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THE QUATERNIONIC CALABI CONJECTURE ON ABELIAN

HYPERCOMPLEX NILMANIFOLDS VIEWED AS TORI FIBRATIONS

GIOVANNI GENTILI AND LUIGI VEZZONI

Abstract. We study the quaternionic Calabi-Yau problem in HKT geometry, introduced by
Alesker and Verbitsky in [5], on 8-dimensional 2-step nilmanifolds M with an Abelian hyper-
complex structure. We show that on these manifolds the quaternionic Monge-Ampère equation
can always be solved for any data that is invariant under the action of a 3-torus.

1. Introduction

Since Yau proved the Calabi-Yau conjecture in [28], other Calabi-Yau-type problems have
been introduced in various geometric contexts.

In the present paper we focus on a generalization of the Calabi-Yau problem to HKT geometry,
which was introduced by Alesker and Verbitsky in [5].

HyperKähler manifolds with torsion (HKT) were introduced by Howe and Papadopoulos in
[18] in the framework known as ‘geometries with torsion’. In a nutshell, they can be thought of
as hypercomplex manifolds admitting a special compatible Riemannian metric.

A hypercomplex manifold is a 4n-dimensional real manifold M equipped with a triple of
complex structures J1, J2, J3 satisfying the quaternionic relations

(1) J1J2 = −J2J1 = J3 .

If g is a Riemannian metric on M that is compatible with J1, J2, J3, then (M,J1, J2, J3, g) is
usually called a hyperHermitian manifold. According to the classical definition, a hyperHermi-
tian manifold (M,J1, J2, J3, g) is said HKT if there exists an affine connection ∇ on M which
preserves the hyperHermitian structure and has totally skew-symmetric torsion. If such ∇ ex-
ists, it is necessarily unique. The existence of ∇ can be characterized in terms of the differential
equation

∂Ω = 0 ,

where ∂ is taken with respect to J1 ,

Ω = ωJ2 + iωJ3 ,

and
ωJr(·, ·) = g(Jr·, ·) .

In this context Ω is called the HKT form of the HKT structure, and one may think of it as the
analogue of the fundamental form in Kähler geometry. The hypercomplex condition (1) implies
that Ω is of type (2, 0) with respect to J1, and it satisfies

Ω(J2·, J2·) = Ω̄

and
Ω(X,J2X) > 0 for every nowhere vanishing real vector field X on M .
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Moreover, Ω determines the metric g via the relation

g(X,Y ) = ReΩ(X,J2Y ) , for any real vector fields X,Y on M .

An HKT structure can then be defined alternatively, as a hypercomplex structure together with
an HKT form.

In [5] the authors introduced the following Calabi-Yau-type problem in HKT geometry. Let
(M,J1, J2, J3,Ω) be a compact 4n-dimensional HKT manifold for which the canonical bundle of
(M,J1) is holomorphically trivial, and suppose F ∈ C∞(M) is a function satisfying

(2)

∫

M
(eF − 1)Ωn ∧ Θ̄ = 0 ,

where Θ is a non-vanishing holomorphic (2n, 0)-form on (M,J1). The quaternionic Calabi-Yau

problem consists in finding an HKT form Ω̃ on (M,J1, J2, J3) such that

(3) Ω̃n = eFΩn .

Just like the classical version, the quaternionic Calabi-Yau problem, too, can be rewritten in the
form of a Monge-Ampère equation. Indeed, results in [6] guarantee the unknown HKT form Ω̃
can be written in terms of an HKT potential ϕ ∈ C∞(M) as follows

Ω̃ = Ω + ∂∂J2ϕ .

Here ∂J2 is the so-called twisted Dolbeault operator

∂J2 = −J−1
2 ∂̄J2

and the complex structure J2 acts on k-forms α by

J2α(X1, . . . ,Xk) = (−1)kα(J2X1, . . . , J2Xk) .

Equation (3) reads, in terms of ϕ and F ,

(4) (Ω + ∂∂J2ϕ)
n = eFΩn .

It has been conjectured in [5] that the above equation can always be solved under assumption
(2). The authors of the same paper propose the continuity method as a natural approach to
attack the problem, much in the same spirit of Yau’s proof of the Calabi conjecture [28]. The
hard part in this line of thought is to establish a priori estimates. Alesker and Verbitsky [5]
showed the solution is unique up to an additive constant, and proved a C0-estimate. The
latter was later generalized by Alesker-Shelukhin [3], and then by Sroka [19] in a more general
setting. Alesker gave evidence for believing the conjecture in [2], where he proved that the
quaternionic Monge-Ampère equation has solutions if the manifold admits a flat hyperKähler
metric compatible with the underlying hypercomplex structure.

The work of the present paper takes off where [10, 11, 15, 23, 24, 26] stopped. Those articles
studied the symplectic Calabi-Yau conjecture [12, 27] on torus fibrations in the case the problem’s
data admits certain symmetries. In the same spirit, we study the quaternionic Monge-Ampère
equation on compact quotients of 8-dimensional nilpotent Lie groups endowed with an Abelian

HKT structure.
By a result of Dotti and Fino [13] the only non-Abelian 8-dimensional 2-step nilpotent Lie

groups admitting an Abelian hypercomplex structure are

N1 = H1(2) × R
3 , N2 = H2(1) × R

2 , N3 = H3(1)× R ,

where Hi(n) denotes the real (i = 1), complex (i = 2), and quaternionic (i = 3) Heisenberg
group. Each Ni contains a canonical co-compact lattice Γi, and the nilmanifold Mi = Γi\Ni, i.e.
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the quotient of Ni by Γi, inherits the structure of a principal T 3-bundle over a 5-dimensional
torus T 5 and also an HKT structure (J1, J2, J3, g) (see section 2 for details). In view of [8] the
nilmanifolds Mi are not Kählerian, since a compact nilmanifold admits a Kähler metric if and
only if it is a torus.

Moreover, the canonical bundle of (Mi, J1) is holomorphically trivial [7, Theorem 2.7] and Mi

carries a left-invariant holomorphic volume form Θ. Hence it is quite natural to wonder whether
the Alesker-Verbitsky conjecture might hold on these spaces.

Our main result is the following

Theorem 1. The quaternionic Monge-Ampère equation (4) on (Mi, J1, J2, J3, g) can be solved

for every T 3-invariant map F ∈ C∞(Mi) satisfying (2).

Since we are assuming F is invariant under the action of the fibre T 3, it can be regarded as
a smooth function on the base T 5. Furthermore, condition (2) can be written as

(5)

∫

T 5

(eF − 1)dx1 · · · dx5 = 0 .

By imposing the same invariance property on the HKT potential ϕ, we reduce the quaternionic
Monge-Ampère equation on (Mi, J1, J2, J3, g) to

(6) (ϕ11 + ϕ22 + ϕ33 + ϕ44 + 1)(ϕ55 + 1)− ϕ2
15 − ϕ2

25 − ϕ2
35 − ϕ2

45 = eF ,

where ϕrs denotes the second derivative of ϕ in the real coordinates xr, xs ∈ {x1, . . . , x5} on T 5.
Then we prove that equation (6) has a solution ϕ ∈ C∞(T 5) whenever F satisfies (5).

The strategy for proving Theorem 1 goes as follows: in section 3 we prove the C0-estimate
for our equation. Then in section 4 we deduce an a priori C0-estimate for the Laplacian of a
solution to our equation, and in section 5 we achieve the C2,α-estimate by applying a general
result of Alesker [2]. Eventually, we complete the proof in section 6 by applying the continuity
method.

Acknowledgements. The authors are very grateful to Ernesto Buzano, Anna Fino, Alberto
Raffero and Simon Chiossi for many useful conversations.

2. Preliminaries

Let G be an 8-dimensional Lie group with a left-invariant hypercomplex structure (J1, J2, J3)
(every complex structure Ji is left-invariant). Assume that J1 is Abelian, meaning

[J1X,J1Y ] = [X,Y ], for every X,Y ∈ g ,

where g is the Lie algebra of G. Recall that this is equivalent to requiring that the Lie algebra
g
1,0 of left-invariant vector fields of type (1, 0) on (G, J1) is Abelian. It also implies that any

left-invariant (p, 0)-form on (G, J1) is ∂-closed. If g is a left-invariant Riemannian metric on
G compatible with (J1, J2, J3), the hyperHermitian structure (J1, J2, J3, g) is HKT because the
corresponding form Ω is ∂-closed.

As we mentioned in the introduction, by [13] the only 8-dimensional nilpotent, non-Abelian,
Lie groups carrying a left-invariant HKT structure (J1, J2, J3, g) such that every Ji is Abelian
are

N1 = H1(2) × R
3 , N2 = H2(1) × R

2 , N3 = H3(1)× R ,

where
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H1(2) =













1 x1 x4 y1

0 1 0 x3

0 0 1 x2

0 0 0 1













, H2(1) =











1 x1 + ix2 y3 + i y2

0 1 x4 + i x3

0 0 1










,

H3(1) =











1 q h− 1
2qq̄

0 1 −q̄
0 0 1



 | q = x1 + ix4 + jx3 + kx2, h = i y3 + j y2 + k y1






.

Above, x1, . . . , x4, y1, y2, y3 ∈ R and i, j, k are the familiar units of the skew field of quaternions,
which are known to obey the relations

i2 = j2 = k2 = −1 , i j = − j i = k .

Note that each group Ni is diffeomorphic to R
8, and there are global coordinates

N1 = H1(2)x1,...,x4,y1 × R
3
y2,y3,x5 , N2 = H2(1)x1,...,x4,y2,y3 × R

2
y1,x5 ,

N3 = H3(1)x1,...,x4,y1,y2,y3 × Rx5 .

The Lie algebras of the Ni can be characterized in terms of left-invariant frames {e1, . . . , e8}
satisfying the following structure equations:

N1: [e1, e2] = −[e3, e4] = e5, and all other brackets vanish;

N2: [e1, e3] = [e2, e4] = e6, [e1, e4] = −[e2, e3] = e7, and all other brackets vanish;

N3: [e1, e2] = −[e3, e4] = e5, [e1, e3] = [e2, e4] = e6, [e1, e4] = −[e2, e3] = e7, and all other
brackets vanish.

In each case, using the frame {e1, . . . , e8} we can define the left-invariant HKT structure as
consisting of the standard metric

g =
8∑

r=1

er ⊗ er

and the three complex structures (J1, J2, J3) defined by

Jr(e1) = er+1 , Jr(e5) = er+5 , r = 1, 2, 3 .

Let us fix co-compact lattices

Γ1 = Z
3 ×











1 a c
0 1 bt

0 0 1



 | a, b ∈ Z
2, c ∈ Z






⊂ N1 ;

Γ2 = Z
2 ×











1 z u
0 1 w
0 0 1



 | u, z, w ∈ Z+ iZ






⊂ N2 ;

Γ3 = Z×











1 q h− 1
2qq̄

0 1 −q̄
0 0 1



 | q ∈ Z+ iZ+ jZ+ kZ , h ∈ iZ+ jZ+ kZ






⊂ N3 .
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For r = 1, 2, 3 we denote by Mr = Γr\Nr the compact nilmanifold obtained by quotienting
Nr by Γr. The left-invariant quadruple (J1, J2, J3, g) on Nr induces an HKT structure on Mr.
Let {Z1, . . . , Z4} indicate the left-invariant (1, 0)-frame Zr = e2r−1 − iJ1(e2r−1), r = 1, . . . , 4,
and denote by {ζ1, . . . , ζ4} the dual (1, 0)-coframe. Taking in account

∂J2 = −J−1
2 ∂̄J2 ,

we deduce the following identity, holding for every smooth real map ϕ on Mr:

∂∂J2ϕ =∂J2∂̄ϕ = ∂J2
(
Z̄1(ϕ)ζ̄

1 + Z̄2(ϕ)ζ̄
2 + Z̄3(ϕ)ζ̄

3 + Z̄4(ϕ)ζ̄
4
)

=∂
(
Z̄1(ϕ)ζ

2 − Z̄2(ϕ)ζ
1 + Z̄3(ϕ)ζ

4 − Z̄4(ϕ)ζ
3
)

=
(
Z1Z̄1(ϕ) + Z2Z̄2(ϕ)

)
ζ12 +

(
Z3Z̄2(ϕ) − Z1Z̄4(ϕ)

)
ζ13 +

(
Z4Z̄2(ϕ) + Z1Z̄3(ϕ)

)
ζ14

−
(
Z3Z̄1(ϕ) + Z2Z̄4(ϕ)

)
ζ23 +

(
Z2Z̄3(ϕ) − Z4Z̄1(ϕ)

)
ζ24 +

(
Z3Z̄3(ϕ) + Z4Z̄4(ϕ)

)
ζ34 .

Since

Ω = 2(ζ12 + ζ34) ,

it follows that

(Ω + ∂∂J2ϕ)
2 = 2

(
Z1Z̄1(ϕ) + Z2Z̄2(ϕ) + 2

) (
Z3Z̄3(ϕ) + Z4Z̄4(ϕ) + 2

)
ζ1234

− 2
(
Z3Z̄2(ϕ) − Z1Z̄4(ϕ)

) (
Z2Z̄3(ϕ) − Z4Z̄1(ϕ)

)
ζ1234

− 2
(
Z4Z̄2(ϕ) + Z1Z̄3(ϕ)

) (
Z3Z̄1(ϕ) + Z2Z̄4(ϕ)

)
ζ1234 ,

in other words

(7) (Ω + ∂∂J2ϕ)
2 = 2

((
Z1Z̄1(ϕ) + Z2Z̄2(ϕ) + 2

) (
Z3Z̄3(ϕ) + Z4Z̄4(ϕ) + 2

)

−
(
Z3Z̄2(ϕ)− Z1Z̄4(ϕ)

) (
Z2Z̄3(ϕ)− Z4Z̄1(ϕ)

)

−
(
Z4Z̄2(ϕ) + Z1Z̄3(ϕ)

) (
Z3Z̄1(ϕ) + Z2Z̄4(ϕ)

))

ζ1234 .

Furthermore, every manifold Mi is naturally a principal T 3-bundle over T 5 with projection

π : Mi → T 5
x1...x5 .

A smooth function on Mi is invariant under the action of the principal fibre T 3 if and only
if it depends only on the five coordinates {x1, . . . , x5}. What is more, T 3-invariant functions
on Mi are naturally identified with functions on T 5. As mentioned in the introduction, for a
T 3-invariant real map F condition (2) becomes (5). Further assuming that the HKT potential
ϕ is T 3-invariant, equation (4) can be written as (6) on T 5.

Remark. The Lie algebras of the 2-step nilpotent Lie groups Ni all have 4-dimensional centre
z = {e5, e6, e7, e8}. Therefore the nilmanifolds Mi can be regarded in a natural way as principal
T 4-bundles over a torus T 4 if we project onto the first four coordinates {x1, . . . , x4}. From this
point of view, requiring all data to be invariant under the action of the fibre T 4 implies that the
resulting equation can be written as the following Poisson equation on the base T 4

∆ϕ = ϕ11 + ϕ22 + ϕ33 + ϕ44 = eF − 1 .

And this can be solved using standard techniques.

From this point on we shall focus on equation (6). In order to simplify the notation let us set

A = ϕ11 + ϕ22 + ϕ33 + ϕ44 + 1 , B = ϕ55 + 1 .
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Lemma 2. If ϕ ∈ C2(T 5) is a solution to (6), then A > 0, B > 0 and

(8) 0 < 2eF/2 ≤ ∆ϕ+ 2 .

Proof. From equation (6) we infer AB ≥ eF > 0. Hence A and B have the same sign. At a
point p0 where ϕ attains its minimum we must have ϕ55(p0) ≥ 0. This implies B > 0 and then
A > 0. Finally, by using A2 +B2 ≥ 2AB we obtain

(∆ϕ+ 2)2 = (A+B)2 ≥ 4AB ≥ 4eF > 0 .

Taking the square root produces (8). �

Proposition 3. Equation (6) is elliptic. More precisely, if ϕ ∈ C2(T 5) denotes a solution to

(6) then

(9) Aξ25 +B(ξ21 + ξ22 + ξ23 + ξ24)− 2
4∑

i=1

ϕi5ξiξ5 ≥ λ(ϕ)(ξ21 + ξ22 + ξ23 + ξ24 + ξ25)

for every (ξ1, ξ2, ξ3, ξ4, ξ5) ∈ R
5, where

λ(ϕ) =
1

2

(

A+B −
√

(A+B)2 − 4eF
)

.

Proof. The principal symbol of the linearized equation at a solution ϕ equals

Aξ25 +B(ξ21 + ξ22 + ξ23 + ξ24)− 2ϕ15ξ1ξ5 − 2ϕ25ξ2ξ5 − 2ϕ35ξ3ξ5 − 2ϕ45ξ4ξ5

and the corresponding matrix is

P (ϕ) =









B 0 0 0 −ϕ15

0 B 0 0 −ϕ25

0 0 B 0 −ϕ35

0 0 0 B −ϕ45

−ϕ15 −ϕ25 −ϕ35 −ϕ45 A









.

Since, by (6),

det(P (ϕ) − λI) = (B − λ)3
(
(A− λ)(B − λ)− (ϕ2

15 + ϕ2
25 + ϕ2

35 + ϕ2
45)
)

= (B − λ)3
(
λ2 − (A+B)λ+ eF

)
,

the eigenvalues are λ = B and

λ± =
1

2

(

A+B ±
√

(A+B)2 − 4eF
)

.

Now (A+B)2 − 4eF ≥ (A−B)2 = ((A+B)− 2A)2 = ((A+B)− 2B)2, so that

0 < λ− ≤ B ≤ λ+ .

This proves the claim. �

3. C0-estimate

Although the a priori C0-estimate for equation (6) can be deduced from the C0-estimate of
the quaternionic Monge-Ampère equation, as shown in [3, 5, 19], we shall prove this fact using
an argument that is specific to our setup.

Call BR(x0) the open ball in R
N centred at x0 and of radius R > 0. We need to recall the

following results:
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Theorem 4 (Weak Harnack Estimate, Theorem 8.18 in [16]). Consider 1 ≤ p < N/(N − 2),
and q > N , where N > 2 is an integer. For every R > 0 there exists a positive constant

C = C(N,R, p, q) such that

r−N/p‖u‖Lp(B2r(x0)) ≤ C

(

inf
x∈Br(x0)

u(x) + r2−2N/q‖f‖Lq/2(BR(x0))

)

,

for any x0 ∈ R
N , 0 < r < R/4, f ∈ C0(RN ), and any u ∈ C2(RN ) that is non-negative on

BR(x0) and such that ∆u(x) ≤ f(x) for all x ∈ BR(x0).

Theorem 5 (Székelyhidi, [20]). Consider a map u ∈ C2(RN ) and assume there exist a point

x0 ∈ R
N and numbers R > 0 and ε > 0 such that min|x−x0|≤R u(x) = u(x0), and

u(x0) + 2Rε ≤ min
|x−x0|=R

u(x) .

Then

εN ≤ 2N

|BR(0)|

∫

Γε

det(D2u) ,

where

Γε =
{

x ∈ BR(x0) | u(y) ≥ u(x) +∇u(x) · (y − x), ∀y ∈ BR(x0), |∇u(x)| <
ε

2

}

.

Now, let us identify functions on T 5 with functions ϕ : R5 → R that are periodic in each
variable. Denote by Cn(T 5) the Banach space of functions ϕ : T 5 → R with Cn-norm

‖ϕ‖Cn = max
|I|≤n

sup
x∈R5

∣
∣∂Iϕ(x)

∣
∣

where I = {i1, . . . , i5}. We are adopting the multi-index notation ∂I = ∂i11 ∂
i2
2 ∂

i3
3 ∂

i4
4 ∂

i5
5 with

|I| = i1+ i2+ i3+ i4+ i5. For α ∈ (0, 1) we also consider the Banach space Cn,α(T 5) of functions
ϕ ∈ Cn(T 5) with Hölder-continuous derivatives of order n:

‖ϕ‖Cn,α = max{‖ϕ‖Cn , |ϕ|Cn,α} <∞ ,

where

|ϕ|Cn,α = max
|I|=n

sup
x∈R3

sup
0<|h|≤1

∣
∣∂Iϕ(x+ h)− ∂Iϕ(x)

∣
∣

|h|α .

Set

Ck
∗ (T

5) =

{

ϕ ∈ Ck(T 5) |
∫

K
ϕ = 0

}

where

K =

[

−1

2
,
1

2

]5

.

Theorem 6. Assume that F ∈ C0(T 5) satisfies (5). Let ϕ ∈ C2
∗ (T

5) be a solution to (6). Then

there is a positive constant C0, depending on ‖F‖C0 only, such that

(10) ‖ϕ‖C0 ≤ C0 .

Proof. Let x0 ∈ R
5 be a point where ϕ attains its minimum on K. Fix ε > 0 and define

(11) u(x) = ϕ(x)−max
K

ϕ+ 4ε |x− x0|2 .

Then

u(x0) + ε = ϕ(x0)−max
K

ϕ+ ε ≤ min
|x−x0|=1/2

ϕ(x)−max
K

ϕ+ ε = min
|x−x0|=1/2

u(x)
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and by Theorem 5, with R = 1/2, we have

(12) ε5 ≤ 25
∣
∣B1/2(0)

∣
∣

∫

Γε

det(D2u) .

Differentiating (11) twice gives D2u = D2ϕ+ 8εI. Hence we may rewrite equation (6) as

(13) (u11 + u22 + u33 + u44 − 32ε + 1)(u55 − 8ε + 1)− u215 − u225 − u235 − u245 = eF .

Now, on Γε the function u is convex, therefore the Hessian matrix D2u(x) is non-negative for
all x ∈ Γε. In particular uii(x) ≥ 0 for all i = 1, . . . , 5 and every x ∈ Γε. In addition,

(14) uii(x)u55(x)− u2i5(x) ≥ 0, for all i = 1, . . . , 5, and every x ∈ Γε .

Set ε = ε0 = 1/48, so that from (14) and (13) we obtain, for every x ∈ Γε0 ,

∆u(x)

5
≤ 5

6
(u11(x) + u22(x) + u33(x) + u44(x)) +

1

3
u55(x)

≤
(

u11(x) + u22(x) + u33(x) + u44(x) +
1

3

)(

u55(x) +
5

6

)

−
4∑

i=1

u2i5(x)−
5

18

= eF (x) − 5

18
≤ emaxK F .

Using again the fact that D2u is non-negative on Γε, the arithmetic-geometric mean inequality
forces

(15) det(D2u(x)) ≤
(
∆u(x)

5

)5

≤ e5maxK F , for every x ∈ Γε0 .

At last, (12) and (15) imply
(

1

48

)5
∣
∣B1/2(0)

∣
∣

25
≤
∫

Γε0

det(D2u) ≤ e5maxK Fmeas(Γε0) ,

i.e.

(16) meas(Γε0) ≥
∣
∣B1/2(0)

∣
∣

(
e−maxK F

96

)5

=: C .

Now observe that

u(x) ≤ u(x0)−∇u(x) · (x0 − x) ≤ u(x0) +
ε0
4
, for every x ∈ Γε0 ,

that is

ϕ(x)−max
K

ϕ+4ε0 |x− x0|2 ≤ ϕ(x0)−max
K

ϕ+
ε0
4

= min
K

ϕ−max
K

ϕ+
ε0
4
, for every x ∈ Γε0 .

This implies
max
K

ϕ−min
K

ϕ ≤ max
K

ϕ− ϕ(x) + 1 , for every x ∈ Γε0 .

It follows that for every p ≥ 1

(

max
K

ϕ−min
K

ϕ

)

(meas(Γε0))
1/p ≤

(
∫

Γε0

(

max
K

ϕ− ϕ+ 1

)p
)1/p

=

∥
∥
∥
∥
max
K

ϕ− ϕ+ 1

∥
∥
∥
∥
Lp(Γε0 )

,

and since Γε0 ⊆ B1/2(x0) ⊆ K + x0, we have
∥
∥
∥
∥
max
K

ϕ− ϕ+ 1

∥
∥
∥
∥
Lp(Γε0 )

≤
∥
∥
∥
∥
max
K

ϕ− ϕ+ 1

∥
∥
∥
∥
Lp(K)

.
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Therefore, since
∫

K ϕ = 0, we have ‖ϕ‖C0 ≤ maxK ϕ−minK ϕ. Then (16) implies

(17) ‖ϕ‖C0 ≤ max
K

ϕ−min
K

ϕ ≤ C−1/p

(∥
∥
∥
∥
max
K

ϕ− ϕ

∥
∥
∥
∥
Lp(K)

+ 1

)

, ∀p ≥ 1 .

By (8) we see that ∆(maxK ϕ − ϕ) ≤ 2, and since maxK ϕ − ϕ ≥ 0 we can apply Theorem 4
with maxK ϕ − ϕ in place of u, N = 5, p = 4/3, q = 6, x0 ∈ K such that ϕ(x0) = maxK ϕ,
r = 1/2 and R = 3. This eventually shows there exists a positive constant C ′ satisfying

(18)

∥
∥
∥
∥
max
K

ϕ− ϕ

∥
∥
∥
∥
L4/3(K)

≤ C ′

(

inf
K

(

max
K

ϕ− ϕ

)

+ ‖2‖L3(K)

)

= 2C ′ .

Estimate (10) now follows from (17) with p = 4/3 and (18). �

4. C0-estimate for the Laplacian

In this section we shall prove a C0-estimate for the Laplacian of ϕ. The technique we employ
is an adaptation of that found in [11].

Lemma 7. Let ϕ be a C2 function on the n-torus T n, fix µ ∈ R and pick a point p0 where

Φ = (∆ϕ+ 2)e−µϕ attains its maximum value. Define

ηij = µ(∆ϕ+ 2)(ϕij + µϕiϕj)−∆ϕij , i, j = 1, . . . , n .

Then

ηii(p0) ≥ 0 , and
√
ηiiηjj ≥ |ηij | at p0 ,

for every i, j = 1, . . . , n.

Proof. We begin by recalling the standard formulas

∇Φ = e−µϕ (∇∆ϕ− µ(∆ϕ+ 2)∇ϕ)
and

(∇⊗∇)Φ =− µe−µϕ
(
∇ϕ⊗∇∆ϕ+∇∆ϕ⊗∇ϕ

)
+ µ2e−µϕ

(
(∆ϕ+ 2)∇ϕ⊗∇ϕ

)

+ e−µϕ
(
(∇⊗∇)∆ϕ− µ(∆ϕ+ 2)(∇⊗∇)ϕ

)
.

Since

∇Φ = 0 , (∇⊗∇)Φ ≤ 0 at p0 ,

we infer

(19) ∇∆ϕ = µ(∆ϕ+ 2)∇ϕ at p0

and

(∇⊗∇)∆ϕ ≤ µ(∆ϕ+ 2)((∇ ⊗∇)ϕ+ µ∇ϕ⊗∇ϕ) at p0 .

In particular

(µ(∆ϕ+ 2)(ϕij + µϕiϕj)−∆ϕij)
2

≤
(
µ(∆ϕ+ 2)(ϕii + µϕ2

i )−∆ϕii

) (
µ(∆ϕ+ 2)(ϕjj + µϕ2

j)−∆ϕjj

)

at p0, for every 1 ≤ i, j ≤ n, and also

µ(∆ϕ+ 2)(ϕii + µϕiϕi)−∆ϕii ≥ 0 at p0 , i = 1, . . . , n.

Hence the claim follows. �
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Proposition 8. Let F ∈ C2(T 5) satisfy (5). There exists a positive constant C1, depending on

‖F‖C2 only, such that

(20) ‖∆ϕ‖C0 ≤ C1(1 + ‖ϕ‖C1)

for any solution ϕ ∈ C4
∗ (T

5) to (6).

Proof. For starters,

∆eF = ∆AB +A∆B + 2∇A · ∇B − 2

4∑

i=1

(

|∇ϕi5|2 + ϕi5∆ϕi5

)

.(21)

Let p0 and ηij be as in Lemma 7 with

µ =
ε

max(∆ϕ+ 2)

and ε ∈ (0, 1) to be determined later. Then by using (9) with

ξi = sgn(ϕi5)
√
ηii, i = 1, . . . , 4 , ξ5 =

√
η55 ,

we find

µ(∆ϕ+ 2)

(

A(ϕ55 + µϕ2
5) +B

4∑

i=1

(ϕii + µϕ2
i )

)

−A∆ϕ55
︸ ︷︷ ︸

∆B

−B
4∑

i=1

∆ϕii

︸ ︷︷ ︸

∆A

−2
4∑

i=1

ϕi5ξiξ5 ≥ 0 .

at p0. Lemma 7 now implies

ϕi5ξiξ5 = |ϕi5|
√
ηii

√
η55 ≥ ϕi5ηi5 , at p0 ,

i.e.

ϕi5ξiξ5 ≥ ϕi5 (µ(∆ϕ+ 2)(ϕi5 + µϕiϕ5)−∆ϕi5) at p0 .

Therefore we obtain

µ(∆ϕ+ 2)

(

A(ϕ55 + µϕ2
5) +B

4∑

i=1

(ϕii + µϕ2
i )

)

− 2

4∑

i=1

ϕi5 (µ(∆ϕ+ 2)(ϕi5 + µϕiϕ5))

≥ A∆B +B∆A− 2

4∑

i=1

ϕi5∆ϕi5 , at p0 .

By (21), and the definition of A,B, at the point p0 we have

∆eF ≤µ(∆ϕ+ 2) (A(B − 1) +B(A− 1)) + 2∇A · ∇B

+ µ2(∆ϕ+ 2)

(

Aϕ2
5 +B

4∑

i=1

ϕ2
i

)

− 2µ(∆ϕ+ 2)

4∑

i=1

(
ϕ2
i5 + µϕi5ϕiϕ5

)

=2µ(∆ϕ+ 2)

(

AB −
4∑

i=1

ϕ2
i5

)

− µ(∆ϕ+ 2)(A +B) + 2∇A · ∇B

+ µ2(∆ϕ+ 2)

(

Aϕ2
5 +B(ϕ2

1 + ϕ2
2 + ϕ2

3 + ϕ2
4)− 2

4∑

i=1

ϕi5ϕiϕ5

)

≤2µ(∆ϕ+ 2)eF − µ(∆ϕ+ 2)2 + 2∇A · ∇B + 2µ2(∆ϕ+ 2)
(
Aϕ2

5 +B(ϕ2
1 + ϕ2

2 + ϕ2
3 + ϕ2

4)
)
.

Observe that in the last inequality we used (9) with ξi = ϕi(p0) for i = 1, . . . , 4 and ξ5 = −ϕ5(p0).
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By (19) we then have

µ2(∆ϕ+2)2 |∇ϕ|2 = |∇∆ϕ|2 = |∇(A+B)|2 = |∇A|2+|∇B|2+2∇A·∇B ≥ 2∇A·∇B , at p0 ,

and with the help of

Aϕ2
5 +B(ϕ2

1 + ϕ2
2 + ϕ2

3 + ϕ2
4) ≤ A |∇ϕ|2 +B |∇ϕ|2 = (∆ϕ+ 2) |∇ϕ|2

we deduce

(22) µ(∆ϕ(p0) + 2)2 ≤ −∆eF (p0) + 2µ(∆ϕ(p0) + 2)eF (p0) + 3µ2(∆ϕ(p0) + 2)2 |∇ϕ(p0)|2 .
Let us set

m = ∆ϕ(p0) + 2 , ϕ0 = ϕ(p0) .

Since p0 is a maximum point for Φ, clearly

maxΦ = me−µϕ0 .

From (22) we obtain

(23) µm2 ≤
∥
∥∆eF

∥
∥
C0 + 2µm

∥
∥eF

∥
∥
C0 + 3µ2m2 ‖∇ϕ‖2C0 .

Now fix a point p1 where ∆ϕ+ 2 reaches its maximum, and call ϕ1 = ϕ(p1). Then

(24) m ≤ max(∆ϕ+ 2) = eµϕ1Φ ≤ meµ(ϕ1−ϕ0) ≤ me2µ‖ϕ‖C0 .

By the definition of µ and inequality (8) we have

2µ =
2

max(∆ϕ+ 2)
ε ≤ 1

emin(F/2)
ε ≤ e−min(F/2) ,

hence by (24)

ε exp
(

−e−min(F/2) ‖ϕ‖C0

)

≤ εe−2µ‖ϕ‖C0 = µmax(∆ϕ+ 2)e−2µ‖ϕ‖C0 ≤ µm

and also

exp
(

−e−min(F/2) ‖ϕ‖C0

)

max(∆ϕ+ 2) ≤ e−2µ‖ϕ‖C0 max(∆ϕ+ 2) ≤ m.

Next we multiply the last two inequalities and use (23), recalling that µm ≤ ε, to the effect that

ε exp
(

−2e−min(F/2) ‖ϕ‖C0

)

max(∆ϕ+ 2) ≤
∥
∥∆eF

∥
∥
C0 + 2ε

∥
∥eF

∥
∥
C0 + 3ε2 ‖∇ϕ‖2C0 .

Put otherwise,

‖∆ϕ‖C0 ≤ exp
(

2e−min(F/2) ‖ϕ‖C0

)(1

ε

∥
∥∆eF

∥
∥
C0 + 2

∥
∥eF

∥
∥
C0 + 3ε ‖∇ϕ‖2C0

)

,

and by choosing

ε =
1

1 + ‖∇ϕ‖C0

the claim is straighforward. �

The next theorem will provide us with an a priori C1-estimate for ϕ. Together with Propo-
sition 8 it will give an a priori C0-bound for ∆ϕ.

Theorem 9. For all solutions ϕ ∈ C4
∗ (T

5) of equation (6) with F ∈ C2(T 5) satisfying (5) there
exists a positive constant C2, depending on ‖F‖C2 only, such that

(25) ‖ϕ‖C1 ≤ C2.
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Proof. Fix 0 < α < 1 and p = 3
1−α > 3. Morrey’s inequality says

‖ϕ‖C1,α ≤ C ‖ϕ‖W 2,p

for some positive constant C depending only on α. Elliptic Lp-estimates for the Laplacian also
generate another constant C ′, still depending on α only, such that

‖ϕ‖W 2,p ≤ C ′ (‖ϕ‖Lp + ‖∆u‖Lp) .

If ϕ ∈ C2(T 5), the C0-estimate (10) for ϕ and bound (20) for ∆ϕ imply

‖ϕ‖Lp + ‖∆ϕ‖Lp ≤ ‖ϕ‖C0
+ ‖∆ϕ‖C0 ≤ C0 + C1(1 + ‖ϕ‖C1) .

Using standard interpolation theory (see [16, section 6.8]), for any ε > 0 there is a constant
Pε > 0 such that

‖ϕ‖C1 ≤ Pε ‖ϕ‖C0 + ε ‖ϕ‖C1,α , for every ϕ ∈ C1,α(T 5) .

Putting all this together, we obtain

‖ϕ‖C1 ≤ PεC0 + εK0 (C0 + C1(1 + ‖ϕ‖C1)) = PεC0 + εK0(C0 + C1) + εK0C1 ‖ϕ‖C1 ,

for some positive constant K0, again depending on α only. This produces (25) once we choose

ε <
1

K0C1
. �

Corollary 10. Assume that F ∈ C2(T 5) satisfies (5) and let ϕ ∈ C4
∗ (T

5) be a solution to (6).
Then there exists a positive constant C3, depending on ‖F‖C2 only, such that

‖∆ϕ‖C0 ≤ C3 .

5. C2,α-estimate

The C2,α-estimate for our equation (6) can be deduced directly from the general result of
Alesker which we state next. It holds for compact hypercomplex manifolds that are locally flat,
in the sense that they are locally isomorphic to H

n.

Theorem 11 (Theorem 4.1 in [2]). Let M be a 4n-dimensional compact HKT manifold whose

underlying hypercomplex structure is locally flat. Suppose ϕ ∈ C2(M) is a solution to the

quaternionic Monge-Ampère equation (4). Then

‖ϕ‖C2,α ≤ C

for some α ∈ (0, 1) and a positive constant C, both depending on M , Ω, ‖F‖C2 , ‖ϕ‖C0
and

‖∆̃ϕ‖C0 , where

∆̃ϕ =
∂∂J2ϕ ∧ Ωn−1

Ωn

and Ω is the HKT form.

The HKT structures we are considering on Mr are flat for the Obata connection [13, Propo-
sition 6.1]. Hence the underlying hypercomplex structure is locally flat. Moreover, for T 3-

invariant functions the operator ∆̃ acts as a multiple of the Laplace operator, hence Theorem
11 and Corollary 10 imply

Proposition 12. Assume F ∈ C2(T 5) satisfies (5). For every solution ϕ ∈ C4
∗ (T

5) to equation

(6) there exist α ∈ (0, 1) and a positive constant C4, depending on ‖F‖C2 , ‖ϕ‖C0 only, such that

‖ϕ‖C2,α ≤ C4 .
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6. Proof of Theorem 1

In this section we shall use the previously established a priori estimates in order to prove the
following result. This will then imply Theorem 1.

Theorem 13. Let F ∈ C∞(T 5) satisfy (5). Then equation (6) admits a solution ϕ ∈ C∞
∗ (T 5).

Proof. For t ∈ [0, 1] we define

Ft = log(1− t+ teF )

and set

St =
{
ϕ ∈ C∞

∗ (T 5) | (ϕ11 + ϕ22 + ϕ33 + ϕ44 + 1)(ϕ55 + 1)− ϕ2
15 − ϕ2

25 − ϕ2
35 − ϕ2

45 = eFt
}
,

and S =
⋃

t∈[0,1] St. Clearly 0 ∈ S0, and S1 is the set of smooth solutions of (6). We thus need

to show that S1 6= ∅. For any t ∈ [0, 1] the map Ft satisfies (5) and

max
t∈[0,1]

‖Ft‖C2 <∞ .

Proposition 12 therefore implies there exists α ∈ (0, 1) such that

(26) sup
ϕ∈S

‖ϕ‖C2,α <∞ .

Let
τ = sup{t ∈ [0, 1] | St 6= ∅} .

We claim that Sτ 6= ∅ and τ = 1.

Sτ 6= ∅. Let {tk} ⊆ [0, 1] be an increasing sequence converging to τ , and for any k ∈ N we fix

ϕk ∈ Stk . Condition (26) implies that {ϕk} is a sequence in C2,α
∗ (T 5), so by the Ascoli-

Arzelà Theorem there exists a subsequence {ϕkj} converging to some ψ in C
2,α/2
∗ (T 5).

The function ψ satisfies

(ψ11 + ψ22 + ψ33 + ψ44 + 1)(ψ55 + 1)− ψ2
15 − ψ2

25 − ψ2
35 − ψ2

45 = eFτ .

In view of Proposition 3, equation (6) is elliptic, and elliptic regularity (see e.g. [21,
Theorem 4.8, Chapter 14]) implies that ψ is in fact C∞. Therefore Sτ 6= ∅, as required.

τ = 1. Assume, by contradiction, that τ < 1, and consider the non-linear operator

T : C2,α
∗ (T 5)× [0, 1] → C0,α

∗ (T 5)

defined by

T (ϕ, t) = (ϕ11 + ϕ22 + ϕ33 + ϕ44 + 1)(ϕ55 + 1)− ϕ2
15 − ϕ2

25 − ϕ2
35 − ϕ2

45 − eFt .

Since Sτ 6= ∅, there exists ψ ∈ C∞
∗ (T 5) such that T (ψ, τ) = 0. Let L : C2,α

∗ (T 5) →
C0,α
∗ (T 5) be the first variation of T with respect to the first variable. Then

Lu = Au55 +B(u11 + u22 + u33 + u44)− 2C1u15 − 2C2u25 − 2C3u35 − 2C4u45

where

A = (ψ11 + ψ22 + ψ33 + ψ44 + 1) , B = (ψ55 + 1) , Ci = ψi5 ,

which implies that L is elliptic since ψ ∈ Sτ . The strong maximum principle guarantees
L is injective because Lϕ = 0 forces ϕ to be constant. Furthermore, ellipticity implies
that L has closed range, and Schauder Theory together with the method of continuity
(see [16, Theorem 5.2]) ensures L is surjective. Hence by the Implicit Function Theorem
there exists ε > 0 such that for every fixed t ∈ (τ − ε, τ + ε), equation

T (ϕ, t) = 0
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has a solution ϕ, which is additionally smooth by elliptic regularity. Therefore St 6= ∅
for every t ∈ (τ, τ + ε), which contradicts the maximality of τ . �

7. Further Developments

As a follow-up to the present work we plan to study the quaternionic Monge-Ampère equation
on other homogeneous spaces.

The manifold M2, for instance, can be regarded as a T 2-bundle over T 6, so it is quite natural
to wonder whether Theorem 1 might extend to T 2-invariant functions (instead of T 3-invariant).
We shall next describe this setup for M2 and point out the differences from the T 3-invariant
setting considered in Theorem 1.

From (7) the quaternionic Monge-Ampère equation (4) on (M2, J1, J2, J3, g) reduces to the
following PDE on the 6-dimensional base T 6 when the map F is T 2-invariant

(27) (ϕ11 + ϕ22 + ϕ33 + ϕ44 + 1)(ϕ55 + ϕ66 + 1)

− (ϕ35 − ϕ26)
2 − (ϕ45 − ϕ16)

2 − (ϕ46 + ϕ15)
2 − (ϕ36 + ϕ25)

2 = eF ,

where ϕ is an unknown function in C∞(T 6). By calling

A = ϕ11 + ϕ22 + ϕ33 + ϕ44 + 1 , B = ϕ55 + ϕ66 + 1

and

a1 = ϕ35 − ϕ26 , a2 = ϕ45 − ϕ16 , a3 = ϕ46 + ϕ15 , a4 = ϕ36 + ϕ25 ,

we may rewrite (27) as

(28) AB −
4∑

i=1

a2i = eF .

The above is elliptic and

(29) B(ξ21 + ξ22 + ξ23 + ξ24) +A(ξ25 + ξ26)− 2a1(ξ3ξ5 − ξ2ξ6)− 2a2(ξ4ξ5 − ξ1ξ6)

− 2a3(ξ4ξ6 + ξ1ξ5)− 2a4(ξ3ξ6 + ξ2ξ5) > 0,

for every ξ ∈ R
6, ξ 6= 0.

In order to show that (27) can be solved, we need only prove an a priori C0-estimate for
the Laplacian of the solutions to (27). The natural approach consists in adapting the proof of
Proposition 8 by mixing Lemma 7 with the ellipticity of the equation. In this case, however, it
seems that condition (29) should be replaced with a stronger assumption, one implied by the
estimate

(30) 2(|a2a3|+ |a1a4|) < eF .

Applying the Laplacian operator to both sides of (28) we get

B∆A+A∆B + 2∇A·∇B − 2

4∑

k=1

(

|∇ak|2 + ak∆ak

)

= ∆eF ,

which readily implies

(31) ∆eF ≤ B∆A+A∆B + 2∇A·∇B − 2

4∑

k=1

ak∆ak .
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Let p0 be a maximum point for (∆ϕ+ 2)e−µϕ, as in Lemma 7, and

µ =
1

max(∆ϕ+ 2)

1

1 + ‖∇ϕ‖C0

.

Using (19), we see that the following relation holds at p0

µ2(∆ϕ+ 2)2 |∇ϕ|2 = |∇∆ϕ|2 = |∇(A+B)|2 = |∇A|2 + |∇B|2 + 2∇A · ∇B ≥ 2∇A · ∇B ,
i.e.,

(32) 2∇A · ∇B ≤ µ2(∆ϕ+ 2)2 |∇ϕ|2 .
To produce an upper bound for B∆A+ A∆B − 2

∑4
k=1 ak∆ak we consider ηij as in Lemma 7

and

ξi =
√
ηii .

Then at p0 we have

ξiξj ≥ |ηij | .
Moreover,

|a1|(ξ3ξ5 + ξ2ξ6) ≥ |a1|
{

|µ(∆ϕ+ 2)(ϕ35 + µϕ3ϕ5)−∆ϕ35|+ |µ(∆ϕ+ 2)(ϕ26 + µϕ2ϕ6)−∆ϕ26|
}

≥ a1

{

µ(∆ϕ+ 2)(ϕ35 + µϕ3ϕ5)−∆ϕ35 − µ(∆ϕ+ 2)(ϕ26 + µϕ2ϕ6) + ∆ϕ26

}

= µ(∆ϕ+ 2)(a21 + a1µ(ϕ3ϕ5 − ϕ2ϕ6))− a1∆a1

at p0, i.e.,

|a1|(ξ3ξ5 + ξ2ξ6) ≥ µ(∆ϕ+ 2)(a21 + µa1(ϕ3ϕ5 − ϕ2ϕ6))− a1∆a1

at p0. Similarly,

|a2| (ξ4ξ5 + ξ1ξ6) ≥ µ(∆ϕ+ 2)(a22 + µa2(ϕ4ϕ5 − ϕ1ϕ6))− a2∆a2 ,

|a3| (ξ4ξ6 + ξ1ξ5) ≥ µ(∆ϕ+ 2)(a23 + µa3(ϕ4ϕ6 + ϕ1ϕ5))− a3∆a3 ,

|a4| (ξ3ξ6 + ξ2ξ5) ≥ µ(∆ϕ+ 2)(a24 + µa4(ϕ3ϕ6 + ϕ2ϕ5))− a4∆a4 ,

at p0. If we add up the last four inequalities and use (29) with ξk = ϕk for k = 1, . . . , 4 and
ξ5 = −ϕ5, ξ6 = −ϕ6, we end up with

2|a1|(ξ3ξ5 + ξ2ξ6) + 2 |a2| (ξ4ξ5 + ξ1ξ6) + 2 |a3| (ξ4ξ6 + ξ1ξ5) + 2 |a4| (ξ3ξ6 + ξ2ξ5) ≥

µ(∆ϕ+ 2)

(
4∑

k=1

(2a2k − µBϕ2
k)− µA(ϕ2

5 + ϕ2
6)

)

− 2

4∑

k=1

ak∆ak

at p0.
To handle the last inequality we need the following estimate

(33) B(ξ21 + ξ22 + ξ23 + ξ24) +A(ξ25 + ξ26) ≥
2|a1|(ξ3ξ5 + ξ2ξ6) + 2 |a2| (ξ4ξ5 + ξ1ξ6) + 2 |a3| (ξ4ξ6 + ξ1ξ5) + 2 |a4| (ξ3ξ6 + ξ2ξ5).

Notice this is stronger than (29).
In fact, if we assume (33), then

B

4∑

k=1

ξ2k +A(ξ25 + ξ26) ≥ µ(∆ϕ+ 2)

(
4∑

k=1

(2a2k − µBϕ2
k)− µA(ϕ2

5 + ϕ2
6)

)

− 2

4∑

k=1

ak∆ak
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at p0 and, keeping in mind the definition of ξk,

B

4∑

k=1

ξ2k+A(ξ
2
5+ξ

2
6) = µ(∆ϕ+2)

(

A

6∑

k=5

(ϕkk + µϕ2
k) +B

4∑

k=1

(ϕkk + µϕ2
k)

)

−A∆B−B∆A ,

at p0.
Therefore

µ(∆ϕ+ 2)

(

A
6∑

k=5

(ϕkk + µϕ2
k) +B

4∑

k=1

(ϕkk + µϕ2
k)

)

−A∆B −B∆A ≥

µ(∆ϕ+ 2)

(
4∑

k=1

(2a2k − µBϕ2
k)− µA(ϕ2

5 + ϕ2
6)

)

− 2
4∑

k=1

ak∆ak ,

at p0, which implies

A∆B +B∆A− 2

4∑

k=1

ak∆ak ≤

≤ µ(∆ϕ+ 2)

(

A

6∑

k=5

(ϕkk + 2µϕ2
k) +B

4∑

k=1

(ϕkk + 2µϕ2
k)− 2

4∑

k=1

a2k

)

≤ µ(∆ϕ+ 2)

(

2AB − (A+B) + 2µ(A+B) |∇ϕ|2 − 2
4∑

k=1

a2k

)

= µ(∆ϕ+ 2)
(

2eF − (∆ϕ+ 2) + 2µ(∆ϕ+ 2) |∇ϕ|2
)

,

at p0. In other terms,

(34) A∆B +B∆A− 2

4∑

k=1

ak∆ak ≤ µ(∆ϕ+ 2)
(

2eF − (∆ϕ+ 2) + 2µ(∆ϕ+ 2) |∇ϕ|2
)

at p0. From (31), (32) and (34) we finally deduce

µ(∆ϕ+ 2)2 ≤ −∆eF + 2µ(∆ϕ+ 2)eF + 3µ2(∆ϕ+ 2)2 |∇ϕ|2 ,
at p0. At this juncture the a priori C0-estimate for ∆ϕ can be obtained as we did in the second
part of Section 4.

Let us point out that requiring (33) for every ξ ∈ R
6 is equivalent to (30). Indeed the quadratic

form

Q(ξ) = B(ξ21 + ξ22 + ξ23 + ξ24) +A(ξ25 + ξ26)

− 2|a1|(ξ3ξ5 + ξ2ξ6)− 2 |a2| (ξ4ξ5 + ξ1ξ6)− 2 |a3| (ξ4ξ6 + ξ1ξ5)− 2 |a4| (ξ3ξ6 + ξ2ξ5)

has matrix










B 0 0 0 − |a3| − |a2|
0 B 0 0 − |a4| − |a1|
0 0 B 0 − |a1| − |a4|
0 0 0 B − |a2| − |a3|

− |a3| − |a4| − |a1| − |a2| A 0
− |a2| − |a1| − |a4| − |a3| 0 A











,
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which is positive definite if and only if

B4





(

A−B−1
4∑

k=1

a2k

)2

− 4B−2 (|a2a3|+ |a1a4|)2


 > 0

since B > 0. A direct computation tells that the last condition is equivalent to

2(|a2a3|+ |a1a4|) < eF .

In analogy to the above discussion, the manifold M1 arises as an S1-bundle over a T 7-torus,
and the function F may be chosen to be S1-invariant. If so, the quaternionic Monge-Ampère
equation (4) reads

(ϕ11 + ϕ22 + ϕ33 + ϕ44 + 1)(ϕ55 + ϕ66 + ϕ77 + 1)

− (ϕ45 − ϕ16 − ϕ27)
2 − (ϕ35 + ϕ17 − ϕ26)

2

− (ϕ36 + ϕ47 + ϕ25)
2 − (ϕ46 − ϕ37 + ϕ15)

2 = eF ,

where ϕ is an unknown function in C∞(T 7).
Setting

A = ϕ11 + ϕ22 + ϕ33 + ϕ44 + 1 , B = ϕ55 + ϕ66 + ϕ77 + 1

and

a1 = ϕ45 − ϕ16 − ϕ27 , a2 = ϕ35 + ϕ17 − ϕ26 ,

a3 = ϕ36 + ϕ47 + ϕ25 , a4 = ϕ46 − ϕ37 + ϕ15 ,

the equation turns into

(35) AB −
4∑

i=1

a2i = eF .

The above is elliptic and

(36) B(ξ21 + ξ22 + ξ23 + ξ24) +A(ξ25 + ξ26 + ξ27)− 2a1(ξ4ξ5 − ξ1ξ6 − ξ2ξ7)

− 2a2(ξ3ξ5 + ξ1ξ7 − ξ2ξ6)− 2a3(ξ3ξ6 + ξ4ξ7 + ξ2ξ5)− 2a4(ξ4ξ6 − ξ3ξ7 + ξ1ξ5) > 0 ,

for every ξ ∈ R
7, ξ 6= 0.

We proceed as in the previous case, and choose p0 and ηij as in Lemma 7 and

µ =
1

max(∆ϕ+ 2)

1

1 + ‖∇ϕ‖C0

,

resulting in

∆eF ≤ B∆A+A∆B + µ2(∆ϕ+ 2)2 |∇ϕ|2 − 2

4∑

k=1

ak∆ak , at p0 .
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Set ξi =
√
ηii and apply Lemma 7 to obtain

|a1|(ξ4ξ5 + ξ1ξ6 + ξ2ξ7)

≥|a1|
{

|µ(∆ϕ+ 2)(ϕ45 + µϕ4ϕ5)−∆ϕ45|+ |µ(∆ϕ+ 2)(ϕ16 + µϕ1ϕ6)−∆ϕ16|

+ |µ(∆ϕ+ 2)(ϕ27 + µϕ2ϕ7)−∆ϕ27|
}

≥a1
{

µ(∆ϕ+ 2)(ϕ45 + µϕ4ϕ5)−∆ϕ45 − µ(∆ϕ+ 2)(ϕ16 + µϕ1ϕ6) + ∆ϕ16

− µ(∆ϕ+ 2)(ϕ27 + µϕ2ϕ7) + ∆ϕ27

}

=µ(∆ϕ+ 2)(a21 + a1µ(ϕ4ϕ5 − ϕ1ϕ6 − ϕ2ϕ7))− a1∆a1

at p0, i.e.

|a1|(ξ4ξ5 + ξ1ξ6 + ξ2ξ7) ≥ µ(∆ϕ+ 2)(a21 + µa1(ϕ4ϕ5 − ϕ1ϕ6 − ϕ2ϕ7))− a1∆a1

at p0. From that we deduce

|a2| (ξ3ξ5 + ξ1ξ7 + ξ2ξ6) ≥ µ(∆ϕ+ 2)(a22 + µa2(ϕ3ϕ5 + ϕ1ϕ7 − ϕ2ϕ6))− a2∆a2 ,

|a3| (ξ3ξ6 + ξ4ξ7 + ξ2ξ5) ≥ µ(∆ϕ+ 2)(a23 + µa3(ϕ3ϕ6 + ϕ4ϕ7 + ϕ2ϕ5))− a3∆a3 ,

|a4| (ξ4ξ6 + ξ3ξ7 + ξ1ξ5) ≥ µ(∆ϕ+ 2)(a24 + µa4(ϕ4ϕ6 − ϕ3ϕ7 + ϕ1ϕ5))− a4∆a4 ,

at p0. The sum of the previous four inequalities, together with (36), yields

2|a1|(ξ4ξ5 + ξ1ξ6 + ξ2ξ7) + 2 |a2| (ξ3ξ5 + ξ1ξ7 + ξ2ξ6)

+ 2 |a3| (ξ3ξ6 + ξ4ξ7 + ξ2ξ5) + 2 |a4| (ξ4ξ6 + ξ3ξ7 + ξ1ξ5) ≥

µ(∆ϕ+ 2)

(
4∑

k=1

(2a2k − µBϕ2
k)− µA

7∑

k=5

ϕ2
k

)

− 2

4∑

k=1

ak∆ak

at p0.
We need the following estimate

(37) B(ξ21 + ξ22 + ξ23 + ξ24) +A(ξ25 + ξ26 + ξ27)− 2|a1|(ξ4ξ5 + ξ1ξ6 + ξ2ξ7)

− 2|a2|(ξ3ξ5 + ξ1ξ7 + ξ2ξ6)− 2|a3|(ξ3ξ6 + ξ4ξ7 + ξ2ξ5)− 2|a4|(ξ4ξ6 + ξ3ξ7 + ξ1ξ5) > 0 ,

at p0, which is stronger than (36). Once this has been established, the result follows.
To prove (37) one has to show that the quadratic form

Q(ξ) = B(ξ21 + ξ22 + ξ23 + ξ24) +A(ξ25 + ξ26 + ξ27)− 2|a1|(ξ4ξ5 + ξ1ξ6 + ξ2ξ7)

− 2|a2|(ξ3ξ5 + ξ1ξ7 + ξ2ξ6)− 2|a3|(ξ3ξ6 + ξ4ξ7 + ξ2ξ5)− 2|a4|(ξ4ξ6 + ξ3ξ7 + ξ1ξ5)

on R
7 is positive-definite. This is equivalent to demanding two things:

e2F − 4(|a2a3|+ |a1a4|)2 > 0 ,

e3F − 4eF
(

(|a2a3|+ |a1a4|)2 + (|a1a3|+ |a2a4|)2 + (|a1a2|+ |a3a4|)2
)

− 16 (|a2a3|+ |a1a4|) (|a1a3|+ |a2a4|) (|a1a2|+ |a3a4|) > 0 .

We wrap up this overview of our future plans by observing that there exist torus fibrations
whose hypercomplex structure is not locally trivial. On these spaces Alesker’s Theorem cannot
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be applied, so once the C0-estimate of the Laplacian is at hand one needs to prove the C2,α-
estimate by alternative arguments.

We expect that the study of the equation on these explicit examples will give new insight for
the handling of the general case.
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