the following conditions

need to be satisfied:

o Reflexivity: x; = x;
e Antisymmetry: x; % z; — x; = x;
o Transitivity: (x; = x; = xp) — z; = xy,

These conditions might be implemented by a pairwise ranking function

f (X, X) — R by defining it as follows:
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Then, the aforementioned conditions are imposed on the ranking function

f as follows:
o Reflexivity: f(z;,z;) =0
o Antisymmetry: f(zi,2;) = —f(z),2,)
o Transitivity: (f(x;,z;) >0 A f(zj,2¢) >0) = f(x;,20) >0

These properties can be seen as structural constraints on a neural net-
work architecture. Rigutini et al. |Rig+08] first discussed how to impose
antisymmetry on a network by means of an antisymmetric activation func-
tion and the removal of the bias term in the last layer; reflexivity follows
from a siamese network structure which extracts features from two different
documents and subtracts them. The DirectRanker model is inspired from

these insights and is defined as follows:

I (@, flfj) =o(g(z1) — g(w2)) (5.3)

Where g is a neural network which extracts features from the documents
and o is an antisymmetric, sign-conserving function such as the tangent

hyperbolic. A sketch of the complete architecture can be found in Figure[5.7]

To further constrain the DirectRanker architecture for fairness, in our
contribution we propose two different mechanisms which are shown to be

useful in obtaining fair results.

5.2.2 Adversarial Fair DirectRanker

As described in Section [5.1], one possible technique to obtain invariant repre-

sentations is to employ a sub-network which is trained to predict the sensitive
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Figure 5.7: The DirectRanker model by Képpel et al.. Figure extracted from
[Kop+19] and used with permission from the author.
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Figure 5.8: The Adversarial Fair DirectRanker architecture. Two sub-
networks, one for each of the feature extraction siamese networks, are trained

to predict the sensitive attribute.

attribute. The gradient of this network can then be reversed, leading to a

min-max problem of optimizing for y and learning invariant representations

w.r.t. s.

Here we employ the same concept by augmenting the DirectRanker ar-
chitecture via two sub-networks f{*" and f{*" which are trained to predict
the sensitive attribute and back-propagate their inverted gradient into the
feature extraction part of the network. A diagram for this network may be

found in Figure [5.§

The complete loss function for this model is as follows:
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2
L(Ay, 1,12, 81, 52) = Lyank(AY, 1, 72) + )\Z L pairi(i Ti) (5.4)

=1
Lrank = (Ay - Ol(xla x2>)2 (55)

Lairi = —s log(f{*"(x)) — (1 = 5) log (1 — f/*"(z)) (5.6

In which Ay = I1>,2. Following the strategy outlined by Koppel et al.,
we ensure that the document with higher relevance is always x;. Therefore,
Ay is set to be always 1. In Equation s is assumed to be binary for
simplicity, but the cross entropy loss might be employed also in the more
general case where s is not binary. The A hyperparameter regulates the
relevance-fairness tradeoff and may be selected via the usage of a validation

set.

5.2.3 Flipped Fair DirectRanker

The Flipped Fair DirectRanker builds on the previous strategy by reversing
a ranking gradient instead of a classification one. That is, another output
neuron o4, is added to the network. This neuron does not have a bias term
and employs a sign-conserving, asymmetric activation function. The idea
here is to rank documents according to their sensitive attribute; then, by
inverting the gradient, the model is optimized to be agnostic to the difference
between the sensitive attribute of two input documents. A diagram of this

architecture can be found in Figure [5.9}

The objective function for this network is defined as follows:
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Figure 5.9: The Flipped Fair DirectRanker architecture. Another output
neuron oyq;, is added to the architecture. The neuron is employed to rank

on values of the sensitive attribute, but its gradient is inverted.

L(Ay7 AS, I, x2) = LT‘ank(Aya Iy, x2) + )\Lfa’iT(Asu I, x2) (57>
Lrank = (Ay — 01 (-Tlv :172))2 (58)
Lfaz‘r,z‘ = (AS - Ofair(xla $2))2 (5-9>

Note that the ranking objectives for the Flipped Fair DirectRanker and

the Adversarial Fair DirectRanker are the same (cfr. Equations[5.5]and [5.8).
Here, As is simply defined as I, ~,.

5.2.4 Experiments and Results

In the following we evaluate our models on ranking datasets commonly
used in the fairness literature. To encourage fairness in the model’s deci-
sions, we employ the aforementioned two different mechanisms (Sectionsm
and , which we evaluate separately for relevance and fairness by using

standard metrics. We also show results for models which include both the
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mechanisms. For the relevance task, we use the commonly used nDCGQk
and the AUROC, referred to here as AUC. The fairness of the models is
evaluated via the rND metric (Section and explicitly by the accuracy
obtained when predicting the sensitive attribute from the representations
they learn. We also report the group-dependent pairwise accuracies (Section
[3.1.2), which have been recently developed [Nar+20]. We explored a number
of hyperparameter combinations, which we report in Table 5.1. Our evalua-
tions are twofold, as we assess both the ranking models and their eztracted
representations, i.e. the features learned by the feature extraction layers.
This can be done by training a supervised model on the aforementioned rep-
resentations. This is a standard way to evaluate fair classifiers (see e.g. Zemel
et al. [Zem+13] and Section and to understand how much information
about s has been removed by the model, as high values for fairness can also
be achieved by a weak ranker taking random or quasi-random decisions from
biased data. We transpose this setup to the fair ranking paradigm by train-
ing both linear and non-linear classifiers and rankers (logistic regression and
random forest models, respectively). We then evaluate their invariance to
the sensitive attribute and the fairness of the ranked outputs. As mentioned
previously, this experimental setup can also simulate a “separations of con-
cerns” regulatory scenario [MOW17|. In this setting, users intending to train
models which directly impact individuals only have access to representations
where information about sensitive data has been purged. This enables any
downstream model to be fair by design, but poses the additional challenge

of having to remove information from the data.
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Relevance Metrics

In the field of learning to rank, a commonly used measure to evaluate the
performance of a model is the normalized discounted cumulative gain of top-
k documents retrieved (NDCG@Fk). This metric is based on the discounted

cumulative gain of top-k documents (DCGQk):

k

or(di) _ 1
DCGQk = Z
=1

logg(z—'+1) ) (5.10)
where dy, ds, ..., d, is the list of documents sorted by the model with respect to
a single query and r(d;) is the relevance label of document d;. The NDCGQk
can be computed by dividing the DCG@QF by the ideal (maximum) discounted
cumulative gain of top-k documents retrieved (IDCGQk), i.e. the DCGQk
for a perfectly sorted list of documents is defined as NDCG@Qk = LCG9k

IDCG@k -
We report values for NDCG@500.

Fairness Metrics

To evaluate group fairness in the whole output list, we employ the rND
metric introduced by Ke and Stoyanovitch [YS17] and here analyzed in Sec-
tion[3.1.2] As previously mentioned, this metric may be employed to analyze
the disparate treatment in a ranker. The Group-dependent Pairwise accu-
racy has also been employed to instead analyze the disparate mistreatment

of our rankers (see Section [3.1.2]).

Datasets

Our experimental evaluation is focused on datasets commonly employed in
the fairness literature, such as Adult [Koh96], COMPAS [Ang+16|, and Law
Students [ZC19]. We also employed the Wiki Talk Page Comments dataset
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to enable a comparison with a recently developed neural-based constrained
optimization method [Nar+20]. Details on these datasets may be found in
Section[3.3] One thing of note is that previous literature employing the Wiki
Talk Page dataset has employed a convolutional neural network [Nar+20].
Our approach instead is to first preprocess the comments to generate a word
representation by using a pre-trained model [Mik+13]. The obtained repre-

sentation is then fed into our models.

5.2.5 Grid Search

We performed a grid search to find the best hyperparameters and architecture
for our models. As is often observed in the fairness literature, removing
information about the sensitive attribute often leads to decreased accuracy
or relevance of the model. The same phenomenon has been observed on
representations extracted from fair neural models |[Lou+15; (CEL20]. To
the end of obtaining models and representations which are both fair and
relevant, we employed a metric which combines fairness and relevance for
both the models and the representations extracted from them. Relevance
and fairness were weighted equally. We split all the datasets with a 60,/20/20
train/validation/test ratio. We then selected the models having the highest
value for our metric on the validation set and in the following report their

performance on the test set. The hyperparameter set we optimized may be

found in Table B.11

Furthermore, we tested models that had a noise module as the first layer of
their architecture. For an implementation of the models and the experimental

setup, see hitps://zenodo.orq/record/3889006.
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Table 5.1: Overview of the hyperparameters included in the grid search for
the fair ranking strategy

parameter values

activation function tanh

#layers of nn 2

#neurons per layer in nn; 5, 10, 20, ..., 100
#layers of nnyias, bias, 2

#neurons per layer in nnpias, /ias, 2, 10, 20, ..., 50
training steps 0.5k, 1k, 1.5k, ..., 10k
A 0.1, 1, 2, 5, 10, 100

5.2.6 Experiments Results

In this section we present the experimental results. First, we look at the re-
sults for the different rankers on various datasets. Furthermore, we compare
the results of the external rankers and classifiers trained on the representa-
tions extracted by the same models. On the Wik: dataset, we also report
the AUC and the GPA metrics to enable a comparison to related work that
phrases fairness definitions as constrained optimization problems [Nar+20]
(Con. Opti. in the figures.).

The comparison methods on all other datasets include: a fair listwise
ranking model [ZC19] (DELTR) that we also augmented with a noise mod-
ule |CEL20] (DELTR n.), a debiasing neural classifier |Gan+16; |(CEL20]
(Clas and Clas n. if including a noise module), and an “unfair” baseline
(Base.), which is the base DirectRanker model with v = 0. Models employ-
ing the adversarial mechanism of Section [5.2.2] are included with the name
“ADV DR”, while the ones which include the “fair flipping” mechanism of
Section [5.2.3] are named “FFDR”. We also employed a model that combines
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both the fairness mechanisms introduced in this work (ADV FFDR, ADV
FFDR n.). These models use both the loss functions introduced in Sec-
tions [£.2.2] and £.2.3

Model results

In the following we will discuss our results as far as the relevance (nDCG or
AUC) and fairness (rND, Section [3.1.2] or GPA, Section of the models
themselves are concerned. These results can be found in Figs. 3 through
5. Note that for ease of reading, the rND and GPA metric is reported as
1-rND and 1-GPA, respectively. In all the figures. we plot the optimal line
representing the model which finds the best trade-off, i.e. the smallest value
of [(1,1) — (1 — m,n)||; with (m,n) € {(tfNDnDCG),(GPA,AUC)}. The
line for the comparison models is drawn dashed, while the one for all models
(including ours) is dotted. For all datasets, we find that members of the
proposed method family push the trade-off closer to the best possible model
regarding both of the considered fairness metrics.

While no single model is able to outperform the comparisons on both
nDCG and rND/GPA, our models are able to find strong trade-offs between
relevance and fairness in all employed datasets. Overall, we found that mod-
els including the Adversarial fairness mechanism (ADV DR, ADV FFDR)
performed the best. On Adult (Figs. 5.10(a)| and [5.10(b)), the ADV DR

model is just as fair as DELTR, while also producing rankings which are

slightly more relevant. On COMPAS (Figs. |5.10(c)| and [5.10(d)|), our ADV

DR model produces rankings which are competitive in fairness with respect
to DELTR n. and the Debias Classifier. However, the output list has higher
nDCG. The law dataset with gender as a sensitive attribute (Figs.
and provides similar insights, where, however, our best performing
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Figure 5.10: Results for the ADULT and COMPAS datasets for the ranker
outputs. Models marked with “n.” such as ADV DR n. included a noise
module in their architecture. The lines represent balanced fairness/relevance
trade-offs. The dashed line represents all points with equal trade-off as the
best performing comparison model, while the dotted line also takes into con-

sideration the models we contribute.
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Figure 5.11: Results for the Law Students datasets for the ranker outputs.

Models marked with “n.”

such as ADV DR n. included a noise module in

their architecture. The lines represent balanced fairness/relevance trade-offs.

The dashed line represents all points with equal trade-off as the best perform-

ing comparison model, while the dotted line also takes into consideration the

models we contribute.

model employed both the mechanisms from this paper (ADV FF DR). Once

again, the Debias Classifier found rankings which are fair but at the cost of
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slightly lowered relevance, possibly as an effect of not employing a specialized
ranking loss. When considering race as the sensitive attribute (Figs.
and , the ADV DR n. is able to retrieve the fairest rankings, while
still being competitive on nDCG.

When considering the AUC/GPA trade-off on the Wiki dataset (Fig.[5.12(c))),
ADV DR and FFDR have an identical performance, which is, however, sur-
passed by the constrained optimization model. As for the nDCG/rND trade-
off (Fig. , the ADV DR n. is once again able to find rankings which
compare favorably to the others in terms of fairness, however, also having
severely reduced nDCG. On this dataset, the ADV FFDR n. struck an im-
pressive trade-off, which is about as fair as the fairest methods on the dataset
(DELTR, Clas.), while also having visibly higher nDCG. Similar observations
can be made in the case of the nDCG/GPA tradeoff (Figure[5.12(b)]). In gen-
eral, it is worthwhile to note how the DELTR model obtained fairer rankings
on two of the datasets (COMPAS, law-race) when also employing a noise

module.

Representation results

We report results for external rankers and classifiers which have been trained
on representations extracted from the employed models in Table We
trained both linear (logistic regression) and non-linear (random forest) mod-
els and report three different metrics. To evaluate the invariance of the
representation with respect to the sensitive attribute, we report classifier ac-
curacy as the absolute distance from random guess (the majority class ratio
in the dataset), which is shown as ADRG in Table [5.2] Similar analyses are
common in fair classification [CEL20; Xie+17; Lou+15]. We transfer this

analysis to the fair ranking paradigm by training rankers on the aforemen-
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Table 5.2: Performance of the representations rankers for all models on dif-
ferent fair datasets. The metrics employed are, from left to right, absolute
difference to random guess, 1-rND, and the NDCG@500. Values are marked
bold if they are the highest ones of the metric. Models marked with n.

employed a noise module in their first layer.

COMPAS Law-gender Adult
Models ADRG 1-r'NDnDCG ADRG 1-rNDnDCG ADRG 1-rNDnDCG
ADV DR n. 0.03 095 0.69 0.04 093 1.00 0.13 093 0.85
ADV DR 0.02 087 048 0.04 092 0.77 0.01 095 0.68

ADV FFDR n. 0.03 0.95 0.63 0.04 087 0.88 0.01 0.98 0.75
ADV FFDR 0.03 086 056 004 096 092 0.01 095 0.71

FFDR n. 0.07 088 0.66 0.04 092 081 0.01 095 0.77
FFDR 0.03 0.96 035 0.07 095 089 0.01 096 0.73
DELTR n. 0.03 095 0.72 0.03 092 098 0.04 090 0.83
DELTR 0.01 090 0.35 0.02 094 099 0.01 095 0.73
Clas. n. 0.04 086 045 0.04 091 097 0.01 0.98 0.56
Clas. 0.04 090 040 0.04 093 095 0.01 091 0.68
Base. 0.02 0.77 030 0.05 0.97 093 0.01 095 0.71
Law-race Wiki

Models ADRG 1-t'NDnDCG ADRG 1-tfNDnDCG

ADV DR n. 0.01 092 0.89 0.01 0.93 0.58

ADV DR 0.03 090 0.87 0.00 094 0.51

ADV FFDR n. 0.06 0.95 0.95 0.01 0.93 0.17
ADV FFDR  0.01 086 0.79 0.00 0.92 0.04

FFDR n. 0.01 094 1.00 0.00 0.94 0.06
FFDR 0.06 0.90 098 0.00 0.90 0.08
DELTR n. 0.02 0.95 0.81 0.00 0.95 0.12
DELTR 0.03 0.82 089 0.00 0.89 0.55
Clas. n. 0.03 091 0.72 040 0.93 0.50
Clas. 020 093 068 0.02 091 0.55

Base. 0.01 090 094 0.00 092 0.22
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Figure 5.12: Results for the Wiki datasets for the rankers. Models marked
with n. included a noise conditioning layer. In Fig. the values for
Con. Opti. are taken from the original publication . The lines
represent balanced fairness/relevance trade-offs. The dashed line represents
all points with equal trade-off as the best performing comparison model,

while the dotted line also takes into consideration the models we contribute.

tioned representations. Therefore, we report the nDCG and 1-rND values

for these rankers. We report the most unfair (ADRG, 1-rND) and the most
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relevant (nDCG) values for the representations extracted from each model.
Experiments on the extracted representations confirm the insights derived
from the model analysis, where models employing the Adversarial mechanism
introduced were the best performing. On Adult, ADV DR and ADV FFDR
are once again strong performers in all metrics, invariance included. ADV DR
n. is a strong performer on COMPAS, where however DELTR n. is able to
achieve better nDCG results. On law-gender ADV DR n. and ADV FF DR
obtain impressive results on nDCG and rND, respectively, while still having
solid performance. When instead using race as the sensitive attribute, ADV
FF DR n. learns representations which have the lowest rND value, while FF
DR n. displays the best nDCG with a very minor loss in tND. On Wiki, the
DELTR n. model performs the best on the rND metric, however, computing
outputs which are hard to sort in a relevant way. The ADV DR n. model,
in comparison, has the highest value for nDCG and competitive values for

rND.

5.3 Towards Interpretable Fair Representa-

tion Learning

In the previous sections, we have seen how to leverage an invariant repre-
sentation learning algorithm for fairness. While the contributions presented
so far can learn fair models, they still have an issue on terms of opacity.
That is, it is hard to understand why a particular decision has been made.
More in general, these methods project the original data space X into a la-
tent space Z whose dimensions are incomprehensible to humans, as they are
non-linear combinations of the original features. This is a noteworthy prob-

lem especially in the context of the “right to an explanation” as required in
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the EU by the GDPR, Recital 71. Therefore, these methodologies might be

inapplicable in the real world.

In this context, in this section I will present a new fair representation
learning framework which learns feature corrections instead of an entirely
new space of opaque parameters. This methodology has been published as a
workshop paper at the International Conference for Learning Representations
2021. In practice, this is akin to a pre-processing technique which changes
the original features so to balance them between individuals belonging to dif-
ferent groups. This guarantees a “right to an explanation” in the sense that
it is always possible to extract the “fair correction” that has been applied
to the data belonging to each individual. Furthermore, as the correction is
computed via neural networks, our framework still enjoys all the benefits of
the universal approximation theorems (see |Cyb89]) and may therefore com-
pute any debiasing function. This framework is flexible, as it imposes only
architectural constraints on the neural network without impacting the train-
ing objective: therefore, all neural debiasing methodologies may be extended

so to belong in the framework.

Commonly, the learning of fair representations is achieved by learning a
new feature space Z starting from the input space X. To this end, a param-
eterized function fy(x) is trained on the data and some debiasing component
which looks at the sensitive data s is included. After training, debiased data
is available by simply applying the learned function z = fy(x). Any off-the-
shelf model can then be employed on the debiased vectors. Various authors

have investigated techniques based on different base algorithms.

The issue with the aforementioned strategy is one of interpretability.
While it is possible to guarantee invariance to the sensitive attribute — with

much effort — by training classifiers on the debiased data to predict the sen-
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sitive attribute, it is unknown what each of the dimensions of Z represent.
Depending on the relevant legislation, this can severely limit the applicabil-
ity of fair representation learning techniques in industry. Our proposal is to
mitigate this issue by instead learning fair corrections for each of the dimen-
sions in X'. Fair corrections are then added to the original vectors so that
the semantics of the algorithm are as clear as possible. For each feature, an
individual will have a clear penality or bonus depending on the sign of the
correction. Thus, we propose to learn the latent feature space Z by learning

fair corrections w: w = fy(x) and z = w + x.

It is very practical to modify existing neural network architectures so
that they can belong in the aforementioned framework. While there are some
architectural constraints that have to be enforced, the learning objectives and
training algorithms may be left unchanged. The main restriction is that only
“autoencoder-shaped” architectures may belong in our framework. Plainly
put, the depth of the network is still a free parameter, just as the number of
neurons in each hidden layer. However, to make interpretability possible, the
last layer in the network must have the same number of neurons as there are
features in the dataset. In a regular autoencoder architecture, this makes it
possible to train the network with a “reconstruction loss” which aims for the
minimization of the difference between the original input x and the output
& = f(x), where f is a neural network architecture. This is not necessarily
the case in our framework. We also add a parameter-less “sum layer” which
adds the output of the network to its input, the original features. Another
way to think about the required architecture under our framework is as a
skip-connection in the fashion of ResNets ([He+16]) between the input and
the reconstruction layer (see Figure .

Constraining the architecture in the aforementioned way has the effect
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Figure 5.13: A gradient reversal-based neural network constrained for in-

w>

terpretability so to belong in our interpretable framework. The vector w
matches in size with z, and can then be summed with the original represen-
tation z and analyzed for interpretability. This architectural constraint can

be applied to other neural architectures.

of making it possible to interpret the neural activations of the last layer in
feature space. As mentioned above, our framework is flexible in the sense
that many representation learning algorithms can be constrained so to enjoy
interpretability properties. To provide a running example, we start from the
debiasing models based on the Gradient Reversal Layer of [Gan+16| origi-
nally introduced in the domain adaptation context and then employed in fair-
ness by various authors (e.g. [MOW17} |Xie+17]). The debiasing effect here
is enforced by training a subnetwork f7 (z) to predict the sensitive attribute
and inverting its gradient when backpropagating it through the main network
f(z). Another sub-network learns to predict § = fj (2). Both networks are
connected to a main “feature extractor” z = fy,(x). The two models are
pitted against one another in extracting useful information for utility pur-
poses (estimating p(y | Z)) and removing information about s. This strategy
is similar to the one we employed in fair classification (Section and fair
ranking (Section . No modification is needed to the learning algorithm,
while the architecture has to be restricted so that the length of the & vector
is the same as the original features . One concerning factor is whether the

neural activations can really be interpreted in feature space, as features can
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take arbitrary values or be non-continuous (e.g. categorical). We circumvent
this issue by coupling the commonly employed feature normalization step
and the activation functions of the last neural layer. More specifically, the
two functions must map to two coherent intervals of values. As an example,
employing standard scaling (feature mean is normalized to 0, standard devia-
tion is normalized to 1) will require an hyperbolic tangent activation function
in the last layer. The model will then be enabled in learning a negative or
positive correction depending on the sign of the neural activation. It is still
possible to use sigmoid activations when the features are normalized in [0, 1]
by means of a min-max normalization (lowest value for the feature is 0 and
highest is 1). Summing up, the debiasing architecture of Ganin et al. can be

modified via the following steps:

1. Normalize the original input features x4, via some normalization func-

tion & = ¢(Trqw)-

2. Set up the neural architecture so that the length of w = fy,(z) is equal
to the length of x.

3. Add a skip-connection between the input and the reconstruction layer.

After training, the corrected vectors z = fy,(z) + = and the correction
vectors w = fy,(z) can be interpreted in feature space by computing the
inverse normalization Z,4, = ¢~ (2) and Wyqw = g~ (w).

Other neural algorithms can be modified similarly so to belong in the
interpretable fair framework, and similar steps can be applied to e.g. the
Variational Fair Autoencoder of Louizos et al. [Lou+15] and the variational
bound-based objective of Moyer et al. |[Moy+18]. In our experiments, we

will however focus on the state-of-the-art fair ranking model introduced in
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the previous Chapter [Cer+20], which is based on the gradient reversal
layer by Ganin et al. [Gan+16].

5.3.1 Experiment and Results

As explained in the previous Section, to constrain our state of the art fair
ranker for interpretability it is sufficient to constrain its architecture to ex-
tract features which have the same dimensionality as X. After adding the
skip-connection between the first layer and the last feature extraction layer,
no other changes are needed to the training algorithm, which we leave un-
changed from the original work. Therefore, we train the model employing
SGD and select hyperparameters (the number of hidden layers; the fairness-
relevance parameter 7; the learning rate for SGD) employing a nested cross-
validation with & = 3. We relied on the Bayesian Optimization implemen-
tation provided by Weights & Biases (|Bie20]) and stopped after 200 model
fits. To evaluate the models, we computed their nDCG, rND (a disparate
impact fairness metric defined by Ke et al. [YS17]) and GPA (a disparate
mistreatment metric defined by Narasimhan et al. [Nar+20]) in Table 1. We
selected the best models with the assumption that each metric has equal
importance.

We focus our discussion on the COMPAS dataset, one of the most pop-
ular datasets in fair classification and ranking. We employ, as widely done
in the literature, the 10 COMPAS classes as relevance classes for our rank-
ing algorithm. On top of evaluating relevance (via nDCG) and fairness (via
rND as introduced by [YS17]), we analyze the correction vectors focusing on
the “priors_count”. This feature represents the number of previous crimes
committed by an individual, and investigating how a fair model changes

this feature over the two different groups available (white and black people)
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Fair DR Interpretable Fair DR
1-rND 0.841411 + 0.073 | 0.822243 4+ 0.065
COMPAS | 1-GPA 0.927383 £ 0.034 | 0.939985 + 0.036
nDCG@500 | 0.474789 £ 0.085 | 0.526513 £ 0.067
1-rnd 0.813426 + 0.004 | 0.812811 4+ 0.023
Bank 1-GPA 0.918763 £ 0.002 | 0.925992 + 0.008
nDCG@500 | 0.671236 £ 0.005 | 0.652672 £ 0.014

Table 5.3: Results for the experimentation performed on the COMPAS and

Bank datasets. For all the metrics, higher is better. We observe that the per-
formance of the Fair DirectRanker (Fair DR) introduced here in Section [5.2.2)

is not impacted meaningfully when constrained for interpretability.

Black

White

Avg. Difference

priors_count, original

2.406494

1.578894

0.8276

priors_count, corrected

2.211587 (-8.1%)

1.486147 (-5.8%)

0.72544 (-12.4%)

Table 5.4: Average values for the priors_count feature in the COMPAS

dataset over the two ethnicity groups.

i.e. black individuals receive a stronger negative correction.

We observe disparate corrections,
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can provide insights into the model’s reasoning. We provide the average
correction value for our best model in Table [5.3.1} In the table, we observe
that making the two groups more similar translates into disparate corrections
which impact black people more than white. Here, one could make the ar-
gument that changing the attributes of individuals is equivalent to rewriting
their personal history, and could be seen as unlawful. This objection mer-
its attention, and needs to be investigated further. At this time, we would
posit that this issue is common to all fair representation learning algorithms,
with the difference that the correction is computed by projecting individuals’
data into non-readable latent dimensions. The benefit of our framework is
that it is possible to investigate this transformation, and possibly refuse the

decisions if they are seen as problematic.

5.4 Invariant-Shared Feature Spaces with Nor-

malizing Flows

A common thread between all the techniques presented so far is one of infor-
mation removal. That is, the objective of fairness and invariance is pursued
by means of gradient reversal. As discussed in the previous sections, this con-
cept, when combined with other information removal techniques, can provide
a fairness constraint on the learning of neural network models.

In this Section, I present a contribution which leverages normalizing flows,
an invertible neural network-like model that can map an arbitrary data dis-
tribution to a known one for which density estimates are trivial to compute
(e.g., a Gaussian). This methodology has been published as a workshop
paper at the International Conference for Learning Representations 2021.

Our fair representation algorithm learns two models, one on all the data
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available (G4 trained on x) and one on the data coming from a single “pivot”
group (Gp trained on x;,); furthermore, the latent feature space Z of the two
models is constrained to be the same. By leveraging the invertibility of
normalizing flows, our algorithm first transforms all the data into the latent
feature space Z; then, it uses the inverse transformation G;l (z) to obtain
shared representations. In plain words, any individual belonging to a group
G; may be “translated” into the feature space of pivot group G),. The base
concept of this approach is therefore to learn a shared feature space between

groups.

5.4.1 Normalizing Flows

For transforming data to some latent space, normalizing flows can be used.
The learned transformation is defined as h : Z — X, where X is the original
data and Z the latent space. Ome property of this mapping is that it is
invertible. As formulated by |Gro+19] one can use the change-of-variables
formula to relate px and pz, the marginal densities of X and Z, respectively,

by:

oh=1(x)
oxT |’

Recent work has shown that such transformations can be done by deep

px(z) = pz(h~"(z)) ‘det

(5.11)

neural networks, for example, NICE ([DKB15a]) and Autoregressive Flows
([Kin+16]). Furthermore it was shown that evaluating likelihoods via the
change-of-variables formula can be done efficiently by employing an architec-
ture based on invertible coupling layers ([DSB17]). The aforementioned ar-
chitecture is named RealNVP and is the base building block for our method-

ology.
In domain adaptation, the currently developed AlignFlow by |Gro+19],
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which is a latent variable generative framework that uses normalizing flows
([RM16; DKB15aj; [DSB17]), is used to transform samples from one domain
to another. The data from each domain was modeled with an invertible
generative model having a single latent space over all domains. In the context
of domain adaptation, the domain class is also known during testing, which
is not the case for fairness. Nevertheless, the general idea of training two

Real NVP models is used for AlignFlow as well for the model proposed here.

5.4.2 The Fair Normalizing Flow Framework

In this section we describe in detail our algorithm and how it can be employed
to obtain fair representations. We define as X the input feature space and
the data vectors as x. In group fairness, one also has at least one variable
s for each data vector, representing a piece of sensitive information such as
ethnicity, gender or age. This allows for the definition of a number of groups
G1...G|y, one for each possible value of s. Lastly, labels y, representing
either categorical (classification) or ordinal (ranking) information may be
available in a supervised setting, which is usually the case in fair representa-
tion learning. The basic building block of our contribution is the normalizing
flow model. A normalizing flow model can learn a bijection f : X — Z, where
Z is a latent feature space which may be sampled easily, such as an isotropic
Gaussian distribution. Then, it is possible to estimate the density px via f

and the change-of-variables formula:

of
det 8?

px(x) = pz(f(x)) : (5.12)

Our approach is to first select a pivot group G, out of the |s| avail-

able ones. Then, a normalizing flow model f, is trained to learn a bijec-
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tion Xg, «— Z, where we denote X, as the feature space for group G,.
Then, another normalizing flow model f,; is trained independently to learn
a bijection between the feature space X to the same known distribution Z:
fau : X +— Z. This makes it possible to relate the three densities py, Pxa,

and pyz to one another via the change-of-variable formula:

af,
Pxa, (zp) = pz(fp(xp)) |det a_;: ) (5.13)
'Tp
Ofa
px () = pz(fau(z)) |det af; = (5.14)
Therefore, one may employ the two models to build a bijection chain

—1
x Iz <pr X,, allowing for the transformation of vectors x € X into

vectors x, € Xg,. While a bijection cannot remove information about s, as
mutual information is in general invariant to invertible transformations, the
procedure is helpful in practice by obfuscating the difference between G, and
Gau, as shown in Section [5.4.3

As commonly done in the normalization flow literature, we train our
models with a log likelihood loss (see, e.g., [DKB15b| and [PPM17]). We
rely on the “coupling layers” architecture, which guarantees invertibility, as
introduced by [DSB17].

To ensure that the new representations can still be used to predict the
target labels y, a classification or ranking model can be trained on top of
them. We included a loss evaluated on the target label which is propagated
through both normalizing flow models. This leads to a two-fold loss function,
which can be regulated by the + hyperparameter to address the relevance-

fairness trade-off:

L= Py(pr + Lfall) + Ly' (5'15)



92 CHAPTER 5. FAIRNESS WITH NEURAL NETWORKS

Here, L, can be any loss function which can be evaluated on y. The gradients
of Ly, and Ly, are only applied to f, and fu, respectively, while the ones
of L, are applied to f,, fu and the model predicting the target labels y.
To give a further intuition about this model, we show its performance on
a simple toy dataset in Figure In this dataset, we define two different
gaussian distributions, each one representing a group. The mean of the two
gaussians is very different, and any clustering algorithm would have no issue
finding information about the sensitive attribute here. By employing our
methodology, it is apparent that the point cloud for s = 0 is mapped onto
the other. The heavy overlap between the two makes it difficult to distinguish

between the groups.

12 4 s=0

Feature 1
Feature 1

4 0 -
2 4 ouble R
§ -3 -1
o 4 58
-2 ] 2 4 6 8 10 12 -2 —1 0 1 2 3
Feature 0 Feature 0
(a) Original toy data (b) Toy data after applying the framework

Figure 5.14: In[5.14(a)| the generated toy data is shown where the different
groups are displayed with blue and red. In|5.14(b)| the transformed toy data

is shown using the FairNF algorithm.

5.4.3 Experiments and Results

To overcome statistical fluctuations during the experiments, we split the

datasets into 3 internal and 3 external folds. On the 3 internal folds, a
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Bayesian grid search, optimizing the fairness measure, is used to find the

best hyperparameter setting. The best setting is then evaluated on the 3

external folds.

Model  Dataset 1-rND 1-GPA NDCG@500

FairNF Compas 0.838 4+ 0.059 0.934 + 0.030 0.474 4+ 0.115
FairNF  Adult 0.922 £ 0.009 0.929 £ 0.025 0.460 £ 0.054
FairNF  Bank 0.859 +£ 0.017 0.892 £+ 0.016 0.519 + 0.011
AdvDR Compas 0.864 4+ 0.061 0.911 + 0.047 0.424 + 0.033
AdvDR  Adult 0.884 + 0.036 0.975 £ 0.016 0.647 + 0.087
AdvDR Bank 0.778 = 0.106  0.735 £ 0.036 0.521 £ 0.086
AdvCls Compas 0.823 + 0.057 0.917 £+ 0.032 0.542 + 0.055
AdvCls  Adult 0.929 + 0.007 0.901 £ 0.021 0.629 + 0.008
AdvCls Bank 0.918 + 0.051 0.972 £ 0.026 0.198 + 0.176
DELTR Compas 0.825 + 0.072 0.926 + 0.007 0.438 + 0.202
DELTR Adult 0.744 + 0.087 0.742 £+ 0.048 0.142 4+ 0.119
DELTR Bank 0.823 £ 0.057 0.917 £ 0.032 0.542 £ 0.055

Table 5.5: Results for different fairness datasets. The used fairness metrices
are 1-rND and 1-GPA, as introduced previously, and the commonly used

relevance metric NDCG@k where we set & = 500.

We compare our model, which we call FairNF in Table |5.5, with the Fair
Adversarial DirectRanker (AdvDR in the rest of this section), the Debias-
ing Classifier introduced in Section (AdvCls) and a fair listwise ranker
(DELTR [ZC19)).

Since it is from a theoretical point (to the best of our knowledge) not clear
how exactly a Real NVP model is treating non-continuous discrete features,

we designed two different experiments whether the model is able to be trained
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on discrete features. For the first experiment done on the Compas dataset,
we included discrete and continuous features. For the second experiment
done on the Adult (see [Koh96|) and Bank dataset (see [MCR14a]) we only
used continuous features.

For our implementation of the models and the experimental setup, see https:
// zenodo. org/ record/ 4566895.

In Table 5.5 the results for different fairness datasets are shown. FairNF
is the proposed algorithm explained in Section In terms of the two
fairness measures, this algorithm is outperforming the other approaches in
at least one measure over all datasets. The only algorithm that is better
than FairNF in terms of fairness is AdvCls on the Bank dataset. However,
on this dataset the algorithm is performing poorly on NDCG@500, while
FairNF has a stable performance. In terms of relevance, FairNF and AdvDR
have similar performance on the Compas and Bank dataset, while AdvDR is
better on the Adult one. The other two algorithms may have weaker results
on relevance (AdvCls on Bank; DELTR on Adult). Looking at the question
whether the model is able to be trained on continuous features only, we
cannot see any significant performance difference comparing the experiments

done on Compas compared with the ones done on Adult and Bank.


https://zenodo.org/record/4566895
https://zenodo.org/record/4566895

Chapter 6

Conclusions

In this thesis I have explored the concept of invariance in neural network
representations and how it relates to fairness. A new building block for
architectures which obtain invariant representations has been developed, the
noise module (Section ; this module is part of architectures which display
state of the art results in fair classification (Section and fair ranking
(Section . I have also proposed an adaptation of neural architectures
for invariance and fairness so that they are also interpretable (Section [5.3)).
Lastly, I have presented an invertible architecture which can map data points

from different groups into a single one (Section [5.4)).

Of course, the challenges in fair invariant learning are still plentiful. Per-
haps the clearest line of research here is developing techniques to relate the
training objectives of neural networks to different fairness definitions. While
in practice the adversarial loss of Ganin et al. |Gan+16| can generalize
to different fairness definitions via meta-optimization (i.e. hyperparameter
selection), optimizing different definitions directly would be an important
direction to pursue. The issue is that metrics for e.g. disparate impact and

mistreatment are not differentiable. In fair ranking, a possible workaround

95
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would be to borrow the pseudo-gradient concept as introduced by Burges et
al. in their LambdaRank model [BRL07|. LambdaRank estimates gradients
as the change in a non-differentiable relevance measure after swapping the
position of two documents in a query. An extension of this idea to fair-
ness metrics would provide a direct way to optimize for disparate impact or
disparate mistreatment depending on the application requirements.

Interpretability in invariant representation learning is also a concept that
needs to be explored further. While the idea of learning feature corrections
is certainly attractive, the current framework “breaks” integer-valued fea-
tures as it learns a real-valued correction. As an example, an individual
with 3 previous crimes in the COMPAS dataset might be corrected to have
committed 2.8 crimes in the past. This has no clear real-world meaning.
One line of investigation here is exploring threshold activations as in Rosen-
blatt’s Perceptron. Optimization via gradient descent is challenging, as the
step function is not continuous; however, some authors (see Bengio et al.
[BLC13|, citing a Hinton lecture) propose to treat it as if it were a linear
function during the backward pass.

More in general, fairness in neural networks remains a critical field of
research. As non-discrimination and transparency in ML models may be
required by law, the applicability of unconstrained models might become
more limited in practice. While invariance in neural representations is only
one possible way to investigate this issue, it may play a central role in the

future of neural network models.
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