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A B ST R A CT 

Low-coverage sequencing in plants allows whole plastomes to be obtained that can be used to investigate phylogenetic relationships among 
groups. The genus Orchis (c. 20 species), is usually divided into Orchis subgenera Orchis and Masculae. These subgenera are composed of three 
(Anthropophorae, Italicae, and Orchis) and four (Masculae, Provinciales, Pusillae, and Robustocalcare) sections, respectively. In this study, we used 
genome-skimming data to assemble the plastid genomes of 11 species (15 accessions) of Orchis, representing six out of the seven sections, from 
which we constructed a dated phylogenetic tree. Results suggest that the divergence between the subgenera occurred c. 10.53 Mya, whereas the 
main separation of the sections is dated between 6.53 and 3.48 Mya. Furthermore, we found 206 (in O. anthropophora) to 230 (in O. provincialis) 
microsatellite regions in the assembled plastomes, which could be used to design specific primers for further population genetics and phylogen-
etic studies and, ultimately, inform conservation efforts. The plastome data here presented represent a new contribution to the molecular system-
atics of the genus, and they can be used to further explore infrageneric and infrascpecific molecular variation in Orchis.

Keywords: divergence time; orchids; phylogeny; plastomes

I N T RO D U CT I O N
During the first event of endosymbiosis between cyanobacteria 
and eukaryotes, believed to have occurred c. 1.5 billion years 
ago (Chan et al. 2011), bacterial genes were transferred to the 
host cell nucleus or lost (Keeling et al. 2004), resulting in the 
establishment of the primary plastid. Now the plastid genome 
(plastome), which is almost always circular, has a size of 100–
200 kbp (120–160 kbp in land plants) and harbours 100–120 
highly conserved genes with their own gene expression system 
(Olejniczak et al. 2016).

Hight-throughput sequencing technologies provide the 
opportunity to obtain plastome data as a byproduct of low-
coverage sequencing of plant genomic DNA, not only al-
lowing the study of biogeography and plastid evolution 
across groups (e.g. Yuan et al. 2018, Frankel et al. 2022), but 
also the investigation of phylogenetic relationships among 
taxa (Bedoya et al. 2019, Serna-Sánchez et al. 2021, Lee et 
al. 2022).

The genus Orchis Tourn. ex L., currently comprising c. 20 rec-
ognized species (POWO 2023), has been (and still is) a source 
of debate among taxonomists. Orchis spp. are spread among 
subtropical, temperate, and arctic-alpine climates, ranging from 
Macaronesia to Mongolia, across Europe, temperate Asia, North 
Africa, and the Middle East, with a centre of diversification in the 
Mediterranean Basin (POWO 2023). They form > 40 known 
hybrids, revealing low reproductive isolation.

Species are often divided into two subgenera (Kretzchmar 
et al. 2007): Orchis subgenus Orchis (which includes the ‘an-
thropomorphic’ species) and Masculae H.Kretzschmar, Eccarius 
& H.Dietr. (including the ‘non-anthropomorphic’ species). 
Together, these subgenera comprise seven sections: three in 
subgenus Orchis (Anthropophorae H.Kretzschmar, Eccarius 
& H.Dietr., Italicae H.Kretzschmar, Eccarius & H.Dietr., and 
Orchis) and four in subgenus Masculae (Masculae Lindl., 
Provinciales Parl., Pusillae Parl., and Robustocalcare Hautz.) 
(Kretzchmar et al. 2007). However, after the segregation of 
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several genera since the original description (e.g. Anacamptis 
Rich., Dactylorhiza Neck. ex Nevski, Gymnadenia R.Br., and 
Neotinea Rchb.f.), the genus has been the target of taxonomic re-
vision by several authors, with some treating subgenus Masculae 
as a separate genus Androrchis Tyteca & Klein (e.g. Foelsche and 
Jakely 2009, Gamarra et al. 2012, Tyteca et al. 2012). However, 
this separation has not been accepted by most orchidologists 
(as summarized by Bateman 2009, 2012; Scopece et al. 2010). 
In addition, the number of species varies depending on authors, 
with up to 36 species described in Delforge (2016). In this 
study we adopted the taxonomy proposed by Kretzchmar et al. 
(2007) with some modifications reported in POWO (2023), 
and resulting from more recent studies, particularly in section 
Robustocalcare (e.g. Calevo et al. 2021, 2023).We used genome-
skimming data to assemble the plastid genomes of 11 species (15 
accessions) representing six out of seven sections, with the aim 
of analysing our data in a comparative framework to investigate 
the evolution of the plastid genomes and divergence times of the 
species in the genus; also, we compared plastid phylogenetics 
with phylogenetic trees based on the internal transcribed spacer 
(ITS) of the ribosomal DNA, and described the abundance of 
plastid microsatellites (SSRs), which might be used as a resource 
by researchers interested in the molecular investigation of the 
species of Orchis.

M AT E R I A L  A N D  M ET H O D S

Plant material, DNA extraction, and sequencing
Samples of Orchis patens Desf. subsp. brevicornis (Viv.) Asch. 
& Graeb. (Calevo et al. 2023) and O. provincialis Balb. ex Lam. 
& DC. were collected in north-western Italy, and the sample of 
O. canariensis Lindl. was collected in the Canary Islands, Spain. 
Samples of O. anthropophora All., O. mascula (L.) L., O. militaris 
L., O. simia Lam., O. purpurea Huds., O. anatolica Boiss., O. spitzelii 
Saut. ex W.D.J.Koch subsp. nitidifolia (W.P.Teschner) Soó, and O. 
quadripunctata Cirillo ex Ten. were obtained from the Kew DNA 
& Tissue Bank or the Kew Herbarium. Information on collec-
tion localities and voucher specimens is provided in Table S1 in 
the Supporting Information. All species included are representa-
tive of the centre of speciation of the genus (Eckert et al. 2008) 
ranging from Macaronesia to the Middle East.

Total genomic DNA was extracted from silica-dried leaf tissue 
or herbarium specimens using a modified CTAB protocol and 
purified by isopropanol precipitation or silica columns (Epoch 
Life Science, Missouri City, TX, USA) from the aqueous super-
natant after chloroform/isoamyl alcohol purification (Neubig 
et al. 2014). DNA was checked on a 1% agarose gel to assess 
DNA quality. DNA concentrations were measured with a Qubit 
fluorometer using the dsDNA BR Assay Kit (Thermo Fisher 
Scientific, Waltham, MA, USA). Genomic libraries were pre-
pared using NEBNext® UltraTM II DNA Library Prep Kit for 
Illumina® (New England Biolabs, Ipswich, MA, USA) with 
AMPure XP magnetic beads for purification and size selection 
(300–350 bp). NEBNext® Multiplex Oligos for Illumina® (Dual 
Index Primer Sets I and II) was used to add barcodes for multi-
plexed sequencing (Viruel et al. 2019). Library quality was 
evaluated using a QuantusTM fluorometer (Promega Corp., 
Madison, WI, USA) and an Agilent 4200 TapeStation (Agilent 
Technologies, Santa Clara, CA, USA). Multiplexed libraries were 

then sequenced at RBG Kew on an Illumina MiSeq (Illumina, 
San Diego, CA, USA) lane. Read quality was checked by FastQC 
v.0.11.7 (Andrews 2010), and Trimmomatic v.0.35 (Bolger, 
Lohse and Usadel 2014) was used with the default parameters 
to remove low-quality reads and adapter sequences, discarding 
sequences with an average Phred33 score < 20.

ITS detection and alignment
All the reads were mapped-to-reference ITS sequences (O. 
mascula GenBank accession number AY351379 for subgenus 
Masculae, and O. simia GenBank accession number KU697369 
for subgenus Orchis) in Geneious v.8.1.9. and CAP3 (Huang and 
Madan 1999) to extract the ITS of our 15 accessions from the 
trimmed read libraries. Sequences were then aligned in MAFFT 
v.7031b (Katoh and Standley 2013) with the default parameters 
(specifically the default strategy L-INS-i, which performs itera-
tive refinement incorporating local pairwise alignment infor-
mation; the default gap open penalty is 1.53 and the default gap 
extension penalty is 0.0). Phylogenetic analysis (see below) was 
performed in CIPRES Science Gateway (Miller et al. 2010). To 
double check the presence/absence of ITS sequence variation in 
introgressed (or putatively introgressed) samples, ITS mapping 
was performed using bbMap from the bbTools suite (BBMap—
Bushnell B.: sourceforge.net/projects/bbmap/); mapped reads 
were assemble using SPADEs (Bankevich et al. 2012) and the 
obtained scaffolds were merged, when possible, using CAP3 
(Huang and Madan 1999).

Plastid DNA assembly
A reference-guided assembly was performed on all the reads 
that were mapped to the plastid genome of Habenaria radiata 
(Thunb.) Spreng. [= Pecteilis radiata (Thunb.) Raf.] (GenBank 
Accession number KX1237.1), the closest relative of Orchis for 
which a fully annotated plastome was available at the time this 
step was executed, using Geneious v.8.1.9.

Mapped-to-reference plastomes were then used as references 
for a de novo assembly of the original reads in Geneious v.8.1.9. 
with default Medium-Low Sensitivity/Fast option. Gene annota-
tion was exhaustively performed for all 15 accessions with GeSeq 
web version; annotations were checked, and tRNAs were fur-
ther checked with tRNAscan-SE v.2.0 as implemented in GeSeq 
(Tillich et al. 2017). The diagrams for the circular genomes were 
obtained with the program OrganellarGenomeDRAW web ver-
sion (Lohse et al. 2013, Greiner et al. 2019).

Microsatellite detection
We used Imperfect Microsatellite Extractor (Mudunuri and 
Nagarajaram 2007), an online server tool for microsatellite 
(SSR) detection from genomic sequences. Minimum thresh-
olds for the search were set at eight for mononucleotide repeats, 
five for dinucleotide repeats and four for tri-, tetra-, penta-, and 
hexanucleotide repeats.

Phylogenetic analyses
ITS sequences retrieved from raw reads were aligned with Orchis 
sequences available from GenBank and used to build an ITS-
based maximum likelihood (ML) phylogenetic tree. Sequences 
were first aligned using MAFFT v.7031b (Katoh and Standley 
2013) with default settings, and then trimmed with TrimAl 
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v.1.2.59 (Capella-Gutierrez et al. 2009) using automated selec-
tion on ‘gappyout’ mode. ML estimation was performed on the 
final dataset with randomized accelerated maximum likelihood 
(RAxML) v.8.2.12 (Stamatakis 2014) through 1000 bootstrap 
replicates using the GTR + GAMMA algorithm. Alignment, 
trimming and ML estimation were performed on CIPRES 
Science Gateway (Miller et al. 2010).

Plastomes from our 15 Orchis samples were aligned by using 
MAFFT v.7031b (Katoh and Standley 2013). The dataset was 
then cleaned by removing poorly aligned regions with TrimAl 
v.1.3 (Capella-Gutierrez et al. 2009) on the webserver Phylemon 
v.2.0 (Sánchez et al. 2011) using the option automated1, that uses 
a heuristic selection of the automatic method based on similarity 
statistics. Poorly aligned positions and divergent regions were 
trimmed using GBlock v.0.9.1b (Talavera and Castresana 2007). 
The final aligned dataset was used to fit the substitution model 
using JModelTest2 (Darriba et al. 2012), which was applied to 
build a ML phylogenetic tree with RAxML v.8.2.12 (Stamatakis 
2014), and 5000 bootstrap replications were performed.

Estimating divergence time
We estimated divergence times among species based on Bayesian 
inference in BEAST2 v.2.6.6 (Bouckaert et al. 2019). Habenaria 
radiata (GenBank accession NC_035834), Ophrys fusca Link 
subsp. iricolor (Desf.) K.Richt. (GenBank accession AP018716), 
and Ophrys sphegodes Mill. (GenBank accession AP018717) 
plastid genomes were used as outgroups.

A TimeTree was inferred by applying the BEAST2 method 
on plastid sequences. Absolute age estimation analysis relied on 
one calibration point, a TIM + I + G substitution model, an op-
timized relaxed molecular clock, and a calibrated Yule speciation 
model. The best substitution model was selected with the BEAUti 
package cModelTest v.1.3.3, and the best molecular clock model 
was selected using a nested sampling approach (Russel et al. 
2018) and based on marginal likelihood, using the NS package 
v.1.2.1, and following the suggestions of the BEAST2 commu-
nity (Barido-Sottani et al. 2018), see Supporting Information, 

Table S2 for details. Priors were estimated where not available 
as recommended by Drummond and Bouckaert (2015). We im-
posed a calibration point at the Ophrys-Orchis MRCA node at 
16.8 Mya (sigma = 3.68 Mya). Calibrations were extracted from 
the TimeTree database (Hedges et al. 2006, Hedges et al. 2015), 
using three studies as reference (Inda et al. 2012, Sramkó et al. 
2014; Zhang et al. 2022). We conducted an MCMC analysis 
with 100 million generations, sampling each 1000th tree gener-
ated. Convergence of the chains and effective sample size (ESS) 
values were evaluated in TRACER v.1.6.0 (Rambaut et al. 2014), 
and all parameters showed ESS values > 200. A maximum clade 
credibility tree was generated with TreeAnnotator v.1.8, burn-in 
10% of the initial states and edited using FigTree v.1.4.4.

R E SU LTS
Illumina paired-end sequencing produced from 1 080 436 (O. 
simia1) to 2 933 739 (O. purpurea2_2) raw reads. Cleaned and 
high-quality reads (Table 1) were used to assemble and anno-
tate the 15 plastomes (e.g. Plastome scheme Fig. 1). Plastome 
sizes were comparable among all the examined taxa, ranging 
between 150 041 for O. spitzelii subsp. nitidifolia to 154 958 for 
O. anthropophora. IMEx analysis for the detection of microsat-
ellites from our 15 new plastid sequences identified 204 (O. 
anthropophora) to 230 (O. provincialis) SSRs (Table 1).

The plastid phylogenetic tree topology (Fig. 2) and the 
ITS-based phylogenetic tree topology (Fig. 3), divided ‘an-
thropomorphic’ from ‘non-anthropomorphic’ species, namely 
subgenera Orchis and Masculae, with branches being supported 
by high bootstrap values. Orchis canariensis clustered, as ex-
pected, with O. patens. Some anthropomorphic accessions of 
the same species (O. purpurea and O. simia) did not form clades 
(some accessions of O. purpurea clustering closer to O. simia and 
O. militaris).

However, in both the ITS tree (Fig. 3) and the plastid DNA 
tree (Fig. 2), the specimen labelled as O. anatolica clustered with 
O. pauciflora Ten. in section Masculae (to which O. pauciflora 

Table 1. Information of NGS sequencing and SSRs detection from 15 Orchis accessions.

Species ID SSRs Input read pairs Both surviving Forward only Reverse only Dropped

1 O_anthropophora 204 2 741 985 2 020 488 (73.69%) 709 300 (25.87%) 4550 (0.17%) 7647 (0.28%)
2 O_militaris1 222 2 375 559 1 525 332 (64.21%) 839 568 (35.34%) 3764 (0.16%) 6895 (0.29%)
3 O_militaris2 219 1 222 508 718 594 (58.78%) 497 994 (40.74%) 1738 (0.14%) 4182 (0.34%)
4 O_simia1 215 1 080 436 409 061 (37.86%) 667 104 (61.74%) 1046 (0.10%) 3225 (0.30%)
5 O_simia3 216 2 514 567 1 398 427 (55.61%) 1 104 923 (43.94%)  3408 (0.14%) 7809 (0.31%)
6 O_purpurea1_1 215 2 041 466 781 922 (38.30%) 1 247 124 (61.09%) 2081 (0.10%) 10 339 (0.51%)
7 O_purpurea1_2 220 1 731 400 908 366 (52.46%) 815 060 (47.08%) 2323 (0.13%) 5651 (0.33%)
8 O_purpurea2_2 210 2 933 739 2 140 468 (72.96%) 781 557 (26.64%) 4479 (0.15%)  7235 (0.25%)
9 O_mascula 207 1 532 285 1 037 742 (67.73%) 487 143 (31.79%) 3078 (0.20%)  4322 (0.28%)
10 O_pauciflora 210 2 146 960 797 857 (37.16%) 173 740  (8.09%) 2108 (0.13%) 1 173 255  (54.65%)
11 O_canariensis 214 1 682 867 1 007 618 (59.88%) 667 438 (39.66%) 2618 (0.16%) 5193 (0.31%)
12 O_patens subsp. brevicornis 226 2 315 342 1 477 939 (63.83%) 827 750 (35.75%) 3474 (0.15%) 6179 (0.27%)
13 O_prisca

(O. spitzelii subsp. nitidifolia)
227 1 820 619 789 822 (43.38%) 222 441  (12.22%) 1576 (0.09%) 806 780  (44.31%)

14 O_quadripunctata 225 1 263 760 443 067 (35.06%) 85 388  (6.76%) 2041  (0.16%) 733 264  (58.02%)
15 O_provincialis 230 1 675 330 660 673 (39.44%) 1 008 145 (60.18%) 2025 (0.12%) 4487 (0.27%)
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belongs), and visual inspection of the herbarium voucher con-
firmed this identification. Therefore, it will be treated as O. 
pauciflora from hereon. Phylogenetic trees based on plastid DNA 
place O. quadripunctata (which belongs to section Pusillae) be-
tween accessions belonging to section Robustocalcare (Figs 1, 2).

BEAST2 analysis revealed that subgenera Orchis and Masculae 
diverged c. 10.53 Mya. The divergence between the anthropo-
morphic sections Anthropophorae (O. anthropophora) and Orchis 
(O. militaris, O. purpurea, and O. simia) occurred 5.88 Mya, 

and the divergence between non-anthropomorphic sections 
Provinciales (O. provincialis) and Masculae (O. mascula) and be-
tween Masculae and Robustocalcare (O. canariensis, O. patens, 
and O. spitzelii subsp. nitidifolia) occurred 6.30 and 6.53 Mya, 
respectively (Fig. 4).

The mVISTA-based identity plot (Fig. S1 in the Supporting 
Information) revealed DNA sequence and gene synteny con-
servation across the 15 plastomes. Generally, the number, order 
and orientation of genes were relatively conserved, but distinct 

Figure 1. Gene map of the plastome of Orchis spp. Genes are indicated by boxes on the inside (clockwise transcription) and outside 
(counterclockwise transcription) of the outermost circle. The inner circle identifies the major structural components of the plastome (LSC, IR, 
and SSC). Genes belonging to different functional groups are colour coded. The dashed area in the inner circle indicates the GC content of the 
plastome.
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sequence variations were recorded in several regions, e.g. accD, 
rps3, rps3-rps2-2, rp4-ndhK, rps11-rps8, ycf2, and ycf2-2.

D I S C U S S I O N
Strongly supported phylogenetic trees are crucial for under-
standing evolution, phylogenetic classification, conservation, 
and drivers of clade diversification (Li et al. 2019). Advances 
in next-generation sequencing, providing opportunities for 
inferring phylogenies using numerous loci, decrease potential in-
congruences resulting from stochastic error (Salamin et al. 2005, 
Philippe et al. 2011).

A recent study by Li et al. (2019) indicated that, after the 
early rapid divergence of the first three small subfamilies in 
Orchidaceae between 90 and 81 Mya, there might have been a 
period of stasis. Then another 14 Myr passed before the diver-
gence of the two largest subfamilies, Orchidoideae (to which 
Orchis belongs) and Epidendroideae.

In our study, we assembled and used plastid genomes 
for 15 samples representing 11 Orchis spp. in a comparative 
phylogenomic analysis to estimate divergence times among taxa. 
Plastome genome sizes for Orchidaceae published to date range 
from 14 015 bp in Pogoniopsis schenckii Cogn. (Klimpert et al. 
2022) to 178 131 bp in Cypripedium formosanum Hayata (Kim 
et al. 2020), a discrepancy explained by the different life forms; 
heterotrophic plants like P. schenkii usually having lost at least 
some of the photosynthesis-related genes, resulting in smaller 
plastid genomes (Barrett et al. 2019). The plastome sizes of the 
species we studied were all > 150 000 bp, which is congruent 
with the size of plastomes in other photosynthetic orchids (Kim 
et al. 2020).

Phylogenetic results were consistent with phylogenetic trees 
published previously (e.g. Bateman et al. 2003) but show some 
ambiguities. In the ML trees (Figs 2 and 3), we obtained some 
mixed clusters, with, e.g. O. purpurea accessions clustering with 
O. simia or O. militaris rather than with accessions of the same 
species. This might be explained by hybridization and genetic 
introgression that often occur among these species (Bateman 
2009; Jacquemyn et al. 2012, Bersweden et al. 2021). Our sam-
ples of Orchis purpurea (O. purpurea1_1 and O. purpurea1_2), 
were collected as ‘morphologically different’ individuals in hy-
brid zones (Bersweden et al. 2021) and exhibit an identical ITS 
sequence (Fig. 3). To the best of our knowledge, this is the first 
published case in which a hybrid or introgressed orchid displays 
the plastid DNA sequences identical to one parental species and 
ITS sequences identical to the other. Even though we might have 
expected two different sequences of ITS in these samples, one 
from each of the parental species, we detected some sequence 
variation but were unable to obtain a second consensus ITS copy. 
This phenomenon can be explained with concerted evolution 
that has been reported to eliminate all but one copy relatively 
rapidly during introgression in orchids (Pillon et al. 2007) and 
in the genus Orchis [Sanger sequencing of ITS from introgressed 
individuals in Orchis revealed only one ITS copy, the second 
copy presumably having been lost by concerted evolution (Fay et 
al., unpublished data)]. Similarly, O. quadripunctata in the ITS-
based tree clustered correctly with other GenBank accession in 
section Pusillae (Fig. 3), but was intermingled with specimens in-
cluded in the section Robustocalcare when considering plastome 
analyses (Figs 2–4). This may be explained by genetic introgres-
sion in the specimen analysed; alternatively, it could raise ques-
tions about the robustness of section Pusillae. The specimen of 

Figure 2. Phylogenetic tree based on total aligned and trimmed plastid sequences. The RAxML tree was built in CIPRES Science Gateway. 
The sample of Orchis anatolica (*) collected from Kew Herbarium clustered with O. mascula in section Masculae instead of Pusillae. Habenaria 
radiata, Ophrys fusca subsp. iricolor, and O. sphegodes were used as the outgroups.
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O. anatolica did not cluster with other specimens of the same 
species in the ITS tree (Fig. 3) and it clustered with section 
Masculae instead of Pusillae when considering plastid sequences. 
However, our data and a subsequent herbarium inspection clari-
fied the identity of this individual, which was re-identified as O. 
pauciflora, and its plastome is deposited under that name.

Orchis canariensis and O. patens clustered together with 
strong bootstrap values, in accordance with ITS-based analyses 
(Bateman et al. 2003; Fig. 3). However, plastid genome ana-
lysis provided no further evidence than nuclear microsatellites 
(Calevo et al. 2021). This might also be due to the relatively re-
cent divergence of O. canariensis and O. patens, although Bateman 
et al. (2021) also observed a relatively poor resolution of the 
phylogenetic relationships based on whole-plastome data in the 
closely related genus Ophrys L. Estimation of divergence times 
showed that the clade of tetraploid species (specifically O. patens 
and O. canariensis) diverged from the other Orchis spp. more re-
cently (c. 3.48 Mya) than the other groups, with a further diver-
sification between O. patens and O. canariensis occurring c. 1.22 
Mya. As previously hypothesized (Calevo et al. 2021), it seems 
that this group of taxa is still undergoing diversification and spe-
ciation, resulting in low genetic differentiation. Furthermore, 
an independent evolution of the two species as allotetraploids 

deriving from different subspecies of the same parental species, 
members of the O. mascula group and O. spitzelii group (to which 
O. spitzelii subsp. nitidifolia belongs) would also result in low dif-
ferentiation.

Estimation of divergence times among species performed in 
BEAST2 was consistent with other previously published esti-
mates (e.g. Inda et al. 2012, Sramkó et al. 2014, Hoffmann et al. 
2015). The analysis indicated a recent divergence occurred pre-
dominantly during the early Pliocene to late Pleistocene (Fig. 4). 
In particular, after the divergence between subgenera Orchis and 
Masculae during the Miocene (10.53 Mya), the main divergence 
of what we recognize today as sections occurred between 6.53 
and 3.48 Mya. This result is in agreement with the evolution of 
other Mediterranean plant lineages (e.g. González-Martínez et 
al. 2010, Tremetsberger et al. 2016, Benítez-Benítez et al. 2018) 
and the geological and climatic history of the Mediterranean 
Basin. The Messinian Salinity Crisis that occurred 5.96–5.30 
Mya (Pliocene) was a crucial period that contributed to extinc-
tion of the subtropical flora and diversification of Mediterranean 
lineages adapted to aridity (Rodríguez-Sánchez et al. 2008, 
Fiz-Palacios and Valcárcel 2013). This local aridification and 
global cooling began in the late Miocene and culminated with 
the commencement of the Mediterranean climatic regime in the 

Figure 3. Phylogenetic tree based on ITS sequences retrieved from high-throughput sequencing with accessions downloaded from GenBank 
(accession numbers are reported). The sample of Orchis anatolica (*) collected from Kew Herbarium failed to cluster together with other 
accessions available from GenBank. The RAxML tree was built in CIPRES Science Gateway. Dactylorhiza maculata and D. sambucina were used 
as the outgroups. Sections and ploidy levels are reported.
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late Pliocene (3.4–2.8 Mya) and greatly modified the compos-
ition and structure of the Mediterranean flora (e.g. Milne and 
Abbott 2002, Thompson 2005). Later climate variability (from 
c. 2.5 Mya), characterized by alternation of cold (glacial) and 
warm (interglacial) periods, had a strong impact on the genetic 
structure of plants (e.g. Mansion et al. 2008, Gentili et al. 2015, 
Adamo et al. 2023); during this period, the Mediterranean Basin 
and Macaronesia played a central role as refugia for glacial rel-
icts (Vargas 2007, Médail and Diadema 2009, Gentili et al. 2015, 
Mairal et al. 2017), many of which resulted in the formation of 
new allopatric lineages (Wiens 2004).

The Canary Islands originated from a volcanic hotspot 
localized at the continental–oceanic boundary west of 
Fuerteventura (that first emerged c. 22–23 Mya) and then pro-
gressed along the boundary and westwards induced by the dis-
placement of the African plate, causing the later emergence of 
the other islands, Gran Canaria emerging c. 14.5–15.0 Mya and 
El Hierro 1.1–1.2 Mya (Carracedo et al. 1998, van den Bogaard 
2013), the oldest and the youngest of the islands hosting O. 
canariensis, respectively. Although Gran Canaria, Tenerife 
and La Gomera emerged > 10 Mya (Carracedo et al. 1998, 
van den Bogaard 2013), catastrophic volcanic events, such as 
the Roque Nublo period (c. 5.3–3.7 Mya) for Gran Canaria, 
are thought to have cause the extinction, random survival on 
ridge-top refugia, and habitat fragmentation for existing flora 

(Emerson 2003, Anderson et al. 2009). However, the diver-
gence date between O. patens and O. canariensis suggests that 
the colonization of Canary Islands happened during the late 
Pleistocene, and that O. canariensis possibly became endemic 
to the islands during the glaciations from a broader distribution 
that included western Africa (where neither of the two species 
can now be found), as suggested by genetic data (Calevo et al. 
2021); this hypothesis is in line with the conception that most 
of the non-endemic Canary Island flora from the pre-glacial 
period became endemic due to the extinction of conspecific 
populations on the mainland (Caujapé-Castells et al. 2022). 
However, it is important to note that multiple loci should be 
incorporated in future analyses to reduce the effects of gene 
tree incongruence that can bias age estimation of branches 
(Carruthers et al. 2022).

CO N CLU S I O N S
Our results demonstrated a recent evolutionary history for most 
of the sections of Orchis, in agreement with the geo-climatic evo-
lution of the Mediterranean Basin and Macaronesia, with the 
tetraploid species O. patens and O. canariensis diverging in the 
late Pleistocene. Our 15 plastid genomes are the first for Orchis 
and set the basis for further in-depth biogeographical, evolu-
tionary, and population-level studies.

Figure 4. BEAST2 analysis of 15 Orchis spp. plastid genomes and divergence time estimates. Ophrys sphegodes, O. fusca subsp. iricolor (O. 
fusca), and Habenaria radiata were used as outgroups. The sample of Orchis anatolica (*), after molecular analysis and herbarium inspection, 
has been re-identified as O. pauciflora.
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