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Polynomial approximation

with an exponential weight in [−1, 1]

(revisiting some of Lubinsky’s results)

Giuseppe Mastroianni∗ and Incoronata Notarangelo

Communicated by V. Totik

Abstract. Revisiting the results in [7], [8], we consider the polynomial ap-

proximation on (−1, 1) with the weight w(x) = e−(1−x2)−α

, α > 0. We in-

troduce new moduli of smoothness, equivalent to suitable K-functionals, and

we prove the Jackson theorem, also in its weaker form. Moreover, we state

a new Bernstein inequality, which allows us to prove the Salem–Stechkin in-

equality. Finally, also the behaviour of the derivatives of the polynomials of

best approximation is discussed.

1. Introduction

In the last two decades E. Levin and D. S. Lubinsky have extensively studied

orthogonal polynomials and polynomial inequalities related to exponential weights.

Among other topics, they have considered weight functions of the form e−Q(x), |x| ≤
1, where Q is an even function which satisfies suitable assumptions, in particular

it increases faster than (1 − x2)−δ, δ > 0, near ±1. The reader can find their

numerous results in the complete monograph [5] (see also [4], [9], [10]).

In [7], [8] D. S. Lubinsky considered the polynomial approximation in [−1, 1]

with this class of weights (which includes also Erdős weights). For 0 < p ≤ ∞, he
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168 G. MASTROIANNI and I. NOTARANGELO

introduced the following modulus of smoothness (see [7, pp. 3–5]):

ωrΦt
(f, t)w,p

= sup
0<h≤t

‖w∆r
hΦt

(f)‖Lp{|x|≤a1/(2t)} + inf
P∈Pr−1

‖(f − P )w‖Lp{a1/(4t)≤|x|≤1},

where Pr−1 is the set of the polynomials of degree at most r − 1, a1/t = a1/t(w) is

the Mhaskar–Rahmanov–Saff number related to w,

Φt(x) =

√∣∣∣1− |x|
a1/t

∣∣∣+
1√

T (a1/t)

with T (a1/t)
−1/2 → 0 as t→ 0, and

∆r
hΦt

f(x) =

r∑

i=0

(
r

i

)
(−1)if

(
x+ (r − 2i)

hΦt(x)

2

)
.

With this modulus of smoothness he proved the Jackson theorem

Em(f)w,p ≤ CωrΦ1/m

(
f,

1

m

)

w,p
,

where

Em(f)w,p = inf
P∈Pm

‖(f − P )w‖p

is the error of best polynomial approximation of a function f ∈ Lpw, 0 < p ≤ ∞,

and C is a positive constant independent of m and f .

Now, for t = 1/m, Φt describes the improvement in the degree of approxima-

tion near am/2. However, since

ωrΦt
(f, t)w,p ≤ Ctr‖f (r)Φrtw‖p ,

in order to prove the equivalence between this modulus of smoothness and some

K-functional, one is bound to define Sobolev spaces with seminorms containing a

parameter t extraneus w.r.t. the class of functions. Moreover, a Bernstein inequal-

ity of the form

(1.1) ‖P ′
mΦ1/mw‖p ≤ C‖Pmw‖p, ∀Pm ∈ Pm , C 6= C(m,Pm) ,

is also needed. But the function Φt, appearing in (1.1), creates some further dif-

ficulties in iterating the same inequality and in proving weak converse Jackson

inequalities. On the other hand, in [6, p. 112] the author himself expressed the
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Polynomial approximation with an exponential weight in (−1, 1) 169

necessity of revisiting his results: “Especially for Erdős weights and exponential

weights on (−1, 1), there is a need for further analysis of the modulus of continuity

and the realisation functional. Moreover, it would be nice to have examples of func-

tions that clearly illustrate the improvement in degree of approximation reflected in

the modulus of continuity for these weights”.

Since the polynomial approximation with exponential weights on (−1, 1) is

useful in different contexts, it is of interest to revisit Lubinsky’s results in [6],

[7], [8], which, because of the vast generality of the weight functions considered,

represent the starting point for future investigations. In this paper, excluding the

case of Erdős weights, we are going to consider the polynomial approximation with

the weight function w(x) = e−(1−x2)−α

, α > 0, which we think of as a generalization

of the Legendre weight, in a certain sense.

Extending an idea of B. Della Vecchia, G. Mastroianni and J. Szabados in [1],

[2], we introduce new moduli of smoothness, equivalent to suitable K-functionals,

and we prove the Jackson theorem, also in its weaker form. Since the considered

weight, in its Mhaskar–Rahmanov–Saff interval, is equivalent to a polynomial, by

a simple proof, we state a new Bernstein inequality, which allows us to prove the

Salem–Stechkin inequality. Finally, also the behaviour of the derivatives of the

polynomials of best approximation is discussed.

The results are new and they are an extension of the estimates holding in the

theory of polynomial approximation with Jacobi weights. Mutatis mutandis, the

ideas of Z. Ditzian and V. Totik in [3] are applied.

2. Preliminary results

In the sequel C will stand for a positive constant that could assume different

values in each formula and we shall write C 6= C(a, b, . . .) when C is independent

of a, b, . . .. Furthermore A ∼ B will mean that if A and B are positive quantities

depending on some parameters, then there exists a positive constant C independent

of these parameters such that (A/B)±1 ≤ C.
Let us consider the weight function

(2.1) w(x) = e−(1−x2)−α

, α > 0 , |x| < 1 .

This weight, which is a Szegő weight only for α < 1/2, is an archetype of a wider

class of weights defined in [10] (see also [7] and [5, p. 7]). We can associate to this

weight the following classes of functions.
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170 G. MASTROIANNI and I. NOTARANGELO

Function spaces. By Lpw, 1 ≤ p <∞, we denote the set of all measurable functions

f such that

‖f‖Lp
w

:= ‖fw‖p =
(∫ 1

−1

|fw|p(x) dx
)1/p

<∞ ,

while, for p =∞, by abuse of notation, we set

L∞
w = Cw = {f ∈ C0(−1, 1) : lim

x→±1
f(x)w(x) = 0}

and we equip this space with the norm

‖f‖L∞w := ‖fw‖∞ = sup
x∈[−1,1]

|f(x)w(x)| .

Subspaces of Lpw are the Sobolev-type spaces, defined by

W p
r (w) = {f ∈ Lpw : f (r−1) ∈ AC(−1, 1), ‖f (r)ϕrw‖p <∞}, r ≥ 1 ,

where 1 ≤ p ≤ ∞, ϕ(x) :=
√

1− x2 and AC(−1, 1) denotes the set of all functions

which are absolutely continuous on every closed subset of (−1, 1). We equip these

spaces with the norm

‖f‖Wp
r (w) = ‖fw‖p + ‖f (r)ϕrw‖p .

Sometimes, in the definition of the Sobolev-type spaces, we will replace the weight

w by u = vγw = (1− ·2)γw, γ > 0.

K-functionals and moduli of smoothness. For 1 ≤ p ≤ ∞, r ≥ 1 and t > 0

sufficiently small (say t < t0), we introduce the following K-functional

K(f, tr)w,p = inf
g∈Wp

r (w)
{‖(f − g)w‖p + tr‖g(r)ϕrw‖p}

and its main part

K̃(B, f, tr)w,p = sup
0<h≤t

inf
g∈Wp

r (w)
{‖(f − g)w‖Lp(Ih(B)) + hr‖g(r)ϕrw‖Lp(Ih(B))} ,

where Ih(B) = [−1 + Bh1/(α+ 1
2 ), 1 − Bh1/(α+ 1

2 )] and B > 1 is a fixed constant.

Then, by definition, K̃ depends on the constant B, but the following proposition

holds.
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Polynomial approximation with an exponential weight in (−1, 1) 171

Proposition 2.1. Let 1 ≤ p ≤ ∞ and r ≥ 1. If B,C > 1 then

K̃(B, f, tr)w,p ∼ K̃(C, f, tr)w,p ,

where the constants in “∼” are independent of f and t.

Proof. We proceed as in [2] for r = 2 and α = 1/2 and letting B < C. Then,

by definition, we have K̃(C, f, tr)w,p ≤ K̃(B, f, tr)w,p, On the other hand, for any

h ∈ (0, t], we choose h̄ = (B/C)α+1/2h, i.e. Ih(B) = Ih̄(C), and we get

K̃(B, f, tr)w,p

= sup
0<h≤t

inf
g∈Wp

r (w)

{
‖(f − g)w‖Lp(Ih̄(C)) +

(C

B

)r(α+1/2)

h̄r‖g(r)ϕrw‖Lp(Ih̄(C))

}

≤
(C

B

)r(α+1/2)

sup
0<h̄≤(B/C)α+1/2t

inf
g∈Wp

r (w)
{‖(f − g)w‖Lp(Ih̄(C))+ h̄r‖g(r)ϕrw‖Lp(Ih̄(C))}

=
(C

B

)r(α+1/2)

K̃
(

C, f,
(B

C

)r(α+1/2)

tr
)

w,p
≤
(C

B

)r(α+1/2)

K̃
(

C, f, tr
)

w,p
.

According to Proposition 2.1, in the sequel we will use the notation

K̃(f, tr)w,p = K̃(B, f, tr)w,p, omitting the dependence on the constant B.

Now, for 1 ≤ p ≤ ∞, r ≥ 1 and 0 < t < t0, we set

Ωrϕ(B, f, t)w,p = sup
0<h≤t

∥∥∆r
hϕ (f)w

∥∥
Lp(Ih(B))

,

where Ih(B) = [−1 + Bh1/(α+ 1
2 ), 1− Bh1/(α+ 1

2 )], B > 1 is a fixed constant, and

∆r
hϕf(x) =

r∑

i=0

(
r

i

)
(−1)if

(
x+ (r − 2i)

hϕ(x)

2

)
.

This modulus of smoothness is equivalent to the main part of the K-functional,

namely the following proposition holds.

Lemma 2.2. Let 1 ≤ p ≤ ∞, r ≥ 1 and 0 < t < t0 for some t0 < 1. Then, for any

f ∈ Lpw and for all B > 1, we have

Ωrϕ(B, f, t)w,p ∼ K̃(B, f, tr)w,p

where the constants in “∼” are independent of f and t.

From Proposition 2.1 and Lemma 2.2 it follows that

Ωrϕ(B, f, t)w,p ∼ Ωrϕ(C, f, t)w,p
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172 G. MASTROIANNI and I. NOTARANGELO

for all B,C > 1. Therefore, in the sequel we will denote this modulus briefly by

Ωrϕ(f, t)w,p.

We define the complete rth modulus of smoothness by

(2.2)
ωrϕ(f, t)w,p

= Ωrϕ(f, t)w,p + inf
q∈Pr−1

‖(f − q)w‖Lp[−1,−t∗] + inf
q∈Pr−1

‖(f − q)w‖Lp[t∗,1]

with t∗ = 1−B t1/(α+ 1
2 ) and B > 1 a fixed constant. We remark that the behaviour

of ωrϕ(f, t)w,p is independent of the constant B. Moreover, the following lemma

shows that this modulus of smoothness is equivalent to the K-functional.

Lemma 2.3. Let 1 ≤ p ≤ ∞, r ≥ 1 and 0 < t < t0 for some t0 < 1. Then, for any

f ∈ Lpw, we have

ωrϕ(f, t)w,p ∼ K(f, tr)w,p ,

where the constants in “∼” are independent of f and t.

By means of the main part of the modulus of smoothness, for 1 ≤ p ≤ ∞, we

can define the Zygmund-type spaces

Zps (w) := Zps,r(w) =
{
f ∈ Lpw : sup

t>0

Ωrϕ(f, t)w,p

ts
<∞, r > s

}
, s ∈ R+,

equipped with the norm

‖f‖Zp
s,r(w) = ‖f‖Lp

w
+ sup

t>0

Ωrϕ(f, t)w,p

ts
.

In the sequel we will denote these subspaces briefly by Zps (w), without the second

index r and with the assumption r > s.

3. Polynomial approximation

Let us denote by Pm the set of all algebraic polynomials of degree at most m.

Moreover, let vγ(x) = (1− x2)γ , γ ≥ 0 and w be given by (2.1). Then we set

(3.1) u(x) = vγ(x)w(x) .
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Polynomial approximation with an exponential weight in (−1, 1) 173

Before stating some Jackson-type theorems, we recall some known polynomial

inequalities. We denote by am = am(w) the Mhaskar–Rahmanov–Saff number

related to the weight w in (2.1), defined as the positive root of the equation

m =
2

π

∫ 1

0

amtQ
′(amt)√

1− t2
dt ,

where Q(x) = (1− x2)−α. From this equation one can deduce (see [4, p. 4])

(3.2) 1− am ∼ m−1/(α+ 1
2 ) .

Let 0 < p ≤ ∞ and λ > 0. Then, the following restricted range inequality

holds for every polynomial Pm ∈ Pm (see [5, pp. 95–97]):

(3.3) ‖Pmw‖p ≤ C‖Pmw‖Lp[−am(1−ληm),am(1−ληm)] , C 6= C(m,Pm) ,

where

ηm =
(1− am

m

)2/3

.

The next lemma, which is a new result, is useful in different contexts.

Lemma 3.1. Let w(x) = e−(1−x2)−α

with α > 0. Then, for any fixed s ≥ 1, there

exists an integer l and polynomials Rlm ∈ Plm, with m ≥ 1, satisfying the following

properties:

(3.4)
1

2
w(x) ≤ Rlm(x) ≤ 3

2
w(x)

and

(3.5)
∣∣∣R′

lm(x)

√
1− x2

m

∣∣∣ ≤ Cw(x)

for |x| ≤ asm(w), with C independent of m, w and Rlm.

Note that the previous lemma is a known result in the case of Jacobi weights

or, to be more general, doubling weights (see, for instance, [11], [13], [16]).

Now, using the restricted range inequality (3.3), and approximating the weight

w in [−am, am] by means of a polynomial, we can obtain several polynomial in-

equalities, by analogous arguments to those in [11], [16]. We will come back to

this topic elsewhere. For the moment, we are interested in proving the Markoff–

Bernstein-type inequalities, which will be useful in the sequel.

By abuse of notation, in the next theorem we denote by ‖ · ‖p the quasinorm

of the Lp-spaces for 0 < p < 1, defined in the usual way.
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174 G. MASTROIANNI and I. NOTARANGELO

Theorem 3.2. Let u(x) = (1 − x2)γe−(1−x2)−α

be the weight in (3.1), with γ ≥ 0,

α > 0, |x| < 1. Then, for any polynomial Pm ∈ Pm and for 0 < p ≤ ∞, we get

(3.6) ‖P ′
mϕu‖p ≤ Cm‖Pmu‖p

and

(3.7) ‖P ′
mu‖p ≤ C

m√
1− am

‖Pmu‖p ≤ Cm
2α+2
2α+1 ‖Pmu‖p ,

where ϕ(x) =
√

1− x2 and C is independent of m and Pm.

Notice that the Markoff-type inequality (3.7) was obtained in [10] for p =∞
and in [5, p. 294] for 0 < p ≤ ∞, but we will give a more elementary proof.

Whereas, the Bernstein-type inequality (3.6) differs from the previous results in

the literature.

By (3.6), for r ≥ 1, it follows that

(3.8) ‖P (r)
m ϕrw‖p ≤ Cmr‖Pmw‖p , 0 < p ≤ ∞ .

For p =∞ we can rewrite inequalities (3.6) and (3.7) as follows:

|P ′
m(x)w(x)| ≤ Cmin

{ m√
1− x2

,
m√

1− am

}
‖Pmw‖∞ , |x| ≤ 1 .

Let us denote by Em(f)u,p = infP∈Pm ‖(f − P )u‖p the error of best poly-

nomial approximation of a function f ∈ Lpu, where u is a weight function and

1 ≤ p ≤ ∞. In order to prove a Favard–Jackson-type inequality of the form

Em(f)w,p ≤
C
mr
‖f (r)ϕrw‖p , f ∈W p

r (w), r ≥ 1 ,

where C 6= C(f,m), 1 ≤ p ≤ ∞, we state the following lemma.

Lemma 3.3. Let 1 ≤ p ≤ ∞ and u(x) = (1−x2)γe−(1−x2)−α

be the weight in (3.1),

with γ ≥ 0 and α > 0. For every f ∈W p
1 (u) we have

(3.9) Em(f)u,p ≤
C
m
‖f ′ϕu‖p ,

where C is independent of m and f .

By using Lemma 3.3, we are able to prove a Jackson-type theorem.
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Polynomial approximation with an exponential weight in (−1, 1) 175

Theorem 3.4. Let 1 ≤ p ≤ ∞ and w(x) = e−(1−x2)−α

, with α > 0. For any f ∈ Lpw
we have

(3.10) Em(f)w,p ≤ C ωrϕ
(
f,

1

m

)

w,p
,

where C is independent of m and f .

In the next theorem we state a weak Jackson-type inequality.

Theorem 3.5. Let 1 ≤ p ≤ ∞ and w(x) = e−(1−x2)−α

, with α > 0. Assume f ∈ Lpw
with Ωrϕ(f, t)w,pt

−1 ∈ L1[0, 1]. Then

(3.11) Em(f)w,p ≤ C
∫ 1/m

0

Ωrϕ(f, t)w,p

t
dt , r < m ,

with C independent of m and f .

For instance, by the previous theorems, we get

(3.12) Em(f)w,p ≤
C
mr
‖f (r)ϕrw‖p , C 6= C(m, f) , ∀f ∈W p

r (w)

and

(3.13)

Em(f)w,p ≤
C
ms

sup
t>0

Ωrϕ(f, t)w,p

ts
, r > s , C 6= C(m, f) , ∀f ∈ Zps (w)

for 1 ≤ p ≤ ∞.

Using the equivalence between the modulus of smoothness and the K-

functional, stated in Lemma 2.3, and the Bernstein-type inequality (3.8), by stan-

dard arguments we obtain the Salem–Stechkin-type inequality in next theorem.

Theorem 3.6. Let 1 ≤ p ≤ ∞. For any f ∈ Lpw, where w is the weight in (2.1)

with α > 0, and m > r ≥ 1, we have

(3.14) ωrϕ

(
f,

1

m

)

w,p
≤ C
mr

m∑

i=0

(1 + i)r−1Ei(f)w,p ,

where C depends only on r.

The following remark could be useful in several contexts. Let us consider the

weight vλ(x) = (1− x2)λ, λ > 0, and the space Cvλ , defined, as is known, by

Cvλ =
{
f ∈ C0(−1, 1) : lim

x→±1
f(x)vλ(x) = 0

}
,
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176 G. MASTROIANNI and I. NOTARANGELO

with the norm

‖f‖C
vλ

= ‖fvλ‖∞ .

Obviously, Cvλ ⊂ Cw, with w(x) = e−(1−x2)−α

, α > 0. Nevertheless, it is inter-

esting to remark that the functions belonging to some subspaces of Cvλ can be

approximated in Cw better than in Cvλ . For instance, let A be the collection of all

the functions f ∈ Cvλ , infinitely differentiable in (−1, 1) and such that

‖f (i)ϕ2i‖∞ <∞ i = 1, 2, . . . .

For any f ∈ A we have

Em(f)vλ,∞ = O(m−2λ)

and

Em(f)w,∞ = O(m−i)

for any arbitrary i ∈ N. The functions of the class A are of some interest because

they are solutions of integral equations having singular kernels or right-hand sides.

Finally, in analogy with [3, p. 84, Theorem 7.3.1], the next theorem relates

the behaviour of the derivatives of a polynomial of quasi best approximation of

f ∈ Lpw with its modulus of smoothness. We say that Pm ∈ Pm is of quasi best

approximation for f ∈ Lpw if

‖(f − Pm)w‖p ≤ C Em(f)w,p

with some C independent of m.

Theorem 3.7. Let 1 ≤ p ≤ ∞ and Pm ∈ Pm be a polynomial of quasi best approx-

imation for f ∈ Lpw, with α > 0. Then, for r ≥ 1, we have

(3.15) ‖P (r)
m ϕrw‖p ≤ Cmr ωrϕ

(
f,

1

m

)

w,p
,

where C is independent of f and m.

An immediate consequence of the last theorem is that the equivalence

(3.16) ωrϕ

(
f,

1

m

)

w,p
∼ inf
Pm∈Pm

{
‖(f − Pm)w‖p +

1

mr
‖P (r)

m ϕrw‖p
}

holds true for any 1 ≤ p ≤ ∞.
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Polynomial approximation with an exponential weight in (−1, 1) 177

4. Proofs

Proposition 4.1. Let u be as in (3.1) and x, y ∈ [−1+Bh1/(α+ 1
2 ), 1−Bh1/(α+1/2)],

B > 0. If |x− y| ≤ Ch
√

1− x2, with C a positive constant, then u(x) ∼ u(y).

Proof. It is easy to check that vγ(x) ∼ vγ(y). Moreover, by virtue of the mean

value theorem, with ξ ∈ (x, y), we have

∣∣(1− x2)−α − (1− y2)−α∣∣= |x− y| 2α|ξ|
(1− ξ2)α+1

≤ C h
√

1− x2

(1− ξ2)α+1
∼ h

(1− ξ2)α+1/2
≤ C ,

since |ξ| ≤ 1− Bh1/(α+ 1
2 ), and then

(w(x)

w(y)

)±1

≤ eC .

The following statement will be useful in order to prove Lemmas 2.2 and 2.3.

Lemma 4.2. Let 1 ≤ p ≤ ∞ and, for each G ∈ Lpw, set

Γr(x) =
1

(r − 1)!

∫ x

a

G(y)(x− y)r−1 dy .

Then, for any a ∈ [t∗, 1), with t∗ = 1− Bt1/(α+1/2) and B > 0, we have

(4.1) ‖Γrw‖Lp[a,1] ≤ C tr ‖Gϕrw‖Lp[a,1] ,

where C 6= C(G, t).

We remark that the statement still holds true if we replace the interval [a, 1]

by [−1,−a] and Γr by the function

Γ̃r(x) =
1

(r − 1)!

∫ −a

x

G(y)(x− y)r−1 dy .
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178 G. MASTROIANNI and I. NOTARANGELO

Proof. We observe that by definition we have

Γ1(x) =

∫ x

a

G(y) dy

and

(4.2) Γr(x) =

∫ x

a

Γr−1(y) dy

for r ≥ 2.

Let us first consider the case r = 1. For p =∞ we get

(4.3)

|Γ1(x)w(x)| =w(x)
∣∣∣
∫ x

a

G(y) dy
∣∣∣

≤‖Gϕw‖L∞[a,1] w(x)

∫ x

a

ϕ−1(y)w−1(y) dy

≤C t ‖Gϕw‖L∞[a,1] ,

since

(4.4)

w(x)

∫ x

a

ϕ−1(y)w−1(y) dy =w(x)

∫ x

a

(1− y2)α+ 1
2

2αy
dw−1(y)

≤ w(x)

α
(1− a2)α+ 1

2

∫ x

a

dw−1(y) ≤ C t ,

being y ≥ t∗ ≥ 1/2 for t < t0, and (1 − a2)α+ 1
2 ∼ (1 − a)α+ 1

2 ≤ C t. Taking the

supremum on all x ∈ [a, 1], from (4.3) it follows that

(4.5) ‖Γ1w‖L∞[a,1] ≤ C t ‖Gϕw‖L∞[a,1] .

For 1 < p < ∞, by the Hölder inequality, with q = p
p−1 , and by (4.4), we

obtain

‖Γ1w ‖pLp[a,1]

=

∫ 1

a

∣∣∣w(x)

∫ x

a

(Gϕw) (y) (ϕw)
− 1

p − 1
q (y) dy

∣∣∣
p

dx

≤
∫ 1

a

w(x)

∫ x

a

|Gϕw|p (y) (ϕw)
−1

(y) dy
(
w(x)

∫ x

a

(ϕw)
−1

(y) dy
)p−1

dx

≤ C tp−1

∫ 1

a

w(x)

∫ x

a

|Gϕw|p (y)ϕ−1(y)w−1(y) dy dx .
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Hence, by using the Fubini theorem, we get

(4.6)
‖Γ1w‖pLp[a,1] ≤C tp−1

∫ 1

a

|Gϕw|p (y)
[
ϕ−1(y)w−1(y)

∫ 1

y

w(x) dx
]
dy

≤C tp ‖Gϕw‖pLp[a,1] ,

since

(4.7)

ϕ−1(y)w−1(y)

∫ 1

y

w(x) dx =−ϕ−1(y)w−1(y)

∫ 1

y

(1− x2)α+1

2αx
dw(x)

≤−w
−1(y)

α
(1− a2)α+ 1

2

∫ 1

y

dw(x) ≤ C t ,

with y ∈ [a, 1], x ≥ t∗ ≥ 1/2 for t < t0, and (1− a2)α+ 1
2 ≤ C t.

Analogously we can show that

(4.8) ‖Γ1w‖L1[a,1] ≤ C t ‖Gϕw‖L1[a,1] ,

and then (4.1) holds for r = 1.

Let us now consider the case r = 2. Using (4.5), (4.6) and (4.8), with Γ2 and

Γ1 in place of Γ1 and G, respectively, by (4.2), we get

(4.9) ‖Γ2w‖Lp[a,1] ≤ C t ‖Γ1ϕw‖Lp[a,1] .

Analogously to (4.3), since ϕ is a decreasing function in [a, 1], we have

(4.10)
|Γ1(x)ϕ(x)w(x)| = ϕ(x)w(x)

∣∣∣
∫ x

a

G(y) dy
∣∣∣ ≤w(x)

∫ x

a

|Gϕ| (y) dy

≤C t
∥∥Gϕ2w

∥∥
L∞[a,1]

.

Then, proceeding as in the first part of this proof and using the monotonicity of ϕ,

we get

(4.11) ‖Γ1ϕw‖Lp[a,1] ≤ C t
∥∥Gϕ2w

∥∥
Lp[a,1]

,

for 1 ≤ p ≤ ∞. Combining (4.9) and (4.11), we obtain

‖Γ2w‖Lp[a,1] ≤ C t2
∥∥Gϕ2w

∥∥
Lp[a,1]

for 1 ≤ p ≤ ∞. Iterating this procedure, our claim follows for r > 2.
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Proof of Lemma 2.2. Let us first prove that Ωrϕ(B, f, t)w,p ≤ CK̃(B, f, tr)w,p, for

1 ≤ p ≤ ∞ and for any B > 1. For every x ∈ Ih(B) and for any g ∈ W p
r (w), we

can write

(4.12)
w(x)

∣∣∆r
hϕ [f(x)]

∣∣ ≤ w(x)
∣∣∆r

hϕ [f(x)− g(x)]
∣∣+ w(x)

∣∣∆r
hϕ [g(x)]

∣∣

=:A1(x) +A2(x) .

Concerning A1(x), by Proposition 4.1, we have

A1(x) =w(x)
∣∣∣
r∑

i=1

(
r

i

)
(−1)i[f − g]

(
x+

hϕ(x)

2
(r − 2i)

)∣∣∣

≤C
r∑

i=1

(
r

i

)∣∣∣[(f − g)w]
(
x+

hϕ(x)

2
(r − 2i)

)∣∣∣ .

Since, for a sufficiently small h, x ∈ Ih(B) implies x+hϕ(x)(r− 2i)/2 ∈ Ih(C), for

some 1 < C < B, then we get

(4.13) ‖A1‖L∞(Ih(B)) ≤ C ‖(f − g)w‖L∞(Ih(C))

and

(4.14)
‖A1‖pp =

∫

Ih(B)

∣∣∣
r∑

i=1

(
r

i

)
(−1)i[(f − g)w]

(
x+

hϕ(x)

2
(r − 2i)

)∣∣∣
p

dx

≤ C ‖(f − g)w‖pLp(Ih(C)) ,

making the change of variables y = x + hϕ(x)(r − 2i)/2 and taking into account

that |dx/dy| ≤ 2.

In order to estimate A2(x), we use the formula (see [3, (2.4.5) p. 21]) For

x ≥ rhϕ(x)/2, we have

A2(x) = w(x)
∣∣∣
∫ hϕ(x)

2

− hϕ(x)
2

· · ·
∫ hϕ(x)

2

− hϕ(x)
2

g(r)(x+ u1 + · · ·+ ur) du1 · · ·dur
∣∣∣

≤ Cw(x)

∫ rhϕ(x)
2

− rhϕ(x)
2

(rhϕ(x)

2
− |u|

)r−1

|g(r)(x+ u)|du .

By Proposition 4.1, it follows that

A2(x)≤ Chr−1

∫ rhϕ(x)
2

− rhϕ(x)
2

|g(r)ϕr−1w|(x+ u) du

= Chr−1

∫ x+
rhϕ(x)

2

x− rhϕ(x)
2

|g(r)ϕr−1w|(y) dy .
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Hence, using the Hardy–Littlewood maximal function for 1 < p ≤ ∞ and the

Fubini theorem for p = 1, we obtain

(4.15) ‖A2‖Lp(Ih(B)) ≤ Chr‖g(r)ϕrw‖Lp(Ih(C)) , 1 ≤ p ≤ ∞ .

Combining (4.13), (4.14), (4.15) and (4.12), taking the supremum on all 0 < h ≤ t
and using Proposition 2.1, we get

Ωrϕ (B, f, t)w,p ≤ CK̃ (C, f, tr)w,p ≤ CK̃ (B, f, tr)w,p

for any B > 1, with t < t0 and 1 ≤ p ≤ ∞.

Let us now prove that K̃ (C, f, tr)w,p ≤ CΩrϕ (B, f, t)w,p, with C > 1 a fixed

constant and 1 < B < C. To this aim, with 0 < h ≤ t and N = min{k ∈ N : k ≥
t−1}, we select some points

−1 + Ch
1

α+1/2 ≤ t1 < t2 < · · · < tN ≤ 1− Ch
1

α+1/2 ,

whose distance ∆tk = tk+1 − tk satisfies

hϕ(tk) ≤ ∆tk ≤ 2hϕ(tk) .

With τk = tk+tk+1

2 , we define Ψk(x) = Ψ(x−τk

∆τk
), where Ψ ∈ C∞(R) is a

non-decreasing function such that

Ψ(x) =

{
1 , x ≥ 1 ,

0 , x ≤ 0 .

Recalling the definition of the Steklov function (see for instance [3, p. 13])

(4.16) fτ (x) = rr
∫ 1/r

0

· · ·
∫ 1/r

0

( r∑

l=0

(−1)l+1

(
r

l

)
f(x+lτ(u1, . . . , ur))

)
du1 . . .dur ,

where −1 < τ < 1, we introduce the following functions:

Fh,k(x) =
2

h

∫ h

h/2

fτϕ(tk)(x) dτ

and

(4.17) Gh(x) =

N∑

k=1

Fh,k(x)Ψk−1(x)(1−Ψk(x)),

with Ψ0(x) = 1 and ΨN (x) = 0.

With this function Gh, we can prove, using the same arguments as in [3,

pp. 14–16], that the following inequalities

(4.18) ‖(f −Gh)w‖Lp(Ih(C)) ≤ C Ωrϕ (B, f, h)w,p ,

(4.19) ‖G(r)
h ϕrw‖Lp(Ih(C)) ≤ C h−r Ωrϕ (B, f, h)w,p ,

hold for 1 ≤ p ≤ ∞ and B < C. Taking the supremum on all 0 < h ≤ t and using

Proposition 2.1, we get our claim.
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Proof of Lemma 2.3. In order to prove that ωrϕ(f, t)w,p ≤ CK(f, tr)w,p, by virtue

of Lemma 2.2 it is sufficient to show that, for any g ∈ W p
r (w), the second and the

third terms in (2.2) are dominated by C tr ‖g(r)ϕrw‖p. We estimate only the third

term, because the other one can be handled in an analogous way. To this end let

T be the Taylor polynomial of degree r − 1 with starting point 1 − Bt1/(α+ 1
2 ) of

g ∈W p
r (w). We have

inf
q∈Pr−1

‖(g − q)w‖p ≤ ‖(g − T )w‖p

and

w(x) (g − T ) (x) =
w(x)

(r − 1)!

∫ x

1−Bt
1/(α+ 1

2 )
(x− u)r−1g(r)(u)du .

Then, using Lemma 4.2, we get

inf
q∈Pr−1

‖(g − q)w‖p ≤ Ctr‖g(r)ϕrw‖p

and the first inequality in our claim follows.

Finally we prove that K(f, tr)w,p ≤ Cωrϕ(f, t)w,p. To this end we recall that,

for suitable p1, p2 ∈ Pr−1, we have

‖(f − p1)w‖
Lp[−1,−1+Bt1/(α+ 1

2
)]

+ tr‖p(r)
1 ϕrw‖

Lp[−1,−1+Bt1/(α+ 1
2
)]
≤ C ωrϕ(f, t)w,p

and

‖(f − p2)w‖
Lp[1−Bt1/(α+ 1

2
),1]

+ tr‖p(r)
2 ϕrw‖

Lp[1−Bt1/(α+ 1
2
),1]
≤ C ωrϕ(f, t)w,p .

Now we put x1 = −1 + B
2 t

1/(α+ 1
2 ), x2 = −1 + Bt1/(α+ 1

2 ), x3 = 1 − B
2 t

1/(α+ 1
2 ),

x4 = 1 − Bt1/(α+ 1
2 ). Given a non-decreasing function ψ ∈ C∞, with ψ(x) = 1

for x ≥ 1, ψ(x) = 0 for x ≤ 0, we define ψi(x) = ψ( x−xi

xi+1−xi
), i = 1, 2, 3 and the

following function

Γt(x) = (1− ψ1(x))p1(x) + ψ1(x)(1− ψ3(x))Gt(x) + ψ3(x)p2(x) ,

where Gt is given by (4.17), with h replaced by t. Now it is not difficult to show

that

K(f, tr)w,p ≤ ‖(f − Γt)w‖p + tr‖Γ(r)
t ϕrw‖p ≤ C ωrϕ(f, t)w,p

and this completes the proof.

Acta Sci. Math. (Szeged),77:1−2(2011)
All rights reserved c© Bolyai Institute, University of Szeged

All rights reserved © Bolyai Institute, University of Szeged



Polynomial approximation with an exponential weight in (−1, 1) 183

Proof of Lemma 3.1. In order to obtain (3.4), it suffices to prove that, for m ≥ 1

and for any fixed s ≥ 1, there exists a polynomial Rlm ∈ Plm, l = l(s), such that

(4.20) |w(x)−Rlm(x)| ≤ w(asm)

2
, x ∈ [−asm, asm] .

In fact, by (4.20), we have

w(x)− w(asm)

2
≤ Rlm(x) ≤ w(x) +

w(asm)

2
,

which is equivalent to (3.4), since w(x) ≥ w(asm) for x ∈ [−asm, asm].

Let us prove inequality (4.20). To this aim we set z = x+iy and (1−z2)−α =

e−αLog(1−z2), where Log denotes the principal value of the logarithm. Hence w(z) =

e−(1−z2)−α

is holomorphic for |z| < 1. Denoting by Tlm the Chebyshev polynomial

of degree lm, we choose Rlm to be the Lagrange polynomial interpolating w at the

zeros of Tlm(x/asm). The error can be written as (see [12, p. 55, Theorem 1.4.5])

(4.21)

|w(x)−Rlm(x)| =
∣∣∣

1

2πi

∫

Γ

w(ζ)Tlm(x/asm)

(ζ − x)Tlm(ζ/asm)
dζ
∣∣∣

≤ 1

2π

∫

Γ

|w(ζ)|
|ζ − x||Tlm(ζ/asm)| |dζ| ,

where Γ is the ellipse with foci at ±asm and semiaxes (asm/2)(ρ + 1/ρ) and

(asm/2)(ρ− 1/ρ), ρ is chosen such that

1

2

(
ρ+

1

ρ

)
= 1 +

1

2
(1− asm) .

Hence we get

(4.22)
ρ = 1 +

1

2
(1− asm) +

√[
1 +

1

2
(1− asm)

]2
− 1

≥ 1 +
√

1− asm .

Now, for ζ ∈ Γ, we can write ζ = (asm/2)(t+ 1/t) with |t| = ρ, and then, by

(4.22) and since

(
1 +
√

1− asm
) 1√

1−asm =

(
1 +
√

1− asm
)1+ 1√

1−asm

(
1 +
√

1− asm
) >

e

2
,
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184 G. MASTROIANNI and I. NOTARANGELO

we obtain

(4.23)

∣∣∣Tlm
( ζ

asm

)∣∣∣ =
∣∣∣Tlm

(1

2

(
t+

1

t

))∣∣∣ =
∣∣∣
1

2

(
tlm +

1

tlm

)∣∣∣

≥ 1

2

(
ρlm − 1

ρlm

)
≥ 1

2
[(1 +

√
1− asm)lm − 1]

≥ 1

4
e(1−log 2)lm

√
1−asm

for l sufficiently large, e.g. l ≥ (log 2)s
1

2α+1 /((1− log 2)
√
K) =: l1, with 1− asm =

K(sm)− 1
α+1/2 . Moreover, we have

(4.24) |ζ − x| ≥ asm
2

(
ρ+

1

ρ

)
− asm =

asm
2

(1− asm) .

Combining (4.23) and (4.24) in (4.21), we obtain

(4.25) |w(x)−Rlm(x)| ≤ 4 e−(1−log 2)lm
√

1−asm

πasm(1− asm)

∫

Γ

|w(ζ)| |dζ| .

Finally, in order to estimate |w(ζ)|, we can write

(4.26) max
ζ∈Γ
|w(ζ)| ≤ max

ζ∈Γ
e|1−ζ2|−α

≤ e( 1−asm
2 )

−α

,

since |1−ζ2| ≥ |1−ζ| ≥ 1−(asm/2)(ρ+1/ρ) = (1−asm/2)(1−asm) ≥ (1−asm)/2.

Combining (4.25) and (4.26), we obtain

|w(x)−Rlm(x)| ≤ 8 e2α(1−asm)−α−(1−log 2)lm
√

1−asm

asm(1− asm)
=

1

2
e−Am(1−asm)−α

,

where

Am = (1− log 2)lm(1− asm)α+1/2 − 2α − (1− asm)α log
( 16

asm(1− asm)

)
.

Since 1− asm = K(sm)−1/(α+1/2), for m ≥ 1 we have Am ≥ 1 choosing

l ≥ s2α + 1/(αe) + 1 + 5Kα log 2

(1− log 2)Kα+1/2
=: l2 ,

and inequality (4.20) follows for l ≥ max{l1, l2}.
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Let us now prove inequality (3.5). We can write

∣∣∣R′
lm(x)

√
1− x2

m

∣∣∣ ≤
∣∣∣[Rlm(x)− w(x)]′

√
1− x2

m

∣∣∣+
∣∣∣w′(x)

√
1− x2

m

∣∣∣ .

For the second term at the right-hand side, by (3.2), for x ∈ [−asm, asm], we have

∣∣∣w′(x)

√
1− x2

m

∣∣∣ =
2α|x|

(1− x2)α+1/2m
e−(1−x2)−α ≤ Cw(x) .

While for the first term we can proceed as it has been done in the first part

of this proof, since

|[w(x)−Rlm(x)]′| =
∣∣∣

1

2πi

∫

Γ

w(ζ)Tlm(x/asm)

(ζ − x)2Tlm(ζ/asm)
dζ
∣∣∣

≤ 16 e2α(1−asm)−α−(1−log 2)lm
√

1−asm

a2
sm(1− asm)2

.

Then, for some large (but fixed) l, we get (3.5).

In order to prove Theorem 3.2, we recall the following proposition (see for

instance [13]).

Proposition 4.3. Let vγ(x) = (1− x2)γ , γ > 0, and

vγm(x) =
(√

1− x+
1

m

)2γ(√
1 + x+

1

m

)2γ

.

There exist polynomials qm ∈ Pm such that

(4.27) qm(x) ∼ vγm(x)

and

(4.28) q′
m(x)

ϕ(x)

m
≤ Cvγm(x) ,

for x ∈ [−1, 1], where C and the constants in “∼” are independent of m.

Note that vγ(x) ∼ vγm(x) for x ∈ [−1+ c
m2 , 1− c

m2 ], where c is a fixed positive

constant, and, since γ > 0, vγ(x) < vγm(x) for x ∈ [−1, 1].
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Proof of Theorem 3.2. We consider only the case γ > 0, the case γ = 0 being

simpler. By abuse of notation, we denote by ‖ · ‖p the quasinorm of the Lp-spaces

for 0 < p < 1, defined in the usual way.

Let us first prove the Bernstein-type inequality (3.6). The first step is to use

the restricted range inequality (3.3). To this aim, by Proposition 4.3, we introduce

two polynomials qm, rm ∈ Pm such that vγ < vγm ∼ qm and ϕ < ϕm ∼ rm in

[−1, 1]. Hence, by the restricted range inequality (3.3), for 0 < p ≤ ∞, we have

‖P ′
mϕv

γw‖p ≤C‖P ′
mqmrmw‖p ≤ C‖P ′

mqmrmw‖Lp[−a3m,a3m] .

Using Lemma 3.1, we can replace the weight w at the right-hand side by a

polynomial Rlm ∈ Plm, satisfying (3.4) and (3.5) in [−a4m, a4m]. Note that

[−a4m, a4m] ⊂ [−1 + c
m2 , 1 − c

m2 ] for some c > 0, hence we can replace again

rm by ϕ, since there rm ∼ ϕ. Namely, by (3.4) and (4.27), it follows that

(4.29)
‖P ′

mϕv
γw‖p ≤C‖P ′

mqmRlmϕ‖Lp[−a3m,a3m]

≤C‖(PmqmRlm)′ϕ‖Lp[−a3m,a3m] + C‖Pmq′
mRlmϕ‖Lp[−a3m,a3m]+

+ C‖PmqmR′
lmϕ‖Lp[−a3m,a3m] .

Let us consider the first summand in (4.29). We observe that ϕ(x) ∼
√
a2
4m − x2

for x ∈ [−a3m, a3m]. Hence, we can use the unweighted Bernstein inequality in

[−a4m, a4m], by (3.4) and (4.27), we get

(4.30)

‖(PmqmRlm)′ϕ‖Lp[−a3m,a3m] ≤C
∥∥∥(PmqmRlm)′

√
a2
4m − ·2

∥∥∥
Lp[−a4m,a4m]

≤Cm‖PmqmRlm‖Lp[−a4m,a4m]

≤Cm‖Pmvγw‖Lp[−a4m,a4m] .

Concerning the second summand in (4.29), by (4.28) and (3.4), we have

(4.31)
‖Pmq′

mRlmϕ‖Lp[−a3m,a3m] ≤Cm ‖PmvγRlm‖Lp[−a3m,a3m]

≤Cm‖Pmvγw‖Lp[−a3m,a3m] .

Finally, for the third summand in (4.29), by (3.5) and (4.27), we get

(4.32)
‖PmqmR′

lmϕ‖Lp[−a3m,a3m] ≤Cm ‖Pmqmw‖Lp[−a3m,a3m]

≤Cm‖Pmvγw‖Lp[−a3m,a3m] .

Combining (4.30), (4.31) and (4.32) with (4.29), we obtain the Bernstein-type

inequality (3.6) for 0 < p ≤ ∞.
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Finally, let us prove the Markoff-type inequality (3.7). Letting again qm ∈ Pm
such that v < vm ∼ qm and using the restricted range inequality (3.3), we have

‖P ′
mv

γw‖p ≤ C‖P ′
mqmw‖Lp[−a2m,a2m] , 0 < p ≤ ∞ .

Hence, multiplying and dividing by ϕ, taking into account (3.2), and proceeding

as in the first part of this proof, we get

‖P ′
mv

γw‖p ≤
C√

1− a2
2m

‖P ′
mqmwϕ‖Lp[−a2m,a2m]

≤C m√
1− am

‖Pmvγw‖p ≤ Cm
2α+2
2α+1 ‖Pmvγw‖p ,

which was our claim.

In order to prove Lemma 3.3 we use arguments analogous to those in [14],

[15], [17]. We divide the proof in some lemmas.

First, we need some results about orthogonal polynomials associated with

exponential weights and their zeros. Given the weight w and A ∈ Z+ (we are

going to fix the constant A in the sequel), let us consider the weight w1/A and the

corresponding sequence
{
pm
(
w1/A

)}
m

of orthonormal polynomials with positive

leading coefficient. We denote by xk the positive zeros of pm
(
w1/A

)
and by x−k =

−xk the negative ones, with 1 ≤ k ≤ ⌊m/2⌋. If m is odd, x0 = 0 is a zero of

pm
(
w1/A

)
. These zeros satisfy (see [5, pp. 380–381])

(4.33) −ãm < x−⌊m/2⌋ < · · · < x1 < x2 < · · · < x⌊m/2⌋ < ãm ,

where the M–R–S number

ãm = am(w1/(2A)) = a2Am(w)

satisfies (3.2), i.e.

1− ãm ∼ 1− am(w) ∼ m−1/(α+ 1
2 ) .

The distance between two consecutive zeros of pm
(
w1/A

)
is given by (see [4,

p. 9])

(4.34) ∆xk := xk+1 − xk ∼
Φ(xk)

m
, −

⌊m
2

⌋
≤ k ≤

⌊m
2

⌋
− 1 ,

where

(4.35) Φ(xk) ∼ max

{√

1− |xk|
ãm

+
(1− ãm

m

)2/3

,
1− ãm√

1− |xk|
ãm

+
(

1−ãm

m

)2/3

}
.
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188 G. MASTROIANNI and I. NOTARANGELO

For a fixed θ ∈ (0, 1), we define an index j = j(m, θ) such that

(4.36) xj = min
1≤k≤⌊m/2⌋

{xk : xk ≥ ãθm} ,

where

(4.37) 1− ãθm
ãm
∼ 1− ãθm ∼ 1− ãm ∼ m−1/(α+ 1

2 ) .

It is easy to check that, for |k| ≤ j, the maximum in (4.35) is given by the first

term. Moreover, since (see [5, pp. 313–324])

(4.38) 1− x⌊m/2⌋
ãm

∼
(1− ãm

m

)2/3

,

by (4.37), we get (see also [5, p. 32])

(4.39) ∆xk ∼
1

m

√

1− |xk|
ãm
∼ ϕ(xk)

m
, |k| ≤ j ,

where C and the constants in “∼” depend only on θ.

For |k| ≥ j, the maximum in (4.35) is given by the second term and then,

taking into account (4.38), we have

(4.40) ∆xk ∼
1− ãm

m
√

1− |xk|
ãm

, |k| ≥ j ,

where the constants in “∼” depend only on θ.

In the sequel we will need the following proposition.

Proposition 4.4. Let vγ(x) = (1 − x2)γ , with γ ≥ 0. Let xi, |i| ≤ ⌊m/2⌋, be the

zeros of pm(w1/A) and x±(⌊m/2⌋+1) = ±ãm = ±am(w1/(2A)), with A ∈ Z+ and w

be the weight in (2.1). For any xi and for |xk| ≤ xj, with xj defined by (4.36) for

some fixed θ ∈ (0, 1), we have

(4.41) vγ(xi) ≤ C (1 + |i− k|)2γ vγ(xk)

and

(4.42)

∫ xi+1

xi

vγ(x) dx ≤ C (1 + |i− k|)2γ+1
∫ xk+1

xk

vγ(x) dx

where C is independent of m and k.
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Polynomial approximation with an exponential weight in (−1, 1) 189

Proof. There is no loss of generality in assuming xi, xk > 0, taking into account

the symmetry and since the cases xi = 0 or xk = 0 are simpler. The first step is

to prove that

(4.43) ∆xi ≤ C (1 + |i− k|) ∆xk ,

where ∆xi = xi+1 − xi, i = −⌊m/2⌋ − 1, . . . , ⌊m/2⌋. In fact, if xk, xi ∈ (0, xj ], by

(4.39), we have

(4.44)
∆xi
∆xk

≤ C
√

1− x2
i

1− x2
k

≤ C i
k
≤ C(1 + |i− k|) .

Now, let us assume xi ∈ (xj , ãm]. Recalling (4.34) and (4.38), we have

∆xi ≤ C
[√1− x2

i

m
+
(1− ãm

m

)2/3]
≤ C

[√1− x2
k

m
+
(1− ã2

m

m

)2/3]

and then
∆xi
∆xk

≤ C
(

1 +
m1/3(1− ã2

m)2/3√
1− x2

k

)
.

If k ≤ j/2, i.e. k ≤ j − k(≤ i− k), we get

(4.45)

∆xi
∆xk

≤C(1 +m1/3(1− xk)1/6)

≤C(1 + k1/3) ≤ C(1 + i− k) .

Otherwise, if j/2 < k ≤ j(≤ i), then for j ≥ 2, we have 1 ≤ j−k+1 < j/2+1 ≤ j,
hence x1 ≤ xj−k+1 ≤ xj . Then we obtain

(4.46)

∆xi
∆xk

≤C
(

1 +
m1/3(1− x2

j−k+1)2/3

(1− x2
k)1/2

)

≤C
(

1 +
(j − k + 1)4/3

k

)
.

We observe that if k = j we have ∆xi/∆xj ≤ C and if k < j we have 1 <

(j − k + 1)/(j − k) ≤ 2. From (4.46) it follows that

(4.47)

∆xi
∆xk

≤C(1 + (j − k + 1)1/3) ≤ C(1 + (i− k + 1)1/3)

≤C(1 + i− k) .
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Combining (4.44), (4.45) and (4.47), we obtain (4.43).

In order to prove inequality (4.41), we observe that if xi ∈ (xj , ãm], then

vγ(xi) ≤ vγ(xk). Otherwise, in analogy to (4.44), we have

vγ(xi)

vγ(xk)
≤ C

( i
k

)2γ

≤ C(1 + |i− k|)2γ .

Finally, concerning inequality (4.42), using (4.43) and (4.41), we obtain

∫ xi+1

xi
vγ(x) dx

∫ xk+1

xk
vγ(x) dx

≤ C v
γ(xi)∆xi

vγ(xk)∆xk
≤ C (1 + |i− k|)2γ+1

.

Given f ∈W p
1 (u), 1 ≤ p ≤ ∞, we introduce the function fj , defined by

(4.48) fj(x) =





f(−xj) , if −1 ≤ x < −xj ,

f(x) , if −xj ≤ x ≤ xj ,

f(xj) , if xj < x ≤ 1 .

Obviously fj ∈W p
1 (u). Moreover we can write

(4.49) E2A(m+1)(f)u,p ≤ ‖(f − fj)u‖p + E2A(m+1)(fj)u,p ,

where 2A(m + 1) is the degree of suitable polynomials which we will use in the

proof of Lemma 3.3.

Lemma 4.5. Let 1 ≤ p ≤ ∞ and u = vγw be the weight in (3.1) with γ ≥ 0. For

any f ∈W p
1 (u) we have

(4.50) ‖(f − fj)u‖p ≤
C
m
‖f ′ϕu‖Lp[−1,−xj ]∪[xj ,1]

with C independent of m and f .

Proof. We can write

‖(f − fj)u‖p ≤ ‖(f − fj)u‖Lp[−1,−xj ]
+ ‖(f − fj)u‖Lp[xj ,1]

.

We are going to estimate only the first summand at the right-hand side, the proof

for the second one being similar. We make a slight modification to the arguments

in the proof of Lemma 4.2, taking into account that −1 < −xj ≤ −ãθm = −1 +
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Polynomial approximation with an exponential weight in (−1, 1) 191

K(θm)−1/(α+1/2), for some K > 0. Here we consider only the case p = ∞. Since

vγ is a non-decreasing function, we have

(4.51)
sup

x∈[−1,−xj ]

|f(x)− fj(x)|vγ(x)w(x)

≤ sup
x∈[−1,−xj ]

vγ(x)w(x)

∫ −xj

x

|f ′(y)|dy

≤ sup
x∈[−1,−xj ]

w(x)

∫ −xj

x

|f ′(y)vγ(y)|dy

≤ C ‖f ′ϕvγw‖L∞[−1,−xj ] sup
x∈[−1,−ãθm]

w(x)

∫ −ãθm

x

ϕ−1(y)w−1(y) dy .

By (4.4) and (4.37) we get

(4.52) sup
x∈[−1,−ãθm]

w(x)

∫ −ãθm

x

ϕ−1(y)w−1(y) dy ≤ C
m
.

From (4.51) and (4.52), our claim follows for p = ∞. For 1 ≤ p < ∞ the proof

is a modification to that of Lemma 4.2 in the previous sense and so we omit the

details.

Letting

(4.53) Mk = max
x∈[xk−1,xk]

fj(x) , mk = min
x∈[xk−1,xk]

fj(x) ,

and

x0
+ =

{
1 , x ≥ 0 ,

0 , x < 0 ,

we introduce the functions

(4.54) (S+fj)(x) = f(−xj) +
∑

|k|≤j
(x− xk)0+[Mk+1 −Mk]

and

(4.55) (S−fj)(x) = f(−xj) +
∑

|k|≤j
(x− xk)0+[mk+1 −mk] .

By definition, we have

(4.56) (S−fj)(x) = fj(x) = (S+fj)(x) ,

for |x| > xj , and

(4.57) (S−fj)(x) ≤ fj(x) ≤ (S+fj)(x) ,

for |x| ≤ xj . Moreover, if x ∈ [xi−1, xi], i = −j + 1, . . . , j, we have

(4.58) (S+fj)(x)− (S−fj)(x) = Mi −mi .
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192 G. MASTROIANNI and I. NOTARANGELO

Lemma 4.6. Let 1 ≤ p ≤ ∞ and u = vγw be given by (3.1) with γ ≥ 0. For any

f ∈W p
1 (u) we have

(4.59) ‖(S+fj − S−fj)u‖p ≤
C
m
‖f ′ϕu‖Lp[−xj ,xj ]

with C independent of m and f .

Proof. Let us first consider the case p =∞. By (4.56) and (4.58), we have

max
x∈[−1,1]

∣∣(S+fj − S−fj
)

(x)u(x)
∣∣

= max
x∈[−xj ,xj ]

∣∣(S+fj − S−fj
)

(x)vγ(x)w(x)
∣∣

≤ max
i∈{−j+1,...,j}

max
x∈[xi−1,xi]

|Mi −mi| vγ(x)w(x)

≤ max
i∈{−j+1,...,j}

max
x∈[xi−1,xi]

vγ(x)w(x)

∫ xi

xi−1

∣∣f ′
j(y)

∣∣ dy .

By Proposition 4.1 and (4.39), we get

max
x∈[−1,1]

∣∣(S+fj − S−fj
)

(x)u(x)
∣∣

≤ C max
i∈{−j+1,...,j}

∫ xi

xi−1

∣∣f ′
jv
γw
∣∣ (y) dy

≤ C
m

max
i∈{−j+1,...,j}

1

∆xi

∫ xi

xi−1

∣∣f ′
jϕv

γw
∣∣ (y) dy ≤ C

m
‖f ′ϕvγw‖L∞[−xj ,xj ]

.

For 1 < p <∞, by Proposition 4.1, the Hölder inequality and (4.39), we have

∥∥(S+fj − S−fj
)
vγw

∥∥p
p
≤

j∑

i=−j+1

∫ xi

xi−1

∣∣S+fj − S−fj
∣∣p (x)vγp(x)wp(x) dx

≤ C
mp

j∑

i=−j+1

∫ xi

xi−1

[ m

ϕ(x)

∫ x+c
ϕ(x)

m

x−cϕ(x)
m

∣∣f ′
jϕv

γw
∣∣ (y) dy

]p
dx

=
C
mp

j∑

i=−j+1

∫ xi

xi−1

∣∣M(f ′
jϕv

γw)
∣∣p dx

≤ C
mp
‖f ′ϕvγw‖pLp[−xj ,xj ]

,

where c is some constant andM(f ′
jϕv

γw) denotes the Hardy–Littlewood maximal

function of f ′
jϕv

γw.
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We omit the proof for p = 1, which follows by similar arguments and using

the Fubini theorem.

We denote by ℓk
(
w1/A

)
the kth fundamental Lagrange polynomial based on

the zeros of pm(w1/A) and the two extra points ±ãm, where ãm = am
(
w1/(2A)

)
=

a2Am(w). For |k| ≤ ⌊m/2⌋ it is defined by

(4.60) ℓk(w1/A;x) =
pm
(
w1/A;x

)

p′
m

(
w1/A;xk

)
(x− xk)

( ã2
m − x2

ã2
m − x2

k

)
.

Lemma 4.7. For any x ∈ [−1, 1] and for |xk| ≤ xj, where xj is given by (4.36) for

some fixed θ ∈ (0, 1), we have

(4.61) |ℓk(w1/A;x)|2Aw(x) ≤ C w(xk)

(1 + |k − d|)A/2
,

where xd, |d| ≤ ⌊m/2⌋, is a zero closest to x, A ∈ Z+ and C is independent of m

and k.

Proof. Using the relations (see [4, p. 10])

(4.62) sup
x∈[−1,1]

|pm(w1/A;x)|w1/(2A)(x)
∣∣∣1− |x|

ãm

∣∣∣
1/4

∼ 1

and

(4.63)
1

|p′
m(w1/A;xk)|w1/(2A)(xk)

∼ ∆xk

∣∣∣1− |xk|
ãm

∣∣∣
1/4

we get

|ℓk(w1/A;x)|w1/(2A)(x)

w1/(2A)(xk)
≤ C ∆xk
|x− xk|

|ã2
m − x2|
ã2
m − x2

k

( 1− |xk|/ãm
|1− |x|/ãm|

)1/4

≤ C ∆xk
|x− xk|

( |ã2
m − x2|
ã2
m − x2

k

)3/4

,

for x ∈ [−1, 1].

Taking into account the symmetries, we can assume x, xk ≤ 0. Let xd ∼ x

be a zero closest to x; then, by using an extension of an inequality of Erdős and

Turán (see [5, pp. 320–322]), we have
∣∣ℓk
(
w1/A;x

)∣∣w1/(2A)(x)

w1/(2A)(xk)
∼ 1 , k ∈ {d− 1, d, d+ 1} .
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Therefore two cases are left: −xj ≤ xk < x and −1 ≤ x < xk.

Let us consider the first case. With x ∼ xd and k ≤ d− 2, we have
∣∣ℓk
(
w1/A;x

)∣∣w1/(2A)(x)

w1/(2A)(xk)
≤C ∆xk

x− xk

( ãm + x

ãm + xk

)3/4

= C ∆xk
x− xk

(
1 +

x− xk
ãm + xk

)3/4

= C
( ∆xk
x− xk

)1/4[ ∆xk
x− xk

+
∆xk

ãm + xk

]3/4

≤C
( ∆xk
x− xk

)1/4[ ∆xk
x− xk

+ 1
]3/4

≤C
( ∆xk
x− xk

)1/4

,

since ∆xk ≤ ãm + xk. Moreover, since

x− xk ≥
d−1∑

i=k

∆xi ≥ (d− k) min
k≤i≤d−1

∆xi ≥ C(d− k)∆xk ,

we get

(4.64)

∣∣ℓk
(
w1/A;x

)∣∣w1/(2A)(x)

w1/(2A)(xk)
≤ C

(1 + |d− k|)1/4 .

Now, consider the case −1 ≤ x < xk. First let x > −ãm. Since, by (4.34) and

(4.38),

∆xk ≥ C
√
ã2
m − x2

k

m
, |k| ≤

⌊m
2

⌋
,

and

∆xk ≤ C
√
ã2
m − x2

k

m
, |k| ≤ j ,

with x ∼ xd and k ≥ d+ 2, we have

xk − x ≥xk − xd+1 =

k−1∑

i=d+1

∆xi ≥ (k − d− 1) min
d+1≤i≤k−1

∆xi

≥ (k − d− 1)
C
m

√
ãm + xd

and then

(4.65)

∣∣ℓk
(
w1/A;x

)∣∣w1/(2A)(x)

w1/(2A)(xk)
≤ C ∆xk
|x− xk|

( ãm + x

ãm + xk

)3/4

≤ C
(1 + |k − d|)

√
ãm + xk
ãm + xd

( ãm + x

ãm + xk

)3/4

≤ C
(1 + |k − d|)

( ãm + x

ãm + xk

)1/4

≤ C
(1 + |k − d|) ,
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since am+x < am+xk. Finally, letting −1 ≤ x ≤ −ãm, we have |ãm+x| < xk−x
and xk − x ≥ ãm + xk. Hence, by (4.39), we get

∣∣ℓk
(
w1/A;x

)∣∣w1/(2A)(x)

w1/(2A)(xk)
≤ C ∆xk
|x− xk|

( |ãm + x|
ãm + xk

)3/4

≤ C ∆xk
(xk − x)1/4(ãm + xk)3/4

≤ C ∆xk
ãm + xk

≤ C
m
√
ãm + xk

.

We observe that, by the definition of j (4.36), using (4.39) and (4.37), for |k| ≤ j−1

∆xk ≥
C
m

√
1− ãθm

ãm
≥ C
√

1− ãm
m

and for |k| ≥ j
∆xk ≥ C

1− ãm
m
√

1− ãθm

ãm

≥ C
√

1− ãm
m

,

having used (4.40) and (4.37). Hence we get

ãm + xk ≥ xd + xk =

k−1∑

i=d

∆xi ≥ C(1 + |k − d|)
√

1− ãm
m

By (3.2), it follows that

(4.66)

∣∣ℓk
(
w1/A;x

)∣∣w1/(2A)(x)

w1/(2A)(xk)
≤ C√

m 4
√

1− ãm(1 + |k − d|)1/2

≤ Cm− 2α
2(2α+1)

(1 + |k − d|)1/2 ≤
C

(1 + |k − d|)1/2 .

By (4.64), (4.65) and (4.66), we get our claim.

Now, proceeding as in [18], we construct the polynomials p±
k ∈ P2A(m+1),

|k| ≤ j, such that, for x ∈ [−1, 1],

p−
k (x) ≤ (x− xk)0+ ≤ p+

k (x) ,

and

(4.67) p+
k (x)− p−

k (x) = ℓ2Ak (w1/A;x) .
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Denoting by xi, |i| ≤ ⌊m/2⌋ the zeros of pm
(
w1/A

)
and with x±(⌊m/2⌋+1) =

±ãm = ±am
(
w1/(2A)

)
= ±a2Am(w), these are given by (see also [18], [14])

p+
k (xi) =

{
0, −⌊m/2⌋ − 1 ≤ i ≤ k − 1,

1, k ≤ i ≤ ⌊m/2⌋+ 1,

dν

dxν
p−
k (xi) = 0, i 6= k, ν = 1, . . . , 2A− 1 ,

and

p−
k (xi) =

{
0, −⌊m/2⌋ − 1 ≤ i ≤ k,

1, k + 1 ≤ i ≤ ⌊m/2⌋+ 1,

dν

dxν
p−
k (xi) = 0, i 6= k, ν = 1, . . . , 2A− 1 .

With these polynomials we define

(4.68) Q±(x) = f(−xj) +
∑

∆Mk>0

p±
k (x)∆Mk +

∑

∆Mk<0

p∓
k (x)∆Mk

and

(4.69) q±(x) = f(−xj) +
∑

∆mk>0

p±
k (x)∆mk +

∑

∆mk<0

p∓
k (x)∆mk ,

where ∆Mk = Mk+1 −Mk and ∆mk = mk+1 −mk, |k| ≤ j.
By the definitions, in [−1, 1], we have

q− ≤ S−fj ≤ q+ , Q− ≤ S+fj ≤ Q+ ,

and then

(4.70) q− ≤ S−fj ≤ fj ≤ S+fj ≤ Q+ .

Lemma 4.8. Let 1 ≤ p ≤ ∞ and u = vγw be given by (3.1) with γ ≥ 0. For any

f ∈W p
1 (u), the polynomials Q±, q± ∈ P2A(m+1), with A > 4γ + 6 fixed, satisfy

(4.71)
∥∥(Q+ −Q−)u

∥∥
p
≤ C
m
‖f ′ϕu‖Lp[−xj ,xj ]

and

(4.72)
∥∥(q+ − q−)u

∥∥
p
≤ C
m
‖f ′ϕu‖Lp[−xj ,xj ]

,

where in both cases C is independent of m and f , and xj is the zero of pm(w1/A)

defined by (4.36).

Acta Sci. Math. (Szeged),77:1−2(2011)
All rights reserved c© Bolyai Institute, University of Szeged

All rights reserved © Bolyai Institute, University of Szeged



Polynomial approximation with an exponential weight in (−1, 1) 197

Proof. We are going to prove only inequality (4.71), since (4.72) follows using the

same arguments.

By (4.68) and (4.67), and by using Lemma 4.7, for x ∈ [−1, 1], we have

(4.73)

∣∣Q+ −Q−∣∣ (x)w(x)≤
∑

|k|≤j
ℓ2Ak (w1/A;x)w(x) |∆Mk|

≤ C
∑

|k|≤j

w(xk) |∆Mk|
(1 + |d− k|)A/2

where xd ∼ x is a zero closest to x, d = −⌊m/2⌋, . . . , ⌊m/2⌋ − 1.

With ãm = am(w1/(2A)) = a2Am(w), for 1 ≤ p ≤ ∞, we can write

(4.74)

‖(Q+ −Q−)vγw‖p≤ ‖(Q+ −Q−)vγw‖Lp[−ãm,ãm]+

+‖(Q+ −Q−)vγw‖Lp[ãm,1]+

+‖(Q+ −Q−)vγw‖Lp[−1,−ãm]

=: I1 + I2 + I3 .

In order to estimate the term I1, letting xi, |i| ≤ ⌊m/2⌋, the zeros of pm(w1/A)

and x±(⌊m/2⌋+1) = ±ãm, we set

yi =
xi + xi+1

2
, i = −

⌊m
2

⌋
− 1, . . . ,

⌊m
2

⌋
,

y−⌊m/2⌋−2 = −ãm and y⌊m/2⌋+1 = ãm. Now, consider the case p = ∞. By (4.73)

and (4.41) we have

‖(Q+ −Q−)vγw ‖L∞[−ãm,ãm]

= max
|i|≤⌊m/2⌋+1

max
x∈[yi−1,yi]

∣∣Q+ −Q−∣∣ (x)vγ(x)w(x)

≤ C max
|i|≤⌊m/2⌋+1

max
x∈[yi−1,yi]

vγ(x)
∑

|k|≤j

w(xk) |∆Mk|
(1 + |i− k|)A/2

≤ C max
|i|≤⌊m/2⌋+1

∑

|k|≤j

vγ(xk)w(xk)

(1 + |i− k|)A/2−2γ

∫ xk+1

xk−1

∣∣f ′
j(y)

∣∣ dy .
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By Proposition 4.1 and by (4.39), we obtain

‖(Q+−Q−)vγw‖L∞[−ãm,ãm]

≤ C max
|i|≤⌊m/2⌋+1

∑

|k|≤j

1

(1 + |i− k|)A/2−2γ

∫ xk+1

xk−1

∣∣f ′
jv
γw
∣∣ (y) dy

≤ C
m

max
|i|≤⌊m/2⌋+1

∑

|k|≤j

1

(1 + |i− k|)A/2−2γ

[ 1

∆xk

∫ xk+1

xk−1

∣∣f ′
jϕv

γw
∣∣ (y) dy

]

≤ C
m
‖f ′ϕvγw‖L∞[−xj ,xj ]

max
|i|≤⌊m/2⌋+1

∑

|k|≤j

1

(1 + |i− k|)A/2−2γ

≤ C
m
‖f ′ϕvγw‖L∞[−xj ,xj ]

,

choosing A > 4γ + 2.

Now let us consider the case 1 < p <∞. By (4.73) we have

‖(Q+ −Q−)vγw ‖pLp[−ãm,ãm]

=
∑

|i|≤⌊m/2⌋+1

∫ yi

yi−1

∣∣Q+ −Q−∣∣p (x)vγp(x)wp(x) dx

≤ C
∑

|i|≤⌊m/2⌋+1

∫ yi

yi−1

vγp(x)
[ ∑

|k|≤j

w(xk) |∆Mk|
(1 + |i− k|)A/2

]p
dx .

By the Hölder inequality, Proposition 4.1, (4.42) and (4.39), we get

‖(Q+ −Q− )vγw‖pLp[−ãm,ãm]

≤ C
∑

|i|≤⌊m/2⌋+1

∑

|k|≤j

1

(1 + |i− k|)(A/2−1−2γ)p−1
×

×
∫ xk+1

xk−1

[ ∫ xk+1

xk−1

∣∣f ′
jw
∣∣ (y) dy

]p
vγp(x) dx

≤ C
mp

∑

|i|≤⌊m/2⌋+1

∑

|k|≤j

1

(1 + |i− k|)(A/2−1−2γ)p−1
×

×
∫ xk+1

xk−1

[ m

ϕ(x)

∫ x+c
ϕ(x)

m

x−cϕ(x)
m

∣∣f ′
jϕv

γw
∣∣ (y) dy

]p
dx ,

where c is some constant. By the boundedness of the Hardy–Littlewood maximal
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function and reversing the sums, it follows that

‖(Q+ −Q− )vγw‖pLp[−ãm,ãm]

≤ C
mp

∑

|k|≤j

∫ xk+1

xk−1

[ m

ϕ(x)

∫ x+c
ϕ(x)

m

x−cϕ(x)
m

∣∣f ′
jϕv

γw
∣∣ (y) dy

]p
dx×

×
∑

|i|≤⌊m/2⌋+1

1

(1 + |i− k|)(A/2−1−2γ)p−1

≤ C
mp
‖f ′ϕvγw‖pLp[−xj ,xj ]

,

since, choosing A > 4γ+ 2 + 4/p, the sum is uniformly bounded w.r.t. k. We omit

the case p = 1, since it is simpler than the previous ones. Then we have

(4.75) I1 ≤
C
m
‖f ′ϕvγw‖Lp[−xj ,xj ]

for 1 ≤ p ≤ ∞ and A > 4γ + 6.

In order to estimate the term I2, we first consider the case p =∞. By (4.73),

by Proposition 4.1 and by (4.39), we get

‖(Q+ −Q− )vγw‖L∞[ãm,1]

≤ C max
x∈[ãm,1]

vγ(x)
∑

|k|≤j

w(xk) |∆Mk|
(1 + ⌊m/2⌋ − k)A/2

≤ C
∑

|k|≤j

1

(1 + ⌊m/2⌋ − k)A/2

∫ xk+1

xk−1

∣∣f ′
jv
γw
∣∣ (y) dy

≤ C
m

∑

|k|≤j

1

(1 + ⌊m/2⌋ − k)A/2

[ 1

∆xk

∫ xk+1

xk−1

∣∣f ′
jϕv

γw
∣∣ (y) dy

]

≤ C
m
‖f ′ϕvγw‖L∞[−xj ,xj ]

,

choosing A > 2.

For 1 < p <∞, by (4.73), by Proposition 4.1 and by (4.37), we have

∥∥(Q+ −Q−) vγw
∥∥
Lp[ãm,1]

≤ C(1− ãm)1/p
∑

|k|≤j

vγ(xk)w(xk) |∆Mk|
(1 + ⌊m/2⌋ − k)A/2

≤ C(1− ãm)
1
p − 1

2

∑

|k|≤j

∫ xk+1

xk−1
|f ′ϕvγw| (y) dy

(1 + ⌊m/2⌋ − k)A/2
,
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since
√

1− x2
k ≥

√
1− ã2

m. By (3.2), it follows that

‖(Q+ −Q− )vγw‖Lp[ãm,1]

≤ C
m

∑

|k|≤j

m2

(1 + ⌊m/2⌋ − k)A/2

∫ xk+1

xk−1

|f ′ϕvγw| (y) dy

≤ C
m

∑

|k|≤j

∫ xk+1

xk−1

|f ′ϕvγw| (y) dy ,

choosing A > 4. In fact, if k ≤ m/4 then

m2

(1 + ⌊m/2⌋ − k)A/2
≤ Cm2−A/2 ≤ C

otherwise
m2

(1 + ⌊m/2⌋ − k)A/2
≤ C(1 + k)2−A/2 ≤ C .

Hence, using the Hölder inequality, we obtain

(4.76) I2 ≤
C
m
‖f ′
jϕv

γw‖p

for 1 < p <∞ and A > 4. We omit the case p = 1, being simpler than the previous

one. Moreover, an estimate analogous to (4.76), holds also for the term I3 in (4.74).

Therefore, taking into account (4.75), inequality (4.71) follows for 1 ≤ p ≤ ∞ and

A > 4γ + 6.

Proof of Lemma 3.3. Let 1 ≤ p ≤ ∞ and u = vγw. By using Lemma 4.5 we have

(4.77)

E2A(m+1)(f)u,p≤ E2A(m+1)(fj)u,p + ‖(f − fj)u‖p
≤ E2A(m+1)(fj)u,p +

C
m
‖f ′ϕu‖p .

Let us consider the first summand at the right-hand side of (4.77). By (4.70)

and using Lemmas 4.6 and 4.8, we obtain

(4.78)
E2A(m+1)(fj)u,p≤

∥∥(Q+ − fj
)
u
∥∥
p

≤
∥∥(Q+ −Q−)u

∥∥
p

+
∥∥(S+fj − S−fj

)
u
∥∥
p

+
∥∥(q+ − q−)u

∥∥
p

≤ C
m
‖f ′ϕu‖p .

By (4.78) and (4.77), we obtain (3.9).
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Proof of Theorem 3.4. Having proved inequality (3.9) with u = vγw, γ ≥ 0, then,

for any g ∈W p
r (w), r ≥ 1, iterating this inequality, we get

(4.79) Em(g)w,p ≤
C
m
Em−1(g′)ϕw,p ≤ · · · ≤

C
mr
‖g(r)ϕrw‖p .

For any f ∈ Lpw, it follows that

Em(f)w,p≤ Em(f − g)w,p + Em(g)w,p

≤ ‖(f − g)w‖p +
C
mr
‖g(r)ϕrw‖p .

Taking the infimum on all g ∈W p
r (w) and using Lemma 2.3, we get our claim.

Proof of Theorem 3.5. Given 0 < θ < 1, we set M = ⌊θm⌋. Hence [−aM , aM ] ⊂
I1/m(B) = [−1+Bm−1/(α+ 1

2 ), 1−Bm−1/(α+ 1
2 )], for some B > 1. Let us first prove

that, for 1 ≤ p ≤ ∞, the inequality

(4.80) ẼM (f)w,p = inf
PM ∈PM

‖(f − PM )w‖Lp[−aM ,aM ] ≤ C Ωrϕ

(
f,

1

M

)

w,p

holds with C 6= C(f,m).

Proceeding as in the proof of Lemma 2.2, for any function f ∈ Lpw, we can

construct a function gM such that

(4.81) ‖(f − gM )w‖Lp[−aθm,aθm] ≤ C Ωrϕ

(
f,

1

M

)

w,p

and

(4.82)
∥∥∥g(r)
M ϕrw

∥∥∥
Lp[−aθm,aθm]

≤ CmrΩrϕ

(
f,

1

M

)

w,p
,

where C 6= C(f,m). Namely, we denote by gM the function Gh given by (4.17),

with h = 1/M .

Now, denoting by Tr−1, T̃r−1 ∈ Pr−1 the Taylor polynomials of gM with start-

ing points −aθm and aθm, respectively, we introduce the function

g̃M (x) =





Tr−1(gM , x) , x ∈ [−1,−aθm],

gM (x) , x ∈ [−aθm, aθm],

T̃r−1(gM , x) , x ∈ [aθm, 1].
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Thus we have

(4.83)

ẼM (f)w,p

:= inf
PM ∈PM

‖(f − PM )w‖Lp[−aθm,aθm]

≤ ‖(f − g̃M )w‖Lp[−aθm,aθm] + inf
PM ∈PM

‖(g̃M − PM )w‖Lp[−aθm,aθm]

≤ ‖(f − gM )w‖Lp[−aθm,aθm] + inf
PM ∈PM

‖(g̃M − PM )w‖p .

By (4.81), the first summand in (4.83), can be estimated as

(4.84) ‖(f − gM )w‖Lp[−aθm,aθm] ≤ C Ωrϕ

(
f,

1

M

)

w,p
.

Concerning the second summand in (4.83), we observe that g̃M ∈W p
r (w); then, by

(4.79) and (4.82), we get

(4.85)

inf
PM ∈PM

‖(g̃M − PM )w‖p ≤
C
mr
‖g̃(r)
M ϕrw‖p =

C
mr
‖g̃(r)
M ϕrw‖Lp[−aθm,aθm]

≤C Ωrϕ

(
f,

1

M

)

w,p
.

Combining (4.84) and (4.85) in (4.83), we obtain

(4.86) ẼM (f)w,p ≤ C Ωrϕ

(
f,

1

M

)

w,p
.

It follows that there exist polynomials P ∗
M ∈ PM such that

(4.87) ‖(f − P ∗
M )w‖Lp[−aθm,aθm] ≤ C Ωrϕ

(
f,

1

M

)

w,p
.

Then, for k = 1, 2, . . ., by using inequality (3.3) and by (4.87), we have

‖(P ∗
2k+1M − P ∗

2kM )w‖p≤ ‖(P ∗
2k+1M − P ∗

2kM )w‖Lp[−a
2k+1M

,a
2k+1M

]

≤ C Ωrϕ

(
f,

1

2kM

)

w,p
.

It follows that the series

∞∑

k=0

‖(P ∗
2k+1M − P ∗

2kM )w‖p
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converges, because it is dominated by

∞∑

k=0

Ωrϕ

(
f,

1

2kM

)

w,p
∼
∫ 1/M

0

Ωrϕ(f, t)w,p

t
dt <∞ .

Therefore the equality

(f − P ∗
M )w =

∞∑

k=0

(P ∗
2k+1M − P ∗

2kM )w

holds a.e. in [−1, 1], and then

‖(f − P ∗
M )w‖p ≤ C

∫ 1/M

0

Ωrϕ (f, t)w,p
t

dt <∞ .

Finally, we can write

Em(f)w,p≤ EM (f)w,p ≤ C
∫ 1/M

0

Ωrϕ (f, t)w,p
t

dt ≤ C
∫ 1/m

0

Ωrϕ(f, τ)w,p

τ
dτ

and this completes the proof.

In order to prove Theorem 3.7, we recall the Hermite–Genocchi formula

−→
∆
r

hF (x) = r!hr
∫

Sr

F (r)(x+ (t1 + · · ·+ tr)h) dt1 · · ·dtr ,

where Sr = [0, 1]× [0, t1]× · · · × [0, tr−1], 0 ≤ ti ≤ 1 for i = 1, . . . , r, and
−→
∆
r

h is the

rth forward difference with step h.

For any f ∈W p
r (w), it follows that

(4.88) ∆r
hf(x) =

−→
∆
r

hf
(
x− rh

2

)
= r!hr

∫

Sr

f (r)
(
x− rh

2
+ h

r∑

i=1

ti

)
dt1 · · ·dtr .

Proof of Theorem 3.7. By Proposition 4.3 there exists a polynomial qm ∈ Pm
such that ϕr < ϕrm ∼ qm in [−1, 1] and qm ∼ ϕ in [−a2m, a2m]. Hence, using the

restricted range inequality (3.3), we get

(4.89)∥∥∥P (r)
m

( ϕ
m

)r
w
∥∥∥
p

≤ C
∥∥∥P (r)

m

(qm
m

)r
w
∥∥∥
p
≤ C

∥∥∥P (r)
m

( ϕ
m

)r
w
∥∥∥
Lp[−a2m,a2m]

≤ C
∥∥∥
[
P (r)
m

( ϕ
m

)r
−∆r

ϕ
m

(Pm)
]
w
∥∥∥
Lp[−a2m,a2m]

+ C‖∆r
ϕ
m

(Pm)w‖Lp[−a2m,a2m]

=: A1 +A2 .
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Note that x ∈ [−a2m, a2m] implies x ± rϕ(x)
2m ∈ (−1, 1). In fact, for m sufficiently

large, x+rϕ(x)
2m ≤ a2m+ r

2m = 1−(1−a2m− r
2m ) < 1, since 1−a2m ∼ m−1/(α+1/2).

Let us first consider the term A2. By Theorem 3.4 we have

(4.90)

A2 ≤C‖∆r
ϕ
m

(Pm − f)w‖Lp[−a2m,a2m] + C‖∆r
ϕ
m

(f)w‖Lp[−a2m,a2m]

≤CEm(f)w,p + Cωrϕ
(
f,

1

m

)

w,p
≤ Cωrϕ

(
f,

1

m

)

w,p
.

While, concerning the term A1, by using (4.88) with h = ϕ(x)/m, taking into

account that

(ϕ(x)

m

)r
P (r)
m (x) = r!

(ϕ(x)

m

)r ∫

Sr

P (r)
m (x) dt1 · · ·dtr ,

we obtain

∣∣∣∆r
ϕ
m
Pm(x)

∣∣∣ ≤ r!
(ϕ(x)

m

)r ∫

Sr

∣∣∣P (r)
m (x)−P (r)

m

(
x− rϕ(x)

2m
+
ϕ(x)

m

r∑

i=1

ti

)∣∣∣dt1 · · ·dtr .

By Proposition 4.1, for 1 < p <∞, it follows that

|∆r
ϕ
m
Pm(x)|w(x)

≤ Cr!
(ϕ(x)

m

)r
w(x)

∫

Sr

∫ x+
rϕ(x)
2m

x− rϕ(x)
2m

|P (r+1)
m (u)|du dt1 · · ·dtr

≤ Cr!
∫

Sr

[ m

rϕ(x)

∫ x+
rϕ(x)
2m

x− rϕ(x)
2m

∣∣∣P (r+1)
m (u)

(ϕ(u)

m

)r+1

w(u)
∣∣∣du
]
dt1 · · ·dtr

≤ C m

rϕ(x)

∫ x+
rϕ(x)
2m

x− rϕ(x)
2m

∣∣∣P (r+1)
m (u)

(ϕ(u)

m

)r+1

w(u)
∣∣∣du ,

since
∫
Sr

dt1 · · ·dtr = 1
r! . Hence, using the boundedness of the Hardy–Littlewood

maximal function for 1 < p ≤ ∞ and the Fubini theorem for p = 1, we obtain

A1 ≤ C
∥∥∥P (r+1)

m

( ϕ
m

)r+1

w
∥∥∥
p
.

It remains to prove that

(4.91)
∥∥∥P (r+1)

m

( ϕ
m

)r+1

w
∥∥∥
p
≤ Cωrϕ

(
f,

1

m

)

w,p
.
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To this aim we use standard arguments (see [3, p. 84]). In fact, letting s ∈ N such

that 2s ≤ m < 2s+1, we can write

Pm − P0 = Pm − P2s + P2s − P2s−1 + · · ·+ P1 − P0 ,

where Pi ∈ Pi, i = 0, 1, . . . , 2s, are polynomial of quasi best approximation of

f ∈ Lpw. Then, by the Bernstein-type inequality (3.8) and Theorem 3.4, we get

‖P (r+1)
m ϕr+1w‖p ≤C

s∑

k=0

2(k+1)(r+1)‖(P2k+1 − P2k)w‖p

≤C
s∑

k=0

2(k+1)(r+1)+1E2k(f)w,p

≤C
s∑

k=0

2(k+1)(r+1)+1ωrϕ

(
f,

1

2k

)

w,p
.

Since, by Lemma 2.3,

ωrϕ

(
f,

1

2k

)

w,p
≤CK(f, 2−kr)w,p ≤ C2(s+1−k)rK(f, 2−(s+1)r)w,p

≤C2(s+1−k)rωrϕ

(
f,

1

m

)

w,p
,

and (4.91) follows.

Combining (4.91), (4.90) and (4.89), we get (3.15).
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