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Abstract
This paper introduces the pseudo-calibration estimators, a novel method that 
integrates a non-probability sample of big size with a probability sample, assuming 
both samples contain relevant information for estimating the population parameter. 
The proposed estimators share a structural similarity with the adjusted projection 
estimators and the difference estimators but they adopt a different inferential 
approach and informative setup. The pseudo-calibration estimators can be employed 
when the target variable is observed in the probability sample and, in the non-
probability sample, it is observed correctly, observed with error, or predicted. 
This paper also introduces an original application of the jackknife-type method 
for variance estimation. A simulation study shows that the proposed estimators are 
robust and efficient compared to the regression data integration estimators that use 
the same informative setup. Finally, a further evaluation using real data is carried 
out.

Keywords Big data · Calibration weighting · Data integration · Missing at random · 
Model-based inference · Variance estimation

1 Introduction

In recent years, new data sources have emerged as a result of increased interactions 
with digital technologies by both citizens and business units, along with the growing 
capability of these technologies to generate digital trails. These sources, known 
as Big Data (BD) sources, encompass extensive amounts of digital information, 
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including web surveys, search queries, website visits, social media activity, online 
purchases, self-reported administrative data sets, and other online interactions. 
BD sources typically comprise numerous records, often containing unstructured 
information, and are primarily generated for non-statistical purposes. They 
represent non-probability samples of the reference population. In many cases, 
they do not accurately represent the population of interest. Consequently, using 
them, for instance, to compute a simple mean of the observed values can lead to 
biased population mean estimates and erroneous conclusions, despite the large 
sample size (Bethlehem 2010; Vehovar et al. 2016; Meng 2018). Notwithstanding 
these limitations, BD sources offer quick, easy, and cost-effective alternatives for 
obtaining data. They are becoming increasingly relevant in research and, notably, 
they present challenging sources of information for producing Official Statistics.

The use of BD sources is leading to a paradigm shift for National Statistical 
Institutes (NSIs), transitioning from planned statistics achieved through a designed 
process to data-oriented or data-driven statistics. Traditionally, NSIs rely on a 
designed process for collecting statistical data. This involves identifying the target 
population and its records, defining the target variables, planning the sampling 
design, and using efficient estimators. In the data-driven approach, the primary focus 
is on choosing the estimator that is most suitable for the task based on the observed 
variables. The process involves using a specific data collection tool, usually a digital 
device, on a sub-population selected through an unknown sampling technique. 
Horrigan (2013) emphasizes the importance of creating transparent methodological 
documentation (metadata) describing how BD are used to construct any type of 
estimate. Citro (2014), Tam and Clarke (2015a), Pfeffermann (2015) address the 
methodological uses and challenges of BD sources in the production of Official 
Statistics. Many reports have developed suitable statistical frameworks (among 
others: EUROSTAT 2018; Japec et al. 2015) and quality frameworks (UNECE Big 
Data Quality Task Team 2014; United Nations 2019; EUROSTAT 2020) that outline 
the fundamental principles and guidelines for using BD sources in producing Official 
Statistics. Several papers focusing on the accuracy and reliability of BD sources 
emphasize the growing need to determine the conditions under which BD sources 
can provide valid inferences. In this regard, many authors agree with the necessity of 
using methods combining data from big non-probability and probability samples to 
not severely sacrifice the quality of the estimates (Beaumont 2020). Valliant (2020) 
and Rao (2021) provide insightful reviews of these methods. Kim (2022) offers an 
extensive review of data integration techniques for combining a probability sample 
with a non-probability sample when the study variable is only observed in the non-
probability sample. Most methods assume that the variable of interest is available 
only in the non-probability sample, while other auxiliary variables are present in 
both samples.

In this work, we assume that the target variable is observed in the probability 
sample, while in the big non-probability sample, it is (a) observed correctly, (b) 
observed with error, or (c) predicted using covariates collected in the big non-
probability sample. A real case study inspiring our research is the 2018 European 
Community survey data on ICT usage and e-commerce in enterprises, conducted 
annually by Istat. The ICT probability survey sample data can be combined with 



1 3

Integrating probability and big non‑probability samples…

the internet data scraped from the enterprises’ websites belonging to the ICT 
target population (big non-probability sample data). The target variables related to 
e-commerce functionalities, social media links, and presence of job advertisements 
can be observed, according to assumption (a), or predicted, according to assumption 
(c), using text-mining techniques on the scraped website data (Righi et  al. 2019). 
By integrating this additional information with the ICT survey, one can significantly 
improve the accuracy of the estimates. Another real case illustrating the type of 
BD we consider in this paper is given in Tam (2015) and Tam and Clarke (2015b). 
In these papers, the use of remote sensing for agricultural statistics using geo-
localized satellite imagery and other satellite data (e.g., moisture, temperature) is 
investigated. After transforming the images into structured data (for instance, the 
reflectance data from frequency bands), the target variables (land use, crop type, 
crop yield) are predicted by supervised machine learning classification techniques. 
A probability sample of geo-localized areas collecting ground truth data is used as a 
training set. Another example is given by Rueda et al. (2023) where an application 
of data integration techniques using a similar informative setup is provided. They 
consider a probability survey on the impact of the COVID-19 pandemic in Spain 
combined with a non-probability web-based survey. Both samples share the same 
questionnaire and measures.

In this paper, we introduce a novel class of estimators called pseudo-calibration 
(PC) estimators. They are based on big non-probability sample data, integrated 
with probability survey sample data and administrative or statistical registers. We 
also propose a variance estimation method based on the Delete-a-Group Jackknife 
technique (Kott 2001, 2006a). Specifically, we formalize the PC estimators initially 
introduced in an Istat technical report1 and employed in Righi et  al. (2019). The 
PC estimators are developed within a model-based framework, although an 
automatic calibration procedure, typical of model-assisted estimators, is carried out. 
We highlight that the proposed estimators have a similar structure to the adjusted 
projection estimator (Kim and Rao 2011) and the difference estimators (Breidt 
and Opsomer 2017), but a different inferential approach and informative setup. 
Furthermore, we show the analogies of the proposed estimators with the doubly 
robust estimators (Chen et al. 2020). Yet, we compare the proposed estimators with 
the data integration estimators proposed by Kim (2022), developed in the same 
informative setup. The data integration estimators utilize both a probability and non-
probability sample from the reference population. The target variable is observed 
in both samples, but there is a possibility of inaccurate measurement in one of the 
samples. The PC and data integration estimators employ calibration techniques, 
which are well-established methods used by National Statistical Institutes (NSIs), 
making them suitable for producing Official Statistics. However, the calibration 
methods differ significantly between these two classes of estimators. Precisely, the 
PC estimators aim to compute the weights of units in the non-probability sample; 
the data integration estimators seek to compute the weights of the probability sample 
units according to a model-assisted approach. With few exceptions, the two classes 
of estimators produce different estimates of the target parameter.

1 https:// www. istat. it/ it/ files// 2020/ 05/ Tech_ Report_ ICT20 18. pdf

https://www.istat.it/it/files//2020/05/Tech_Report_ICT2018.pdf
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The paper is structured as follows. Section 2 introduces the basic notation and the 
informative context. A brief introduction of the data integration estimators (Kim and 
Tam 2021) is in Sect. 3. Section 4 illustrates the novel class of PC estimators, and 
Sect. 5 shows the jackknife-type variance estimator. Section 6 presents the results 
of a Monte Carlo simulation on the performance of PC estimators, the comparison 
with the data integration estimators, and the accuracy of the jackknife-type variance 
estimator. Section  7 shows an application of the two classes of estimators on the 
motivating real survey data and BD source introduced above. Finally, some 
concluding remarks are in Sect. 8.

This paper is an extended version of the paper presented at the 51st Scientific 
Meeting of the Italian Statistical Society on June 2022 (Righi et al. 2022).

2  Informative context

We estimate the parameters of the finite target population using a big non-
probability sample, where the values of the target variable may either be observed 
correctly, observed with error, or predicted. To ensure valid inferences, we assume 
the following: (i) there exists a reference survey, with a probability sample drawn 
from the target population, where the target variable is observed correctly; (ii) 
it is possible to identify which units in the probability sample also belong to the 
non-probability sample; (iii) in the big non-probability sample, a set of auxiliary 
variables related to the target variable are available.

Assumptions (i) and (ii) are necessary for implementing the proposed PC 
estimators when the values of the target variable are observed with error or 
predicted in the large non-probability sample. Assumption (iii) underlines that the 
non-probability sample can serve as a source to gather informative covariates for 
predicting the target variable.

2.1  Notation and basic setup

Let U = {1,… ,N} denote the target population of size N, let Y = ΣN
i=1

yi be the tar-
get parameter and yi the observed value of the variable Y for the unit i. We have 
two independent samples from the finite population U : a probability sample SA of 
size nA and a big non-probability sample SB of size nB . For each unit i ∈ SA , we 
observe the values of a vector of auxiliary variables xi and the target variable yi . 
Within a design-based framework, ŶHT ,A = Σi∈Ad

A
i
yi stands as the design-unbiased 

Horvitz-Thompson estimator of Y, where dA
i
= 1∕�A

i
 denotes the sampling weight 

and �A
i
= Pr(i ∈ SA) is the first-order inclusion probability in SA.

In the big non-probability sample SB , the target variable Y can be observed cor-
rectly, with error, or predicted using a parametric or non-parametric model. In the 
first case, yi represents the observed value of Y for the unit i. In the latter two cases, 
the value of Y is denoted as ỹi . We use the notation y∗

i
 to indicate either yi or ỹi.



1 3

Integrating probability and big non‑probability samples…

We observe a vector of auxiliary variables xi for each unit i ∈ U  and an addi-
tional vector of auxiliary variables xi,B for each unit i ∈ SB . When the target vari-
able cannot be observed in SB , the vector xi,B contains good predictors for it.

The probability of a unit being included in the big non-probability sample, 
say �B

i
= Pr(i ∈ SB) , is unknown. This probability is referred to as the 

propensity score. Let �i = I(i ∈ SB) be the indicator variable such that, �i = 1 
if i ∈ SB and �i = 0 if i ∉ SB (i = 1,… ,N) . The propensity scores are given by 
�B
i
= Ep(�i ∣ xi, yi) = Pr(�i = 1 ∣ xi, yi) , where p refers to the model for generating 

SB.
Table  1 displays the data set available for the two samples and their 

representativeness.
As in Kim and Tam (2021) and Chen et  al. (2020), we assume that units 

belonging to SA can be recognized in SB . Therefore, it is possible to specify �i for 
each unit i ∈ SA.

3  Data integration estimators

The data integration (DI) estimators, developed by Kim and Tam (2021), provide 
a versatile tool for properly utilizing big non-probability samples in finite 
population inference. The big non-probability sample (BD source) is treated as 
a finite population of incomplete or inaccurate observations that can be used 
as auxiliary information. Thus, a calibration estimator can be directly used to 
adjust sampling weights for each i ∈ SA , to reproduce certain known population 
totals for both the target population U  and a non-probability sample SB . In Kim 
and Tam (2021), the authors point out that if the fraction of the non-probability 
sample present in the finite population is not substantial, the efficiency gain 
achieved by the DI estimators is limited. Additionally, it is worth highlighting 
that making design-based inference is advantageous for NSIs, as they typically 
use this approach to produce Official Statistics.

The general form of the class of DI estimators is the Regression DI (RegDI) 
estimator which is defined as

where {wA
i
∶ i ∈ SA} is the vector of calibrated weights. These weights are 

determined by solving the following optimization problem

(1)ŶRegDI =
∑

i∈SA

wA
i
yi,

Table 1  Data available for S
A
 

and S
B

Data Target variable Sampling weight Representative?

{i ∈ SA} yi 1∕�A
i

Yes
{i ∈ SB} y∗

i
unknown No
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where dA
i
 represents the base sampling weight, qi is a known positive weight 

independent of dA
i
 and X =

∑

i∈U xi is a vector of totals, including the totals of �i and 
�iy

∗
i
 . These totals are assumed to be known or possibly to be estimated by a large 

and accurate survey (e.g., Dever and Valliant 2010, 2016). The function Q(⋅) is a 
distance function that can be defined, for example, as

It is important to note that, in practice, uniform weighting ( qi = 1 ) is commonly 
used, although sometimes different weights are employed (Deville and Särndal 
1992).

By specifying the terms of the RegDI estimator, one can derive various DI 
estimators. Kim and Tam (2021) gives insight into the specific estimators. 
Furthermore, if we use alternative distance functions, we can obtain the 
calibration data integration estimators according to the definition by Deville 
and Särndal (1992). Regression and calibration estimators are useful statistical 
tools for enhancing the precision of the sampling estimates and are commonly 
used to deal with unit non-response and the frame list under-coverage (Kott 
2006b; Särndal and Lundström 2005).

Remark 1 A special case of (1) can be obtained considering the distance func-
tion (3) and setting xi = �iy

∗
i
 and qi = �iy

∗
i
 . We can define the RegDI estimator 

as

where ŶHT ,A =
∑

i∈SA
dA
i
yi , Ŷ

∗(B)

HT ,A
=
∑

i∈SA
dA
i
𝛿iy

∗
i
 and Y∗(B) =

∑

i∈SB
y∗
i
.

Remark 2 The RegDI estimators utilize y∗
i
 as auxiliary information in a 

design-based approach. They exhibit greater efficiency compared to the Hor-
vitz-Thompson estimator when y∗

i
 is correlated with the variable yi observed 

in SA , with maximum efficiency achieved when y∗
i
= yi . It is worth noting 

that in large-scale multi-purpose surveys, more than one target variable may 
be observed or predicted in SB . Consequently, the RegDI estimators could 
face excess calibration constraints, potentially making the calibration process 
unfeasible. Sampling errors may be notably large when these constraints are 
satisfied.

(2)
�

min
∑

i∈SA
Q(dA

i
,wA

i
)∕qi

∑

i∈SA
wA
i
xi = X

,

(3)Q(dA
i
,wA

i
;qi) =

∑

i∈SA

dA
i

qi

(

wA
i

dA
i

− 1

)2

.

(4)ŶRegDI = ŶHT ,A +
ŶHT ,A

Ŷ
∗(B)

HT ,A

(

Y∗(B) − Ŷ
∗(B)

HT ,A

)

=
ŶHT ,A

Ŷ
∗(B)

HT ,A

Y∗(B),
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4  Pseudo‑calibration estimators

4.1  Model‑based estimators

In this section, we consider the case (a), i.e., where the target variable is observed 
in both samples.

Unlike the design-based approach, the model-based approach utilizes data from 
a big non-probability sample and directly estimates the finite population parameter. 
This is achieved by summing the observed target variable for i ∈ SB and the target 
variable predicted for i ∉ SB . In this case, inference can be made within a model-
based framework. Prediction methods rely on defining a super-population model 
that generates the target variable Y (Valliant et al. 2000). Let’s suppose that the finite 
population (xi, yi) , for all i ∈ U , can be viewed as a random sample from the model 
yi = �(xi) + �i , where �(⋅) can take a parametric or an unspecified non-parametric 
form, and �i is an independent variable with zero mean and variance V(�i) = v(xi)�

2 , 
with the form of the variance function v(⋅) being known. This outcome model 
describes the dependence of the target variable on a vector of auxiliary variables 
x . We can use this relationship to predict the values of the units not belonging to 
SB , provided that the x values are known for all i ∈ U . In practice, we utilize the 
dataset of the pooled sample {(xi, yi), i ∈ SB ∪ SA} to construct the outcome model 
and make predictions. Given a parametric outcome model, yi = �(xi;�) + �i , and a 
consistent estimator 𝜷  of the parameters � , we obtain the predictions as ŷi = 𝜇(xi;𝜷) . 
The estimator for the population total Y is defined as Ŷm =

∑

i∈SB
yi +

∑

i∉SB
ŷi . If the 

assumption E�(yi ∣ xi, �i) = E�(yi ∣ xi) holds, we obtain unbiased model-based esti-
mates. Finally, the model-based estimator can be defined as a weighted sum of the 
observed values, Ŷm =

∑

i∈SB
𝜔iyi , where �i are the appropriate weights representing 

the units not belonging to SB (Valliant et al. 2000).
Another class of model-based estimators involves estimating the propen-

sity scores. Since the selection mechanism of SB is unknown, �B
i
 is estimated 

by a propensity score model exploting the dataset {(�i, �iyi, xi), i ∈ V} , where V 
is either U  or SB . For example, let the propensity score model be parametric, 
�B
i
= �(xi, yi,�) , and let �̂ be a consistent estimator of � . The estimate of �B

i
 is 

then �̂�i
B = 𝜋(xi, yi, �̂) . Once estimated �B

i
 , the model-based estimator is given by 

Ŷ𝜋 =
∑

i∈SB
yi∕�̂�

B
i
 . In practice, � cannot be estimated when the model depends on 

the yi values since they are not observed for i ∉ SB . Given the assumptions

A.1:  the selection indicator �i and the target variable yi are independent given the 
vector of covariates xi;

A.2: 𝜋B
i
> 0 for all i ∈ U;

A.3: the variables �i and �j are independent given xi and xj for i ≠ j with i, j ∈ U,

then, by Chen et  al. (2020), �B
i
= Pr(�i = 1 ∣ xi, yi) = Pr(�i = 1 ∣ xi) . This 

model corresponds to the Missing At Random mechanism (MAR) as defined 
by Rubin (1976) and Little and Rubin (2019). The MAR model parameters can 
be estimated using the dataset {(�i, xi), i ∈ V} . For example, one may opt for a 
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logistic propensity score model and employ a maximum likelihood consistent 
estimator when V ≡ U  . However, if V ≡ SB , the (log)likelihood function cannot 
be completely computed. The method relies on the reference survey sample, 
collecting the x values for i ∈ SA . Afterwards, a pseudo-likelihood function can 
be defined, and the maximum pseudo-likelihood estimates of � can be computed 
(for details, refer to formula (4) in Chen et  al. (2020)). Given the propensity 
score estimates, the inverse probability weighted estimator can be estimated 
as ŶIPW =

∑

i∈SB
yi∕�̂�

B
i
 being �̂�i

B = 𝜋(xi, �̂) (Kott 1994; Elliot and Valliant 
2017). Chen et  al. (2020) show that, assuming the logistic regression model 
for the propensity scores, under the regularity conditions A1–A3 and other 
reasonable conditions (C1-C6 specified in the supplementary materials), then 
ŶIPW − Y = Op(n

−1∕2

B
).

4.2  Pseudo‑calibration estimators when the target variable is observed in S
B

In the case (a), we derive the PC estimators from the inverse probability weighted 
estimator. In this case, the maximum pseudo-likelihood estimator is replaced by a 
consistent estimator based on unbiased estimating functions. Consider the following 
class of estimating equations

where h(xi,�) is a predefined smooth function of � that ensures the system (5) has a 
unique solution.

When xi is known for each i ∈ U and h(xi,�) = �(xi,�)
−1xi , the system (5) 

becomes the conventional calibration equations

where wB
i
= 1∕�(xi,�).

When xi can only be observed for the units belonging to SA , Chen et al. (2020) 
propose to replace 

∑

i∈U �(xi,�)h(xi,�) with 
∑

i∈SA
dA
i
�(xi,�)h(xi,�) in (5), 

obtaining the class of estimating equations,

When h(xi,�) = xi , the system (7) simplifies to

where the calibration is based on the estimated totals from the reference survey.

(5)
∑

i∈U

�ih(xi,�) −
∑

i∈U

�(xi,�)h(xi,�) = 0,

(6)
∑

i∈SB

wB
i
xi =

∑

i∈U

xi,

(7)
∑

i∈SB

h(xi,�) −
∑

i∈SA

dA
i
�(xi,�)h(xi,�) = 0.

(8)
∑

i∈SB

wB
i
xi =

∑

i∈SA

dA
i
xi,
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We can obtain the solution to (6) or (8) through the standard calibration process 
(Deville and Särndal 1992). The weights wB

i
 are determined by solving the optimiza-

tion problem

where Q(⋅) is a convex distance function, which may take the same form as illus-
trated in (3), replacing dA

i
 and wA

i
 by dB

i
 and wB

i
 , respectively. Additionally, the sum-

mation is indexed for i ∈ SB . Here, dB
i
 represent the base sampling weights, wB

i
 are 

the calibration weights, and X∗ is a vector of known totals, denoted as X , or esti-
mated totals, denoted as X̂ , derived from an accurate reference survey (Dever and 
Valliant 2010, 2016).

At first glance, the PC estimators may appear to be a slight variation of the DI 
indicators proposed by Kim and Tam (2021). However, there are key distinctions: 
the PC estimators operate on the propensity score of the non-probability sample, 
whereas the DI estimators work on the weights of the probability sample; the 
inference for the PC estimators is based on the outcome and a propensity score 
model, while the inference for the DI estimators is based on a model-assisted 
approach; the calibration constraints of the PC estimators do not use the target 
variable(s), while the calibration constraints of the DI estimators are strictly target 
variable-dependent. Since SB is not a probability sample, the propensity scores 
�B
i
 and the base sampling weights dB

i
= 1∕�B

i
 for the units in SB are unknown. 

Nevertheless, we make two alternative assumptions. The first is that we plan 
a census, but the frame list of SB under-covers the target population U . Then, 
�B
i
= 1 for all i ∈ SB and the base sampling weights dB

i
 are adjusted to account for 

the under-coverage bias through a calibration estimator (Little and Rubin 2019; 
Kott 2006b). The second assumption is that in the absence of information about 
the process generating SB , the maximum likelihood estimate of �B

i
 is nB∕N for all 

i ∈ SB , and dB
i
= dB with dB = N∕nB . After observing the sample and the auxiliary 

variables within it, we improve the estimates of �B
i
 . In the space of possible final 

weight vectors, we look for the vector closest to the initial value of dB , reducing the 
variability of wB

i
 as much as possible. Furthermore, Remark 7 shows that by setting 

dB = N∕nB for all i ∈ SB , the RegDI estimator in (4) can be expressed as a special 
case of PC estimator. Eventually, the two proposed guesses provide the same vector 
of calibrated weights and, in general, we achieve the same solution when using 
dB
i
= dB regardless of the value of dB.
The general expression of PC estimators is given by

The PC estimators ensure that the weighted distribution of the non-probability 
sample across auxiliary variables aligns with the distribution of those variables in 
the target population. They offer a simple and direct implementation and utilize 
well-established and widely used statistical calibration tools in NSIs.

(9)
�

min
∑

i∈SB
Q(dB

i
,wB

i
;qi)

∑

i∈SB
wB
i
xi = X

∗ ,

(10)ŶPC =
∑

i∈SB

wB
i
y
i
.
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Remark 3 (Justification of the optimization problem). We solve the calibration equa-
tions, 

∑

i∈SB
wB
i
xi = X

∗ , by setting up the optimization problem (9). In the special 
case of dB

i
= 1 , we encounter a frame list under-coverage problem for SB . Solving 

the optimization problem given in (9) is a commonly used strategy to address this 
issue. The basic idea is to limit the variability of wB

i
 and, through the choice of spe-

cific distance functions, prevent the occurrence of very large or negative values of 
wB
i
 . With dB

i
= N∕nB , the optimization starts from the simple propensity score mean 

model, which does not incorporate any auxiliary variables. Then, we enhance the 
model by introducing explanatory auxiliary variables, aiming to find the model clos-
est to the parsimonious mean model, obtaining the final weights.

Remark 4 The pseudo-calibrated estimate converges to the true value of the target 
parameter as nB → N , but its accuracy is sensitive to potential failures of the pro-
pensity score model, such as the violation of the MAR assumption, especially when 
dealing with small sample sizes. This is particularly notable in the case of sub-popu-
lation estimates. A possible approach to enhancing the robustness of the PC estima-
tors is to integrate a prediction model for the target variable and use a doubly robust 
estimator. When xi is known for each i ∈ U , we have

When xi is known for i ∈ SB or i ∈ SA , we have

Chen et al. (2020) show the theoretical properties of (11) and (12).

Remark 5 We can test the MAR assumption of the propensity score model (MAR 
model) using the dataset {(�i, yi, xi, ), i ∈ SA}.

Remark 6 The ŶPC estimator, with xi = xi (where xi is a scalar), a distance function 
in the form given in (3), and qi = xi , can be expressed as

where X =
∑

i∈U xi and X̂B =
∑

i∈SB
xid

B
i
 . ŶPC in (13) is the PC ratio estimator. Note 

we only use the xi values for i ∈ SB . Moreover, we can obtain a second version of 
the PC ratio estimator by replacing X with X̂.

Remark 7 In the case (a), the RegDI estimator in (4) can be reformulated as

(11)ŶDR1 =
∑

i∈SB

wB
i
(y

i
− ŷi) +

∑

i∈U

ŷi.

(12)ŶDR2 =
∑

i∈SB

wB
i
(y

i
− ŷi) +

∑

i∈SA

dA
i
ŷi.

(13)ŶPC =
∑

i∈SB

yid
B
i

(

X

X̂B

)

,

(14)ŶRegDI =
N

nB
Y (B)

(

nBŶHT ,A

NŶ
(B)

HT ,A

)

=
∑

i∈SB

yi
N

nB

(

ŶHT ,A

ŶHT ,AB

)

,
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where Y (B) =
∑

i∈SB
yi , ŶHT ,A =

∑

i∈SA
dA
i
yi , Ŷ

(B)

HT ,A
=
∑

i∈SA
dA
i
𝛿iyi and 

ŶHT ,AB =
∑

i∈SA∩SB
yid

A
i

N

nB
 . The RegDI estimator in (14) is equivalent to the PC ratio 

estimator in (13) when dB
i
= N∕nB . In this case, the PC ratio estimator incorporates 

Y as an auxiliary variable and performs calibration based on the unknown total 
population X ≡ Y  . Then, Y is replaced with ŶHT ,A . Similarly, X̂B is replaced with 
ŶHT ,AB.

4.3  Pseudo‑calibration estimators when the target variable is not observed in S
B

When the target variable is not observed in SB , we could be in the cases (b) or (c). In 
the case (b), we observe the target variable with error, i.e., ỹi is generated by a meas-
urement error model as ỹi = e(yi) + 𝜖i , where e(⋅) is a method for estimating ỹi , �i such 
that are independent error terms with zero mean and variance V(�i) = v(yi)�

2 . In the 
case (c) we predict its values according to a prediction model as ỹi = m(zi) + 𝜖i , where 
m(⋅) is a method for predicting ỹi , z�i = (x�

i,B
, x�) such that �i are independent error terms 

with zero mean and variance V(�i) = v(zi)�
2 . In both the cases, we can use the prob-

ability survey sample data, where the target variable is observed, to build the methods. 
Concerning the prediction methods, m(⋅) can belong to a very broad class of super-
vised prediction methods, encompassing both parametric and non-parametric methods, 
as well as machine learning techniques such as kernel methods, regression-tree (Hastie 
et al. 2001) and random forest (Breiman 2001). Non-parametric methods can be useful 
with high-dimensional and unstructured data, a scenario often encountered in big non-
probability sources.

A real example of the case (c) is estimating the number of websites offering specific 
services, such as e-commerce. In this case, we can employ a web-scraping technique 
to collect text documents from the websites, perform text analysis, and then predict 
the presence of functionalities and services on the website using supervised machine 
learning techniques (Righi et  al. 2019). Supervised machine learning methods learn 
from a labelled training set, which consists of predictors ( zi ) and their corresponding 
target values ( yi ). After training, the method can be employed to make predictions on 
new, unseen data ( ̃yi ). We assume to observe the target variable in SA , where SA ⊂ SB 
or SA ∩ SB ≠ � (see Sect. 4.3.1). We train m(⋅) on the dataset {(yi, zi) ∶ i ∈ SA ∩ SB} 
to obtain m̂(⋅) . Then, we make deterministic predictions with ̄̃yi = m̂(zi) or random 
predictions with ̂̃yi = ̄̃yi + 𝜖i , where 𝜖i represents the estimated random error terms. 
Plugging the deterministic predictions in (10), we obtain the projection pseudo-
calibration estimator, ŶP

PC
 , similar to the projection estimator proposed by Kim and Rao 

(2011). Plugging the random predictions in (10), we obtain

If the prediction method is misspecified or fails to capture the true relationship 
between the predictors and the target variable, then the estimates produced by (15) 
are biased. In cases where SA ⊂ SB , we introduce a correction term, defining the dif-
ference pseudo-calibration estimator in the case (c) as

(15)ŶP
PC

=
∑

i∈SB

wB
i
̂̃yi.
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In the case (b), we can define an estimator similar to ŶD
PC

 by replacing ̂̃yi with ỹi in 
(16).

Remark 8 The estimator ŶD
PC

 shares similarities with the estimator the ŶDR2 described 
in (12). Notice how ŶD

PC
 reverses the roles of probability and non-probability sam-

ples compared to the ŶDR2.

Remark 9 The estimator ŶD
PC

 shares a similar structure with the adjusted projection 
estimator proposed by Kim and Rao (2011) and the difference estimator developed 
by Breidt and Opsomer (2017), both defined in the model-assisted framework.

Remark 10 The asymptotic properties of (16) when m̂(⋅) is used instead of m(⋅) are 
outlined in Breidt and Opsomer (2017). They provide conditions under which the 
differences (ỹi − ̂̃yi) can be considered negligible for many parametric and non-par-
ametric methods. This theory is developed in the model-assisted framework, which 
is the context of (16) when considering the big non-probability sample frame list 
affected by under-coverage. Additionally, Chen et al. (2020) offer insights into the 
asymptotic properties in the model-based framework, particularly when the propen-
sity score model is the logistic model, and the outcome model is parametric.

Remark 11 Given ŶRegDI in (4), where y∗
i
= ̂̃yi , and assuming m(⋅) such that 

Em( ̂̃yi) = yi , then,

When we consider ŶD
PC

 , with the first term defined as in (13), and wB
i
 being 

independent of yi , we have that Em(ŶRegDI) ≈ Em(Ŷ
D
PC
).

4.3.1  Pseudo‑calibration estimators when S
A
∩ S

B
≠ S

A

In some cases, it may happen that SA ⊄ SB and SA ∩ SB ≠ � , meaning that for 
certain units in SA , we cannot observe xB . This condition generally arises when we 
plan SA independently from SB , but other practical reasons may also lead to this 
situation. For instance, in the previous example of business statistics regarding 
the services and functionalities of enterprise websites, the condition SA ⊄ SB 
and SA ∩ SB ≠ � arises when we select enterprises in SA that implement anti-
scraping techniques to block automatic scraping procedures on their websites. 
Consequently, these enterprises cannot belong to SB . We handle this situation as a 
non-response problem and replace dA

i
 in (16) with f A

i
 , which are the final adjusted 

(16)ŶD
PC

=
∑

i∈SB

wB
i
̂̃yi +

∑

i∈SA

dA
i
(yi − ̂̃yi).

(17)Em(ŶRegDI) = Y (B)
ŶHT ,A

Ŷ
(B)

HT ,A

+ Term of minor order.
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weights, since SA is not fully included in SB . The difference pseudo-calibration 
estimator (16) can be rewritten in this case as

5  Variance estimation

We estimate the variance of PC estimators using a jackknife-type method based 
on an adjusted version of the Delete-a-Group Jackknife (DAGJK) method 
(Kott 2001, 2006a), which is suitable for handling huge sample sizes. The 
DAGJK method offers computational advantages over the traditional Jackknife 
technique. It is well-suited for complex sampling strategies involving stratified 
design, several sampling phases, adjustment for non-response, calibration and 
composite estimation (Kott 2001). The variance estimation is asymptotically 
unbiased when the target parameter is a smooth function of the stratum means. 
However, it is not possible to guarantee that the DAGJK quantile variance 
estimation is unbiased.

The DAGJK method defines G random replication groups drawn from the 
parent sample, i.e., SB and SA . Then, G estimation processes are carried out 
using the sampled data, excluding the units of one replication group. For the 
g− th (g = 1,… ,G) replicated estimate, the method computes a weight for each 
unit, wB(g)

i
 and dA(g)

i
 based respectively on the wB

i
 and dA

i
 weights adjusted by 

the exclusion of the units in the group g. When y∗
i
= yi , the DAGJK variance 

estimation is

with Ŷ (g)

PC
=
∑

i∈SB
w
B(g)

i
yi , being wB(g)

i
= 0 when the unit i belongs to group g.

Let y∗
i
= ̄̃yi be a deterministic prediction. In this case, we add a variability 

correction term into (19) and rewrite the DAGJK variance estimator as

being wB(g)

i
= 0 and dA(g)

i
= 0 when the unit i belongs to group g. Finally, let 

y∗
i
= ̂̃yi + 𝜖i be a random prediction, where 𝜖i is the estimated error term obtained 

from the dataset {(yi, zi) ∶ i ∈ SA ∩ SB} . In the case of observations with errors in 
SB , we use the dataset {(yi, ỹi) ∶ i ∈ SA ∩ SB} to estimate the measurement error 

(18)ŶD
PC

=
∑

i∈SB

wB
i
̂̃yi +

∑

i∈SA∩SB

f A
i
(yi − ̂̃yi).

(19)v(ŶPC) =
G − 1

G

G
∑

g=1

(Ŷ
(g)

PC
− ŶPC)

2,

(20)

v(ŶD
PC
) =

G − 1

G

{

G
∑

g=1

(

∑

i∈SB

w
B(g)

i
̄̃yi − ŶP

PC

)2

+

G
∑

g=1

[

∑

i∈SA

d
A(g)

i
(yi − ̄̃yi) −

∑

i∈SA

dA
i
(yi − ̄̃yi)

]2}

,
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model and the relative error term. In both cases, the DAGJK method involves a ran-
dom generation of y∗

i
 values in each group, replacing the ̄̃yi in (20).

We evaluate (19) and (20) in the simulation study presented in the next 
section.

6  Simulation study

Following the simulation study 1) by Kim and Tam (2021), we generate a finite 
population, U  , of size N = 1, 000, 000 . The response variable, Y , is given by the 
following model:

where xi ∼ N(2, 1) , �i ∼ N(0, 0.51) and �i is independent of xi . Next, we generate a 
contaminated version of yi as follows:

where �i ∼ N(0, 0.52) and �i is independent of yi.
Additionally, we generate the auxiliary variable � such that cor(x, �) = 0.5 , 

which is given by:

where �i ∼ N(0, 1) and �i is independent of xi . We define Ξ1 =
∑

i∈U �1i and 
Ξ2 =

∑

i∈U �2i , where �1i = 1 if �i ≤ 1 and 0 otherwise, and �2i = 1 if 𝜉i > 1 and 0 
otherwise. We use these variables for prediction and calibration purposes.

We select two samples: SA and SB , representing the probability and the non-
probability samples, respectively. SA is a simple random sample of size nA = 1000 , 
while SB is selected by a different probability sampling of size nB = 500, 000 . The 
latter is obtained by creating two strata in U  : stratum 1 consists of units with 
xi ≤ 2 , while stratum 2 consists of those with xi > 2 . We define X1 =

∑

i∈U x1i 
and X2 =

∑

i∈U x2i , where x1i = 1 if xi ≤ 2 and 0 otherwise, and x2i = 1 if xi > 2 
and 0 otherwise. Within each stratum, we independently select nB1 = 300, 000 
and nB2 = 200, 000 observations, respectively, through simple random sampling. 
The target parameter is the finite population mean of Y . This sampling procedure 
implies that the sample mean of SB is smaller than the population mean.

The simulation study examines the first two scenarios proposed in Kim and 
Tam (2021): 

1. Scenario I: we observe yi in both samples;
2. Scenario II: we observe yi in SA and ỹi in SB.

The indicator variable �i is observed in both SB and SA . Therefore, if �i = 1 in SA , 
we have both yi and ỹi.

yi = 3 + 0.7(xi − 2) + �i,

ỹi = 2 + 0.9(yi − 3) + 𝜖i,

�i =
cov(x, �)

var(x)
xi + �i,
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6.1  Estimators

The simulation study considers two benchmark estimators: 

1. Mean SA =
1

nA

∑

i∈SA
yi,

2. Mean SB = 1

nB

∑

i∈SB
yi,

and compares two classes of estimators integrating SA and SB.
The first class of estimators considers the RegDI methods proposed by Kim and 

Tam (2021): 

1. RegDI: regression data integration estimator of the form (1) with calibration 
equation 

2. RegDI(X1,X2)
 : regression data integration estimator of the form (1) with calibration 

equation 

3. RegDI(Ξ1,Ξ2)
 : regression data integration estimator of the form (1) with calibration 

equation 

The second class of estimators includes the PC estimators. For Scenario I, we 
consider the following: 

1. PC(X1,X2)
 : pseudo-calibration estimator of the form (10) with calibration equation 

2. PC(Ξ1,Ξ2)
 : pseudo-calibration estimator of the form (10) with calibration equation 

For Scenario II, we consider the following estimators: 

1. Difference Mean SB = 1

nB

∑

i∈SB
ỹi +

1

N

∑

i∈SA
dA
i
(yi − ỹi) : the sample mean of 

predictions in SB , corrected by the weighted residuals calculated in SA.
2. PCD

(X1,X2)
 : pseudo-calibration estimator of the form (16) with calibration equation 

∑

i∈SA

wA
i
(1, �i, �iyi) =

∑

i∈U

(1, �i, �iyi) = (N, nB, Y
∗
B
).

∑

i∈SA

wA
i
(1, �i, �iyi, x1i, x2,1) =

∑

i∈U

(1, �i, �iyi, x1i, x2,1) = (N, nB, Y
∗
B
,X1,X2).

∑

i∈SA

wA
i
(1, �i, �iyi, �1i, �2,1) =

∑

i∈U

(1, �i, �iyi, �1i, �2,1) = (N, nB, Y
∗
B
,Ξ1,Ξ2).

∑

i∈SB

wB
i
(x1i, x2i) =

∑

i∈U

(x1i, x2,1) = (X1,X2).

∑

i∈SB

wB
i
(�1i, �2i) =

∑

i∈U

(�1i, �2,1) = (Ξ1,Ξ2).
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3. PCD
(Ξ1,Ξ2)

 : pseudo-calibration estimator of the form (16) with calibration equation 

6.2  Results

The performance of each estimator is evaluated through the bias (Bias), the standard 
error (SE), and the root mean squared error (MSE) given by the Monte Carlo 
process.

The two classes of estimators employ different inference approaches: a design-
based approach for the RegDI estimators, where the yi values are treated as fixed, 
and a model-based approach for the PC estimators, where the variable Y is consid-
ered random. For the RegDI estimators, we generate 1000 Monte Carlo samples for 

∑

i∈SB

wB
i
(x1i, x2i) =

∑

i∈U

(x1i, x2,1) = (X1,X2).

∑

i∈SB

wB
i
(�1i, �2i) =

∑

i∈U

(�1i, �2,1) = (Ξ1,Ξ2).

Table 2  Results of the five 
estimators for the simulation 
study based on design-based 
Monte Carlo simulations of size 
1000

RMSE root mean squared error, SE standard error

Scenario Estimator Bias SE RMSE

I Mean SA 0.00 0.031 0.031
Mean SB −  0.11 0.001 0.113
RegDI 0.00 0.022 0.022
RegDI(X1,X2)

0.00 0.021 0.021
RegDI(Ξ1,Ξ2)

0.00 0.022 0.022
II Mean SA 0.00 0.031 0.031

Mean SB − 1.10 0.001 1.101
RegDI 0.00 0.024 0.024
RegDI(X1,X2)

0.00 0.022 0.022
RegDI(Ξ1,Ξ2)

0.00 0.024 0.024

Table 3  Results of the six 
estimators for the simulation 
study based on Monte Carlo 
populations of size 1000

RMSE root mean squared error, SE standard error

Scenario Estimator Bias SE RMSE

I Mean SB − 0.11 0.001 0.112
PC(X1,X2)

0.00 0.001 0.001
PC(Ξ1,Ξ2)

− 0.10 0.001 0.098
II Mean SB − 1.10 0.001 1.101

Difference Mean SB − 0.11 0.021 0.108
PCD

(X1,X2)
0.00 0.021 0.022

PCD
(Ξ1,Ξ2)

− 0.09 0.021 0.096
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both SA and SB from the finite population. We simulate 1000 Monte Carlo popula-
tions for the PC estimators and draw a single sample for each population for SA and 
SB.

Table  2 shows the simulation study results for the design-based estimators. The 
results for the first three estimators (i.e., Mean SA , Mean SB , RegDI) are identical to 
the ones presented in Kim and Tam (2021) (see pg. 394, Table 2). As discussed in Kim 
and Tam (2021), Mean SA and the RegDI estimators are unbiased in both scenarios. 
In contrast, Mean SB estimator is always biased due to the selection bias in sample 
SB . The RegDI estimators have lower RMSE values. In particular, the RegDI(X1,X2)

 
estimator, not considered in Kim and Tam (2021), has the lowest standard error. On the 
other hand, the RegDI(Ξ1,Ξ2)

 estimator, which employs calibration variables not strictly 
related to the yi values, leads to an inflation in the standard error (SE).

Table 3 shows the simulation study results of the model-based estimators. The Mean 
SB estimator remains seriously biased due to the selection bias in SB . Focusing on 
Scenario I, the PC(X1,X2)

 estimator shows competitiveness compared to the RegDI 
estimators, while the PC(Ξ1,Ξ2)

 estimator is affected by the use of a slightly wrong 
propensity score model, implicitly defined by the �1 and �2 variables. In Scenario II, as 
shown in Table 3, the Mean SB estimator increases the bias. In this case, indeed, both 
the outcome model for ỹi and the propensity score model for wB

i
 come into play. By 

utilizing the outcome model, the Difference Mean SB estimator significantly reduces 
the bias. Scenario II does not present results for the projection-type estimators, PCP

(X1,X2)
 

and PCP
(Ξ1,Ξ2)

 , as they exclusively rely on the propensity score model. The PCP
(X1,X2)

 and 
PCP

(Ξ1,Ξ2)
 estimators exhibit bias levels closer to the Mean SB estimator than the 

Difference Mean SB estimator. The PCD
(X1,X2)

 estimator uses both models and remains 
competitive with the RegDI estimators. The PCD

(Ξ1,Ξ2)
 estimator reduces the bias 

compared to the Difference Mean SB estimator. However, it is still more biased than the 
RegDI estimators.

The second part of the simulation study is devoted to the variance estimator pre-
sented in Sect. 5. We use the DAGJK method with 100 random groups. Table 4 shows 
the standard error estimates of the PC estimators using either (X1,X2) or (Ξ1,Ξ2) in 
both scenarios. The DAGJK values represent the mean values of the DAGJK estimates 
computed on 1000 samples of the Monte Carlo simulation. In Scenario I, the DAGJK 

Table 4  Standard error 
estimates of four PC estimators 
for the simulation study 
based on 1000 Monte Carlo 
populations of size and on 
Delete-a-Group Jackknife 
estimator using 100 random 
groups

The SE DAGJK values are the means of 1000 DAGJK estimates

Scenario Estimator SE MC SE DAGJK

I PC(X1,X2)
0.00099 0.00102

PC(Ξ1,Ξ2)
0.00108 0.00114

II PCD
(X1,X2)

0.02137 0.02314

PCD
(Ξ1,Ξ2)

0.02133 0.02362
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variance estimates are close to the Monte Carlo variances. As expected, in Scenario II 
we slightly overestimate the DAGJK variance estimates.

7  An application to the European community survey data on ICT 
usage and e‑commerce in enterprises

We implement the RegDI and PC estimators using the 2018 European Community 
Survey data on ICT usage and e-commerce in enterprises. This ICT survey is 
conducted yearly by Istat and by other member states of the EU. Additionally, we 
consider internet data scraped from enterprises’ websites that fall within the ICT target 
population. The primary objective of the ICT survey is to supply users with indicators 
related to internet connectivity and usage, encompassing aspects such as website usage, 
social media engagement, and cloud computing. The survey’s target population refers 
to enterprises with ten or more employees working in the industry and non-financial 
market services. The population frame is the Italian Business Register (Asia), which 
was last updated two years before the survey’s reference period. For the 2018 ICT 
survey, this population comprises 199,914 units. The ICT survey considers a stratified 
simple random sampling design with strata given by four classes of number of persons 
employed (0–9; 10–19; 20–249; 250 or more), economic activities (24 Nace groups) 
and geographical breakdown (21 administrative regions at NUTS 2 level). The strata, 
including the fourth size class (enterprises with 250 and more persons employed), 
are taken entirely. The number of units within these strata is 3342. For the 2018 ICT 
survey, the sample of respondents consists of 22,097 units. The survey posed questions 
to enterprises, including whether a) the website enables online ordering, reservations, 
or bookings and b) there are links to social media on the website. We assign specific 
variable names, WEBORD ( Y1 ) and WEBSM ( Y2 ), to these two questions, respectively. 
The current ICT survey estimator employs a calibration method, which considers the 
number of enterprises and persons employed based on economic activity, size class, 
and administrative region, according to a complex combination of these variables. 
We use Internet data as a big non-probability sample (i.e., a big data source). This 
process starts with text documents collected through web scraping from the enterprise’s 
websites. Specifically, we have gathered 93,848 scraped websites representing the 
units falling in SB . It is worth mentioning that the total number of websites in the 
target population is unknown. The ICT survey estimates approximately 134,655.82 
enterprises with a relative error of about 1%. The web-scraping step returns information 
retrieval for the WEBSM variable. That means that we observe the variable with 
y2i = 1 when the website has a link to social media and with y2i = 0 otherwise. Using 
the text document of each website, we predict the WEBORD variable using a machine 
learning technique (Random Forest) as described in Bianchi et  al. (2020) and Bruni 
and Bianchi (2020). We use a deterministic prediction for the WEBORD, meaning we 
use the estimated probability that the website incorporates functionalities for online 
ordering, reservations, or bookings. Further insights into the ICT survey, web scraping, 
and machine learning procedure can be found in Righi et al. (2019).
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7.1  Estimators

We compare a simplified version of the estimator used by Istat for the ICT survey, 
denoted as T0, with four different RegDI estimators (RegDI.1, RegDI.2, RegDI.3, 
RegDI.4) and three other PC estimators (PC.1, PC.2, PC.3) for the population total.

T0 is a calibration estimator of the form (1) that uses the number of enterprises and 
employed persons for four enterprise-size classes (0–9; 10–19; 20–249; +249) and 
for three macro-regions (aggregation of NUTS 2 regions, North, Centre and South) 
as known totals. We set xi = (1��

i
, ei�

�
i
)� , where ei is the number of employed persons 

in unit i, and �i = (�i(0−9), �i(10−19), �i(20−249), �i(+249), �i(North), �i(Centre), �i(South))
� , 

where the generic element of �i , �i(d) , is equal to 1 if i belongs to one of four 
enterprise-size classes or one of three macro-regions, and equal to 0 otherwise. For 
example, if the enterprise i has ten employed persons and is located in southern 
Italy, then �i = (0, 1, 0, 0, 0, 0, 1)� . Then, the calibration equation is

where Nd and Ed are the total number of enterprises and employed persons, 
respectively, in each enterprise-size class and macro-region. As a result, the 
estimates of the total population and the seven sub-populations using T0 can be 
derived as

The calibration variables are (x�

i
, �i�

�

i
)� , (x�

i
, �i�

�

i
, �iy1i�

�

i
)� , (x�

i
, �i�

�

i
, �iy2i�

�

i
)� and 

(x
�

i
, �i�

�

i
, �iy1i�

�

i
, �iy2i�

�

i
)� for the RegDI.1, RegDI.2, RegDI.3 and RegDI.4 estimators, 

respectively. It follows that the estimates of the population total and the seven sub-
populations using the RegDI estimators have the same form of (21) but different 
calibration weights.

The PC.1 estimator calibrates the weights using the same totals as T0. It 
corresponds to the estimator (10) for WEBSM and the estimator (15) for WEBORD. 
Additionally, for the WEBORD total, we implement the PC.2 and PC.3 estimators 
following the formula (18). In the PC.2 estimator, the sampling calibrated weights 
are adjusted by the factor f A

2i
=
∑

SA
�i∕

∑

SA
�i , with �i = 1 when the enterprise 

has the website and �i = 0 otherwise. The PC.3 estimator uses the factor 
f A
3i
=
∑

SA
�iw

A
i
∕
∑

SA
�iw

A
i
 , where wA

i
 is the calibrated sampling weight of the ICT 

survey estimator (T0). It follows that the estimates of the population total and the 
seven sub-populations using the PC.1 estimator can be derived as

∑

i∈SA

wA
i
(1��

i
, ei�

�
i
) =

∑

i∈U

(N0−9,N10−19,N20−249,N+249,NCentre,NNorth,NSouth,

E0−9,E10−19,E20−249,E+249,ECentre,ENorth,ESouth),

(21)Ŷj,T0 =
∑

i∈SA

wA
i
yji and Ŷj,T0(d) =

∑

i∈SA

wA
i
yji𝜆i(d) for j = 1, 2.

ŶP
1,PC.1

=
∑

i∈SB

wB
i
̂̃y1i and ŶP

1,PC.1(d)
=

∑

i∈SB

wB
i
̂̃y1i𝜆i(d),

Ŷ2,PC.1 =
∑

i∈SB

wB
i
y2i and Ŷ2,PC.1(d) =

∑

i∈SB

wB
i
y2i𝜆i(d).
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The estimates of the population total and the seven sub-populations using the PC.2 
and PC.3 estimators can be obtained as

7.2  Results

Table  5 shows the estimates for the totals at the national level. We can observe 
that the RegDI.1 estimator does not affect the Coefficient of Variation (CV) of the 
estimates compared to T0. On the other hand, the RegDI.2 and RegDI.3 estimators 
reduce the CV for the variable involved in the calibration. Only when we apply the 
RegDI.4 estimator we observe a substantial decrease in CV for both the WEBORD 
and WEBSM variables. These results highlight a crucial crossroads in a multi-
purpose survey. The choices are twofold: (1) make a massive calibration, risking 
either the non-attainment of the optimal solution to the optimization problem or 
the inflation of variance due to excessively small or large final weights; (2) omit 
certain target variables from the calibration process and risking to compromise in 
the enhancement of their estimation accuracy. The estimates of WEBSM given by 
RegDI.3 and RegDI.4 fall outside the 95% Confidence Interval (CI) of T0. Since 

ŶD
1,PC.l

=
∑

i∈SB

wB
i
̂̃y1i +

∑

i∈SA

f A
li
(y1i − ̂̃y1i) (for l = 2, 3) and

ŶD
1,PC.l(d)

=
∑

i∈SB

wB
i
ỹ1i𝜆i(d) +

∑

i∈SA

f A
li
(y1i − ̂̃y1i)𝜆i(d) (for l = 2, 3).

Table 5  Results of the considered estimators at the national level

CI(95%), Confidence Interval (CI) computed at the 95% confidence level; ∗∗ , estimates outside the 95% 
CIs of T0; CV, Coefficient of Variation

Estimator Variable Total CI(95%) CI(95%) Estimate ∉ CV
Lower bound Upper Bound T0 CI(95%)

T0 WEB 134,655.82 131,831.46 137,480.18 1.07%
WEBORD 26,451.41 24,473.67 28,429.14 3.81%
WEBSM 68,221.35 65,157.69 71,285.01 2.29%

RegDI.1 WEBORD 27,150.30 25,092.20 29,208.40 3.87%
WEBSM 70,520.33 67,388.36 73,652.30 2.27%

RegDI.2 WEBORD 27,387.05 25,806.85 28,967.25 2.94%
WEBSM 70,684.85 67,577.39 73,792.32 2.24%

RegDI.3 WEBORD 28,313.23 26,225.65 30,400.82 3.76%
WEBSM 77,021.37 74,646.39 79,396.34 ** 1.57%

RegDI.4 WEBORD 27,541.93 25,989.47 29,094.39 2.88%
WEBSM 77,022.19 74,647.43 79,396.96 ** 1.57%

PC.1 WEBORD 30,120.58 29,956.38 30,284.78 ** 0.27%
WEBSM 79,123.88 78,625.52 79,622.24 ** 0.31%

PC.2 WEBORD 26,860.18 25,740.40 28,361.63 2.47%
PC.3 WEBORD 26,817.45 26,009.59 27,625.31 1.54%
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the RegDI.3 and RegDI.4 estimators are unbiased, the findings suggest that the T0 
estimate has such a large error that it considerably underestimates the WEBSM total.

The analysis of the PC estimators reveals some important findings. The PC.1 
estimates fall outside the 95% CI of T0. While we know the PC.1-WEBORD esti-
mate can be biased since it bypasses the correction term, the PC.1-WEBSM esti-
mate appears different from the corresponding T0 estimate. Nevertheless, the 95% 
CI of the PC.1-WEBSM estimator overlaps the CI of the RegDI.3 and RegDI.4 esti-
mates. The consistency among these three estimates suggests that the PC.1-WEBSM 

Fig. 1  Estimator CIs (95%) by size class for WEBORD total

Fig. 2  Estimator CIs (95%) by size class for WEBSM total
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estimator is unbiased. The CI of PC.1-WEBSM estimator is much narrower com-
pared to the CIs of RegDI. We apply the pseudo-calibration difference estima-
tors, PCE.2 and PCE.3, for the WEBORD total estimate. The PCE.2 and PCE.3 
estimates fall within the 95% CI of the T0 estimate, and their 95% CIs overlap the 

Fig. 3  Estimator CIs (95%) by macro-regions for WEBORD total

Fig. 4  Estimator CIs (95%) by macro-regions for WEBSM total
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RegDI-WEBORD estimators’ 95% CIs. This suggests that we may have effectively 
adjusted for the bias in the measurement error of the big data target variable. The 
CV of the PC.3 estimator is smaller than that of T0 and is roughly equivalent to the 
CVs of the others RegDI.3 and RegDI.4.

We compare the estimates of WEBORD and WEBSM totals by size class 
domains (Figs. 1 and 2) and macro-regions domains (Figs. 3 and 4).

In Figs.  1, 2, 3 and 4, it is evident that the RegDI estimator 95% CIs always 
overlap the 95% CI of the T0 estimates except for WEBSM estimates in the domain 
0 − 9 size class or North macro-region. We underlined this evidence for the national 
estimate. While the 95% CIs of the RegDI estimators appear similar in length, 
they are slightly narrower than the 95% CI of the T0 estimate for some domains 
(such as the size class 0 − 9 for WEBORD and WEBSM). The PC estimators give 
the shortest intervals. As expected, in certain domains, the WEBSM estimates 
significantly deviate from those of T0 (specifically, in the 0 − 9 size class, Center 
and North macro-regions) (see Figs.  2 and 4). Regarding the WEBORD totals, 
the PC.1 estimates fall outside the CIs of T0 and frequently deviate significantly 
from those generated by the RegDI.1 estimator, which utilizes the same auxiliary 
variables. This outcome is anticipated because the PC.1 estimator ignores the 
correction term, and the prediction method (i.e., random forest technique) could 
fail to accurately capture the true relationship between the predictors and the target 
variable in specific domains. Consequently, the PC.1 estimator can be biased. The 
difference estimator adjusts the PC.1-WEBORD estimates that fall within the 95% 
CIs of the T0 estimate, or at least produces 95% CIs that overlap the 95% CIs of 
the RegDI.3 and RegDI.4 estimators. Figures 1 and 2 also include the T b estimator, 

Table 6  Coefficient of variation of the estimators for size classes by the macro-region domain of 
WEBORD total

Group 1: domains with a number of units in the interval [344; 547]
Group 2: domains with a number of units in the interval [1558; 8299]

Domain Average CV(%)

T0 PC.2 PC.3 RegDI.1 RegDI.2 RegDI.3 RegDI.4

Group 1 12.91 6.18 6.11 13.59 14.36 13.95 14.54
Group 2 7.50 3.73 3.75 7.85 6.26 7.68 6.23

Table 7  Coefficient of variation 
of the estimators for size classes 
by macro-region domain of 
WEBSM total

Group 1: domains with a number of units in the interval [344; 547]
Group 2: domains with a number of units in the interval [1558; 
8299]

Domain Average CV(%)

T0 PC.1 RegDI.1 RegDI.2 RegDI.3 RegDI.4

Group 1 8.00 3.18 8.47 8.58 9.16 9.26
Group 2 4.78 1.05 7.02 4.75 3.59 3.59
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which is a naïve PC estimator defined as (N̂W∕nB)
∑

SB
y∗
i
 , where N̂W is the survey-

based estimate of the number of units with a website. Finally, it is noteworthy 
that the estimates from PC.2 and PC.3 differ (though not significantly) from those 
generated by the RegDI.4 estimator, which incorporates all auxiliary variables. 
We interpret these findings as indicative of intrinsic distinctions arising from the 
utilization of information within the two classes of estimators.

Tables 6 and 7 investigate the sampling errors of the estimators of the cross-classified 
domain size class by macro-region (12 domains) by the average CV (%) for WEBORD 
and WEBSM total estimate, respectively. We categorize the domains into two groups: 
six domains with a sample size between 344 and 547 units (Group 1) and six domains 
with a sample size between 1558 and 8299 sample units (Group 2).

Tables 6 and 7 show that the PC estimators are more efficient. Among the RegDI 
estimators, those in Group 2 (large domains) are more efficient than T0. Conversely, 
the average CVs (%) for the RegDI estimators in Group 1 (small domains) are 
greater than the CV of T0. We attribute this to the increased number of calibration 
constraints, resulting in some units having extreme weights, which in turn leads to 
higher variance estimates. This effect of extreme weights is more pronounced in 
domains with small sample sizes.

8  Discussion

The PC estimators integrate data from various sources, including probability and 
big non-probability samples, administrative records, or statistical registers. They 
are applicable when the target variable is observed in the probability sample and, 
in the big non-probability sample, it is (a) observed correctly, (b) observed with 
error, or (c) predicted using highly correlated auxiliary variables. In the case (a), 
the PC estimators are inverse probability weighted estimators (Chen et  al. 2020). 
In the cases (b) and (c), they represent a novel class of estimators with forms akin 
to the adjusted projection estimator (Kim and Rao 2011) and difference estimators 
(Breidt and Opsomer 2017) developed within the model-assisted framework. In 
these cases, the PC estimators reverse the roles of probability and non-probability 
samples in the estimation process compared to the doubly robust estimators.The 
paper outlines the RegDI estimators (Kim and Tam 2021), as they share the same 
informative context (cases (a) and (b)) required by the PC estimators. Both the PC 
and RegDI estimators employ calibration techniques, albeit with distinct approaches. 
The use of calibration tools is standard in the inferential context of data integration 
estimators, while it is less conventional in the context of PC estimators, although 
it has been previously suggested in the literature (Lee and Valliant 2009). With 
few exceptions, one of which is shown in the paper, the RegDI and PC estimators 
yield different point estimates. A jackknife-type variance estimator is introduced 
for the PC estimators suitable for large-scale datasets. Moreover, a comparative 
analysis is conducted between the PC and RegDI estimators, both defined within 
the same informative framework. This analysis leverages a Monte Carlo simulation 
and an experiment using real data from the ICT enterprise survey and information 
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scraped from enterprise websites. The PC estimators show competitiveness with 
the RegDI estimators in Monte Carlo simulations, with the jackknife-type variance 
estimates very close to the Monte Carlo variances. In the experiment with real 
data, PC estimates are not significantly different from the RegDI estimates, and the 
confidence intervals are narrower than those of the RegDI.
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