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A B S T R A C T   

Current efforts toward the necessary energy transition are predominantly focused on climate change mitigation 
in relation to decarbonization measures, mainly on the energy sector, but may not succeed in satisfying the goals 
of reaching the full sustainability of human activities, which should foster social equity, economic stability, and 
security of supply. Energy System Optimization Models, used as a key tool in guiding energy transition strategies 
through the formulation of energy scenarios, mostly focus on economic aspects and emissions reduction ob
jectives only, completely neglecting the critical issues of the multifaceted “sustainability” concept. In response to 
that, the aim of this research is to develop an all-encompassing metric for evaluating the sustainability of 
decarbonization scenarios. It incorporates twelve key indicators pertaining to environmental, social, and security 
dimensions that are weighted and combined into a sustainability index (SI) for evaluating power sector tech
nologies. The open-source TEMOA-Italy model is employed to create a baseline scenario and a decarbonization 
scenario. The computed evolution of the power sector is evaluated through a singular, multi-dimensional SI 
trend, enabling the monitoring of sustainability progress over time. The impact of alternative prioritization of the 
various sustainability factors is analyzed by exploring thousands of weights assigned to those factors within the 
SI. The obtained SI profiles are analyzed employing both unsupervised and supervised data analytics techniques, 
with the aim to extract and characterize the most representative patterns in terms of profile magnitude and trend. 
Eventually, explainable artificial intelligence (XAI) methods are implemented to understand the set of key in
dicators that mostly affect those two features of the SI profile. It turns out that the reliability of power system, 
geopolitical considerations, and land use play a pivotal role in influencing the SI trend and magnitude.   

1. Introduction 

The decarbonization of the global economy requires addressing 
significant challenges, including energy saving, emission reduction, and 
the formulation of sustainable development pathways (Fawzy et al., 
2020). Decarbonization strategies, pivotal in reducing emissions, 
encompass the development and implementation of actions aimed at 
reducing CO2 emissions across various sectors (Papadis and Tsatsaronis, 
2020) These might include, according to the sector, renewable energy 
adoption, energy efficiency measures, carbon capture and storage or 
switching to carbon free primary fuels (IEA, 2022a). Within the frame
work of sustainable development, emission reduction usually serves as a 
necessary but not exhaustive (Fader et al., 2018) proxy for more 

comprehensive goals. The terms ’sustainability’ and ’sustainable 
development’ are frequently employed in both scientific literature and 
public policy in relation to the energy system. The presence of these 
terms has been recently emphasized with the introduction of the United 
Nations Sustainable Development Goals (SDG) (United Nations UN, 
2022). However, there is still no consensus on standardized terminology 
and measurement metrics for these objectives, attributable to the broad 
range of existing interpretations and definitions (Barbosa et al., 2014). 
In its basic meaning, sustainability refers to a system’s capacity to 
self-sustain at a certain level for a specified period. It is based on the 
principle that utilizing natural resources for current needs should not 
compromise the ability of future generations to meet their needs. Sus
tainability encompasses a spectrum of interdependent variables that 
integrate social, energy, security, economic, and environmental issues 
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(Apergis and Payne, 2010; Ntanos et al., 2018; Marinescu and Cicea, 
2015). Sustainable development, therefore, can be defined as a pathway 
toward achieving sustainability as a long-term objective (Costanza and 
Patten, 1995). Consequently, it becomes crucial to consider synergies 
and trade-offs between emission reduction and broader sustainable 
development objectives. 

However, the intricate nature of planning sustainable development 
paths in this domain presents substantial obstacles. First, a clear defi
nition of sustainability is difficult to establish due to its multifaced and 
dynamic nature (Programme and On Governance, 2023). In the energy 
field, the existing literature extensively discusses sustainability, and 
although specific aspects may vary, there is a consensus on its broad 
scope. The existence of an environmental dimension is recognized, in 
relation to global warming, deforestation, air, land, and water pollution 
(Armeanu et al., 2021; Gayen et al., 2023), as well as an economic 
dimension accounting for profitability and affordability of energy (IEA, 

2022a; United Nations UN, 2023a). In addition, there is increasing 
attention at the technical capacity of the system to provide energy 
(Debnath and Goel, 1995) and its security, both in the short term (grid 
security) and in the long term (geopolitical trades) conditions (Bompard 
et al., 2017). Finally, an emerging paradigm in several analyzed studies 
is the social sustainability, referred to as the effect of energy in society, 
comprehensive of aspects as acceptability and social impact (Algunaibet 
et al., 2019; Wüstenhagen et al., 2007). The sustainability ingredients 
commonly considered in the sustainability assessments are summarized 
in Table 1. It is then expected that a study, moving from the existing 
state of the art, should incorporate those elements as essential compo
nents when assessing the sustainability of energy systems. 

Several selected studies (Nock and Baker, 2019; Buchmayr et al., 
2021) have sought to incorporate indicators within the Social and 
Economic dimensions to address the capability of the energy system and 
grid to ensure a secure supply (internal factors), as well as concerns 

Nomenclature 

Acronyms 
AP Acidification Potential 
CHPR Combined Heat to Power Ratio 
EP Eutrophication Potential 
ESOM Energy System Optimization Modeling 
ETSAP Energy Technology System Analysis Program 
GHG Greenhouse gas 
GWP Global Warming Potential 
IAM Impact Assessment Method 
IEA International Energy Agency 
IAEA International Atomic Energy Agency 
LCA Life Cycle Assessment 
LCI Life Cycle Impact 
LCIA Life Cycle Impact Assessment 
LU Land Use 
MAVT Multi-Attribute Value Theory 
MCDA Multi-Criteria Decision Analysis 
MOO Multi-Objective Optimization 
NEEDS New Energy Externalities Development for Sustainability 
RES Reference Energy System 
PSI Political Stability Index 
PWR Pressurized Water Reactor 
SDG Sustainable Development Goals 
TSI Technology Sustainability Index 
TSS Technology Sustainability Score 

WEC World Energy Council 
WU Water Use 
A Activity, or total output commodity flow 
AS Activity Share 
CF Capacity Factor 
ER Emission Reduction 
GR Growth Rate 
GR Average Growth Rate 
I Parameter associated to indicator, I ∈ IND =

{GWP,AP, ..}
LT Lifetime 
SS/SI Overall Sustainability Score (or Sustainability Index) 
W Weight (associated with the sustainability dimension) 
W Weight (associated with the sustainability indicator) 
Н Efficiency 

Indices 
I Indicator index, i ∈ IND = {GWP,AP, ..}
J Year index, j ∈ J = {ESOM milestone years}
K Sustainability dimension index, k ∈ K =

{Environment,Equity, Security}
N Lifecycle phase index, n ∈ N =

{Construction,Operation,Decommissioning}
NORM Normalized 
T Technology index, t ∈ T =

{Coal steam turbine,Oil steam turbine, ..}

Table 1 
Review of current literature on Sustainability Assessment in the energy field.  

Economic Environmental Technical Social Security Year Source 

v v  v   1997 (Suding, 1995) 
v v  v   1999 (Streimikiene et al., 2007) 
v v v v   2009 (Evans et al., 2009) 
v v v v   2012 (Iddrisu and Bhattacharyya, 2015) 
v v v v   2014 (Liu, 2014) 
v v v v   2014 (ESMAP and World Bank Group, 2024)  

v v v   2015 (Kılkış, 2018) 
v v   v  2016 (Teresa García-Álvarez et al., 2016) 
v v v v   2017 (Martín-Gamboa et al., 2017a) 
v v     2019 (Campos-Guzmán et al., 2019) 
v v v v   2019 (Nock and Baker, 2019) 
v v v    2020 (Ranjbari et al., 2021) 
v v v    2021 (Buchmayr et al., 2021) 
v v   v  2022 (Madurai Elavarasan et al., 2022) 
v v v  v  2022 (Gunnarsdottir et al., 2022) 
v V v v   2022 (Saeid Atabaki et al., 2022a)  
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related to the safety of the energy supply chain (external factors). These 
considerations have further gained significance due to recent events 
such as the Ukrainian war (Zhou et al., 2023; Helbig et al., 2021a) and 
material crises (Helbig et al., 2021a), which have independently high
lighted the importance of energy security. As a result, it is crucial to 
explicitly include this dimension, previously hidden in other categories, 
and allocate specific attention to it to achieve a comprehensive sus
tainability assessment. Also, an Economic and the Technical dimensions 
is to be considered. 

To evaluate the evolution of the energy system and the expected 
energy transition, several tools are available characterized by different 
for sectorial coverage, time horizon and time steps, spatial scale and 
modeling method (Chang et al., 2021). Among them, Energy System 
Optimization Models (ESOMs) feature a detailed techno-economic 
description of the main technologies (or processes) belonging to the 
most energy-intensive sectors of the system. They are optimization 
models evaluating the minimum-cost configuration of the system 
(Loulou et al., 2022), according to the studied alternative 
socio-economic and policy scenarios and to the technology modules 
included in the model. Given such features, ESOMs have been widely 
used to assess the effects of decarbonization strategies or innovative 
technologies, focusing on several sectors (i.e., transport (Lerede et al., 
2020), industry (Lerede et al., 2021), hydrogen (Balbo et al., 2023)) and 
regions (e.g., Belgium (Limpens et al., 2020), US (Eshraghi et al., 2018), 
EU (Barnes et al., 2022), World (Sofia et al., 2013a); Lerede et al., 2023). 
However, environmental issues are usually considered in ESOMs 
through the computation of greenhouse gas (GHG) emission levels only, 
while the interest for the overall sustainability of the energy system is 
raising (United Nations UN, 2023b), aiming to go beyond the mere 
impact on climate change. In this regard, it is important to observe that, 
in some cases, the decarbonization of energy systems may conflict with 
other essential sustainability aspects (Luderer et al., 2019). First, the 
energy sector is responsible for environmental impacts, such as water 
consumption, land occupation and air pollution (Luderer et al., 2019). 
Secondly, the electricity grid evolution required by the decarbonization 
presents geophysical, techno-economic, socio-cultural, institutional, 
and ecological issues, which in turn limit the capability to integrate 
clean energy resources without impacting other areas, as the conserva
tion of land and water resources, protection of terrestrial and aquatic 
ecosystems, and preservation of cultural sites ((Su et al., 2021); Best, 
2018; Wu et al., 2020, 2023). Furthermore, a sharp transition towards a 
low-carbon system could reduce energy reliability (IEA, 2018). For 
example, the intermittent nature of renewable energies generation cre
ates demand fluctuations, often resulting in a mismatch between gen
eration and demand, challenging grid stability (IEA, 2024). Finally, with 
the increasing penetration of renewable energy sources, emissions and 
resource consumption are shifted from the operational phase of the 
plants to the other steps of the production chain (Gibon et al., 2015), 
highlighting the necessity of a holistic impacts accounting framework as 
the Life Cycle Assessment (LCA) (ReCiPe, 2022). Therefore, robust ca
pacity planning should complement the current economic-oriented 
paradigm by including sustainability dimensions to account for the 
above-mentioned aspects. 

In the currently existing literature, alternative approaches exist 
allowing the integration of sustainability-related aspects within energy 
models. Attempts have been performed in the direction of a direct 
integration of sustainability paradigms in the optimization strategy 
(endogenous integrations), or by conducting sustainability assessments 
on the outcomes of energy models (ex-post analysis) (Blanco et al., 
2020). Endogenous integrations can be realized by integrating sustain
ability variables in the energy model, subsequently performing a tradi
tional economic optimization, a Multi-Objective Optimization (MOO), 
or an impact monetization (NEEDS, 2022). In the MOO, one or more 
target functions related to the sustainability aspects are integrated 
directly within the ESOM instance and optimized together with the 
traditional economic objective function. The different objectives can be 

integrated in the same formulation (weighted sum method (Kotzur et al., 
2021)) generating a single solution, or computed separately, obtaining 
in both cases a Pareto front to estimates trade-offs between different 
objectives (Junne et al., 2021). In (Saeid Atabaki et al., 2022b), for 
instance, integrated social (job creation, human health, diversification) 
and environmental (water and land use, acidification, and global 
warming) criteria are considered in an ESOM together with the eco
nomic objective function in a weighted sum approach, analyzing sce
narios for the Iranian power system up to 2050. The main limitation 
consists in the fact that the final solution is a compromise between the 
different objectives, strongly depending on their weighting (exoge
nously assigned). Moreover, the complexity of the model leads to a high 
(computational cost. In the impact monetization, economic damages of 
the different impacts considered in the analysis are quantified and 
subsequently integrated in the economic objective function of the model 
(Rafaj and Kypreos, 2007). Monetization of impacts is well-established 
in the context of power models, such as the NEEDS (NEEDS, 2022) 
and the ExternE (Spadaro and Rabl, 1998) European frameworks. Ad
vantages are related to the adaptability of this method to 
already-existing modeling frameworks by a simple reformulation of the 
objective function, without the necessity to develop new and complex 
optimization tools (García-Gusano et al., 2016). The main disadvantages 
concern the uncertainties related to the monetization process, particu
larly social and security impacts. 

Traditional models that rely on a single economic objective function 
are, on the contrary, very widespread, and lack a sustainability ac
counting dimension. Simple ex-post analyses, in which ESOMs results 
are integrated with LCA impacts databases to establish the energy sys
tem footprint, are already available in literature. Among them, (Blanco 
et al., 2020) developed an ex-post LCA analysis of results by the JRC-EU 
TIMES model (Sofia et al., 2013b) and estimated the environmental 
impact indicators across 18 categories in scenarios that achieve 80–95% 
CO2 emission reduction by 2050. A relevant outcome is the qualitative 
evaluation of the analyzed policies for each impact class. This may serve 
as a tool for policymakers in establishing the pros and cons of a strategy, 
but still lacks a unique quantitative method to identify the best alter
native among a wide set of impact classes. Also, the authors of (Luderer 
et al., 2019) analyzed with a quantitative decision-making tool twenty 
European energy scenarios characterized by different degrees of decar
bonization for twelve LCA environmental impact classes, concluding 
that there is a co-benefit between emission reduction and mitigation of 
environmental impacts. A consistent limitation of that study is related to 
the adoption of the LCA parameters as unique sustainability paradigm 
since the latter should not be restricted to the environmental component 
only (United Nations UN, 2022). Indeed, a useful decision-making tool, 
able to link the decarbonization targets of the energy models with their 
implications in terms of sustainability, should rely on a comprehensive 
metric, encompassing a comprehensive range of aspects (Namany et al., 
2021). However, a robust, holistic, and flexible methodology that 
identifies to what extent power sector decarbonization strategies can be 
considered sustainable is still missing. 

This paper aims to provide a comprehensive metric to measure the 
sustainability of decarbonization strategies. Environmental, social and 
security aspects have been included in a sustainability index (SI), by 
considering twelve parameters for the characterization of power sector 
technologies. Note that the inclusion of an Economic and the Technical 
dimensions is a minor concern here, since in ESOMs these components 
are already considered during the optimization process. A tool has been 
developed and implemented to apply such index to ESOMs results, and 
unlike other studies, the metric has then been tested evaluating the 
resulting technology mix. In particular, the open-source TEMOA-Italy 
model (Nicoli et al., 2022) has been used to generate a reference sce
nario and a decarbonization one. As the first novelty introduced by this 
study, the computed evolution of the power sector throughout the two 
scenarios is then translated into a unique multi-faceted SI trend for such 
scenarios, allowing the tracking of the sustainability evolution. As a 
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second element of novelty, since different stakeholders may weight 
sustainability aspects differently according to their preference, the role 
of the weights assigned to the different aspects within the SI is assessed 
through a post-mining analysis. Specifically, several thousand combi
nations of weights associated to the indicators included in the calcula
tion of the SI are analyzed through supervised and unsupervised data 
analytics techniques together with explainable artificial intelligence 
methods with the aim of extracting significant patterns explaining the 
role of specific indicators in influencing the sustainability score. 

The proposed methodology and the outcomes of its application are 
presented respectively in Section 2 and Section 3. Finally, the results are 
critically discussed in Section 4 also in the light of future improvements. 

2. Methodology 

This section introduces the methodological framework for the 
development and the interpretation of the proposed sustainability index. 
According to Fig. 1.  

• TEMOA-Italy model and scenario definition: The objective of this 
step is to define two different decarbonization scenarios by means of 
the TEMOA-Italy model. Section 2.1 provides details about the model 
set-upand its relevant outcome for the following analysis.  

• Identification of relevant sustainability indicators: The objective 
of this step to identify the most relevant indicators to be considered 
for the development of the proposed Sustainability Index (SI). The 
selection process is detailed in In Section 2.2.  

• Development of Sustainability Index (SI): The objective of this 
step is to develop the sustainability index through a structured 
combination and weighting of the previously identified indicators. 
Section 2.3 provides details about the mathematical formulation of 
the SI  

• Post mining analysis: The objective of this step is to conduct a 
sensitivity analysis on the two evaluated decarbonization scenarios, 
to assess the impact of indicator weights on relevant features of the 
SI. Details about the employed data analytics techniques are reported 
in Section 2.4. 

2.1. The TEMOA-Italy model and scenarios 

ESOMs are generally based on a virtual representation of the energy 
system under analysis, named Reference Energy System (RES). The RES 
encompasses the description of the techno-economic features of all the 
technologies, commodities, and their interconnections throughout the 
different sectors of the system. Fig. 2 shows the main supply- and 
demand-side sector typically constituting each RES. Supply-side sectors 
(upstream and power sector) are devoted to the production of primary 
and intermediate energy commodities (such as fossil fuels, renewable 
potentials, electricity, heat, etc.) consumed by the demand-side of the 
energy system (buildings, transport, and industry) to satisfy final energy 
service demands. Such models are usually calibrated on a specific base- 
year, while the optimal configuration of the system (according to the 
minimum cost criterion) is evaluated for the future years according to 
the studied scenario. 

The model selected for the present study is TEMOA-Italy (Release 
3.0, (MAHTEP Group, 2023a)), developed within the TEMOA modelling 
framework (Nicoli et al., 2022; MAHTEP Group, 2023b). Since a specific 
methodology for emissions accounting was recently implemented in 
TEMOA-Italy and the model behaviour was precisely tested in a refer
ence (Nicoli et al., 2022) and in a low emissions scenario (Colucci et al., 
2023), this works aims to extend the analysis to evaluate the overall 
sustainability level for the evolution of the power sector computed 
throughout the two scenarios. The TEMOA-Italy RES represents the 
Italian energy system with a single spatial region and across a time 
horizon that spans from 2006 (base year) to 2050. A schematic repre
sentation of the TEMOA-Italy RES is provided in Fig. 3. 

Energy imports/exports are modelled in TEMOA-Italy with a single 
technology per each imported/exported commodity, representing the 
average import/export price according to World Bank historical data 
(World Bank, 2023) and the World Energy Outlook 2022 future pro
jections (IEA, 2022b). Constraints for imported and exported commod
ities are from Eurostat (Eurostat, 2022) for the historical period 
2006–2020 and progressively relaxed for future years. The demand 
projection for future years is presented in (Oliva et al., 2021). The set of 
hurdle rates is from (Laera et al., 2024). 

Together with the traditional energy sectors already reported in 
Fig. 2, TEMOA-Italy also includes technologies for hydrogen production 
(grey, blue, green, and yellow hydrogen, as reported in (Balbo et al., 

Fig. 1. Workflow of the methodology.  
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2023)), final consumption (transport, industry and blending with nat
ural gas) or transformation processes involving hydrogen. Indeed, the 
CCUS modules also includes synfuels production options (syndiesel, 
synkerosene, synmethanol, and synmethane) and technologies for CO2 
capture and storage (as discussed in (Colucci et al., 2023) and (Colucci 
et al., 2022)). 

Focusing on the power sector (the object of this study), Fig. 4 shows 
the main technology groups and their input/output commodities, also 
highlighting the connections with the other sectors of the model and, 
namely, the hydrogen and CCUS modules and the demand sectors 
(including electricity and heat consumption options). A major distinc
tion in the power sector is present for existing and new technologies, 
since the same technology (e.g., natural gas combined cycle power 
plant) may present different parameters value (e.g., efficiency, capacity 

factor) according to its existing or new version. Table 2 shows a sum
mary of the main parameters used for the existing technology modeling 
(as discussed in (Nicoli, 2022)), aggregated by plant category (power, 
CHP, and heat production plants) and input resource (more than one 
technology is associated to each resource). The capacity of existing 
technologies lead to a total gross capacity in 2006 equal to 91.80 GW 
(including heat plants), correspondent to statistics by TERNA (Ntanos 
et al., 2018). 

The complete techno-economic characterization of new technologies 
is available in Table 2. While the overall technology categories are 
power plants (devoted to electricity production), CHP and micro-CHP 
plants (devoted to combined electricity and heat production) and heat 
plants (devoted to heat production), several technology options are 
available. More specifically, the possible energy inputs for the TEMOA- 

Fig. 2. Schematic representation of the general Reference Energy System of a bottom-up energy system optimization model (MAHTEP Group, 2023a).  

Fig. 3. The TEMOA-Italy Reference Energy System (Colucci et al., 2023).  
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Italy power sector are fossil fuels, biofuels, renewables, and hydrogen. 
No nuclear options are currently included in the model database, neither 
fission nor future fusion facilities. 

The main sources of data for the applied set of constraints are:  

- TERNA Statistics (Terna, 2023), Eurostat Energy Balances (Eurostat, 
2022) and GSE Statistics (GSE, 2023) for the calibration on the his
torical period 2006–2020.  

- National Integrated Plan for Energy and Climate (PNIEC) (Ministry 
of Economic Development, 2019), Long term Italian strategy for 
greenhouse gas emission reduction (LTS) (Ministry of Economic 
Development, 2021), Fit for 55 (European Council, 2023) with 
respect to stated future policies implemented in the model. This in
cludes the phase-out of coal power plants no later than 2030.  

- Elaboration from ENSPRESO Database (Ruiz et al., 2019), for 
renewable future potentials. 

To apply the presented methodology to the Italian long-term strategy 
on emission reduction (Ministry of the Environment and Land and Sea 
Protection, 2021) two alternative scenarios were developed within 
TEMOA-Italy, spanning on a time horizon from 2020 to 2050. The 
Reference scenarios was developed including a projection up to 2050 of 
the PNIEC 2019 (Ministry of Economic Development, 2019) minimum 

targets for renewables development, while the Decarbonization scenario 
reflects the net zero emission target in 2050 (MAHTEP Group, 2023a). 
For the 2025–2030 period, the PNIEC targets concerning renewable 
production (Fig. 5) are implemented as constraints for the model. In the 
Reference scenario, the PNIEC policies are imposed as five constraints, 
forcing the model to exactly reproduce them. Differently, in the Decar
bonization scenario, they are implemented as a set of minimum targets, 
allowing for higher values in the final electricity production mix. This 
approach, in synergy with the 2025–2050 carbon emission constraint 
reported in Fig. 5(b) allows to reach a configuration that should lead 
close to carbon neutrality by 2050 (around 29 MtCO2 eq residual). 

According to Fig. 5(a) an increasing trend is highlighted for all the 
renewables, except for hydroelectric and geothermal, with a 40% in
crease in the electricity produced from solar and 20% for wind in 2030. 
The geothermal and hydroelectric resources are already exploited at the 
maximum level, and no increase is forecasted in the period 2025–2030, 
causing a flat trend. The constraints for the period 2030–2050 are 
defined by the extension of the renewable electricity production until 
2050, preserving the same annual growth rate observed in the period 
2025–2030. 

Fig. 4. The power sector as represented in TEMOA-Italy.  

Table 2 
Techno-economic characterization of existing technologies in the TEMOA-Italy power sector (MAHTEP Group, 2023a).  

Category Resource 
Efficiency 
(%) 

Existing Capacity 
(GW) 

End of 
Life 

Fixed O&M Cost (M€2009/ 
GW) 

Variable O&M Cost (M€2009/ 
PJ) 

Capacity Factor 
(%) 

Power 
Plants 

Coal  32  7.73 ≈ 2030  31  0.46 

≈ 40  

Oil Products  35 9.28  ≈ 2030  32 0.47  
Natural Gas  46 28.03  ≈ 2050  18 0.49  

Biofuels  27 0.76  ≈ 2030  13 0.36  
Geothermal  10 0.79  ≈ 2030  94 3.48 

Hydroelectric    21.38   25  0.08  
Solar    0.02 ≈ 2025  31  13.89  
Wind    2.12 ≈ 2020  34    

CHP Plants 

Coal  37  0.91 ≈ 2030  221  0.83 

≈ 60  

Oil Products  35 3.23  ≈ 2020  32 0.47  
Natural Gas  48 14.83  ≈ 2050  29 0.61  

Biofuels  39 0.82  ≈ 2050  221 0.83 

Heat Plants 
Natural Gas  80  0.77 ≈ 2035     

50  Geothermal  80 1.13  ≈ 2035     
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2.2. The sustainability metric: indicators selection and data inventory 

To adequately address the extensive scope of each sustainability 
dimension, a comprehensive set of indicators are needed to accurately 
describe the associated problems. Since an energy system is a systemic 
concept that encompasses various energy processes and commodities, it 
is then crucial for the metric to establish a hierarchical structure 
(UNECE, 2021), where indicators and technologies are linked and con
stitutes the starting point. Therefore, each power sector technology has 
been characterized in terms of each included indicator, according to 
these general pillars:  

1. Accordance with previous literature, Selected indicators should reflect 
the actual body of knowledge about sustainability as specified in 
Table 1. 

2. Avoidance of double counting: It is crucial to avoid including sus
tainability aspects that are already accounted for in Energy System 
Optimization Models (ESOMs). For example, if the models already 
aim at minimizing generation costs, there is no need to include in
dicators such as Levelized Cost of Electricity (LCOE) that reflect the 
same aspect. 

3. Associability of indicators to energy technologies: The selected in
dicators should be tailored to the operation of the different tech
nologies of the power sector. This link between indicators and 
technology can be direct, as for instance, pollution indicators, which 
can directly relate to the quantity of pollutants produced per unit of 
electricity generated. However, some indicators may require math
ematical elaborations, as is the case with security indicators. 

For the environmental dimension, the selected parameters affect 
different areas of the environment. The Global Warming Potential (GWP), 
Acidification and Eutrophication Potentials (AP, EP) are linked to the 
provoked damage, and they mainly depend on emissions from fossil- 
based plants. On the other side, water consumption and land use refer to 
the natural resources consumed by the power sector technologies. To 
preserve the comprehensive cradle-to grave approach of the metric in 
the accounting of these five elements, the Life cycle assessment (LCA) 
assessment framework is used (ISO 14005, 2023). That is a standardized 
method defined by the ISO 14040 series (ISO, 2023) and widely used for 
evaluating the environmental impact of technologies. The ISO 14040 
series ensures reproducibility and transparency in LCA studies, although 
direct comparability between ISO-compliant studies may not be guar
anteed (ISO 14005, 2023). To mitigate this uncertainty issue, LCA in
dicators are derived from the UNECE Report “Integrated Life Cycle 

Assessment of Electricity Sources” (UNECE, 2021), which represent the 
most recent and significative effort in creating a comprehensive power 
sector LCA database at a European level. However, there are limitations 
related to the use of the UNECE report mainly related to the different 
modelling of power sector technologies, which requires an “alignment” 
between data A comprehensive explanation of the assumptions 
employed during this “alignment” phase and a detailed discussion of the 
data are available in Appendix A. 

The security of an energy system encompasses several aspects 
(Gracceva and Zeniewski, 2014): among these, there is a stable and 
uninterrupted supply by the energy infrastructures, including the power 
sector (Ang et al., 2015). In this regard, ESOMs usually rely on a poor 
representation of the power system, not considering the dispatchability 
issues of VRES if not in a rough manner (Kotzur et al., 2021). Therefore, 
it is not guaranteed that a feasible ESOM scenario also provides feasible 
and well-performing solutions when simulated on dispatch models 
(Deane et al., 2015). Therefore, the indicators in this dimension must 
necessarily involve the reliability issue, here expressed by the technol
ogy’s capacity factor, in accordance with existing literature (Nock and 
Baker, 2019; Martín-Gamboa et al., 2017b). Considering the long-term 
side, a secure energy infrastructure also depends on the import avail
ability, with possible disruptions to be mitigated (Ang et al., 2015). The 
spread of VRES and more in general clean energy technologies is 
beneficial for energy security, since it decreases the fossil fuel import 
reliance that many countries have been experiencing until today: how
ever, the expected massive penetration of renewables could lead to new 
import dependencies, that must be strategically faced before they 
overcome the above-mentioned energy security benefits (Hache, 2018). 
Clean energy technologies (e.g., batteries, solar panels, wind turbines) 
present high geographical concentration in some countries (mainly 
China (IEA, 2023)) along the whole value chain, from raw material 
extraction to technology assembly, increasing the risk of possible value 
chain bottlenecks (JRC, 2020). Therefore, this analysis has been nar
rowed down to technologies that pose concerns for energy security: 
fossil fuel plants, photovoltaic, and wind energy, as corroborated by the 
literature (JRC, 2020, 2023). This selection is predicated on the fact that 
both fossil and renewable technologies involve the import of "critical" 
commodities. Although other plants also entail dependencies (e.g., steel, 
cement, foreign components), there is no supporting evidence justifying 
the inclusion of these materials as critical. Therefore, the assumption is 
that other technologies and electricity imports do not pose security 
concerns. In this regard, for energy carriers and critical materials (both 
considered critical commodities for the security of supply) three in
dicators are considered: the volume shortage risk, the import dependence, 

Fig. 5. Targets for renewables development of the (a) Reference scenario (PNIEC targets projected up to 2050). (b) Overall gross emissions constraints implemented 
in the Decarbonization scenario. 
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and the geopolitical stability. The rationale behind this choice is to 
quantify both the quantity of import (import dependence) and its quality 
(volume shortage risk, representing the diversification of the mix), and 
geopolitical stability, that quantify reliability of energy partners. Data for 
these indicators are quantified and gathered differently:  

– Reliability (Capacity factor): The capacity factor (CF) of power sector 
technologies (reliability indicator) is derived from the TEMOA-Italy 
database (MAHTEP Group, 2023a). CF is already present for all the 
technologies. For new technologies, data are reported and discussed 
in Table 3, together with the data sources. 

– Import dependence (% of imported commodity): The import depen
dence is quantified by the percentage of imported fuels and import 
reliance along the whole clean energy technology supply chain. In 
the TEMOA-Italy model, the import of energy commodities is 
modelled without distinguishing between the different supplier 
countries (e.g., generic import of natural gas), while material flows 
are not included. This is the reason why external sources were used. 
For each fuel and technology supply chain phase included in the 
analysis, supplier countries are described by their share on the 
overall import (at the Italian and the European level, respectively). 
Since both energy carriers and critical materials are commodities, 
but the latter requires a more complicated elaboration, a detailed 
explanation of this indicator and the data description is found in 
Appendix A.  

– Volume shortage risk (N-1% residual supply): Once obtained the import 
share by nation, these shares are then used to quantify the volume 
shortage risk. Both for critical materials and energy commodities, the 
Volume Shortage Risk, is quantified applying the “N-1” criteria 
(Carrión et al., 2021), representing the remaining percentage of 
supply if a failure of the biggest supplier happens. The math for this 
index is reported in Eq. (1) and data are found in Appendix A: 

N − 1 =
∑Nimporter countries

i=1
%of tot.imp.fuel −

(
%imp.fuel largest supplier

)
(1)    

– Geopolitical stability (Political Stability Index): Geopolitical stability is 
calculated from the Political Stability Index (World Bank Group, 
2023) (PSI) of the supplier countries. At this point, importer coun
tries are characterized by their import share (for each critical com
modity) and their PSI. Then, an average PSI for each energy 
commodity or material supply chain is derived, starting from the PSI 
of the supplier countries and their weights in the import share. This is 
done through a weighted average process as in Eq. (2): 

PSIcommodity =
∑Nimporter countries

i=1
PSIcountry(i) ∗ import sharecountry(i) (2) 

Power sector technologies are finally characterized by a PSI of the 
energy commodity/material they consume. Fossil fuel plants are asso
ciated with the commodities they require (e.g., PSI of natural gas for 
combined cycle power plant). For renewables, an overall PSI including 
the whole supply chain, from raw material extraction to component 
assembly, was computed for, with a detailed description of the pro
cedure in Appendix A. Again, the need to link with the technology ac
tivity bring limitations and the need for a mathematical formulation, 
both discussed in Appendix A. 

For the Social dimension, intended as the ability of an energy system 
to provide safe, clean, and affordable electricity (World Energy Tri
lemma Index, 2023), the choice of the indicators should reflect the 
wideness of this definition. Indeed, three sub-aspects are selected. The 
Quality of labor indicator refers to the unsustainability associated with 
poor labor conditions in the countries supplying the primary commod
ities required for energy systems. Specifically, this indicator addresses 
the labor conditions related to fossil fuels and critical materials, which 
are predominantly extracted in less developed countries. Considering 

that the case study focuses on Italy, the countries from which Italy im
ports these commodities were considered. The Quality of labor is 
assumed to be proportional to the Human Development Index (HDI) of 
the countries associated with the supplier country. As Italy is a devel
oped country, the quality of internal jobs was not considered as a 
concern. The HDI values associated with a particular technology are 
linked to the specific commodity required by that technology. A math
ematical formulation, explained in detail in Appendix A, was developed 
to properly calculate this indicator. Then, human health impacts are 
accounted for through the Human Health Damage (HDD) indicators. 
This is a LCA end-point kind (ReCiPe, 2022) (different from the envi
ronmental ones, which are midpoint) because it directly relates the 
electricity production of a plant to the human health implications, 
expressed in Disability Adjusted Lifetime Years (DALY), the impact 
assessment unit for overall disease burden, expressed as the number of 
years lost due to ill-health, disability, or early death (Salomon, 2014). 
Data for HHD are again derived from the UNECE Report (UNECE, 2021) 
and their detailed description is reported in Appendix A. Finally, fatal
ities derived by power plants hazards are added because they represent 
another kind of damage to human, not related to hill but to unpredict
able hazards happening over the whole life cycle of the plant, even if 
evidence is not clear on the proportion of fatalities that occur during 
construction versus during operation (in developed countries) (Nock 
and Baker, 2019). Source values are taken from (Klein and Whalley, 
2015), a well-established reference in literature. The inclusion of HHD, 
quality of labor, and fatalities is in line with many of the sampled work, 
where internal factors like fatalities and pollution were considered (e.g., 
(Nock and Baker, 2019; Madurai Elavarasan et al., 2022; Gunnarsdottir 
et al., 2022)) together with external issues as human rights and labor 
conditions (Nock and Baker, 2019). 

It is also important to notice that the unit of measurement of in
dicators differs and some amounts are directly proportional to sustain
ability (e.g., Capacity factor for reliability), while others are in opposition 
(e.g., emissions, resource consumption). We categorize our indicators 
into two groups: ’The Lower the Better’ (TLTB), where the lowest value 
signifies maximum sustainability (scored as 1), and the highest denotes 
minimum sustainability (scored as 0), and ’The Higher the Better’ 
(THTB) indicators, which present the opposite scenario. The sustain
ability indicators and their related dimensions are summarized in  
Table 4. 

As discussed, data sources are uniform for the environmental 
dimension and the HHD, while for the other is a mixture of TEMOA 
model input data and external references. All the indicators in Table 4 
have a value for each technology and for each milestone year of the 
model that are reported in Appendix A. 

2.3. MCDA framework for sustainability evaluation of energy scenarios 

The optimal technology mix derived for the power sector by the re
sults of the adopted ESOM and the indicators from data inventory are 
combined in a proper framework to obtain a separate SI for each sce
nario. The process can be divided into three phases: database creation, 
normalization and weighting, and sustainability evaluation of energy 
scenarios. An overview of the dataflows is provided in Fig. 6. 

2.3.1. Database creation 
The aim of the first phase is to create a dataset with twelve indicators 

for each technology and milestone year in ESOM. 
The impact values for sustainability indicators are collected not only 

at the ESOM base year (see Appendix A), but throughout the entire time 
horizon of the model. While parameters independent of technological 
improvement are assumed constant over the years, those related to 
specific technological parameters derived from ESOM data, namely ef
ficiency (η), lifetime (LT), or capacity factor (CF), are calculated to 
consider the reduction in impact caused by improved technological 
performance over time. Improvements in technical parameters generally 
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Table 3 
Techno-economic characterization of new technologies in the TEMOA-Italy power sector (Release 3.0 (MAHTEP Group, 2023a)).  

Category Resource Technology 
Efficiency 
(%) Lifetime Investment Cost Fixed O&M Cost 

Variable O&M 
Cost 

Discount 
Rate (%) 

Capacity 
to Activity 

Capacity 
Factor (%) 

Capacity 
Credit (%) CHPR Source 

Power 
Plants 

Natural Gas 

Gas Cycle 35 ~ 49 30 
703 ~ 
922 

M$2020/ 
GW 21 

M$2020/ 
GW 1.39 

M$2020/ 
PJ 

10 

31.536 PJ/ 
GW 

95 

100  

(ENEA, 
2022; 
NREL, 
2022; 
NREL, 
2023) 

Combined Cycle 54 ~ 59 30 
838 ~ 
1038 

M$2020/ 
GW 28 

M$2020/ 
GW 0.56 

M$2020/ 
PJ 90 

95% CCS 55 30 1330 
M€2010/ 
GW 38 

M€2010/ 
GW 0.34 

M€2010/ 
PJ 90 

Coal 

Steam Cycle 40 ~ 44 30 
2240 ~ 
3075 

M$2020/ 
GW 74 

M$2020/ 
GW 2.22 

M$2020/ 
PJ 76 

79 ~ 84% CCS 41 ~ 48 15 ~ 30 
2757 ~ 
3758 

M€2010/ 
GW 

69 
~ 
88 

M€2010/ 
GW 

0.64 ~ 
1.62 

M€2010/ 
PJ 90 

Oil Products Steam Cycle 40 ~ 44 30 
2240 ~ 
3075 

M$2020/ 
GW 74 

M$2020/ 
GW 2.22 

M$2020/ 
PJ 85 

Biofuels 

Biodiesel Plant 35 ~ 39 15 
3626 ~ 
4416 

M$2020/ 
GW 151 

M$2020/ 
GW 1.61 

M$2020/ 
PJ 70 

Biomass Plant 25 ~ 28 15 
3626 ~ 
4416 

M$2020/ 
GW 151 

M$2020/ 
GW 1.61 

M$2020/ 
PJ 57 

Agriculture and 
Farming Biogas 
Plant 

32 ~ 40 9 

2025 ~ 
3500 

M€2009/ 
GW    

5 

58 ~ 65 70  

(ENEA, 
2022) Landfill Biogas Plant 

900 ~ 
1100 

M€2009/ 
GW 

40 
~ 
75 

M€2009/ 
GW 1.61 

M€2009/ 
PJ 49 ~ 60 50 

Hydroelectric 

Micro-hydroelectric  

30 

4500 
M€2009/ 
GW 78 

M€2009/ 
GW  

≈ 0.23 

30  
(ENEA, 
2022) Mini-hydroelectric 2250 

M€2009/ 
GW 33 

M€2009/ 
GW 30 

Geothermal 

High Enthalpy Plant 

10 15 

3200 ~ 
4000 

M€2009/ 
GW 60 

~ 
86 

M€2009/ 
GW  

86 100  
(ENEA, 
2022) Low Enthalpy Plant 

4480 ~ 
6000 

M€2009/ 
GW 88 ~ 90 100 

Solar 

Ground Photovoltaic  

30 

620 ~ 
6000 

M$2020/ 
GW 

13 
~ 
43 

M$2020/ 
GW  

≈ 0.14 

20  
(ENEA, 
2022;  
NREL, 
2022;  
NREL, 2023 

Rooftop 
Photovoltaic 

751 ~ 
8000 

M$2020/ 
GW 

10 
~ 
48 

M$2020/ 
GW 15 

Thermodynamic 
Plant 

3928 ~ 
5429 

M$2020/ 
GW   0.81 

M$2020/ 
PJ 70 

Wind 

Onshore  

20 

765 ~ 
2532 

M$2020/ 
GW 

33 
~ 
49 

M$2020/ 
GW  

≈ 0.17 

25  
(ENEA, 
2022; 
NREL, 
2022; 
NREL, 
2023) 

Offshore (Fixed) 
2343 ~ 
5000 

M$2020/ 
GW 

70 
~ 
111 

M$2020/ 
GW 30 

Offshore (Floating) 
3467 ~ 
4049 

M$2020/ 
GW 

57 
~ 
69 

M$2020/ 
GW 35 

Hydrogen PEM Fuel Cell 45 ~ 47 15 
1000 ~ 
3000 

M€2013/ 
GW 

56 
~ 
61 

M€2013/ 
GW 

8.33 ~ 
29.17 

M€2013/ 
PJ 90 100  

(Sofia et al., 
2013a) 

CHP 
Plants Natural Gas Gas Cycle 77 ~ 86 25 960 

M€2009/ 
GW  

1.11 ~ 
1.67 

M€2009/ 
PJ 10 

31.536 PJ/ 
GW 57 70 ≈ 1.3 

(ENEA, 
2022) 

(continued on next page) 
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Table 3 (continued ) 

Category Resource Technology 
Efficiency 
(%) Lifetime Investment Cost Fixed O&M Cost 

Variable O&M 
Cost 

Discount 
Rate (%) 

Capacity 
to Activity 

Capacity 
Factor (%) 

Capacity 
Credit (%) CHPR Source 

Combined Cycle 90 30 720 
M€2009/ 
GW 

0.33 ~ 
0.50 

M€2009/ 
PJ 34 ≈ 0.6 

Cycle in Counter 
Pressure 84 35 

702 
M€2009/ 
GW 1.39 

M€2009/ 
PJ 74 

≈ 4.0 
Cycle with Steam 
Tapping 82 35 ≈ 2.5 

Municipal 
Waste 

Municipal Waste 
Cycle 38 20 

2059 ~ 
4000 

M€2009/ 
GW 

9.50 ~ 
12.50 

M€2009/ 
PJ 70 ~ 80 ≈ 0.5 

Micro- 
CHP 
Plants 

Natural Gas 

Internal Combustion 
Engine 
(Commercial) 80 ~ 88 15 

900 ~ 
1100 

M€2009/ 
GW  4.17 

M€2009/ 
PJ 

10 
31.536 PJ/ 
GW 

34 

20 

≈ 1.1 

(ENEA, 
2022) 

Microturbine 
(Commercial) 80 ~ 88 12 ~ 20 

1000 ~ 
1500 

M€2009/ 
GW 2.78 

M€2009/ 
PJ 34 ≈ 0.4 

Combined Cycle 
(Commercial) 80 15 ~ 20 1300 

M€2009/ 
GW 5.00 

M€2009/ 
PJ 34 ≈ 0.4 

Solid Oxide Fuel Cell 
(Commercial) 90 ~ 96 20 

2250 ~ 
10000 

M€2020/ 
GW 

4.86 ~ 
30.56 

M€2020/ 
PJ 90 ≈ 0.4 

(Sofia et al., 
2013a) 

Biofuels 

Internal Combustion 
Engine 
(Commercial) 80 15 

1350 ~ 
1870 

M€2009/ 
GW 4.17 

M€2009/ 
PJ 34 ≈ 0.4 

(ENEA, 
2022) 

Hydrogen 
PEM Fuel Cell 
(Commercial) 94 ~ 96 20 

1050 ~ 
1500 

M€2020/ 
GW 

6.94 ~ 
13.89 

M€2020/ 
PJ 90 ≈ 0.8 

(Sofia et al., 
2013a) 

Natural Gas 

Internal Combustion 
Engine (Residential) 80 ~ 88 15 

900 ~ 
1100 

M€2009/ 
GW  

2.78 ~ 
4.17 

M€2009/ 
PJ 34 

20 

≈ 1.1 

(ENEA, 
2022) 

Microturbine 
(Residential) 80 ~ 92 12 ~ 20 

1000 ~ 
1500 

M€2009/ 
GW 

1.67 ~ 
2.78 

M€2009/ 
PJ 34 ≈ 1.5 

Combined Cycle 
(Residential) 80 15 ~ 20 1300 

M€2009/ 
GW 

0.42 ~ 
0.50 

M€2009/ 
PJ 34 ≈ 0.4 

Stirling Engine 
(Residential) 80 ~ 90 15 

2100 ~ 
2180 

M€2009/ 
GW 

2.78 ~ 
5.00 

M€2009/ 
PJ 34 ≈ 0.2 

Solid Oxide Fuel Cell 
(Residential) 90 20 

3500 ~ 
10000 

M€2020/ 
GW 

6.97 ~ 
27.78 

M€2020/ 
PJ 90 ≈ 0.5 

(Sofia et al., 
2013a) Hydrogen 

PEM Fuel Cell 
(Residential) 92 ~ 96 20 

4000 ~ 
6000 

M€2020/ 
GW 

6.94 ~ 
20.89 

M€2020/ 
PJ 90 ≈ 0.5 

Natural Gas 

Internal Combustion 
Engine (Industry) 80 ~ 91 15 

1030 ~ 
1100 

M€2009/ 
GW  

2.78 ~ 
4.17 

M€2009/ 
PJ 57 

100 

≈ 1.1 

(ENEA, 
2022) 

Gas Turbine 
(Industry) 74 ~ 80 20 ~ 25 800 

M€2009/ 
GW 

1.39 ~ 
1.67 

M€2009/ 
PJ 74 ≈ 1.2 

Steam Turbine 
(Industry) 75 ~ 79 30 1500 

M€2009/ 
GW   63 ≈ 0.3 

Biofuels 
Internal Combustion 
Engine (Industry) 85 ~ 93 15 

1800 ~ 
2100 

M€2009/ 
GW 

2.50 ~ 
3.75 

M€2009/ 
PJ 57 ≈ 0.2 

Heat 
Plants 

Natural Gas Natural Gas Plant 

80 

60 

4 
M€2009/ 
PJ 2.4 

M€2009/ 
PJ   

10 1.00 PJ/PJ 60 100  
(ENEA, 
2022) 

Coal Coal Plant 6 
M€2009/ 
PJ 2.8 

M€2009/ 
PJ 

Oil Products Oil Products Plant 5 
M€2009/ 
PJ 2.5 

M€2009/ 
PJ 

Biofuels Biofuels Plant 6 
M€2009/ 
PJ 2.8 

M€2009/ 
PJ 

Geothermal 

High Enthalpy Plant 

10 

12 
M€2009/ 
PJ 2.5 

M€2009/ 
PJ 

Low Enthalpy Plant 12 
M€2009/ 
PJ 2.5 

M€2009/ 
PJ  
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cause a reduction in overall LCA impacts. This process is called 
harmonization and adds a dynamic component to the LCA dataset. If the 
life cycle-based impacts are primarily due to the operation of the plants 
(as in the case of fossil power plants or biomass power plants), then a 
change in efficiency has a significant impact. On the other hand, if the 
impact is primarily due to the construction of the plants (as in the case of 
PV and wind and non-emitting technologies), then capacity factor and 
lifetime are the most influential parameters. To account for this tem
poral variation, the LCA parameters vary according to the average 
growth rate of the technological drivers as in Equation (3a) for the fossil 
and biomass efficiency, in Equation (3b) for CF and lifetime for the other 
technologies. 

GRt,j =

⎧
⎪⎪⎨

⎪⎪⎩

ηt,j − ηt,BY
ηt,BY

CFt,j − CFt,BY
CFt,BY

+
LTt,j − LTt,BY

LTt,BY

(3a,b) 

For each technology, the average variation of the three technical 
parameters at year j with respect to the base year (j = BY) is used to 
reduce the LCA Impacts according to Eq. (4). 

LCA Footprint indicatort,j = LCA Footprint indicatort,BY •
(
1 − GRt,j

)

(4) 

As shown in 
Fig. 6, the final dataset is composed of a set of parameters It,j,i of 

twelve indicators, where both activity and parameters are defined for 
each technology and year. 

2.3.2. Normalization and weighting 
The second step involve converting the different technology in

dicators (Ii,t,j ) to a single value. Each indicator i in year j is first 
normalized for each technology t using a common scale of [0,1] with 
reference to the best and the worst indicator for the same indicator 
category, as in Eq. (5). 

INORMi,t,j =
Ii,t,j − worst

(
Ii,t,j

)

best
(
Ii,t,j

)
− worst

(
Ii,t,j

) (5) 

For each indicator, the technology with the most sustainable value 
takes 1 and the worst 0, while the others are interpolated between this 
range. As explained in Table 4, we utilize two distinct normalization 
approaches for our indicators: traditional normalization, where the 
highest value is assigned a score of 1, and the lowest receives 0, and 
reverse normalization. Several normalization techniques are available 
(OECD, 2008), but we have found (not shown) that the min-max scaling 
is the one causing less distortion on data distribution. Moreover, some 
indicators already in a 0–100% scale (import dependency, volume 
shortage, reliability) do not require this process, but just a translation in 
the range 0–1. After this step a new dataset of indicators INORM for each 
sustainability indicator (i) is obtained for each milestone year in the 
model. The overall yearly sustainability performance of a technology 
(TSSt,j) is obtained by hierarchical weighted sum of its qualitative set of 

Table 4 
Description of sustainability dimensions and indicators.  

Sustainability 
Dimension 

Sustainability 
indicator Measure Normalization 

Environmental 

Global Warming 
Potential (GWP)* 

KgCO2 ,EQ

MWh 

TLTB 

Acidification 
Potential (AP) 

gSO2 ,EQ

MWh Eutrophication 
Potential (EP) 

gPO4 ,EQ

MWh 

Land Use 
m2

MWh 

Water Use 
m3

MWh 

Security 

Reliability 
Capacity factor 
(%) THTB 

Import Dependence 
% of imported 
commodity TLTB 

Volume shortage 
Risk 

N-1 residual 
supply (%) THTB 

Political Stability 
Index 

Political Stability 
Index [-] THTB 

Social 

Human Health 
Damage 

DALY
MWh 

TLTB 

Fatalities 
Deaths
MWh 

TLTB 

Quality of Labor 

Human 
Development 
Index THTB  

Fig. 6. Data flows of the developed MCDA process.  
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indicators, that allows moving to a single SI value. Since there may be 
different configurations according to how different indicators are rele
vant for the scope of the analysis, each indicator must be associated to a 
weight (the sum of all the weights always has to be equal to one). 
Weights are identified by the term wi in Eq. (6), and assigned to each 
indicator (i). Technology sustainability score (TSS) is the weighted sum 
of all the indicators. 

TSSt,j =
∑12

i=1
INORMi,j • wi,where

∑11

i=1
wi = 1 (6)  

2.3.3. Sustainability evaluation of energy scenarios 
When all the power sector technologies are characterized by a yearly 

overall sustainability evaluation, it is possible to compute a global score 
(SSj) evaluating the sustainability of the technology miv under analysis. 
This is done by allowing each technology to influence the final score 
according to its contribution to the electricity production share used in 
Eq. (7), where the electricity production share (activity share AS) is 
identified by the term ASt,j and represents, as an outcome of the sce
nario, the contribution of the produced electricity by the technology t 
(or process) in the final electricity mix for the year j. AS is an output of 
the ESOM, computed according to a specific scenario. 

SSj =
∑Ntech

t=1
TSSt,j ∗ ASt,j (7) 

This framework allows the direct visualization of the power system 
performance in terms of sustainability through a trendline. One sus
tainability profile, associated to a specific set of weights, is obtained as 
output for each analyzed scenario. 

2.4. Post-mining analysis 

To assess the impact that different sets of weights have on the SI 
profile in a specific scenario, a sensitivity analysis is performed. In this 
regard, for each scenario, the weights of the twelve indicators used for 
the evaluation of the SI are sampled generating 10.000 combinations 
with the only constraint that their sum should be always equal to 1. As 
expected, each set of weights produces a unique SI profile that, over the 
reference time horizon of the scenario, is characterized by its own 
magnitude (e.g., low, medium, high) and trend (e.g., increasing, 
decreasing, stable). The main objective of this analysis is then to extract 
from the considered scenarios recurring patterns that describe the 
relationship between indicator weighs and the characteristics (trend and 
magnitude) of 10.000 SI profiles obtained after the weight sampling. To 
do so, magnitude and trend are treated separately according to the 
following methodological steps:  

a. Clustering analysis of the SI profiles: In a selected scenario, this 
analysis aims at identifying reference groups of SI profiles among the 
10.000 ones obtained after the sampling of indicator weights. At the 
end of this analysis each SI profile is tagged with the label of the 
cluster in which it has been grouped in using a hierarchical clustering 
algorithm with the Euclidean distance used as a similarity metric and 
the Ward.D2 as linkage method (Capozzoli et al., 2017). The optimal 
number of clusters is determined by means of well-known quality 
metrics such as Davis-Bouldin (Davies and Bouldin, 1979) and 
Silhouette index (Rousseeuw, 1987);  

b. Development of a classification model: At this stage an estimation 
model based on a machine learning decision-tree algorithm is 
developed to classify a SI profile in one of the pre-determined classes 
evaluated through the clustering analysis. The considered model 
inputs are the weights of the 12 indicators used to calculate the 
sustainability index while the estimated output variable is the cluster 
label. The developed model is a random forest based on the ensemble 
of 500 decision trees trained on different parts of the available 

dataset imposing a minimum size of terminal nodes equal to 10. The 
classification accuracy of the model is assessed training the classifier 
on the randomly sampled 70% of the dataset and testing it on the 
remaining 30%. 

c. Analysis of the feature importance: This step exploits an explain
able artificial intelligence (XAI) technique to explain and interpret 
the developed classification model to infer which indicators have the 
highest influence on a specific feature of the SI profile (i.e., magni
tude or trend). Specifically, the importance of an input variable (i.e., 
one of the 12 indicators used to evaluate the SI) is assessed according 
to the increase in the model classification error after permuting the 
variable. A variable is than considered as “important” if the shuffling 
of its values significantly increases the model error, because in this 
case the model relied on that variable for the classification. On the 
other hand, a variable is considered “unimportant” if shuffling its 
values, the model error is not remarkably affected, because in this 
case the model did not exploit that variable for the classification. In 
this study the increasing of the model classification error is measured 
in terms of Cross-Entropy, as reported in (Law Biecek, 2023). 

To separately analyze the SI profile properties, the above-described 
process is applied to not normalized profiles to characterize the 
magnitude of the profiles and to normalized profiles to better highlight 
differences in terms of their trends. To analyze the trend, all the 
considered 10.000 SI profiles of a scenario are normalized with respect 
to their maximum value then emphasizing the shape attributes of the 
profiles more than the magnitude ones. Eventually, the sensitivity 
analysis for both magnitude and trend of the SI profiles is carried out for 
different scenarios to understand if the discovered relations are or are 
not characterized by traits of generalizability. 

3. Results 

The outcomes resulting from the application of the methodology are 
here presented. The section is structured as follows. First, the energy 
scenarios in terms of electricity production and emissions are discussed 
in Section 3.1. In particular, the scenarios are explained with a specific 
focus on the technological change in the power sector required by the 
decarbonization policy and its implications in terms of sustainability. 
Next, the outcomes for the SI calculation are presented: Section 3.2 
provides the mere sustainability evolution, highlighting the role of the SI 
as a tool to compare energy scenario and providing an example of 
readability and interpretation. In Section 2.1, the post-mining analysis is 
performed, gaining a deeper understanding on the effect and impact of 
alternative selection of the weight values. 

3.1. Electricity mix and CO2 emissions 

Constraints discussed in Section 2.1 result in different electricity 
production and carbon emission trajectories between scenarios. Thanks 
to Fig. 7a is possible to appreciate how the emissions reduction (eval
uated with respect to the period 2007–2010) performed by the Refer
ence scenario (thanks to efficiency improvements) is incomplete if 
compared to net-zero targets. Indeed, the reduction of carbon emissions 
only reaches around 30% in 2050. 

Differently, the Decarbonization scenario (Fig. 7b) puts in place a 
transition to an almost carbon-neutral condition: in 2050, with a ~94% 
emissions reduction with respect to base year. It is also evident how the 
main emission sources are the transport and the power sector (in the 
Reference 2050). In absence of constraints (Fig. 7a) the emissions from 
the two sectors are quite constant. On the contrary, in the Decarbon
ization (Fig. 7b), the final emissions reach negative values (-24,5 Mt 
CO2) thanks to the direct air capture and the biomass with CCS. More
over, both the transport and the power sector experience a deep emis
sion reduction driven by the constraints. This means a higher 
electrification of transports and renewable share in the power sector. 
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The higher decarbonization effort in the Decarbonization scenario re
quires a 30% increase in electricity consumption with respect to the base 
year (see Fig. 8), while the Reference one presents an almost stationary 
trend. Considering the electricity production sources, the Reference 
scenario (Fig. 8a) does not significantly change its energy mix across the 
time, relying mainly on natural gas, import and renewables, respec
tively. Differently, the strong Decarbonization targets mainly leads to a 
transition towards solar and wind (Fig. 8b). 

Diving into details, Fig. 8 shows that after 2030 the differences be
tween the two scenarios start being sharper. If in the Reference the gas 
dominates the electricity production with a significant increase (around 
30% from 2030 to 2050), in the Decarbonization renewables take the 
scene. From 2030–2050, photovoltaic and wind experience a sharp rise 
in production, around 120% and 300% respectively. 

3.2. Evaluation of the sustainability score 

Once all the necessary data are acquired, the sustainability index 
calculation discussed in Section 2.3 is applied, combining technology 
production by source from ESOM and the sustainability indicator 

dataset of Section 2.2. Since the sustainability index calculation is 
affected by the assigned sets of weights, 10000 combinations of indi
cator weights are tested, by making all the weights vary between min
imum and maximum values of 0 and 1, respectively, and keeping their 
overall sum equal to 1. The implications of using different sets of weights 
are reflected in the technology sustainability evaluations that, applied to 
scenarios activity, define 10000 different SI profiles. To preserve inter
pretability, only the case with an equal weight configuration is shown, 
with the other profiles laying in the background of the plot. In Fig. 9 the 
SI for both Reference and Decarbonization scenarios is plotted. 

This visualization highlights the role of the sustainability index as a 
tool to quantitively compare scenarios across a user-specified indicator 
ranking. With the specific weight configurations applied, the Decar
bonization scenario demonstrates a slightly superior performance when 
compared to the Reference scenario. Notably, the former exhibits a 
progressively increasing trend in contrast to the relatively flat to slightly 
decreasing trajectory of the latter, resulting in an approximately 10% 
relative difference by the year 2050. Despite the case-specific outcome, 
what must be noticed is the wide spectrum of profiles (grey lines) 
covered by the SI when changing the set of weights. Indeed, according to 

Fig. 7. CO2 emissions reduction for TEMOA-Italy Reference and Decarbonization scenarios (a) and Electricity consumption increase (b).  

Fig. 8. Evolution of the electricity production by source obtained in the TEMOA-Italy a) Reference scenario and b) Decarbonization scenarios.  
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the assigned set of weights, the SI can range from 0.1 to 1 in magnitude 
while assuming different trends. A level of explanation based on artifi
cial intelligence techniques is used to determine whether and how the 
magnitude and trend of SI are affected by the single indicators, trying to 
find patterns allowing for extraction of general knowledge. 

3.3. Post-mining analysis 

The aim of the post mining analysis is the assessment of the influence 
that indicator weights have on the sustainability index. After having 
obtained 10,000 SI profile samples, they are analyzed considering their 
magnitude and their trend separately but repeating the same steps in 
analyzing both. The first step of the post-mining analysis is clustering the 
SI profiles (Section 3.3.1), which makes possible to extract reference 
qualitative groups for magnitude (e.g., Low, Medium, High) and trend 

(e.g., increasing or decreasing over time). The clustering phase results 
are not to be intended as final outcomes, but functional to the generation 
of them. Indeed, after the identification of the reference clusters of SI 
profiles, the classification models are developed with the aim to extract 
the relationships between the indicator weights and the features of the SI 
profile itself (Section 3.3.2). This last step facilitates the identification of 
patterns that substantially influence the variations of the SI. 

3.3.1. Clustering analysis 
Cluster profiles obtained following the methodology of Section 2.4 

are reported in Fig. 10, showing the clustering results obtained for both 
the Reference and Decarbonization scenarios. In particular Fig. 10 (a) 
and Fig. 10 (c) show the obtained reference clusters of SI profiles if not 
normalized (to characterise the magnitude) and when normalized (to 
characterize the trend), respectively, for the Reference scenario. 

Fig. 9. Sustainability score profiles for Reference (a) and Decarbonization (b) scenarios considering all the 10’000 combinations (grey lines) with evidence of the SI 
profile associated to an equal weight of the indicators (blue dashed line). 

Fig. 10. Analysis of the SI profile magnitude (a, b) and of the profile trend (c, d) for the Reference (a, c) and Decarbonization (b, d) scenarios, respectively. Dashed 
lines represent the centroid of the three identified profiles and the red green -blue areas around them are the associated standard deviations. 
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Similarly in Fig. 10 (b) and Fig. 10 (d) the clustering results pertaining 
the Decarbonization scenario are shown. It is possible to notice that the 
four indipendent clustering analyses converged on a optimal number of 
SI profile groups equal to three, with the only exception of Fig. 10(d), 
with four optimal groups. The SI magnitude of both scenarios is gener
ally included in the range between 0.4 and 0.8, with slightly higher 
values for the Decarbonization scenario. For what concerns the trend 
patterns extracted from both scenarios, it is possible to identify three 
main behaviors for the Reference scenario and four for the Decarbon
ization one. Specifically, regardless to the magnitude level, the SI pro
files can decrease over time (as for the Reference scenario), can be stable 
on the first period of the scenario and then decrease (cluster 4 in Fig. 10 
(d)), or can increase (during the first part of the scenario and then 
remain stable, as cluster 1 in Fig. 10 (d), or increase like cluster 2 in 
Fig. 10(d)). 

3.3.2. Classification models and feature importance 
To extract the relationships that exist between the indicator weights 

and the features of the SI profile itself (i.e., magnitude and trend), two 
classification models for each scenario are applied. The four models 
achieved very good accuracy values (85 ~ 90%) demonstrating their 
capability in capturing all the important dependencies between a certain 
level of magnitude or trend of an SI profile and the associated indicator 
weights. Table 5 reports the results obtained for each classifier in terms 
of accuracy achieved in the testing phase, calculated as defined in 
(Powers, 2023). 

The final step of the analysis aims at describing what the classifica
tion model learnt from the data generated with the sampling of indicator 
weights. To this purpose an explanation layer is defined on top of the 
classification model to assess the importance of each input variable in 
the characterization of SI profile magnitude and trend. As reported in 
Section 2.4, the importance of an input variable is measured according 
to the increase of the model prediction error when its values are shuf
fled. Table 5 Each bar chart included in Fig. 11 reports the input vari
ables in descending order according to their importance. The bar height 
is associated to the average increase of the model Cross-Entropy among 
10 permutations, while the vertical dashed lines represent the baseline 
Cross-Entropy value for each model. The higher the Cross-Entropy loss 
after permutations, the higher is the importance of the input variable. 

The first interesting result is that in both analyses (magnitude and 
trend), the most important features are the same across scenarios. For 
magnitude these are Import Dependence, EP, and quality of labor, while 
for trend Reliability the Land Use, Fatalities, and AP ones. This fact can 
be read as a general validity of the most important indicators among the 
scenarios, at least for those analyzed in this work. 

Delving into the details of the magnitude plots, the Reference sce
nario results appears to be strongly influenced by environmental in
dicators related to plants operations (AP, EP) and geopolitical issues 
related to fossil fuels (quality of labor and Import dependence). For the 
Decarbonization scenario results, the model predicts reliability as a 
pivotal issue due to a strong renewable penetration. Furthermore, the 
Eutrophication fostered by solar panels construction (Lechón et al., 
2018) and the Import dependency issues previously discussed also gain 
their relative importance. 

The second noteworthy finding pertains to the role of Reliability and 
the Land Use indicators in predicting the trend of the Sustainability 

Index. Indeed, Reliability and Land Use weights assume a primary role in 
affecting the model accuracy, with a dominant role of the former in both 
scenarios. This second consideration suggests that Reliability and Land 
Use have a high impact on its increasing or decreasing trend over time. 
With the Reliability playing a pivotal role in both magnitude and trend 
of the Decarbonization. The importance attributed to these features 
highlights two major technological challenges, already mentioned in 
actual literature, associated with the energy transition (Child et al., 
2018). 

4. Discussion 

In this section, each phase of the sustainability metric for the eval
uation of the evolution of the power sector technology through energy 
scenarios is examined, highlighting potential challenges and opportu
nities for improvements within the context of these four critical areas: 
data uncertainties, assumptions, limitations, and reproducibility of the 
study. All these areas are analyzed following the chronological con
struction of the paper. 

The first phase of the work involves data acquisition. Data essentially 
falls into two categories: Model-derived data and data obtained from 
external sources. The former can be categorized into two types per
taining to the techno-economic characterization of technologies and 
energy commodities: those that remain consistent across scenarios, 
namely the data for the reference energy system (RES), and those who 
varies (scenario-specific data). Uncertainty regarding these data has 
been addressed in the case-study presented here by using national data 
for both technical and economic parameters. As a rule, data precision 
tends to increase as the geographic scale decreases (Kotzur et al., 2021). 
However, this poses a challenge in terms of the study reproducibility 
beyond the Italian context: replicating the study for another country, the 
adopted data for this analysis would no longer be valid. The set of 
technologies considered is extensive, and the technological discretiza
tion aligns as closely as possible with data from official sources (see the 
dedicated section) and existing models. Concerning data that vary 
among the scenarios, a first limitation is encountered, namely the use of 
only two scenarios. The generalizability of the results discussed in the 
previous section is as robust as the number of scenarios confirming those 
results: however, exact (published) data were only available for the two 
analyzed scenarios, as per Italy’s long-term strategy. Therefore, any 
other scenario would have been a modeler’s hypothesis without a basis 
to be found in stated policies. The selected scenarios promote the 
reproducibility and accuracy of this study. The latter consideration 
generally holds true for the entire model, which has been extensively 
discussed, and for which all relevant data have been presented. The 
main limitation of the model, which will be discussed later, is the 
absence of data on import by country for energy commodities and 
critical materials used in the scenario. This required the use of external 
sources, assumptions, and simplifying hypotheses, significantly 
increasing the uncertainty of this study. As a first suggestion for future 
research direction, modelling frameworks providing a better represen
tation of the different supply options will be beneficial for the scientific 
community. 

Regarding data from external sources, they primarily pertain to the 
sustainability indicator calculations. The foremost source of uncertainty 
undoubtedly lies in the selection of the entity that should encapsulate 
the sustainability phenomenon. This uncertainty is less pronounced 
concerning environmental indicators, as they are quantifiable through 
physical quantities (e.g., GHG emissions for global warming). However, 
for safety and social indicators, it was necessary to assume a quantitative 
measure to represent a qualitative phenomenon (e.g., the Human 
Development Index for labor quality): these assumptions thus constitute 
a significant source of uncertainty. Nevertheless, by employing well- 
referenced data sources, logical assumptions in alignment with the sci
entific literature, we ensure comparability with existing studies. 

Delving into the individual indicator definition, they can be 

Table 5 
Accuracy, Recall and Precision of the four classifiers developed for the Reference 
and Decarbonization scenarios.  

Scenario SI Profile Feature Accuracy 

Reference Magnitude  87.6% 
Reference Trend  85.3% 
Decarbonization Magnitude  86.9% 
Decarbonization Trend  83.8%  
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categorized into three distinct groups: environmental ones, social ones, 
and energy security ones. All environmental indicators are derived from 
LCA frameworks, a scientifically validated and reproducible procedure. 
A potential issue concerns to the geographical extension of these data, 
which is not always available for the Italian territory and, sometimes, 
even for the European region. Furthermore, the technological dis
cretization of the LCA database in comparison to the TEMOA-Italy 
technological database is significantly limited, necessitating associa
tive assumptions. These assumptions, especially in the case of biomass, 
but generally applicable to all technologies, further exacerbate data 
uncertainty. Lastly, the LCA database undergoes a harmonization pro
cess to estimate values for future years. Although the assumption of 
keeping data as constant is incorrect from a technological point of view 
(technologies typically improved as time goes by), projecting future data 
accounts for the key impact driver\s for various technologies (e.g., 
lifetime and capacity factor for renewables, lifetime, and efficiency for 
fossil fuels). However, introducing such an assumption of variation in
fuses uncertainty concerning the actual extent of change, which remains 
unknown a priori. 

Regarding security data, several aspects need to be discussed, with 
the most critical aspect being simplifying assumptions. In the technol
ogies data gathering phase, simplifications were introduced also during 
the metric calculation. Linking security to individual technologies in
troduces significant uncertainties. As energy systems are complex, their 
behavior cannot be explained solely by understanding their individual 
components. Thus, system security is not a function of individual com
ponents but rather their dynamic interactions (Deane et al., 2015). The 
technology-centric approach of this paper has two main limitations. 
First, security indicators for power plants (e.g., PV) and energy carriers 
(natural gas) are underestimated in this study, even though the conse
quences of an import disruption differ significantly. Sustainability scores 
are assigned to each technology, and the overall score is weighted pro
portionally to activity. Theoretically, the renewable supply chain aspect 
should be evaluated in proportion to the new capacity installed, while 
commodity imports should relate to upstream sector activity. This 
approach was not adopted because the goal is to derive a single score 
rather than one for each model layer. Future research directions should 
focus on implementing more comprehensive metrics capable of ac
counting for these intricacies. 

Delving into the mathematical aspects of the sustainability metric, 
the most intricate aspect arises when technology sustainability scores 
are multiplied by their respective activity shares to yield the final sus
tainability score. The underlying hypothesis is that all the indicators 
included in the sustainability score are proportional to the activity even 
if, as discussed above, this involves limitations particularly for the se
curity indicators. Future research must address this issue by improving 
the mathematical formulation of the metric and the way it accounts 
upstream import, capacity installed, and overall electricity production 
(and not only its production share). 

Concerning the result section, a major observation must be done 
regarding the power sector focus of this analysis. The sustainability 
comparison of the two scenarios is based solely on the shares of the 
different technologies in the electricity generation mix. If the sustain
ability comparison had been carried out based on the absolute values of 
power generation per technology instead of based on the shares, the 
impacts of the decarbonisation scenario would be significantly higher 
than those of the reference scenario. 

Finally, regarding the post-mining phase, this analysis allows trend 
and magnitude analysis to be conducted independently. Where no trend 
is observed, this process provides an opportunity to identify a pattern 
and explain it. Where profiles with a marked upward or downward trend 
with different magnitudes are present, it is possible to understand both 
the factors driving the change and the ones influencing the magnitude 
value. That provides the possibility of maintaining a neutral approach. 
In similar situations, with stable profiles over time, both low-magnitude 
and high-magnitude effects occur, but s considerations can still be made 
(Reliability in cluster 4 of the Decarbonization trend). 

Concerning the use of AI, ML techniques allow the evaluation of 
many iterations identifying typological group inside them. In this re
gard, a very accurate model was developed, from which the analyses 
between input and output were subsequently extracted. This allows to 
extract general pattern able to explain the particular situation rather 
than developing particular knowledge from case-specific results. 

5. Conclusion and perspectives 

In this study, a comprehensive sustainability metric for the evalua
tion of the sustainability of the power sector has been developed and 

Fig. 11. Feature importance for Magnitude (a, b) and Trend (c, d) classification analysis in both Reference (a, c) and Decarbonization (b, d) scenarios.  
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applied to alternative scenarios. The analysis has been performed to 
cope with the necessity to produce insights that traditional energy sys
tem optimization models are not able to deal with, attempting to answer 
to a crucial question in the actual energy modeling field: how much can 
we exploit carbon emissions as an indicator of sustainability? The 
comprehensive and hierarchical framework for evaluating sustainability 
developed in this work allowed for the incorporation of preferred di
mensions of sustainability while accounting for their relative impor
tance. Since different stakeholders may rank sustainability aspects 
differently according to their preference, the role of the weight has been 
assessed through a post-mining analysis, to understand which weights 
mostly affect the SI profile trend and magnitude. These considerations 
have led to the development of a novel tool (the comprehensive Sus
tainability Index) for decision-making in energy planning, especially 
crucial for identifying and addressing potential negative impacts within 
the decarbonization strategies. The innovative aspect of the post-mining 
analysis has been used to identify the most challenging features of a 
decarbonization strategy, as this approach is capable to directly extract 
information on the role of individual indicators, without imposing lim
itations on the potential indicators that can be included or the number of 
weight combinations that can be tested. 

The utilization of the SI methodology in the context of the Italian 
decarbonization strategy has served as an illustrative example of the 
proper interpretation of results. Specifically, it has been demonstrated a 
significant impact of factors like Import Dependence, Environmental 
Production, and Quality of Labor on the magnitude of sustainability in 
the power sector, especially under the Reference scenario. The Decar
bonization scenario shifts the focus towards Reliability due to increased 
renewable energy penetration, with additional emphasis on issues such 
as Eutrophication from solar panel construction and Import Depen
dence. The analysis also reveals that Reliability and Land Use are key 
aspects for the Sustainability Index trend, indicating their high impact 
over time. In answering the question which originated the study, this 
analysis confirms the limitation of carbon emission as the only indicator 
of sustainable energy policy. Indeed, GWP does not turn out to be the 
most influencing indicator in predicting sustainability, highlighting the 
necessity of going deeply in exploring energy transition impact, and 
providing a tool for it. 

Future improvements can follow in two directions: the use of post- 
processing techniques to analyze energy scenarios, and the direct inte
gration of sustainability paradigms in energy models. The second line of 
future research is based on the development of frameworks able to ac
count for both decarbonization and other sustainability aspects. One 
option could be extending the traditional economic optimization para
digm including this metric directly in the objective function formula
tions. These advanced models should contain an environmental and a 
security layers other than economic one: all these elements need to be 
coupled with objective functions that account for the three components. 
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Appendix. A. : Sustainability data inventory 

Environmental data 

In LCA analyses, the primary goal is to assess and quantify the environmental impact associated with a specific technological process, encom
passing its entire life cycle from extraction of raw materials to disposal. This entails establishing a comprehensive linkage between the overall impact 
of the production process and expressing the analysis as a ratio between the total impact and the output quantity of the process. By doing so, it becomes 
possible to derive impact factors for each indicator identified by fLCA

I . Each factor represents the impact (I) associated to the production of an electricity 
unit (MWh) ReCiPe (2022). 

The overall impact values of the different phases (In) for a reference power technology are summed creating the overall Life Cycle Impact (each 
impact is characterized by a different Unit of Measurement (UoMI). Then, the overall impact is divided by the total electricity produced by the 

reference power plant (MWh) creating an average impact for each unit of produced electricity 
[

UoMI
MWh

]

. By considering an electricity production 

technology characterized by N life cycle stages, the LCA unitary impact factor fLCA
I for a generic impact I is calculated as in the Eq. (8). 

f LCAI

[
UoMI

MWh

]

=

∑N

n=1
In [UoMI ]

Life cycle electricity production [MWh]
(8) 

However, there is an issue related to the regional variability of the LCA impacts parameters. UNECE (UNECE, 2021) analyzed the vast majority of 
LCA impact from power plants, dividing the values for 12 world regions. Considering the relative difference between the European data and the rest of 
the world region (computed for each impact and for each technology included in the study), is possible to observe a delta around 50%, with peaks 
reaching 200%. Therefore, data must be selected as local as possible when performing an LCA Analysis, otherwise the introduced uncertainty is very 
high. In this work, the European data of the UNECE report has been assumed valid for the Italian case study due the absence of more detailed sources. 
Moreover, due to the lack of biomass and geothermal in the main source, data are completed with the NEEDS database, elaborated with the ReCiPe 
(ReCiPe, 2022) method in the OpenLCA (OpenLCA Nexus, 2022) software. Unfortunately, spatial aggregation for the biomass and geothermal was 
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present only at global level, introducing further uncertainties in the analysis. Beyond the spatial aggregation, there is an issue of technological ag
gregation when performing LCA analysis. The discretization for the type of power plants usually presents in ESOMs, and in TEMOA-Italy, is not always 
reproducible in the LCA database, where the discretization is generally lower. Therefore, simplifying assumptions are needed to group plants together. 
The way technologies are matched to LCA database ones, specifying the spatial and technological aggregation, is shown in Table A1.  

Table A1. LCA data sources (categorized by reference power plant and origin database) for the technologies involved in this study.  

Technology Reference Power Plant Source Reference Zone 

Coal steam turbine Hard coal, IGCC, without CCS UNECE EU 
Oil steam turbine Generic, oil-fired power plant UNECE EU 
Gas turbine < 300 MW Natural gas CC, without CCS UNECE EU 
Gas turbine < 80 MW with steam Natural gas CC, without CCS UNECE EU 
Gas Combined cycle< 3000 MW Natural gas CC, without CCS UNECE EU 
Biogas Agro-Zoo Biofuel CHP NEEDS+ReCiPe Global 
Biogas Waste Biofuel CHP NEEDS+ReCiPe Global 
Bioliquid plant Biofuel CHP NEEDS+ReCiPe Global 
Biomass plant Biofuel CHP NEEDS+ReCiPe Global 
CSP CSP, trough UNECE EU 
PV roof plant Photovoltaic, polycrystalline silicon, roof-mounted UNECE EU 
PV ground plant Photovoltaic, polycrystalline silicon, ground-mounted UNECE EU 
On-shore wind farm Wind, onshore UNECE EU 
Off-shore wind farm Wind, offshore, gravity-based foundation UNECE EU 
Off-shore deep water wind farm Wind, offshore, steel foundation UNECE EU 
Mini hydro Hydro, 660 MW UNECE EU 
Mini hydro >1 MW Hydro, 660 MW UNECE EU 
Geothermal plant – high enthalpy Flash steam power plant NEEDS+ReCiPe Global 
Geothermal plant – low enthalpy Flash steam power plant NEEDS+ReCiPe Global  

As it can be observed from Table A1, the most significant case is the one of biomass, where a single plant is used to describe four different 
technologies- in TEMOA-Italy. Concerning the regionality, European data coming from UNECE are the majority, even if global data are found for 
biomass plants and geothermal plants. In conclusion, biomass plants constitute the highest source of uncertainty, also due to the complexity of 
modelling the various feedstock-agricultural practices-conversion-technology combinations (UNECE, 2021). 

An overview of the indicators of the LCA Environmental Footprint dimension for power sector processes is provided in Table A2. The table 
summarizes the environmental impacts of various energy generation technologies using five indicators: Global Warming Potential (GWP), Acidifi
cation Potential (AP), Eutrophication Potential (EP), Land Use, and Water Use. Conventional sources like coal and oil steam turbines have the highest 
environmental impact, emitting significant GHGs and pollutants while requiring relatively less land and water. Gas turbines perform better in terms of 
emissions and resource use. Biogas, bioliquid, and biomass plants offer sustainable alternatives by utilizing organic materials, resulting in lower 
environmental impacts compared to coal and oil steam turbines. Renewable energy technologies, including solar, wind, and hydro, exhibit favorable 
environmental indicators. In particular, solar power has low emissions and water use, while wind farms perform well in terms of emissions and land 
and water use. Hydroelectric power has higher emissions due to reservoir methane, but minimal acidification and eutrophication potential if 
compared with the other technologies. Finally geothermal plants show low emissions and land use, but higher acidification and eutrophication po
tential.  

Table A2. Power sector technologies characterization for LCA Environmental Footprint indicators at the base year.  

LCA Footprint indicator 

GWPa APb EPc Land Use Water Use 
[kgCO2 ,EQ

MWh

] [gSO2 ,EQ

MWh

] [gPO4 ,EQ

MWh

] [
m2

MWh

] [
m3

MWh

]

Coal steam turbine  849.0  430.2  424.0  0.3  1.7 
Oil steam turbine  693.6  627.5  128.7  0.3  1.9 
Gas turbine < 80 MW  433.7  966.7  19.7  0.2  1.2 
Gas turbine < 300 MW  433.7  966.7  19.7  0.2  1.2 
Gas Combined cycle< 3000 MW  433.7  966.7  19.7  0.2  1.2 
Biogas Agro-Zoo  212.0  853.1  138.5  0.1  1.5 
Biogas Waste  212.0  853.1  138.5  0.1  1.5 
Bioliquid plant  212.0  853.1  138.5  0.1  1.5 
Biomass plant  212.0  853.1  138.5  0.1  1.5 
CSP  42.0  528.4  13.8  10.1  0.34 
PV roof plant  34.8  528.4  39.3  5.6  0.63 
PV ground plant  36.7  528.4  28.4  10.1  0.58 
On-shore wind farm  12.4  60.9  6.7  1.4  0.18 
Off-shore wind farm  13.3  50.1  6.9  1.4  0.16 
Off-shore deep water wind farm  14.2  50.1  6.8  1.4  0.16 
Mini hydro  147.0  0.2  12.6  10.1  0.37 
Hydro >1 MW  147.0  0.2  12.6  10.1  0.37 
Geothermal plant – high enthalpy  41.0  189.7  25.1  2.5  1.4 
Geothermal plant – low enthalpy  41.0  189.7  25.1  2.5  1.4 

aGlobal Warming Potential (GWP) factor for equivalent carbon dioxide emissions each MWh of electricity produced 
bAcidification Potential (AP) factor for equivalent sulfur dioxide emissions each MWh of electricity produced 
cEutrophication Potential (EP) factor for equivalent sulfur phosphate emissions each MWh of electricity produced 
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Security data 

Security indicators are derived from both external sources and model data. The reliability indicator is directly obtained from the capacity factor 
values available in the TEMOA-Italy database: hence, there are not concerns regarding spatial and technological aggregation when considering this 
indicator. The model includes capacity factor data for all the modelled years and for all the technologies. Unlike environmental data, it is not necessary 
to assume future variation for the capacity factor: indeed, in TEMOA-Italy a certain capacity factor variation throughout the time horizon is already 
considered, accounting for technology improvement. 

Instead, the remaining security indicators are obtained from external sources, since TEMOA-Italy only provides, among the results, the total 
amount of imported energy commodities. The fuels considered in the analysis are oil, coal, and natural gas, while it is worth pointing out that their 
import is not solely related to the power sector consumption, since other sectors (chemical in particular) strongly rely on these fuels. Moreover, in the 
model version used for this study there is no explicit distinction between import countries. Data for fuel import by country are taken from the Italian 
fossil fuels national statistics ((Ministry of Environment and Energy Security, 2023a), 2023b) and reported in Table A3. For each fossil fuel, its import 
dependence is the sum over all the supplier countries.  

Table A3. Italian primary fossil fuel supply in 2021 distinguishing between supplier country and 
national production (Ministry of Environment and Energy Security, 2023a, 2023b).  

Country Coal Oil Natural Gas 

Africa  2%  31%  30% 
Asia  2%  25%  10% 
Europa  10%  6%  3% 
Middle East  22%  24%  16% 
North America  5%  3%  2% 
Russia  52%  10%  39% 
Latin America  3%  1%  0% 
National Production  0%  0%  5%  

Table A3 shows that Africa is the largest supplier of oil, followed by Asia and the Middle East. Russia supplies to Italy most of the coal and natural 
gas. For natural gas, Russia is followed by Africa and the Middle East. Latin America is the smallest exporter of all three commodities. Among the major 
exporters, the Middle East has an almost constant presence in all the three fossil fuels, while Russia and Africa are unbalanced with respect to oil and 
coal, respectively. For the materials, the current version of the model does not account for the required amount in the case of technology installation. 
Moreover, concerns about security of supply arise along the whole clean energy technology supply chain, as described in the JRC report (JRC, 2020), 
that distinguishes the following steps: raw material extraction, material processing, manufacturing of the technology components, and system as
sembly. The indicators related to the security of supply are formulated for all these steps, considering only solar photovoltaic systems (i.e., solar PV) 
and wind turbines, since they are the only technologies included in the TEMOA-Italy power sector (indeed, batteries are not modelled) for which the 
JRC report has highlighted relevant potential bottlenecks. The global supply share in 2020 by country and supply chain step from (JRC, 2020) is 
summarized in Table A4.  

Table A4. Global supply chain share in 2020 by country and by supply chain step for solar PV and wind turbines (JRC, 2020).  

Technology Country Raw Materials Processed Materials Components Assemblies 

Solar PV 

EU27  6%  5%  0%  1% 
Rest of Europe  3%  0%  0%  0% 
China  53%  50%  89%  70% 
Japan  4%  0%  0%  0% 
Russia  5%  0%  0%  0% 
US  7%  0%  0%  0% 
Africa  13%  0%  0%  0% 
Rest of Asia  3%  0%  1%  8% 
Latin America  4%  0%  0%  0% 
Others  3%  38%  9%  21% 

Wind turbines 

EU27  0%  12%  20%  58% 
Rest of Europe  1%  0%  0%  0% 
China  54%  41%  56%  23% 
Japan  1%  6%  0%  0% 
Russia  0%  0%  0%  0% 
US  3%  9%  11%  0% 
Africa  2%  0%  0%  0% 
Rest of Asia  6%  0%  2%  0% 
Latin America  29%  0%  0%  0% 
Others  3%  32%  11%  19%  

In Table A4 the diversification of the wind and photovoltaic supply chain is reported. It is imperative to acknowledge that the dataset under 
consideration pertains to the comprehensive global supply dynamics, as opposed to being exclusive to the supply specifically destined for the Eu
ropean region. Notably, there exists a current dearth of available data pertaining to the supply directed towards Europe (JRC, 2023). Underlying this 
analysis is the assumption that the global supply data can reasonably serve as a surrogate for European imports, predicated upon the notion that if 
Europe engages in importation, the aggregate composition of its imports will inherently mirror the broader landscape of global supply patterns. This 
hypothesis is very relevant because it constitutes the basis for the calculation of three security indicators: Import dependence, Political Stability Index 
and Volume shortage. Moreover, it the next section, also the Human Development Index is calculated under this assumption. 

In Table A4 is possible to observe a higher diversification in the wind turbine supply chain than in the solar PV one. Wind turbine raw material 
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extraction mainly happens in China and Latin America. Then, the next processing steps are mainly owned again by China, then Europe and Other 
countries (plus a little in the US), respectively. For the photovoltaic systems, despite a small diversification for the raw material phase, all the other 
steps are mainly concentrated in China. It must be remarked that, in absence of analysis conducted at an Italian level, European data are assumed to be 
valid for Italy also considering the small role played by all the EU27 countries in this market. 

Data of Table A3 and Table A4 represent the present situation and, since the model does not account for changes on supplier countries, all the 
assumptions about the future evolution of these data must be exogenous. Therefore, it is assumed to keep these values constant for all the time 
horizons. – For fossil fuel extraction the situation is not expected to change dramatically (due to the physical location of the natural resources), while 
for the solar PV and wind technology supply chain, no possible evolution was found in literature (even if some mitigation solution to the diversification 
problem has started being discussed (JRC, 2023)). 

Once the geographical concentration data above discussed are collected, the Import dependence and the Volume shortage indicators are computed. 
For each fossil fuel, the import dependence value from Table A3 (summing up over all the importer countries) is directly associated to the technology 
consuming it (e.g., import dependence of natural gas is associated to all the natural gas-based power production technologies). For the renewable 
technologies where 4 values are present (one for each supply chain phase), the worst one is chosen to account for possible bottlenecks risks. Con
cerning the Volume shortage indicator (see Eq. (1)), it is obtained by considering all the suppliers (import and domestic supply) and subtracting the 
maximum value, obtaining as a final amount the percentage of fuel or renewable technology available if there is a shortage from the largest supplier. 
Concerning renewable technologies, the worst values of Table A4 are taken. Final technology values for both the indicators are reported in Table A6. 
The security of supply depends also on geopolitical factors (Ang et al., 2015): in this perspective, the supplier countries can be characterized in terms of 
reliability as a trading partner. This have been already done both for fuels (Ang et al., 2015) and raw materials (JRC, 2023; Helbig et al., 2021b), 
considering geopolitical stability indexes that account for several governance dimensions. The one chosen for the analysis is the Political Stability 
Index (PSI) (Kaufmann and Kraay, 2010), which measures perceptions of the likelihood that the government will be destabilized or overthrown by 
unconstitutional or violent means, including politically motivated violence and terrorism. Its measure is usually performed at a country level, while 
commodities are supplied by a mix of countries. Therefore, is necessary to pass from a country-defined to a commodity-defined PSI value. This step is 
obtained through a weighted sum approach. By multiplying a country’s PSI with its supply share for a specific commodity, a weighted average is 
calculated to determine the overall supply quality of its supply. The PSI for the different regions involved in Table A3 and Table A4 are reported in 
Table A5.  

Table A5. Political Stability Index (PSI) by country.  

Country Political Stability Index (PSI) 

EU27  0.76 
Rest of Europe  0.21 
China  -0.48 
Japan  1.03 
Russia  -0.65 
USA  0.42 
Africa  -0.69 
Rest of Asia  -0.39 
Latin America  -0.23 
Others  0.86  

As it is possible to notice in Table A5 the highest PSI occur for the western countries such as Japan, Europe 27 and USA. The tier 2 countries are the 
other European nations, the Latin America, and the Rest of Asia. Finally, the less trustable countries in terms of political stability are Africa, Russia, and 
China, that also plays a major role in the international trade as confirmed by Table A3. Conclusively, Table A6 reports all the supply chain indicators.  

Table A6. Power sector technologies characterization for security indicators at the base year.  

Security indicator Import Dependence Volume shortage risk Geopolitical Stability 
Descriptive parameter Imported supply (%) N-1 residual supply (%) Political Stability Index [-] 

Coal steam turbine  100.0%  47.2%  -0.20 
Oil steam turbine  100.0%  77.0%  -1.10 
Gas turbine < 300 MW  95.0%  60.0%  -0.59 
Gas turbine < 80 MW with steam  95.0%  60.0%  -0.59 
Gas Combined cycle < 3000 MW  95.0%  60.0%  -0.59 
Biogas Agro-Zoo  0.0%  100.0%  0.76 
Biogas Waste  0.0%  100.0%  0.76 
Bioliquid plant  0.0%  100.0%  0.76 
Biomass plant  0.0%  100.0%  0.76 
CSP  0.0%  100.0%  0.76 
PV roof plant  96.0%  34.5%  -0.16 
PV ground plant  96.0%  34.5%  -0.16 
On-shore wind farm  76.5%  56.5%  0.12 
Off-shore wind farm  76.5%  56.5%  0.12 
Off-shore deep water wind farm  76.5%  56.5%  0.12 
Mini hydro  0.0%  100.0%  0.76 
Mini hydro >1 MW  0.0%  100.0%  0.76 
Geothermal plant – high enthalpy  0.0%  100.0%  0.76 
Geothermal plant – low enthalpy  0.0%  100.0%  0.76  

The fossil fuel supply chain security refers to the imported fuels: then, security issues can be reflected at the technology level since technologies 
consume these fuels to produce their outputs, referred to as technology activity (e.g., the activity of a power plant is the produced electric energy). On 
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the contrary, the technology supply chain security directly refers to the installation phase of the technologies. In both cases, these indicators are 
associated with the activity of the technologies, leading to two limitations. First, for the fuels, the indicators measured for the imported, and then 
consumed fuels, are directly associated to the technology, without passing through its efficiency, as specified in Eq. (7) of Section 2.3. Indeed, mixing 
upstream data (fuel import) and production (activity) is not possible, because the scenario evaluation must be performed on a normalized basis, in this 
case obtained by the activity share (which values are always between 0 and 1). Second, the technology supply chain security issues are reflected in the 
technology operation phase (activity share), instead of the installation phase (capacity share). Theoretically, fossil fuel powered plants involve a 
security issue if the commodity is consumed, and this is someway proportional to the activity. For renewable plants, the security issue related to 
materials happens only in the installation phase, quantified in the model by the new installed capacity. Again, due to the need of evaluating the 
scenario on a common basis, security issue of renewable plants is assumed proportional to activity. Both these limitations are considered necessary to 
consistently include the security dimension in the sustainability metric, in which all the indicators are associated to the activity of a technology. 
Limitations induced by these choices are detailed in the discussion section. 

Social data 

The Social dimension is characterized by several indicators. Human Health Damage is expressed in DALY, which is the acronym of Disability- 
Adjusted Life Years, a measure of the overall severity of a disease, expressed as the number of years lost due to the disease, disability, or prema
ture death, commonly used to evaluate the impact of technologies (Murray, 1994). The source for this indicator is the same as other LCA parameters 
discussed in the environmental dimension (Table A1) and presents the same technological and spatial aggregations issues related to the data source as 
the environmental indicators. Data are reported in Table A1. Within LCA HHD indicator lies the fatalities one. It represents the complement of the 
human health damage. If HDD accounts for the predictable deaths or damages to human health linked to normal power plants operations, fatalities 
account for accidental events (deaths) caused by electricity production. Data for fatalities are derived from the IPCC study on renewable energies and 
climate change mitigation (Pichs Madruga et al., 2023) and are reported in Table A7. As happens for the LCA parameters the technological dis
cretization of the study is different from the model one, therefore a connection between databases is performed.  

Table A7. Accident-related fatality rates/GWh.  

Technology Specifications (Country / Sub-tech) [Fatalities / GWyr] 

Coal 

OECD 1.2E-01 
EU 27 1.4E-01 
non-OECD w/o China 5.7E-01 
China 5.9E+00 

Oil 

OECD 9.3E-02 
EU 27 9.9E-02 
non-OECD 9.3E-01 

Natural Gas 

OECD 7.2E-02 
EU 27 6.8E-02 
non-OECD 1.2E-01 

Hydro 

OECD 2.7E-03 
EU 27 8.5E-02 
non-OECD 7.0E+00 
non-OECD 9.4E-01 

PV Cristalline Silicon 2.5E-04 
Wind Onshore DE 1.9E-03 
Wind Offshore UK 6.4E-03 
Biomass CHP Biogas 1.5E-02 
Geothermal EGS 1.7E-03  

In Table A7 accident fatality rates for one GWh of electricity are reported for different power sector technologies. The IPCC study provides a 
statistical analysis conducted on different countries, highlighting for each technology the rate of fatalities, providing, when possible, some specifi
cations about the type of plants used for the study and the countries. Accident-related fatalities range from 2,5E-04 (PV min) to 7,0E+00 (hydro-max. 
The maximum IPCC hydropower value represents nations out of the Organization for Economic Co-operation and Development, while the minimum 
values are found for OECD countries and nations of the European Union. This is a general pattern in the table, even if the hydropower case is the most 
visible, also due to the three order of magnitude variation. The IPCC does not explain the large difference between these values compared to other 
technologies. 

Finally, Quality of labor is expressed through an ad-hoc developed indicator that relates the power sector technologies to the Human Development 
Index (HDI) of the countries owning their supply chain phases. Data for the technology supply chain phase are already known from Table A3 and 
Table A4. For the HDI, it is a summary measure of average achievement in key dimensions of human development for a certain country. HDI is 
generally expressed in a 0–1 scale where the closer the value to 1, the higher the country achievements in terms of human development. For the sake of 
this study, as it happens for the PSI, the HDI is translated from the one of the supplier countries to the one of energy material/commodities. HDI of 
supplier countries is reported in Table A8:  

Table A8. Human Development Index by country.  

Country Human Development Index (HDI) 

EU27  0.94 
Italy  0.89 
Rest of Europe  0.89 
China  0.77 

(continued on next page) 
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(continued ) 

Country Human Development Index (HDI) 

Japan  0.93 
Russia  0.82 
USA  0.92 
Africa  0.55 
Rest of Asia  0.63 
Latin America  0.75 
Others  0.71  

According to Table A8, Europe, Japan, and USA are the most developed countries according to this index, while Africa and Rest of Asia lie at the 
bottom of this ranking. The conversion between country values to technology-specific value is done by performing a weighted average of the HDI of 
countries for their supply chain phase shares (single value for fossil and worst value for PV and Wind, as before). The result is an HDI defined for each 
material and fossil fuels, that can be subsequently associated to the technologies consuming that specific commodity.  

Table A9. Power sector technologies characterization for Equity indicators at the base year.  

Equity Indicator 

Fatalities Quality of Labor Human Health Damagea 
[
Deaths
MWh

]

Human Development Index 

[
DALY
MWh

]

Coal steam turbine  0.14  0.85  1.9 
Oil steam turbine  0.09  0.83  1.0 
Gas turbine < 300 MW  1.08  0.78  0.5 
Gas turbine < 80 MW with steam  1.08  0.78  1.1 
Gas Combined cycle< 3000 MW  1.12  0.78  0.5 
Biogas Agro-Zoo  0.15  0.94  2.0 
Biogas Waste  0.15  0.94  2.0 
Bioliquid plant  0.15  0.94  2.0 
Biomass plant  0.15  0.94  2.0 
CSP  0.02  0.94  0.2 
PV roof plant  0.02  0.76  1.9 
PV ground plant  0.02  0.76  1.9 
On-shore wind farm  0.19  0.80  0.0 
Off-shore wind farm  1.04  0.80  0.0 
Off-shore deep water wind farm  1.04  0.80  0.0 
Mini hydro  1.25  0.94  0.0 
Mini hydro >1 MW  1.25  0.94  0.0 
Geothermal plant – high enthalpy  0.17  0.94  0.0 
Geothermal plant – low enthalpy  0.17  0.94  0.0  
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assessment integration into energy system models: an application for power-to- 
methane in the EU. Appl. Energy vol. 259, 114160. https://doi.org/10.1016/J. 
APENERGY.2019.114160. 

Bompard, E., Carpignano, A., Erriquez, M., Grosso, D., Pession, M., Profumo, F., 2017. 
National energy security assessment in a geopolitical perspective. Energy vol. 130, 
144–154. https://doi.org/10.1016/J.ENERGY.2017.04.108. 

Buchmayr, A., Verhofstadt, E., Van Ootegem, L., Sanjuan Delmás, D., Thomassen, G., 
Dewulf, J., 2021. The path to sustainable energy supply systems: proposal of an 
integrative sustainability assessment framework (Mar). Renew. Sustain. Energy Rev. 
vol. 138, 110666. https://doi.org/10.1016/J.RSER.2020.110666. 
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power system security. A framework and a multi model approach (Dec). Int. J. 
Electr. Power Energy Syst. vol. 73, 283–297. https://doi.org/10.1016/J. 
IJEPES.2015.04.020. 

Debnath, K., Goel, L., 1995. Power system planning - a reliability perspective. Electr. 
Power Syst. Res. vol. 34 (3), 179–185. https://doi.org/10.1016/0378-7796(95) 
00976-X. 

ENEA), The TIMES-Italy Energy Model Structure and Data 2010 Version, Rome, 2011. 
Accessed: Sep. 02, 2022. [Online]. Available: 〈https://biblioteca.bologna.enea. 
it/RT/2011/2011_9_ENEA.pdf〉. 

H. Eshraghi, A. Rodrigo De Queiroz, and J.F. Decarolis, US Energy-Related Greenhouse 
Gas Emissions in the Absence of Federal Climate Policy, 2018, doi: 10.1021/acs. 
est.8b01586. 

ESMAP and World Bank Group, RISE.” Accessed: Jan. 08, 2024. [Online]. Available: 
https://rise.esmap.org/reports. 

European Council, Fit for 55 - The EU’s plan for a green transition.” Accessed: Jan. 29, 
2023. [Online]. Available: 〈https://www.consilium.europa.eu/en/policies/green- 
deal/fit-for-55-the-eu-plan-for-a-green-transition/〉. 

Eurostat, Energy balances - Energy - Eurostat.” Accessed: Aug. 19, 2022. [Online]. 
Available: 〈https://ec.europa.eu/eurostat/web/energy/data/energy-balances〉. 

Evans, A., Strezov, V., Evans, T.J., 2009. Assessment of sustainability indicators for 
renewable energy technologies (Jun). Renew. Sustain. Energy Rev. vol. 13 (5), 
1082–1088. https://doi.org/10.1016/J.RSER.2008.03.008. 

Fader, M., Cranmer, C., Lawford, R., Engel-Cox, J., 2018. Toward an understanding of 
synergies and trade-offs between water, energy, and food SDG targets (Nov). Front. 
Environ. Sci. vol. 6 (NOV), 112. https://doi.org/10.3389/FENVS.2018.00112/ 
BIBTEX. 

S. Fawzy, A.I. Osman, J. Doran, and D.W. Rooney, Strategies for Mitigation of Climate 
Change: A Review, Environmental Chemistry Letters 2020 18:6, vol. 18, no. 6, pp. 
2069–2094, Jul. 2020, doi: 10.1007/S10311-020-01059-W. 

García-Gusano, D., Iribarren, D., Martín-Gamboa, M., Dufour, J., Espegren, K., Lind, A., 
2016. Integration of life-cycle indicators into energy optimisation models: the case 
study of power generation in Norway (Jan). J. Clean. Prod. vol. 112, 2693–2696. 
https://doi.org/10.1016/J.JCLEPRO.2015.10.075. 

Gayen, D., Chatterjee, R., Roy, S., 2023. A review on environmental impacts of 
renewable energy for sustainable development (Dec). Int. J. Environ. Sci. Technol. 
1–26. https://doi.org/10.1007/S13762-023-05380-Z/FIGURES/1. 

Gibon, T., Wood, R., Arvesen, A., Bergesen, J.D., Suh, S., Hertwich, E.G., 2015. 
A methodology for integrated, multiregional life cycle assessment scenarios under 
large-scale technological change (Sep). Environ. Sci. Technol. vol. 49 (18), 
11218–11226. https://doi.org/10.1021/ACS.EST.5B01558/SUPPL_FILE/ 
ES5B01558_SI_002.XLSX. 

Gracceva, F., Zeniewski, P., 2014. A systemic approach to assessing energy security in a 
low-carbon EU energy system (Jun). Appl. Energy vol. 123, 335–348. https://doi. 
org/10.1016/J.APENERGY.2013.12.018. 

GSE), Statistiche.” Accessed: Jul. 17, 2023. [Online]. Available: 〈https://www.gse.it/dat 
i-e-scenari/statistiche〉. 

Gunnarsdottir, I., Davidsdottir, B., Worrell, E., Sigurgeirsdottir, S., 2022. Indicators for 
sustainable energy development: an Icelandic case study (May). Energy Policy vol. 
164, 112926. https://doi.org/10.1016/J.ENPOL.2022.112926. 

Hache, E., 2018. Do renewable energies improve energy security in the long run (Dec). 
Int. Econ. vol. 156, 127–135. https://doi.org/10.1016/J.INTECO.2018.01.005. 

Helbig, C., Bruckler, M., Thorenz, A., Tuma, A., 2021a. An overview of indicator choice 
and normalization in raw material supply risk assessments (Aug). Resources vol. 10 
(8), 79. https://doi.org/10.3390/RESOURCES10080079/S1. 

Helbig, C., Bruckler, M., Thorenz, A., Tuma, A., 2021b. An overview of indicator choice 
and normalization in raw material supply risk assessments (Aug). Resources vol. 10 
(8), 79. https://doi.org/10.3390/RESOURCES10080079/S1. 

I. Iddrisu and S.C. Bhattacharyya, Sustainable Energy Development Index: A multi- 
dimensional indicator for measuring sustainable energy development, 2015, doi: 
10.1016/j.rser.2015.05.032. 

IEA), Perspectives for the Energy Transition: The Role of Energy Efficicency, 2018, 
Accessed: Jun. 03, 2022. [Online]. Available: www.iea.org/t&c/. 

IEA, World Energy Investment 2022a – Analysis - IEA.” Accessed: Sep. 14, 2023. 
[Online]. Available: https://www.iea.org/reports/world-energy-investment-2022. 

IEA), World Energy Outlook 2022, 2022. Accessed: Dec. 21, 2022b. [Online]. Available: 
www.iea.org/t&c/. 

IEA, Energy Technology Perspectives 2023 – Analysis - IEA, 2023. Accessed: Aug. 01, 
2023. [Online]. Available: 〈https://www.iea.org/reports/energy-technology- 
perspectives-2023〉. 

IEA.” Accessed: Jan. 07, 2024. [Online]. Available: 〈https://www.iea.org/reports/re- 
powering-markets〉. 

ISO), ISO 14040:2006 - Environmental Management - Life Cycle Assessment - Principles 
and Framework.” Accessed: Aug. 18, 2023. [Online]. Available: 〈https://www.iso. 
org/standard/37456.html〉. 

ISO 14005:2019 - Environmental Management Systems — Guidelines for A Flexible 
Approach to Phased Implementation.” Accessed: Sep. 04, 2023. [Online]. Available: 
〈https://www.iso.org/standard/72333.html〉. 

JRC, Critical Raw Materials for Strategic Technologies and Sectors in the EU, 2020. doi: 
10.2873/865242. 

JRC, Study on the critical raw materials for the EU 2023, 2023. Accessed: Aug. 02, 2023. 
[Online]. Available: 〈https://op.europa.eu/en/publication-detail/-/publication/57 
318397-fdd4-11ed-a05c-01aa75ed71a1〉. 

Junne, T., Cao, K.K., Miskiw, K.K., Hottenroth, H., Naegler, T., 2021. Considering life 
cycle greenhouse gas emissions in power system expansion planning for europe and 
north africa using multi-objective optimization, 2021, Vol. 14, Page 1301 Energies 
vol. 14 (5), 1301. https://doi.org/10.3390/EN14051301. 

D. Kaufmann, A. Kraay, M. M. The, and W. Bank, The Worldwide Governance Indicators: 
Methodology and Analytical Issues, Sep. 2010, doi: 10.1596/1813-9450-5430. 
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